
Control Flow Analysis of Mobile Ambients
with Security Boundaries 1

Chiara Braghin Agostino Cortesi Riccardo Focardi

Dipartimento di Informatica,
Università Ca’ Foscari di Venezia,

Via Torino 155, 30173 Venezia – Mestre (Italy)
{dbraghin,cortesi,focardi}@dsi.unive.it

Abstract

A multilevel security policy is considered in the scenario of mobile systems, and modeled within
“pure” Mobile Ambients calculus, in which no communication channels are present and the only
possible actions are represented by the moves performed by mobile processes. The information flow
property of interest is defined in terms of the possibility for a confidential ambient/data to move
outside a security boundary. In a previous paper, we gave a very simple syntactic property that is
sufficient to imply the absence of unwanted information flows. In this paper, a control flow analysis
is defined, as a refinement of the Hansen-Jensen-Nielsons’s CFA, that allows to capture boundary
crossings with better accuracy.
Keywords: Mobile Ambients, Security, Static Analysis.

1 Introduction

When a user is identified and allowed to access some computer resources, an access control
policy is imposed that guarantees that no information leak is possible. In particular, the
system should detect “Trojan horses”, i.e. (aware or unaware) malicious programs that hide
their dangerous contents behind a trustworthy façade.

We focus on Multilevel Security, a particular Mandatory Access Control security policy:
every entity is bound to a security level (for simplicity, we consider only two levels: high
and low), and information may just flow from the low level to the high one. Typically, two
access rules are imposed: (i) No Read Up, a low level entity cannot access information of a
high level entity; (ii) No Write Down, a high level entity cannot leak information to a low
level entity. Sometimes, these two access controls are not enough as information may be
indirectly leaked, through, e.g., some system side-effect: a typical example is represented by
a resource shared among the security levels which may be alternatively overloaded by some

1 Partially supported by MURST Projects “Interpretazione Astratta, Type Systems e Analisi Control-Flow”,
and “Certificazione automatica di programmi mediante interpretazione astratta”.

1

Trojan horse (causing, e.g., longer response time at all security levels) in order to transmit
information to a malicious low level entity. These indirect ways of transmitting information
are called covert channels. Figure1 summarizes this policy.

Write

Read

Write

Read

Covert
Channel

Write-up

S1 O1

S2 O2

Read-down

Level n

Level n+k

Fig. 1. Multilevel Security Policy.

In order to detect both direct and indirect information leakages, a typical approach (see,
e.g., [2,6–8,10,11]) consists in directly defining what is an information flow from one level to
another one. Then, it is sufficient to verify that, in any system execution, no information
flow is possible from level high to level low. This is the approach we follow in this paper.

We will consider information flow security in the scenario of mobile systems. This par-
ticular setting, where code may migrate from one security level to another one, complicates
even further the problem of capturing all the possible information leakages. As an example,
confidential data may be read by an authorized agent which, moving around, could expose
them to unexpected attacks. Moreover, the code itself could be confidential, and so not
allowed to be read/executed by lower levels.

In order to study this problem as much abstractly as possible, we consider the “pure”
Mobile Ambients calculus [4], in which no communication channels are present and the only
possible actions are represented by the moves performed by mobile processes. This allows
to study a very general notion of information flow which should be applicable also to more
“concrete” versions of the calculus.

The information flow property of interest is defined in terms of the possibility for a
confidential ambient/data to move outside a security boundary. In [1], a very simple syntactic
property is introduced that it is sufficient to imply the absence of unwanted information flows.
Here, we introduce a refinement of the control flow analysis defined in [9] that deals with
the same property with improved accuracy.

The rest of the paper is organized as follows. In Section 2 we introduce the basic terminology
on ambient calculus and we briefly report the control flow analysis of [9]. In Section 3, we
present the model of multilevel security for mobile agents and we show how to guarantee
absence of unwanted information flows. In Section 4, we introduce the Control Flow Analysis.
Section 5 concludes the paper.

2

2 Background

In this section we introduce the basic terminology on ambient calculus and we briefly report
the control flow analysis of [9].

2.1 Mobile Ambients

The Mobile Ambients calculus has been introduced in [4] with the main purpose of explicitly
modeling mobility. Indeed, ambients are arbitrarily nested boundaries which can move
around through suitable capabilities. The syntax of processes is given as follows, where
n denotes an ambient name.

P, Q ::= (νn)P restriction

| 0 inactivity

| P | Q composition

| !P replication

| n`a

[P] ambient

| in`t

n.P capability to enter n

| out `t

n.P capability to exit n

| open`t

n.P capability to open n

The labels `a ∈ Lab
a on ambients and labels `t ∈ Lab

t on transitions, have been introduced
in the control flow analysis proposed in [9]. This is just a way of indicating “program points”
and will be useful in the next section when developing the analysis.

