
The Kell Calculus

A Family of Higher-Order
Distributed Process Calculi

MYTHS/MIKADO/DART Meeting

Alan Schmitt
Jean-Bernard Stefani

MYTHS/MIKADO/DART Meeting, June 15th 2004, 2

Introduction

I Calculus motivated by work in the Sardes project

I Goal: to model and simulate component-based programs and

their environment

I Why the environment?

. to model resource access and monitoring

. to model different modes of failure

MYTHS/MIKADO/DART Meeting, June 15th 2004, 3

Outline

I Design Choices for a Component Modelling Calculus

I The Calculus and some Examples

I Equivalences

MYTHS/MIKADO/DART Meeting, June 15th 2004, 4

A component

� � ��� � ��� � 	
 	 �

� � 	 �
 	 �

 � �
 	 � �
� 	 �
 � � �

� 	 �
 	 � �
� 	 �
 � � �

� � 	 � � � �

� � 	 � � 	 �

MYTHS/MIKADO/DART Meeting, June 15th 2004, 5

What we want to model

Fractal (http://fractal.objectweb.org)

I Hierarchical components

I Dynamic component deployment and failure

I Dynamic interface binding between components

I Messaging through bound interfaces

I Control capabilities

MYTHS/MIKADO/DART Meeting, June 15th 2004, 6

Why we want to model

I Play the role of a precise and formal semantics

. Abstract machines

. Implementations

I Build some verification tools

Static Type systems, static analyses

. Component binding

. Checking dependencies

. Equivalent components

Dynamic Correct code instrumentation for

. security properties

. fault detection

. causality and resource monitoring

MYTHS/MIKADO/DART Meeting, June 15th 2004, 7

Design Principles

I π-calculus core

. Parameterized on the input patterns

I Hiearchical localities (Kells)

. Encapsulation

I Local actions

. Tradeoff between implementation and of usability

. Atomicity decisions left to programmer

. Dynamic binding

I Higher-order communication and locality passivation

. To model deployment, migration, and different failure modes

I Programmable membranes

. To model control features and network failure

MYTHS/MIKADO/DART Meeting, June 15th 2004, 8

Related work

I First order π-calculus with localities and migration primitives

(D-Join, Dπ, Nomadic Pict, Seal, . . .)

I Mobile Ambients and variants

I Distributed higher-order calculi

. Facile, CHOCS, higher-order Dπ, Klaim, M-calculus

Kell-calculus: simplification of the M-calculus:

I No routing rules built in

I Simpler localities

MYTHS/MIKADO/DART Meeting, June 15th 2004, 9

Outline

I Design Choices for Component Modelling Calculus

I The Calculus and some Examples

I Equivalences

MYTHS/MIKADO/DART Meeting, June 15th 2004, 10

Syntax

P, Q ::= 0 | P | Q | νa.P | x

|
|

I π calculus core

MYTHS/MIKADO/DART Meeting, June 15th 2004, 11

Syntax

P, Q ::= 0 | P | Q | νa.P | x

| a〈P 〉.Q | a [P] .Q

|

I π calculus core

I Higher-order output

MYTHS/MIKADO/DART Meeting, June 15th 2004, 12

Syntax

P, Q ::= 0 | P | Q | νa.P | x

| a〈P 〉.Q | a [P] .Q

| (ξ . P)

I π calculus core

I Higher-order output

I Input parameterized by patterns ξ

MYTHS/MIKADO/DART Meeting, June 15th 2004, 13

Syntax

P, Q ::= 0 | P | Q | νa.P | x

| a〈P 〉.Q | a [P] .Q

| (ξ . P)

I π calculus core

I Higher-order output

I Input parameterized by patterns ξ

I Simplest patterns (jK):

ξ ::= ξk | M | M | ξk M ::= ξm | ξ↓ | ξ↑ | M | M
ξk ::= a [x] ξm ::= a〈x〉 ξ↓ ::= a〈x〉↓ ξ↑ ::= a〈x〉↑

MYTHS/MIKADO/DART Meeting, June 15th 2004, 14

Reduction Examples

a〈Q〉.T | (a〈x〉 .P) −→ T | P{Q/x}

a〈Q〉.T | b [
(a〈x〉↑ . P)

