The Kell Calculus

A Family of Higher-Order Distributed Process Calculi

MYTHS/MIKADO/DART Meeting
Alan Schmitt
Jean-Bernard Stefani

Introduction

- Calculus motivated by work in the Sardes project
- Goal: to model and simulate component-based programs and their environment
- Why the environment?
\triangleright to model resource access and monitoring
\triangleright to model different modes of failure
- Design Choices for a Component Modelling Calculus
- The Calculus and some Examples
- Equivalences

A component

What we want to model

Fractal (http://fractal.objectweb.org)

- Hierarchical components
- Dynamic component deployment and failure
- Dynamic interface binding between components
- Messaging through bound interfaces
- Control capabilities

Why we want to model

- Play the role of a precise and formal semantics
\triangleright Abstract machines
\triangleright Implementations
- Build some verification tools

Static Type systems, static analyses
\triangleright Component binding
\triangleright Checking dependencies
\triangleright Equivalent components
Dynamic Correct code instrumentation for
\triangleright security properties
\triangleright fault detection
\triangleright causality and resource monitoring

Design Principles

- π-calculus core
\triangleright Parameterized on the input patterns
- Hiearchical localities (Kells)
\triangleright Encapsulation
- Local actions
\triangleright Tradeoff between implementation and of usability
\triangleright Atomicity decisions left to programmer
\triangleright Dynamic binding
- Higher-order communication and locality passivation
\triangleright To model deployment, migration, and different failure modes
- Programmable membranes
\triangleright To model control features and network failure

Related work

- First order π-calculus with localities and migration primitives (D-Join, D π, Nomadic Pict, Seal, ...)
- Mobile Ambients and variants
- Distributed higher-order calculi
\triangleright Facile, CHOCS, higher-order D π, Klaim, M-calculus
Kell-calculus: simplification of the M-calculus:
- No routing rules built in
- Simpler localities
- Design Choices for Component Modelling Calculus
- The Calculus and some Examples
- Equivalences

Syntax

$$
P, Q::=\mathbf{0} \quad|\quad P| Q \quad \mid \quad \nu a . P
$$

- π calculus core

Syntax

$$
\begin{aligned}
& P, Q::=\mathbf{0}|P| Q|\nu a . P| x \\
&|a\langle P\rangle . Q| a[P] . Q
\end{aligned}
$$

- π calculus core
- Higher-order output

Syntax

$$
\begin{aligned}
& P, Q::=0|P| Q|\nu a . P| x \\
&|\quad a\langle P\rangle . Q| a[P] . Q \\
& \mid(\xi \triangleright P)
\end{aligned}
$$

- π calculus core
- Higher-order output
- Input parameterized by patterns ξ

Syntax

$$
\begin{aligned}
& P, Q::=0|P| Q|\nu a . P| x \\
& \left\lvert\, \begin{array}{ll}
& a\langle P\rangle . Q \mid a[P] . Q \\
& \mid(\xi \triangleright P)
\end{array}\right.
\end{aligned}
$$

- π calculus core
- Higher-order output
- Input parameterized by patterns ξ
- Simplest patterns (jK):

$$
\begin{array}{lllcccc}
\xi::=\xi_{k} & \mid & M & |M| \xi_{k} & M::=\xi_{m}\left|\xi^{\downarrow}\right| \xi^{\uparrow}|M| M \\
\xi_{k}::=a[x] & & \xi_{m}::=a\langle x\rangle & \xi^{\downarrow}::=a\langle x\rangle^{\downarrow} & \xi^{\uparrow}::=a\langle x\rangle^{\uparrow}
\end{array}
$$

