
Principal typings for Java-like languages

paper at POPL’04, Davide Ancona and Elena Zucca
DISI - University of Genova, Italy

+ ongoing work

MIKADO/MYTHS/DART meeting in S. Servolo, June, 13, 2004

1

Plan of the talk

Part I General framework for separate compilation and (sound
and complete) inter-checking,
Relation with principal typings (Wells@ICALP02, previous
talk)

Formalization of claim “Compositional analysis helps with
separate compilation”

Part II Instantiation on Featherweight Java [IPW@OOPSLA99]
(+ method overloading and field hiding)

Problem in compositional analysis of Java-like languages:
code generation requires contextual information

2

Part I: Inter-checking

Basic notions adapted from Cardelli@POPL97:

separate compilation Γ`s:τ;b

• s source fragment = sequence of (class) declarations
In this talk for simplicity one class declaration: s = class C{...}

• τ type (in Java can be extracted from s)

• b binary fragment

• Γ type environment = sequence of type assumptions γ1, . . . , γn

on other classes needed for typechecking s generating b

3

linkset L = Γ|Γi`si:τi;bi
i∈1..n valid judgments

inter-checking (informally) L inter-checks iff ∀i ∈ 1..n

assumptions Γi required by si are satisfied by other fragments

Formally (in Cardelli@POPL97 for assumptions of form C : τ)

∀i, j ∈ 1..n

si = class Ci{...} and Ci : τ in Γj implies τ = τi

4

Inter-checking (generalization)

Assumptions have arbitrary forms

e.g., C1 ≤ C2, ∃ C, C.m(C̄)
m-res→ (C̄′, C′), . . .

Assume entailment relation Γ`Γ′

L = Γ|Γi`si:τi;bi
i∈1..n , si = class Ci{...}

L inter-checks (written ` L�) iff for all i ∈ 1..n:

Γ, Cj : τ
j∈1..n
j `Γi holds

5

(Well-known) advantages (compositional analysis)

separate compilation + inter-checking versus global compilation:

• each fragment can be compiled in isolation

• a collection of fragments can be put together to form an
executable application by only inspecting type information
(type environment and type) of fragments without reinspect-
ing code

BUT:
these advantages actually hold only if inter-checking satisfies
some properties
(issue not considered in Cardelli@POPL97)

6

Soundness of inter-checking

For all L = Γ|Γi`si:τi;bi
i∈1..n, si = class Ci{...}

` L� ⇒ Γ, Cj : τ
j∈1..n
j `si:τi;bi

i∈1..n

inter-checking successful ⇒ compiling altogether s1, . . . , sn in Γ
we successfully get the same binary fragments

Property always expected to hold

Sufficient condition: entailment sound Γ1`Γ2 ⇒ Γ1 ≤ Γ2

Γ1 ≤ Γ2 iff Γ2`s:τ;b⇒ Γ1`s:τ;b

(Γ1,Γ2 consistent)

7

Completeness of inter-checking (intuition)

What can we conclude if inter-checking of L = Γ|Γi`si:τi;bi
i∈1..n

fails?

This does not mean that the fragments cannot be safely linked!

For some fragment we could have chosen a too restrictive type

environment (that is, containing unnecessary type assumptions)

Inter-checking is complete iff we can choose for each fragment

Γ (and τ) s.t. this cannot happen

8

Definition of complete inter-checking

For all typable (s, b) we can choose a “canonical” typing s.t.

for all L = Γ|Γi`si:τi;bi
i∈1..n, with (Γi, τi) canonical typing for

(si, bi)

Γ, Cj : τ
j∈1..n
j `si:τi;bi

i∈1..n
⇒` L�

global compilation successful ⇒ inter-checking successful

global compilation would either fail or produce different binaries

⇐ inter-checking fails

9

Sufficient conditions for completeness

Theorem If

- the type system has principal typings

- Γ1 ≤ Γ2 ⇒ Γ1`Γ2 (entailment complete)

then, inter-checking is complete w.r.t. global compilation.