Intuitively, the restriction (νn)P introduces the new name n and limits its scope to P ;
0 does nothing; P | Q is P and Q running in parallel; replication provides recursion and
iteration as !P represents any number of copies of P in parallel. By n`a

[P] we denote the
ambient named n with the process P running inside it. The capabilities in `t

n and out `t

n

move their enclosing ambients in and out ambient n, respectively; the capability open `t

n is
used to dissolve the boundary of a sibling ambient. P → Q denotes the reduction relation
as defined in [4].

2.2 Control Flow Analysis

The control flow analysis described in [9] aims at modeling which processes can be inside
what other processes. It works on pairs (Î , Ĥ), where:

• The first component Î is an element of ℘(Lab
a × (Lab

a ∪ Lab
t)). If a process contains an

ambient labelled `a having inside either a capability or an ambient labelled `, then (`a, `)
is expected to belong to Î.

• The second component Ĥ keeps track of the correspondence between names and labels. If
a process contains an ambient labelled `a with name n, then (`a, n) is expected to belong
to Ĥ.

• The pairs are component-wise partially ordered.

3

(res) βCF

` ((νn)P) = βCF

` (P)

(zero) βCF

` (0) = (∅, ∅)

(par) βCF

` (P | Q) = βCF

` (P) t βCF

` (Q)

(repl) βCF

` (!P) = βCF

` (P)

(amb) βCF

` (n`a

[P]) = βCF

`a (P) t ({(`, `a)} , {(`a, n)})

(in) βCF

` (in`t

n.P) = βCF

` (P) t ({(`, `t)} , ∅)

(out) βCF

` (out `t

n.P) = βCF

` (P) t ({(`, `t)} , ∅)

(open) βCF

` (open`t

n.P) = βCF

` (P) t ({(`, `t)} , ∅)

Fig. 2. Representation Function for the Control Flow Analysis

(res) (Î, Ĥ) |=CF (νn)P iff (Î , Ĥ) |=CF P

(zero) (Î, Ĥ) |=CF 0 always

(par) (Î, Ĥ) |=CF P | Q iff (Î , Ĥ) |=CF P ∧ (Î , Ĥ) |=CF Q

(repl) (Î, Ĥ) |=CF !P iff (Î , Ĥ) |=CF P

(amb) (Î, Ĥ) |=CF n`a

[P] iff (Î , Ĥ) |=CF P

(in) (Î, Ĥ) |=CF in`t

n.P iff (Î , Ĥ) |=CF P ∧

∀`a, `a′

, `a′′

∈ Lab
a : ((`a, `t) ∈ Î ∧ (`a′′

, `a) ∈ Î ∧ (`a′′

, `a′

) ∈ Î

∧ (`a′

, n) ∈ Ĥ) =⇒ (`a′

, `a) ∈ Î

(out) (Î, Ĥ) |=CF out `t

n.P iff (Î , Ĥ) |=CF P ∧

∀`a, `a′

, `a′′

∈ Lab
a : ((`a, `t) ∈ Î ∧ (`a′

, `a) ∈ Î ∧ (`a′′

, `a′

) ∈ Î

∧ (`a′

, n) ∈ Ĥ) =⇒ (`a′′

, `a) ∈ Î

(open) (Î, Ĥ) |=CF open`t

n.P iff (Î , Ĥ) |=CF P ∧

∀`a, `a′

∈ Lab
a : ((`a, `t) ∈ Î ∧ (`a, `a′

) ∈ Î ∧ (`a′

, n) ∈ Ĥ)

=⇒
{

(`a, `′) | (`a′

, `′) ∈ Î
}

⊆ Î

Fig. 3. Specification of the Control Flow Analysis

4

The analysis is defined by a representation function and a specification. 2 They are recalled,
respectively, in Figure 2 and Figure 3.

The representation function mainly collects information about all ambient nestings yielded
by a process, in its initial state. The representation of a process P is defined as βCF

`a
∗

(P),
where label `a

∗
is a special label corresponding to the environment.

The specification mostly amounts to recursive checks of subprocesses. The open-capability
says that if some ambient labelled `a has an open-capability `t on an ambient n that may
apply due to the presence of a sibling ambient labelled `a′

whose name is just n, then the
result of performing that capability should also be recorded in Î. The in and out capabilities
behave similarly.