Reduction Examples

$$
\begin{aligned}
a\langle Q\rangle . T \mid(a\langle x\rangle \triangleright P) & \longrightarrow T \mid P\{Q / x\} \\
a\langle Q\rangle \cdot T \mid b\left[\left(a\langle x\rangle^{\uparrow} \triangleright P\right)\right] \cdot S & \longrightarrow T \mid b[P\{Q / x\}] \cdot S \\
b[a\langle Q\rangle . T \mid R] . S \mid\left(a\langle x\rangle^{\downarrow} \triangleright P\right) & \longrightarrow b[T \mid R] . S \mid P\{Q / x\} \\
a[Q] . T \mid(a\langle x\rangle \triangleright P) & \longrightarrow T \mid P\{Q / x\}
\end{aligned}
$$

Join patterns

$$
\begin{aligned}
a\left[\begin{array}{c}
\left(d\langle x\rangle^{\downarrow}\left|u\langle y\rangle^{\uparrow}\right| b[z] \triangleright x|y| z\right) \\
c\left[d\left\langle P_{d}\right\rangle \cdot Q_{d}\right] \cdot Q_{c} \\
b\left[P_{b}\right] \cdot Q_{b}
\end{array}\right] \cdot Q_{a} & \\
& u\left\langle P_{u}\right\rangle \cdot Q_{u} \longrightarrow \\
& \left.a\left[\begin{array}{c}
P_{d}\left|P_{u}\right| P_{b} \\
c\left[Q_{d}\right] \cdot Q_{c} \\
Q_{b}
\end{array}\right] \cdot Q_{a} \right\rvert\, Q_{u}
\end{aligned}
$$

Join patterns

$$
\begin{aligned}
a\left[\begin{array}{c}
\left(d\langle x\rangle^{\downarrow}\left|u\langle y\rangle^{\uparrow}\right| b[z] \triangleright x|y| z\right) \\
c\left[d\left\langle P_{d}\right\rangle \cdot Q_{d}\right] \cdot Q_{c} \\
b\left[P_{b}\right] \cdot Q_{b}
\end{array}\right] . Q_{a} & \\
& \\
& a\left\langle P_{u}\right\rangle \cdot Q_{u} \longrightarrow \\
& \left.a\left[\begin{array}{c}
P_{d}\left|P_{u}\right| P_{b} \\
c\left[Q_{d}\right] \cdot Q_{c} \\
Q_{b}
\end{array}\right] \cdot Q_{a} \right\rvert\, Q_{u}
\end{aligned}
$$

Encoding recursion

$$
(\xi \diamond P) \triangleq \nu t .(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle) \quad \mid t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle
$$

Assume that t and x are fresh in ξ, P, Q, and P^{\prime}, and that $(\xi \triangleright P) \mid Q \longrightarrow P^{\prime}$

$$
(\xi \diamond P)|Q \triangleq \nu t .(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle) \quad| \quad t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle \quad \mid \quad Q
$$

Encoding recursion

$$
(\xi \diamond P) \triangleq \nu t .(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle) \quad \mid t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle
$$

Assume that t and x are fresh in ξ, P, Q, and P^{\prime}, and that $(\xi \triangleright P) \mid Q \longrightarrow P^{\prime}$

$$
(\xi \diamond P)|Q \triangleq \nu t .(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle) \quad| \quad t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle \quad \mid \quad Q
$$

Encoding recursion

$$
(\xi \diamond P) \triangleq \nu t .(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle) \quad \mid \quad t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle
$$

Assume that t and x are fresh in ξ, P, Q, and P^{\prime}, and that $(\xi \triangleright P) \mid Q \longrightarrow P^{\prime}$

$$
\begin{aligned}
(\xi \diamond P) \mid Q & \triangleq \nu t .(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle) \quad|\quad t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle| \quad Q \\
& \longrightarrow \nu t . P^{\prime}|(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)| t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle
\end{aligned}
$$

Encoding recursion

$$
(\xi \diamond P) \triangleq \nu t .(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle) \quad \mid \quad t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle
$$

