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WHAT AND, MORE IMPORTANTLY, WHY ??!
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Multi-Media Objects:
text, web pages (Google, Yahoo!, …)
i (Fli k b ht b Y h ! )
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images (Flickr bought by Yahoo!, …)
video (YouTube bought by Google, …)
audio
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EDaudio

etc. ...
Why we are interested in MM objects ?

D
IA

LI

Why we are interested in MM objects ? 
1 image every 10 documents.
Increasing multimedia content on the webIncreasing multimedia content on the web.
Yet, search in audio-visual content is limited to 
associated text and metadata annotations. 33
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OK, BUT GOOGLE ALREADY DOES THE JOB ...
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We mean to search by content !

G l d t t b d ( t ti ) h

ER
C

A D
I D

AT

Google does text-based (annotations) search
Do we have enough text ?
How is the quality of such text ?
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Is it correlated with the actual content ?
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Look at this:
http://www.nmis.isti.cnr.it/khi/p
ISTI-CNR (Pisa) and Max Planck Kunsthistorische
Institute project on Florentine Coat of Arms

44
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CONTENT-BASED SEARCH
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Shape Selection
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Results
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WHAT IS THE ADDED VALUE ?

PER
 LA R

IC
E

Content-based search for disambiguation:
What about searching for “sapphire” on Flickr ?
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CONTENT-BASED, I.E. SIMILARITY SEARCH
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Objects are “unknown”
distances between objects is “known”
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Metric Space assumption:
symmetry
id tit
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identity
triangle inequality

Distance functions inducing a metric space:
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Distance functions inducing a metric space:
Minkowski distances, edit distance, jaccard distance...

Typical queries: Range or kNNTypical queries: Range or kNN
Applications:

88
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SIMILARITY SEARCH
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Objects are “unknown”
distances between objects is “known”

query:
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Metric Space assumption:
symmetry
id tit
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identity
triangle inequality

Distance functions inducing a metric space:
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Distance functions inducing a metric space:
Minkowski distances, edit distance, jaccard distance...

Typical queries: Range or kNNTypical queries: Range or kNN
Applications:
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SIMILARITY SEARCHMedical Data Search
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Objects are “unknown”
distances between objects is “known”query:
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Metric Space assumption:
symmetry
id tit
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identity
triangle inequality

Distance functions inducing a metric space:
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Distance functions inducing a metric space:
Minkowski distances, edit distance, jaccard distance...

Typical queries: Range or kNNTypical queries: Range or kNN
Applications:
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SIMILARITY SEARCHMedical Data Search
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Objects are “unknown”
distances between objects is “known”

3D Shape Search
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Metric Space assumption:
symmetry
id tit

query:
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identity
triangle inequality

Distance functions inducing a metric space:

q y
(haemoglobin molecule)
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Distance functions inducing a metric space:
Minkowski distances, edit distance, jaccard distance...

Typical queries: Range or kNNTypical queries: Range or kNN
Applications:

1111
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SIMILARITY SEARCH

PER
 LA R

IC
E

Objects are “unknown”
distances between objects is “known”

M t i S ti

ER
C

A D
I D

AT

Metric Space assumption:
symmetry
identity
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EDidentity

triangle inequality
Distance functions inducing a metric space:
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Minkowski distances, edit distance, jaccard distance...
Typical queries: Range or kNN
Applications:

photos, 3D shapes, medical images but also
text dna graphs etc etc 12text, dna, graphs, etc. etc. 12
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FEATURE-BASED APPROACH
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From the object space to the feature space
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DATA STRUCTURES

Vantage Point Tree Generalized Hyper-plane 
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DATA STRUCTURES

Vantage Point Tree Generalized Hyper-plane 
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Multiple sub-trees may hold the solution 
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They  perform well with high 
dimensionality datadimensionality data 
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LIKE THAT IN THE WEB !!!
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Why giants like Google and Yahoo! are not using 
content-based search ?

Recent studies confirm that
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ATRecent studies confirm that 
centralized solutions are not scalable !
A single standard PC would need about 12 years 
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to process a collection of 100 million images.
Why ?
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Feature extraction is expensive !
feature extraction vs. words in a web-page 

S hi i i !Searching is expensive !
similarity search vs. boolean search

1616
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to process a collection of 100 million images.
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Feature extraction is expensive !
feature extraction vs. words in a web-page 

S hi i i !Searching is expensive !
similarity search vs. boolean search
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PARALLEL FEATURE EXTRACTION

W l d Fli k t th I Id
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We crawled Flickr to gather Image Ids
A set of clients were deployed on the EDEE Grid:

Retrieve 1000 imaged Ids
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Download Image
Extract MPEG-7 features
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Parse Flicker Photo-page to obtain additional metadata
Send metadata to our centralized repository

W h b t 50 illi i ith f t
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We have about 50 millions images with features
it seems that Flickr as at least 1 billion images
Yahoo! images has at least 2 billion imagesg g
and … they grow exponentially !

Our metadata collection is called CoPhIR
It is largely the largest publicly available collection 18It is largely the largest publicly available collection 18
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PARALLEL SEARCH
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The search space is mapped into a linear interval
This is mapped onto a distributed network thanks to 

DHT b d l ith
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some DHT-based algorithm
Each node of the network holds an M-Tree
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OUR PROPOSAL
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Metric cache:
Cache is widely used in traditional search engines
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Trivial:
Store results previous queries 
Return results when submitted query is stored
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Less trivial ...
Store results of previous queries
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Store results of previous queries
Best-effort query answering

(with guarantees)( g )
Use past queries to optimize database queries.

2020



SISTEM
I P

A CACHE WITH ONE ENTRY ...
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qi is the query in cache
with its k-NN.
r is the “radius of the

d(qi,qj)
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query”.
qj is a new query.

ri

TI M
U

LTIM
EDqj q y

If d(qi,qj)<ri
then the cached objects 
t di t

qi

Rji
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at distance

Rji = ri - d( qi qj ) from qj

qj

ji i ( qi,qj ) qj

are the top-k’ results of 
the new query 21the new query. 21
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A CACHE WITH MANY ENTRIES

Gi th
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Given the new query qx
find the largest Rxi
corresponding to the ri
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cached query qi.

The cached objects within qi
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distance Rxi from qx are 
the most similar to the 

qi

rj
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query.

Additionally one could
qj

rl

Additionally, one could 
use other objects in the 
cache to provide an 
approximate answer

ql qx

22approximate answer. 22
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SOME RESULTS ...
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SOME RESULTS ...

PER
 LA R

IC
EER

C
A D

I D
ATTI M

U
LTIM

EDD
IA

LI

2525



THE END.
G i ! )... Grazie ! =)