NB: in Wells@ICALP02 (previous talk)

(Γ1, τ1) ≤ (Γ2, τ2) iff Γ1`s:τ1;b⇒ Γ2`s:τ2;b

Here τ extracted from code, hence

(Γ1, τ1) ≤ (Γ2, τ2) iff Γ2 ≤ Γ1 and τ1 = τ2

10

Part II: Instantiation on Featherweight Java

Problem: compositional analysis hard in Java, C-sharp: code

generation requires contextual information

I will outline three approaches:

- standard

- compositional for (s, b) (instance of previous framework, AZ@POPL04)

- compositional for s (work in progress)

11

FJ Syntax – source and binary

s ::= CDs
1 . . . CDs

n
CDs ::= class C extends C′ { FDS MDSs }
FDS ::= FD1 . . . FDn

FD ::= C f;
MDSs ::= MDs

1 . . . MDs
n

MDs ::= MH {return Es;}
MH ::= C0 m(C1 x1, . . . , Cn xn)
Es ::= x | Es.f | Es

0.m(E
s
1, . . . , E

s
n)

| new C(Es
1, . . . , E

s
n) | (C)Es

b ::= CDb
1 . . . CDb

n

CDb ::= class C extends C′ { FDS MDSb }
MDSb ::= MDb

1 . . . MDb
n

MDb ::= MH {return Eb;}
Eb ::= x | Eb�C.f C′�

Eb
0� C.m(C̄)C′ �(Eb

1, . . . , E
b
n)

| new�C C̄�(Eb
1, . . . , E

b
n) | (C)Eb

C̄ ::= C1, . . . , Cn

12

An example

class C extends Parent {
Type1 m (Type2 x) { return new Used().g(x);}

}
Approach 1 standard Java type systems use type environments extracted from
current contexts, e.g.

class Parent { }
class Type1 {}
class Type2 extends Type 3 {}
class Used {
Type1 g(Type 3)

}

class Parent { Type1 m (Type2)}
class Type1 extends Parent1{}
class Type2 extends Parent2 {}
class Parent2 extends Type 3 {}
class Used {
Type1 g(Type 3)

}

(and infinitely many others)

generate new Used()� Used.g(Type3)Type1� (x)
no principal typing (no minimal type environment)

13

class C extends Parent {
Type1 m (Type2 x) { return new Used().g(x);}

}

Approach 2: Which is the minimal type information on other

classes needed for typechecking class generating a given byte-

code?

∃ Type1, ∃ Type2
Parent,Type1 m(Type2)

Used.g(Type2)
m-res→ (Type3, Type1)

Type2 ≤ Type3

Principal typing (minimal type environment) for pair (s, b)

(for generating new Used()� Used.g(Type3)Type1� (x))

14

Formally:

In AZ@POPL04:

• We define a type system TFJ which is an instance of previous

general framework

• Entailment in TFJ is sound ⇒ inter-checking is sound w.r.t.

global compilation

• TFJ has principal typings + entailment in TFJ is complete

⇒ inter-checking is complete w.r.t. global compilation

15

Work in progress

(preliminary DART paper ADDZ@FTfJP04 - ECOOP workshop)

class C extends Parent {
Type1 m (Type2 x) { return new Used().g(x);}

}

Approach 3: Which is the minimal type information on other classes needed
for typechecking class regardless of which bytecode is generated?

∃ Type1, ∃ Type2
Parent,Type1 m(Type2)

Used.g(Type2)
m-res→ (α, β)

Type2 ≤ α
β ≤ Type1

generates new Used()� Used.g(α)β � (x)
principal typing (minimal type environment) for s

16

With this approach:

• type inference is possible

• polymorphic types, polymorphic bytecode

• standard bytecode can be generated either at inter-checking

time by solving type constraints (in ADDZ@FTfJP04), or at

dynamic linking time (DART paper by Drossopoulou&Buckley,

also presented at FTfJP04)

17

Summary

General framework for separate compilation and inter-checking,
relation with principal typings
Result: we have exported notions to a different context
Here less restrictive type environment rather than more general
type

Application to Java: stream of work

ALZ@PPDP02 first definition of alternative type system for Java-
like languages
AZ@POPL04 this talk (proof of principality)
AL@FTfJP03, AL@JOT04 application to selective recompilation
Lagorio@ICTCS03,Lagorio@SAC04 first step toward application
to full Java and development of smart compiler
ADDZ@FTfJP04 polymorphic bytecode (in progress)

18

Thank you!

19