The correctness of the analysis is proven by showing that every reduction of the semantics
is properly mimicked in the analysis:

Theorem 2.1 Let P and Q be two processes such that βCF

`a
∗

(P) v (Î , Ĥ) ∧ (Î , Ĥ) |=CF

P ∧ P → Q then βCF

`a
∗

(Q) v (Î , Ĥ) ∧ (Î , Ĥ) |=CF Q

Intuitively, whenever (Î , Ĥ) |=CF P and the representation of P is contained in (Î , Ĥ), we
are assured that every nesting of ambients and capabilities in every possible derivative of P

is also captured in (Î , Ĥ).

It is important to recall also that the resulting control flow analysis applies to any process,
and that every process enjoys a least analysis.

3 Information Flow

In this section, we present a formalization of multilevel security in the setting of Mobile
Ambients. Then, a simple syntactical property is given which allows to verify the absence
of unwanted information flows.

3.1 Modelling Multilevel Security

In order to define Multilevel security in Mobile Ambients we first need to classify information
into different levels of confidentiality. We do that by exploiting the labelling of ambients. In
particular, we partition the set of ambient labels Lab

a into three disjoint sets Lab
a
H ,Lab

a
L

and Lab
a
B, which stand for high, low and boundary labels.

Given a process, the multilevel security policy may be established by deciding which am-
bients are the ones responsible for confining confidential information. These are all labelled
with boundary labels from set Lab

a
B and we will refer to them as boundary ambients. Thus,

all the high level ambients must be contained in a boundary ambient and labelled with labels
from set Lab

a
H . On the other side, all the external ambients are considered low level ones

and consequently labelled with labels from set Lab
a
L. This is how we will always label pro-

cesses, and it corresponds to defining the security policy (what is secret, what is not, what

2 In ambient calculus bound names may be α-converted. For the sake of simplicity, here we are assuming
that ambient names are stable, i.e., n is indeed a representative for a class of α-convertible names. See [9]
for more details on how this can be handled.

5

is a container of secrets). In all the examples, we will use the following notation for labels:
b ∈ Lab

a
B, h ∈ Lab

a
H , m, m

′

∈ Lab
a
L and c, ch, cl, cm, cm

′

∈ Lab
t.

As an example consider the following process:

P = containerb[hdatah[out ccontainer.0]] | Q

where Q contains some low level ambients. Ambient container is a boundary for the high
level data hdata (note that data are abstractly represented as ambients). This process is an
example of a direct information flow. Indeed, P may evolve to containerb[] | hdatah[] | Q,
where the high level hdata is out of any boundary ambient, thus vulnerable and potentially
accessible by any ambient or process in Q. 3 This flow of high level data/ambients outside
the security boundaries is exactly what we intend to control and avoid.

In distributed and mobile systems, it is unrealistic to consider a unique boundary,
containing all the confidential information. As an example consider two different sites
venice and twente, each with some set of confidential information that need to be pro-
tected. This can be modeled by just defining two boundary ambients, one for each site:
veniceb[P1] | twenteb[P2] | Q. In order to make the model applicable, it is certainly needed
a mechanism for moving confidential data from one boundary to another one. This is achieved
through another boundary ambient which moves out from the first protected area and into
the second one. An example follows:

veniceb[sendb[out cvenice.inctwente | hdatah[]]] | twenteb[opencsend] | Q

that may evolve to:

veniceb[] | twenteb[opencsend | sendb[hdatah[]]] | Q

and finally to:

veniceb[] | twenteb[hdatah[]] | Q

Note that send is labelled as a boundary ambient. Thus, the high level data hdata is always
protected by boundary ambients, during the whole execution.

3.2 Verifying Absence of Information Leakage

In this section, we study how to verify that no leakage of secret data/ambients outside the
boundary ambients is possible. A natural approach could be the direct application of the
control flow of [9] reported in section 2.2. As a matter of fact, consider again the example
presented above:

veniceb[sendb[out cvenice.inctwente | hdatah[]]] | twenteb[opencsend]

The least analysis for this process can be easily shown to be the following:

3 Note that the presence of an ambient may be tested by trying to open it or by entering and then exiting
from it. A low level ambient may thus test if hdata is present. This may be seen as reading such high level
information.

6

Î = {(la
∗
, b), (b, b), (b, h), (b, c)}

ĥ = {(b, venice), (b, send), (b, twente), (h, hdata)}

The important thing is that h is always contained inside b, i.e., a boundary ambient. This
basically proves that the system is secure and no leakage of h data may happen.