Assume that t and x are fresh in ξ, P, Q, and P^{\prime}, and that $(\xi \triangleright P) \mid Q \longrightarrow P^{\prime}$

$$
\begin{aligned}
(\xi \diamond P) \mid Q & \triangleq \nu t .(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle) \quad|t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle| Q \\
& \longrightarrow \nu t . P^{\prime}|(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)| t\langle(\xi|t\langle x\rangle \triangleright P| x \mid t\langle x\rangle)\rangle \\
& \triangleq(\xi \diamond P) \mid P^{\prime}
\end{aligned}
$$

Using passivation

- A kell $a[P]$ is both an evaluation context and a resource
- One may
\triangleright freeze a kell in a message: $(a[x] \triangleright a\langle x\rangle)$
\triangleright destroy a kell: $(a[x] \triangleright \mathbf{0})$
\triangleright copy and rename a kell: $(a[x] \triangleright a[x] \mid b[x])$
\triangleright insert new content into a kell: $(a[x] \triangleright a[x \mid b[P]])$

Matching and Parametric Patterns

- Generic matching
\triangleright Outer shape of patterns fixed (Local Action)
\triangleright Join patterns built in

$$
\begin{aligned}
\operatorname{match}\left(\xi\left|\xi^{\prime}, M\right| M^{\prime}\right) & =\operatorname{match}(\xi, M) \oplus \operatorname{match}\left(\xi^{\prime}, M^{\prime}\right) \\
\operatorname{match}\left(\xi_{m}, a\langle P\rangle\right) & =\operatorname{match}_{m}\left(\xi_{m}, a\langle P\rangle\right) \\
\operatorname{match}\left(\xi^{\downarrow}, a\langle P\rangle^{\downarrow_{b}}\right) & =\operatorname{match}^{\downarrow}\left(\xi^{\downarrow}, a\langle P\rangle^{\downarrow_{b}}\right) \\
\operatorname{match}\left(\xi^{\uparrow}, a\langle P\rangle^{\uparrow_{b}}\right) & =\operatorname{match}^{\uparrow}\left(\xi^{\uparrow}, a\langle P\rangle^{\uparrow_{b}}\right) \\
\operatorname{match}\left(\xi_{k}, a[P]\right) & =\operatorname{match}_{k}\left(\xi_{k}, a[P]\right)
\end{aligned}
$$

- Instantiation with jK patterns

$$
\begin{array}{lr}
\operatorname{match}_{m}(a\langle x\rangle, a\langle P\rangle) \triangleq\left\{{ }^{P} / x\right\} & \operatorname{match}^{\downarrow}\left(a\langle x\rangle,{ }^{\downarrow} a\langle P\rangle^{\downarrow_{b}}\right) \triangleq\left\{{ }^{P} / x\right\} \\
\operatorname{match}^{\uparrow}\left(a\langle x\rangle,{ }^{\uparrow} a\langle P\rangle^{\uparrow_{b}}\right) \triangleq\left\{{ }^{P} / x\right\} & \operatorname{match}_{k}(a[x], a[P]) \triangleq\left\{{ }^{P} / x\right\}
\end{array}
$$

- Design Choices for Component Modelling Calculus
- The Calculus and some Examples
- Equivalences

Context Bisimulation: a Tutorial

In the setting of the Higher-order π-calculus:

- An input evolves to an abstraction: $a(X) \cdot P \xrightarrow{a}(X) \cdot P=F$
- An output evolves to a concretion: $a\left\langle P_{1}\right\rangle P_{2} \xrightarrow{\bar{a}}\left\langle P_{1}\right\rangle P_{2}=C$
- They communicate: $a(X) \cdot P\left|a\left\langle P_{1}\right\rangle P_{2} \xrightarrow{\tau} F @ C=P\left\{P_{1} / X\right\}\right| P_{2}$

Context Bisimulation: a Tutorial

In the setting of the Higher-order π-calculus:

- An input evolves to an abstraction: $a(X) \cdot P \xrightarrow{a}(X) \cdot P=F$
- An output evolves to a concretion: $a\left\langle P_{1}\right\rangle P_{2} \xrightarrow{\bar{a}}\left\langle P_{1}\right\rangle P_{2}=C$
- They communicate: $a(X) \cdot P\left|a\left\langle P_{1}\right\rangle P_{2} \xrightarrow{\tau} F @ C=P\left\{P_{1} / X\right\}\right| P_{2}$

