
XNA@DSI

Giuseppe Maggiore

Microsoft Student Partner

University Ca’ Foscari of Venice

Computer Graphics

=pretty pictures

of possibly moving, possibly interactive,

solid or fluid, artificial or living things for

people to see on displays

Who needs computer graphics?

 Computer-Aided Design/Manufacturing

 Medical Imaging

 Simulation

 Architecture

 Electronic publishing

 Computer Animation / Film Production

 Art

 Games

 …

Chapter 0

Graphics Pipeline

Graphics Pipeline

Vertex
Buffer

Vertex
Shader

Rasterizer Pixel shader
Render

target/backb
uffer

Vertex Buffers

Is stored as

Vertex Shader

Vertex Shader

Vertex Buffer

(-1,-1,0)

(-1,+1,0)

(+1,+1,0)

(+1,-1,0)

(-1,-1,0)

(+1,+1,0)

Screen-space vertices

(+300,+400)

(+300,+600)

(+400,+600)

(+300,+400)

(+300,+400)

(+400,+600)

Rasterizer

Screen-space vertices

(+300,+400)

(+300,+600)

(+400,+600)

(+300,+400)

(+300,+400)

(+400,+600)

Rasterizer {Pixel list}

Pixel shader

Pixel shader{Pixel list} {Pixel colors}

Chapter 1

Geometry

Geometry

 For now we will work only with vertices and

triangles

 No pixel colors, no rasterizer

 Just the outline of our polygons!

Vertex buffer creation
 We will procedurally generate shapes from a quad

discretely sampled at some points:

p



1

 1

Demo!

Vertex buffer creation
 A more 3d-ish shape is a cylinder:

p



1

 1

Demo!

Vertex buffer creation
 Finally, a sphere:

p



1

 1

Demo!

Chapter 2

Lighting

Lighting

 Lighting is the computation of the contributions

to each pixel color from the lights in the scene

Normal

 To compute lighting we will need the normal N

of the surface at each vertex

 This becomes an additional input for our vertex

shader

http://en.wikipedia.org/wiki/Image:Surface_normal_illustration.png
http://en.wikipedia.org/wiki/Image:Surface_normal.png

Light direction

 The light direction L is defined as the direction

from the light to the vertex

Lambert’s cosine law

 the radiant intensity observed from a

Lambertian (ideal) surface is directly

proportional to the cosine of the angle θ

between the light direction and the surface

normal

Demo!

Phong Shading

 To add specular highlights to shiny objects, we

use the Phong lighting model

Phong Shading

 VD is the vector that goes from the vertex to the

observer

Phong Shading

 LR is the light reflected by the surface around the

vertex

Phong Shading

 The amount of reflection depends on the angle

between the two vectors LR and VD

Phong Shading

 Where sigma and rho come from the material

properties

Demo!

Chapter 3

Textures

Textures

 To give a more detailed look to our polygons

we smear an image over their surface

Texture coordinates
 To texture a polygon we use texture coordinates

 Texture coordinates map the vertices of our models to

the 2D plane of the texture

Texture coordinates

Quad texture coordinates

p



1

 1

 UV are also called barycentric coordinates

 Cylinder and sphere are based on a folded quad, so

they require no special treatment

Demo!

Non planar textures - example

 Textures can also have multiple faces

 Cube textures represent six different (orthogonal)

views of the same scene

Cube textures

 This kind of texture is

great for simulating

surfaces that reflect the

surrounding environment

Cube textures

 A cube texture is sampled using 3d coordinates

(no UV) that represent the direction from the

center of the cube from which to take the color

Demo!

Chapter 4

Simple game architecture

Simple game

 To put everything together, we build a very

simple sci-fi war game

 The graphics are covered (planets are spheres

and quads are the units)

 Gameplay is based on:
 Game code structure

 Data loading

 Input

 User interface

Game architecture

 Game code structure
 A game is (almost) like an OS

 while(true) do Update(); Draw();

 GameComponents are anything with an update and a draw function

 Input management  game component (with null draw)

 User Interface  game component (with almost update)

 Data loading
 XNA moves the preprocessing of all assets…

 …at compile time!

 At runtime we simply load our data already preprocessed and prepared for use

 Think from jpeg to color matrix

 Storage space versus speed (games always favor speed)

Input

 XNA can be queried for a current snapshot of

one of the following controllers:
 Mouse (Mouse.GetState())

 Keyboard (Keyboard.GetState())

 XBox 360 controller (GamePad.GetState(PlayerIndex))

 This snapshot should be updated at every frame

(Update() function)

 Often previous states are needed (hysteresis)

User interface

 XNA provides us with a very powerful, efficient
and easy to use class: SpriteBatch
 Double buffering for high performance

 Simple interface

 Can optionally use custom shaders

Demo!

GAME

OVER!