However, the fact that the analysis simply collects all the potential nesting without
considering the temporal ordering of the events, may sometimes be too approximated. As
an example, consider again the previous process and suppose that high level data is willing
to enter some filter process, which could possibly be low level code:

veniceb[sendb[out cvenice.inctwente | hdatah[inchfilter]]] |

| twenteb[opencsend] | filterm[incsend] | openclfilter

Note that the filter behaves correctly with respect to multilevel security rules, i.e., it only
enters boundaries. In particular, this means that it will never transport high level data
outside the security boundaries. However, if we perform the control flow analysis we obtain
the following least solution:

Î = {(la
∗
, b), (la

∗
, h), (la

∗
, m), (la

∗
, cl), (la

∗
, c), (b, b), (b, h), (b, m), (b, c),

(h, ch), (m, h), (m, c)}

Ĥ = {(b, venice), (b, send), (b, twente), (h, hdata), (m, filter)}

Note that h appears at the environment level (i.e. the pair (la
∗
, h) occurs in Î), showing

a potential attack. However, as observed before, there is no execution leading to such a
situation. The reason why the analysis looses precision here, is due to the fact that h enters
a m ambient which might be opened at the environment level, but the analysis does not
capture the fact that h enters m only after it has crossed the boundary and can never return
back.

In [1] we studied a (syntactic) condition on processes that is sufficient to prove the
absence of leakage of secret data/ambients outside the boundary ambients. Moreover, such
a condition properly deals with the situation discussed before. Let us briefly recall the main
results presented in [1].

The idea is to control the out ln and open ln capabilities executed on a boundary ambient
n. In particular, we require that such capabilities may only be performed by boundary
ambients.

First, we characterize a subset of capability labels, in order to mark out and open capa-
bilities that refer to boundary ambients. Let Lab

t
O ⊆ Lab

t be the subset of labels that refer
to out and open capabilities, and let Lab

t
BM ⊆ Lab

t
O be a subset of this set of out and open

capability labels. BM stands for boundary moves capabilities. Let also φ : Lab
t → ℘(Amb)

be a function that given a capability label `t, returns the set of ambient names on which all
the capabilities labelled with `t operate.

Given a process P , the conditions that should be imposed on βCF

`a
∗

(P) to guarantee absence

7

of information leakage are the following.

(i) (`a, n) ∈ Ĥ, `a ∈ Lab
a
B, n ∈ φ(`t), `t ∈ Lab

t
O ⇒ `t ∈ Lab

t
BM

(ii) (`, `′) ∈ Î , `′ ∈ Lab
t
BM ⇒ ` ∈ Lab

a
B

Observe that condition (i) results in a well-formedness labelling. It requires that all the out

and open capabilities that operate on boundary ambients are labelled as boundary moves
(i.e., with labels in set Lab

t
BM). If this condition is initially satisfied by P (i.e., by βCF

`a
∗

(P)),
then it will hold also for every derivative of P , as the labelling cannot change during process
execution.

Condition (ii) requires that every out and open boundary move is executed inside a
boundary ambient. Note that, in general, this may be not preserved when P evolves. Indeed,
the following theorem states that also condition (ii) above is preserved, in every execution
of P .

Theorem 3.1 If the representation function βCF

`a
∗

(P) initially fulfills conditions (i) − (ii),

then the least solution (Î , Ĥ) |=CF P to the control flow analysis in [9] enjoys these conditions
as well.

Condition (ii) basically states two important properties on P execution: every time a bound-
ary ambient is opened, this is done inside another boundary ambient; the only ambients that
may exit from a boundary ambients are boundary ambients. By induction on reduction rules
of Mobile Ambients it is easy to prove the following information flow theorem:

Theorem 3.2 If βCF

`a
∗

(P) fulfills conditions (i) − (ii), then, in every Q s.t. P → Q, every
high level ambient is always inside at least one boundary ambient.

Note that the conditions are really simple to check. As an example consider again the two
example presented above. In particular,

P = containerb[hdatah[out ccontainer.0]] | Q

does not satisfy condition (ii) as out ccontainer, by condition (i), should be labelled as a
boundary move. However this makes a boundary move executable in a high level ambient,
invalidating condition (ii). On the other side, the second example

veniceb[sendb[out cvenice.inctwente | hdatah[]]] | twenteb[opencsend] | Q

fulfills both the conditions, with c ∈ Lab
t
BM . This proves that hdata, in every execution, is

always inside a boundary ambient.

The syntactic conditions successfully applies also to the extended example with hdata

entering the filter:

veniceb[sendb[out cvenice.inctwente | hdatah[inchfilter]]] |

| twenteb[opencsend] | filterm[incsend] | openclfilter

8

Also in this case, we are able to prove that hdata, in every execution, is always inside
a boundary ambient. Note that this was not provable through the presented control flow
analysis.