]
.S −→ T | b [P{Q/x}] .S

b [a〈Q〉.T | R] .S | (a〈x〉↓ .P) −→ b [T | R] .S | P{Q/x}

a [Q] .T | (a〈x〉 .P) −→ T | P{Q/x}

MYTHS/MIKADO/DART Meeting, June 15th 2004, 15

Join patterns

a

(d〈x〉↓ | u〈y〉↑ | b [z] . x | y | z)

c [d〈Pd〉.Qd] .Qc

b [Pb] .Qb

 .Qa

∣∣∣∣∣∣∣∣
u〈Pu〉.Qu −→

a

Pd | Pu | Pb

c [Qd] .Qc

Qb

 .Qa

∣∣∣∣∣∣∣∣
Qu

MYTHS/MIKADO/DART Meeting, June 15th 2004, 16

Join patterns

a

(d〈x〉↓ | u〈y〉↑ | b [z] . x | y | z)

c [d〈Pd〉.Qd] .Qc

b [Pb] .Qb

 .Qa

∣∣∣∣∣∣∣∣
u〈Pu〉.Qu −→

a

Pd | Pu | Pb

c [Qd] .Qc

Qb

 .Qa

∣∣∣∣∣∣∣∣
Qu

MYTHS/MIKADO/DART Meeting, June 15th 2004, 17

Encoding recursion

(ξ ¦P) ∆= νt.(ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉

Assume that t and x are fresh in ξ, P , Q, and P ′, and that

(ξ . P) | Q −→ P ′

(ξ ¦P) | Q ∆= νt.(ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉 | Q

MYTHS/MIKADO/DART Meeting, June 15th 2004, 18

Encoding recursion

(ξ ¦P) ∆= νt.(ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉

Assume that t and x are fresh in ξ, P , Q, and P ′, and that

(ξ . P) | Q −→ P ′

(ξ ¦P) | Q ∆= νt.(ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉 | Q

MYTHS/MIKADO/DART Meeting, June 15th 2004, 19

Encoding recursion

(ξ ¦P) ∆= νt.(ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉

Assume that t and x are fresh in ξ, P , Q, and P ′, and that

(ξ . P) | Q −→ P ′

(ξ ¦P) | Q ∆= νt.(ξ | t〈x〉 . P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉 | Q

−→ νt.P ′ | (ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉

MYTHS/MIKADO/DART Meeting, June 15th 2004, 20

Encoding recursion

(ξ ¦P) ∆= νt.(ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉

Assume that t and x are fresh in ξ, P , Q, and P ′, and that

(ξ . P) | Q −→ P ′

(ξ ¦P) | Q ∆= νt.(ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉 | Q

−→ νt.P ′ | (ξ | t〈x〉 .P | x | t〈x〉) | t〈(ξ | t〈x〉 .P | x | t〈x〉)〉
∆= (ξ ¦P) | P ′

MYTHS/MIKADO/DART Meeting, June 15th 2004, 21

Using passivation

I A kell a [P] is both an evaluation context and a resource

I One may

. freeze a kell in a message: (a [x] . a〈x〉)

. destroy a kell: (a [x] .0)

. copy and rename a kell: (a [x] . a [x] | b [x])

. insert new content into a kell: (a [x] . a [x | b [P]])

MYTHS/MIKADO/DART Meeting, June 15th 2004, 22

Matching and Parametric Patterns

I Generic matching

. Outer shape of patterns fixed (Local Action)

. Join patterns built in

match(ξ | ξ′,M | M ′) = match(ξ, M)⊕ match(ξ′,M ′)

match(ξm, a〈P 〉) = matchm(ξm, a〈P 〉)
match(ξ↓, a〈P 〉↓b) = match↓(ξ↓, a〈P 〉↓b)

match(ξ↑, a〈P 〉↑b) = match↑(ξ↑, a〈P 〉↑b)

match(ξk, a [P]) = matchk(ξk, a [P])

I Instantiation with jK patterns

matchm(a〈x〉, a〈P 〉) ∆= {P/x} match↓(a〈x〉,↓ a〈P 〉↓b) ∆= {P/x}
match↑(a〈x〉,↑ a〈P 〉↑b) ∆= {P/x} matchk(a [x] , a [P]) ∆= {P/x}

MYTHS/MIKADO/DART Meeting, June 15th 2004, 23

Outline

I Design Choices for Component Modelling Calculus

I The Calculus and some Examples

I Equivalences

MYTHS/MIKADO/DART Meeting, June 15th 2004, 24

Context Bisimulation: a Tutorial

In the setting of the Higher-order π-calculus:

I An input evolves to an abstraction: a(X).P a−→ (X).P = F

I An output evolves to a concretion: a〈P1〉P2
a−→ 〈P1〉P2 = C

I They communicate: a(X).P | a〈P1〉P2
τ−→ F@C = P{P1/X} | P2

MYTHS/MIKADO/DART Meeting, June 15th 2004, 25

Context Bisimulation: a Tutorial

In the setting of the Higher-order π-calculus:

