
XNA@DSI

Giuseppe Maggiore

Microsoft Student Partner

University Ca’ Foscari of Venice

Computer Graphics

=pretty pictures

of possibly moving, possibly interactive,

solid or fluid, artificial or living things for

people to see on displays

Who needs computer graphics?

 Computer-Aided Design/Manufacturing

 Medical Imaging

 Simulation

 Architecture

 Electronic publishing

 Computer Animation / Film Production

 Art

 Games

 …

Chapter 0

Graphics Pipeline

Graphics Pipeline

Vertex
Buffer

Vertex
Shader

Rasterizer Pixel shader
Render

target/backb
uffer

Vertex Buffers

Is stored as

Vertex Shader

Vertex Shader

Vertex Buffer

(-1,-1,0)

(-1,+1,0)

(+1,+1,0)

(+1,-1,0)

(-1,-1,0)

(+1,+1,0)

Screen-space vertices

(+300,+400)

(+300,+600)

(+400,+600)

(+300,+400)

(+300,+400)

(+400,+600)

Rasterizer

Screen-space vertices

(+300,+400)

(+300,+600)

(+400,+600)

(+300,+400)

(+300,+400)

(+400,+600)

Rasterizer {Pixel list}

Pixel shader

Pixel shader{Pixel list} {Pixel colors}

Chapter 1

Geometry

Geometry

 For now we will work only with vertices and

triangles

 No pixel colors, no rasterizer

 Just the outline of our polygons!

Vertex buffer creation
 We will procedurally generate shapes from a quad

discretely sampled at some points:

p

1

 1

Demo!

Vertex buffer creation
 A more 3d-ish shape is a cylinder:

p

1

 1

Demo!

Vertex buffer creation
 Finally, a sphere:

p

1

 1

Demo!

Chapter 2

Lighting

Lighting

 Lighting is the computation of the contributions

to each pixel color from the lights in the scene

Normal

 To compute lighting we will need the normal N

of the surface at each vertex

 This becomes an additional input for our vertex

shader

http://en.wikipedia.org/wiki/Image:Surface_normal_illustration.png
http://en.wikipedia.org/wiki/Image:Surface_normal.png

Light direction

 The light direction L is defined as the direction

from the light to the vertex

Lambert’s cosine law

 the radiant intensity observed from a

Lambertian (ideal) surface is directly

proportional to the cosine of the angle θ

between the light direction and the surface

normal

Demo!

Phong Shading

 To add specular highlights to shiny objects, we

use the Phong lighting model

Phong Shading

 VD is the vector that goes from the vertex to the

observer

Phong Shading

 LR is the light reflected by the surface around the

vertex

Phong Shading

 The amount of reflection depends on the angle

between the two vectors LR and VD

Phong Shading

 Where sigma and rho come from the material

properties

Demo!

Chapter 3

Textures

Textures

 To give a more detailed look to our polygons

we smear an image over their surface

Texture coordinates
 To texture a polygon we use texture coordinates

 Texture coordinates map the vertices of our models to

the 2D plane of the texture

Texture coordinates

Quad texture coordinates

p

1

 1

 UV are also called barycentric coordinates

 Cylinder and sphere are based on a folded quad, so

they require no special treatment

Demo!

Non planar textures - example

 Textures can also have multiple faces

 Cube textures represent six different (orthogonal)

views of the same scene

Cube textures

 This kind of texture is

great for simulating

surfaces that reflect the

surrounding environment

Cube textures

 A cube texture is sampled using 3d coordinates

(no UV) that represent the direction from the

center of the cube from which to take the color

Demo!

Chapter 4

Simple game architecture

Simple game

 To put everything together, we build a very

simple sci-fi war game

 The graphics are covered (planets are spheres

and quads are the units)

 Gameplay is based on:
 Game code structure

 Data loading

 Input

 User interface

Game architecture

 Game code structure
 A game is (almost) like an OS

 while(true) do Update(); Draw();

 GameComponents are anything with an update and a draw function

 Input management game component (with null draw)

 User Interface game component (with almost update)

 Data loading
 XNA moves the preprocessing of all assets…

 …at compile time!

 At runtime we simply load our data already preprocessed and prepared for use

 Think from jpeg to color matrix

 Storage space versus speed (games always favor speed)

Input

 XNA can be queried for a current snapshot of

one of the following controllers:
 Mouse (Mouse.GetState())

 Keyboard (Keyboard.GetState())

 XBox 360 controller (GamePad.GetState(PlayerIndex))

 This snapshot should be updated at every frame

(Update() function)

 Often previous states are needed (hysteresis)

User interface

 XNA provides us with a very powerful, efficient
and easy to use class: SpriteBatch
 Double buffering for high performance

 Simple interface

 Can optionally use custom shaders

Demo!

GAME

OVER!