The approach above may also be adapted to the case in which the external environment
(e.g. any malicious process put in parallel with the analyzed process P) does not fulfill the
required conditions. This is indeed reasonable in a distributed open system. The idea is
to suitably restrict the scope of boundary ambients and provide low level ambients with
some “taxi” processes that, once entered, bring the client inside restricted boundaries. Let
b1, . . . , bn represent all the boundary ambients of process P . Then consider process

(νb1, . . . , bn)(P | !t1[in
lb1] | . . . | !tn[in lbn]) | Q

As b1, . . . , bn are restricted names, they may not appear in Q. As a consequence, if P fulfills
the conditions (i) − (ii), this is sufficient to prove that the whole system (whatever Q is
considered) satisfies such conditions, too. It is indeed simple to prove the following:

Proposition 3.3 If βCF

`a
∗

(P) fulfills conditions (i) − (ii), then, for all Q (labelled in Lab
a
L ∪

Lab
t \ Lab

t
BM),

βCF

`a
∗

((νb1, . . . , bn)(P | !t1[in
lb1] | . . . | !tn[in lbn]) | Q)

fulfills conditions (i) − (ii).

Note that processes !ti[in
lbi] allow any low level ambient to enter boundary bi. So, legitimate

flows from level to high level are possible even if boundaries are restricted. Note also that
the condition on the labelling of Q simply means that Q just contains low level ambients
and its capabilities are not (incorrectly) labelled as boundary moves.

4 Refining the Control Flow Analysis

In this section we introduce a refinement of the Control Flow Analysis of [9] mentioned above,
in order to incorporate into the analysis the ideas discussed in Section 3, thus yielding to
a more accurate tool for detecting unwanted boundary crossings. The resulting analysis
improves also w.r.t. the syntactic properties in [1].

The main idea is to split the Î component of the abstract domain in two (not necessarily
distinct) sets, in order to keep information about the nesting of boundaries, and about
”unprotected” ambients.

The refined control flow analysis works on triplet (ÎB, ÎE, Ĥ), where:

- The first component ÎB is an element of ℘(Lab
a×(Lab

a∪Lab
t)). If a process contains either

a capability or an ambient labelled ` inside an ambient labelled `a which is a boundary
or an ambient nested inside a boundary (referred as protected ambient) then (`a, `) is
expected to belong to ÎB. As long as a high level datum is contained inside a protected
ambient there is no unwanted information flow.

- The second component ÎE is still an element of ℘(Lab
a × (Lab

a ∪ Lab
t)). If a process

9

βCF(P∗) = βCF

`,False(P∗)

(res) βCF

`,Protected((νn)P) = βCF

`,Protected(P)

(zero) βCF

`,Protected(0) = (∅, ∅, ∅)

(par) βCF

`,Protected(P | Q) = βCF

`,Protected(P) t βCF

`,Protected(Q)

(repl) βCF

`,Protected(!P) = βCF

`,Protected(P)

(amb) βCF

`,Protected(n
`a

[P]) = case Protected of

True : βCF

`a,P rotected(P) t ({(`, `a)} , ∅, {(`a, n)})

False: if (`a ∈ Lab
a
B) then

let Protected
′

= True in

βCF

`a,P rotected
′ (P) t (∅, {(`, `a)} , {(`a, n)})

(in) βCF
`,Protected(in

`t

n.P) = case Protected of

True : βCF

`,Protected(P) t (
{

(`, `t)
}

, ∅, ∅)

False: βCF
`,Protected(P) t (∅,

{

(`, `t)
}

, ∅)

(out) βCF

`,Protected(out `t

n.P) = case Protected of

True : βCF
`,Protected(P) t (

{

(`, `t)
}

, ∅, ∅)

False: βCF

`,Protected(P) t (∅,
{

(`, `t)
}

, ∅)

(open) βCF
`,Protected(open

`t

n.P) = case Protected of

True : βCF

`,Protected(P) t (
{

(`, `t)
}

, ∅, ∅)

False: βCF

`,Protected(P) t (∅,
{

(`, `t)
}

, ∅)

Fig. 4. Representation Function for the Control Flow Analysis

contains either a capability or an ambient labelled ` inside an ambient labelled `a which
is not protected, then (`a, `) is expected to belong to ÎE.

- The third component Ĥ keeps track of the correspondence between names and labels. If
a process contains an ambient labelled `a with name n, then (`a, n) is expected to belong
to Ĥ.

Also in this case, the analysis is defined by a representation function and a specification.
They are depicted, respectively, in Figure 4 and Figure 5.

A pictorial representation of the most interesting application of the in-rule (i.e. a boundary
crossing) is provided by Figure 6: the state of ÎE and ÎB before and after the move of ambient
k into ambient n is represented by graphs (a) and (b), respectively.