I An input evolves to an abstraction: a(X).P a−→ (X).P = F

I An output evolves to a concretion: a〈P1〉P2
a−→ 〈P1〉P2 = C

I They communicate: a(X).P | a〈P1〉P2
τ−→ F@C = P{P1/X} | P2

The relation R is a (early) context simulation iff P R Q implies

I For all P
τ−→ P ′, there exists Q′ such that

Q
τ−→ Q′ and P ′ R Q′;

I For all P
a−→ F and for all C, there exists G such that

Q
a−→ G and F@C R G@C;

I For all P
a−→ C and for all F , there exists D such that

Q
a−→ D and F@C R F@D.

MYTHS/MIKADO/DART Meeting, June 15th 2004, 26

Context Bisimulation for the Kell-calculus

Approach similar to the Higher-order π calculus

Abstractions We need to remember the whole pattern

I join patterns

I message source (local, up, down) or nature (message, kell)

I (ξ . P) α−→ (ξ)P

Concretions We need to make sure that every case of message

source is covered (see next slide)

I a〈P 〉.Q a−→ a〈P 〉 ‖ Q

Congruence properties are harder to prove, as some processes in

concretions are also in evaluation context

MYTHS/MIKADO/DART Meeting, June 15th 2004, 27

What labels?

I Complex labels and concretions, but simple bisimulations

a−→ a〈P 〉 ‖ Q = C1 and F@C1

a〈P 〉.Q a↓b−→ a〈P 〉↓b ‖ Q = C2 and F@C2

a↑b−→ a〈P 〉↑b ‖ Q = C3 and F@C3

I Simple labels and concretions, but complex bisimulations

and F@C

a〈P 〉.Q a−→ a〈P 〉 ‖ Q = C and F@b [C]

and b [F] @C

I Our current choice: very simple labels (sets of names)

MYTHS/MIKADO/DART Meeting, June 15th 2004, 28

Observables

Like labels, observables ↓a are very simple:

P ↓a iff

P ≡ νc̃.a [Pa] .Qa | Q with a 6∈ c̃

or P ≡ νc̃.a〈Pa〉.Qa | Q with a 6∈ c̃

or P ≡ νc̃.b [a〈Pa〉.Qa | Pb] .Qb | Q with a 6∈ c̃

P ↓ξ.sk iff
P ≡ νc̃.(ξ .Q) | R with ξ.sk ∩ c̃ = ∅

or P ≡ νc̃.b [(ξ .Q) | Pb] .Qb | R with ξ.sk ∩ c̃ = ∅

ξ.sk is the multiset on names used for input. For instance:

a〈P 〉.sk = a〈P 〉↓.sk = a〈P 〉↑.sk = a [P] .sk = a

(M | M ′).sk = M.sk | M ′.sk

MYTHS/MIKADO/DART Meeting, June 15th 2004, 29

Theorems

I Strong context bisimilarity ∼c is based on the LTS
α−→

I Strong barbed bisimilarity ∼b is based on the reduction −→ and

a definition for observables

We have:

I For all P and Q, P
τ−→ ≡ Q iff P −→ Q.

I Under some conditions for the pattern languages (matching

may not distinguish bisimilar messages), ∼c is a congruence.

I If the pattern language also contains the jK simple patterns,

the largest congruence included in ∼b coincides with ∼c.

Technical details in LNCS volume on Global Computing 2004

MYTHS/MIKADO/DART Meeting, June 15th 2004, 30

Current and Future work

I Equivalences

. Tractable Bisimulations (no universal quantification on

concretions and abstractions)

. Weak approach

I Type systems

. Inspired by the M-calculus and Dπ type systems

I Testing the calculus expressivity

. Complete modelisation of Fractal

. Application to Dream (http://dream.objectweb.org)

I Locality sharing

. In Fractal, a component may have more than one parent

. Very useful feature to represent shared resources

. Joint work with ENS Lyon

MYTHS/MIKADO/DART Meeting, June 15th 2004, 31

Bonus slide: Complex patterns

ξ ::= J | ξk | J | ξk

J ::= ξm | ξ↓ | ξ↑ | J | J
ξm ::= a〈ρ〉
ξ↑ ::= a〈ρ〉↑

ξ↓ ::= a〈ρ〉↓

ξk ::= a [x]

ρ ::= a〈ρ〉 | ρ | ρ
ρ ::= x | ρ | (a)〈ρ〉 | a〈ρ〉 | ((m) 6= a)〈ρ〉 |