The result of the analysis should be read, as expected, in terms of information flows.

Theorem 4.1 No leakage of secret data/ambients outside the boundary ambients is possible
if in the analysis h (high level datum) does not appear in any of the pairs belonging to ÎE.

10

(res) (ÎB , ÎE , Ĥ) |=CF (νn)P iff (ÎB , ÎE , Ĥ) |=CF P

(zero) (ÎB , ÎE , Ĥ) |=CF 0 always

(par) (ÎB , ÎE , Ĥ) |=CF P | Q iff (ÎB , ÎE , Ĥ) |=CF P ∧ (ÎB , ÎE , Ĥ) |=CF Q

(repl) (ÎB , ÎE , Ĥ) |=CF !P iff (ÎB , ÎE , Ĥ) |=CF P

(amb) (ÎB , ÎE , Ĥ) |=CF n`a

[P] iff (ÎB , ÎE , Ĥ) |=CF P

(in) (ÎB , ÎE , Ĥ) |=CF in`t

n.P iff (ÎB , ÎE , Ĥ) |=CF P ∧

∀`a, `a′

, `a′′

∈ Lab
a : ((`a, `t) ∈ ÎE ∪ ÎB ∧ (`a′′

, `a) ∈ ÎE ∪ ÎB

∧ (`a′′

, `a′

) ∈ ÎE ∪ ÎB ∧ (`a′

, n) ∈ Ĥ) =⇒

if (Protected(`a′′

) ∨ (¬Protected(`a′′

) ∧ `a′

∈ Lab
a
B ∧ `a ∈ Lab

a
B))

then(`a′

, `a) ∈ ÎB

and

if (¬Protected(`a′′

) ∧ `a′

6∈ Lab
a
B) then(`a′

, `a) ∈ ÎE

and

if (¬Protected(`a′′

) ∧ `a′

∈ Lab
a
B ∧ `a 6∈ Lab

a
B)

then(`a′

, `a) ∈ ÎB ∧
{

(`, `′) ∈ ÎE | pathE(`a, `)
}

⊆ ÎB

(out) (ÎB , ÎE , Ĥ) |=CF out `t

n.P iff (ÎB , ÎE , Ĥ) |=CF P ∧

∀`a, `a′

, `a′′

∈ Lab
a : ((`a, `t) ∈ ÎE ∪ ÎB ∧ (`a′

, `a) ∈ ÎE ∪ ÎB

∧ (`a′′

, `a′

) ∈ ÎE ∪ ÎB ∧ (`a′

, n) ∈ Ĥ) =⇒

if (Protected(`a′′

)) then(`a′′

, `a) ∈ ÎB

and

if (¬Protected(`a′′

) ∧ (`a ∈ Lab
a
B ∨ (`a 6∈ Lab

a
B ∧ `a′

6∈ Lab
a
B)))

then(`a′′

, `a) ∈ ÎE

and

if (¬Protected(`a′′

) ∧ `a 6∈ Lab
a
B ∧ `a′

∈ Lab
a
B)

then(`a′′

, `a) ∈ ÎE ∧
{

(`, `′) ∈ ÎB | pathB(`a, `)
}

⊆ ÎE

(open) (ÎB , ÎE , Ĥ) |=CF open`t

n.P iff (ÎB , ÎE , Ĥ) |=CF P ∧

∀`a, `a′

∈ Lab
a : ((`a, `t) ∈ ÎE ∪ ÎB ∧ (`a, `a′

) ∈ ÎE ∪ ÎB

∧ (`a′

, n) ∈ Ĥ) =⇒

if (Protected(`a)) then
{

(`a, `) | (`a′

, `) ∈ ÎB

}

⊆ ÎB

and

if (¬Protected(`a) ∧ `a′

∈ Lab
a
B)

then
{

(`, `′) ∧ (`a, `
′′

) | (`, `′) ∈ ÎB ∧ (`a′

, `
′′

) ∈ ÎB ∧ pathB(`
′′

, `)
}

⊆ ÎE

and

if (¬Protected(`a) ∧ `a′

6∈ Lab
a
B) then

{

(`a, `) | (`a′

, `) ∈ ÎE

}

⊆ ÎE

Fig. 5. Specification of the Control Flow Analysis

11

IBIE l’

l

lclc

(b) l’’

l’l

lc lc

IE

lc lc

IBl’’

l

(a)

l’

z

k

l . P

l

in n
t

n l’

l’’

...

...

......

...

Fig. 6. The in-rule: boundary crossing

Observe that the abstraction and concretization functions (αCF , γCF) can be defined in terms
of the occurrence counting domain in [9] (where a third component Â maintains multiplicity
information), as follows:

Let ηB : Î 7→ ÎB and ηE : Î 7→ ÎE be functions splitting Î according to the boundary
nestings, in 4

αCF (C)=
⊔

{(ηB(Î), ηE(Î), Ĥ) | (Î , Ĥ, Â) ∈ C}

γCF (ÎB, ÎE, Ĥ)= {(Î
′

, Ĥ
′

, Â
′

) | (ηB(Î
′

), ηE(Î
′

), Ĥ
′

) v (ÎB, ÎE, Ĥ) ∧ (Î
′

, Ĥ
′

, Â
′

)

is compatible }

The two functions ηB and ηE are defined in terms of protected and unprotected path predi-
cates as follows:

• p path(`a) =

True iff ∃`0 ∈ Lab
a
B ∧ ∃`1, `2, ..., `n : n ≥ 0

(`0, `1), (`1, `2), ..., (`n, `
a) ∈ Î ,

False otherwise.

• u path(`a) =

True iff ∃`1, `2, ..., `n : n ≥ 0

(env, `1), (`1, `2), ..., (`n, `
a) s.t.∀k `k 6∈ Lab

a
B,

False otherwise.

ηB : ℘(Lab
a × (Lab

a ∪ Lab
t)) → ℘(Lab

a × (Lab
a ∪ Lab

t))

ηB(Î) = {(`a, `)| p path(`a) ∨ ¬u path(`a)}

ηE : ℘(Lab
a × (Lab

a ∪ Lab
t)) → ℘(Lab

a × (Lab
a ∪ Lab

t))

ηE(Î) = {(`a, `)| u path(`a)}

The abstraction and concretization functions (αCF , γCF) form a Galois connection; i.e.

• both functions are monotone;

4 According to [9], a triplet (ÎB , ÎE , Ĥ) is compatible whenever the labels in ÎE ∪ ÎB are consistent with the
mapping Ĥ. More formally, if the following condition is satisfied: if (`a, `) ∈ ÎE ∪ ÎB or (`, `a) ∈ ÎE ∪ ÎB

then there exists n such that (`a, n) ∈ (Î , Ĥ).

12

• C ⊆ γCF(αCF(C)) for any C ∈ CountSet;

• αCF(γCF(ÎB, ÎE, Ĥ)) v (ÎB, ÎE, Ĥ) for any triplet (ÎB, ÎE, Ĥ).

This leads to a hierarchy of abstractions that very well fits in the Abstract Interpretation
theory, yielding an expected trade-off between accuracy and efficiency of the analyses.

Observe that within the specification of the analysis (depicted in Figure 5), some predicates
are introduced that simplify the notation, namely

• pathB(`a, `) =

True if `a = ` ∨ ∃`1, `2, ..., `n 6∈ Lab
a
B : n ≥ 0

(`a, `1), (`1, `2), ..., (`n, `) ∈ ÎB ∧ `a, ` 6∈ Lab
a
B,

False otherwise.

• pathE(`a, `) =

True if `a = ` ∨ ∃`1, `2, ..., `n 6∈ Lab
a
B : n ≥ 0

(`a, `1), (`1, `2), ..., (`n, `) ∈ ÎE ∧ `a, ` 6∈ Lab
a
B,

False otherwise.

• Protected(`a) =

True if 6 ∃`a′

: (`a′

, `a) ∈ ÎE ∧ `a 6= env,

T rue if `a ∈ Lab
a
B,

False otherwise.

The correctness proof of the Control Flow Analysis can be obtained by structural induction
along the lines of the proof in [9].

What about accuracy? The analysis just introduced is a refinement of the CFA in [9] and it
properly deals with boundary nestings, in the spirit of Section 3. In particular, it strongly
improves in accuracy with respect to the mentioned syntactic property introduced in [1].

Consider, for instance, the following example, where the process discussed in the previous
sections is extended by allowing an application (say an applet) to be downloaded from the
web within twente; then, the application may open the ambient send and disappear.

veniceb[sendb[out cvenice.inctwente | hdatah[inchfilter]]] |

| twenteb[downloadm
′

[out cm
′

twente.incm
′

web.incm
′

twente] |

| opencweb.open capplication] |

webm[applicationm[open cmsend.filterm[]] | opencmdownload]

Observe that in this case there is no information flow, as the application is not exporting any
data out of the twente boundary. In this case, our refined CFA yields to positive information
(see the least solution reported below), whereas the syntactic property cannot be successfully
applied. In fact, the (untrusted) application downloaded from the net is not a boundary, its
open capability is labeled BM by the first rule, and thus the second rule cannot be satisfied.

13

ÎB = {(b, b), (b, c), (b, h), (b, m), (b, m
′

), (h, ch), (m
′

, cm
′

), (m, h)}

ÎE = {(la
∗
, b), (la

∗
, m), (la

∗
, m

′

), (m, m), (m, m
′

), (m, cm), (m
′

, cm
′

)}

Ĥ = {(b, venice), (b, send), (b, twente), (h, hdata), (m
′

, download),

(m, web), (m, application), (m, filter)}

Observe that the result is also better than the Hansen-Jensen-Nielsons’s CFA [9] in which
the following least solution is obtained:

Î = {(la
∗
, b), (la

∗
, m), (la

∗
, m

′

), (b, b), (b, c), (b, h), (b, m), (b, cm), (b, m
′

),

(b, cm
′

), (h, ch), (m, m), (m, m
′

), (m, b), (m, cm), (m, cm
′

),

(m, c), (m, h), (m
′

, cm
′

)}

Ĥ = {(b, venice), (b, send), (b, twente), (h, hdata), (m
′

, download),

(m, web), (m, application), (m, filter)}

Note that h appears inside a m ambient that at the beginning of the process is at the
environmental level, but the analysis does not capture the fact that h enters m only after it
has crossed the boundary and can never return back.

5 Conclusions

The main novelty of the approach presented in this paper is that we model multilevel infor-
mation flow within a “pure” mobile ambient setting, without considering either channels or
recently proposed restrictions of Mobile Ambients designed for security issues (like Secure
Safe Ambients [3]).

As a future work, we intend to extend the approach to other versions of Mobile Ambients,
and, in particular, to the full calculus with communication channels. It is our opinion that
if only communication within ambients is considered, the approach should carry on very
naturally. We also intend to compare our approach with other control flow analyses proposed
for particular versions of Mobile Ambients, like, e.g., the one for Safe Ambients [5], aimed
at capturing access control more than information flow. It would be also interesting to
study whether our approach could be applied, via some suitable encoding, also to “classical”
calculi, like pi-calculus.

References

[1] A. Cortesi, and R. Focardi. Information Flow Security in Mobile Ambients. In Proc. of
International Workshop on Concurrency and Coordination CONCOORD’01, Lipari Island,
July 2001, volume 54 of Electronic Notes in Theoretical Computer Science, Elsevier, 2001.

[2] C. Bodei, P. Degano, F. Nielson, and H.R.Nielson. Static Analysis of Processes for No Read-Up
and No-Write-Down. In Proc. FoSSaCS’99, volume 1578 of Lecture Notes in Computer Science,
pages 120–134, Springer-Verlag, 1999.

[3] M. Bugliesi and G. Castagna. ”Secure Safe Ambients”. Proc. 28th ACM Symposium on
Principles of Programming Languages (POPL’01), pp. 222-235, London. 2001.

14

[4] L. Cardelli and A. Gordon. ”Mobile Ambients”. In Proc. FoSSaCS’98, volume 1378 of Lecture
Notes in Computer Science, pages 140–155, Springer-Verlag, 1998.

[5] P. Degano, F. Levi, C. Bodei. Safe Ambients: Control Flow Analysis and Security. In
proceedings of ASIAN’00, LNCS 1961, 2000, pages 199-214.

[6] R. Focardi and R. Gorrieri. ”A Classification of Security Properties for Process Algebras”,
Journal of Computer Security, 3(1): 5-33, 1995.

[7] R. Focardi and R. Gorrieri, ”The Compositional Security Checker: A Tool for the Verification
of Information Flow Security Properties, IEEE Transactions on Software Engineering, Vol. 23,
No. 9, September 1997.

[8] R. Focardi, R. Gorrieri, F. Martinelli, ”Information Flow Analysis in a Discrete Time Process
Algebra”, in Proc. of 13th IEEE Computer Security Foundations Workshop (CSFW13),
(P.Syverson ed), IEEE CS Press, 170-184, 2000.

[9] R. R. Hansen, J. G. Jensen, F. Nielson, and H. R. Nielson, Abstract Interpretation of Mobile
Ambients. In Proc. Static Analysis Symposium SAS’99, volume 1694 of Lecture Notes in
Computer Science, pages 134–148, Springer-Verlag, 1999.

[10] M. Hennessy, J. Riely. ”Information Flow vs. Resource Access in the Asynchronous Pi-
Calculus”. ICALP 2000: 415-427.

[11] G. Smith, D.M. Volpano, ”Secure Information Flow in a Multi-Threaded Imperative Language”.
In Proc. of POPL 1998: 355-364.

15