The relation \mathcal{R} is a (early) context simulation iff $P \mathcal{R} Q$ implies

- For all $P \xrightarrow{\tau} P^{\prime}$, there exists Q^{\prime} such that $Q \xrightarrow{\tau} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$;
- For all $P \xrightarrow{a} F$ and for all C, there exists G such that $Q \xrightarrow{a} G$ and $F @ C \mathcal{R} G @ C$;
- For all $P \xrightarrow{\bar{a}} C$ and for all F, there exists D such that $Q \xrightarrow{\bar{a}} D$ and $F @ C \mathcal{R} F @ D$.

Context Bisimulation for the Kell-calculus

Approach similar to the Higher-order π calculus
Abstractions We need to remember the whole pattern

- join patterns
- message source (local, up, down) or nature (message, kell)
- $(\xi \triangleright P) \xrightarrow{\alpha}(\xi) P$

Concretions We need to make sure that every case of message source is covered (see next slide)
$-a\langle P\rangle \cdot Q \xrightarrow{a} a\langle P\rangle \| Q$
Congruence properties are harder to prove, as some processes in concretions are also in evaluation context

What labels?

- Complex labels and concretions, but simple bisimulations

$$
\begin{aligned}
& \xrightarrow{a} a\langle P\rangle \| Q=C_{1} \text { and } F @ C_{1} \\
a\langle P\rangle \cdot Q & \xrightarrow{a^{\downarrow_{b}}} a\langle P\rangle^{\downarrow_{b}} \| Q=C_{2} \text { and } F @ C_{2} \\
& \xrightarrow{a^{\dagger b}} a\langle P\rangle^{\uparrow_{b}} \| Q=C_{3} \text { and } F @ C_{3}
\end{aligned}
$$

- Simple labels and concretions, but complex bisimulations

$$
\begin{array}{r}
\text { and } F @ C \\
a\langle P\rangle \cdot Q \xrightarrow{a} a\langle P\rangle \| Q=C \text { and } F @ b[C] \\
\text { and } b[F] @ C
\end{array}
$$

- Our current choice: very simple labels (sets of names)

Observables

Like labels, observables \downarrow_{a} are very simple:

$$
\begin{array}{rlrl}
P & \equiv \nu \widetilde{c} \cdot a\left[P_{a}\right] \cdot Q_{a} \mid Q & & \text { with } a \notin \widetilde{c} \\
P \downarrow_{\bar{a}} \quad \text { iff } \quad \text { or } P & \equiv \nu \widetilde{c} \cdot a\left\langle P_{a}\right\rangle \cdot Q_{a} \mid Q & \text { with } a \notin \widetilde{c} \\
\text { or } P & \equiv \nu \widetilde{c} \cdot b\left[a\left\langle P_{a}\right\rangle \cdot Q_{a} \mid P_{b}\right] \cdot Q_{b} \mid Q & \text { with } a \notin \widetilde{c} \\
P \downarrow_{\xi . \text { sk }} \quad \text { iff } \quad \text { or } P & \equiv \nu \widetilde{c} \cdot b\left[(\xi \triangleright Q) \mid P_{b}\right] \cdot Q_{b} \mid R & \text { with } \xi \cdot \text { sk } \cap \widetilde{c}=\emptyset
\end{array}
$$

$\xi . s k$ is the multiset on names used for input. For instance:

$$
\begin{gathered}
a\langle P\rangle . \mathrm{sk}=a\langle P\rangle^{\downarrow} . \mathrm{sk}=a\langle P\rangle^{\uparrow} . \mathrm{sk}=a[P] . \mathrm{sk}=a \\
\left(M \mid M^{\prime}\right) . \mathrm{sk}=M . \mathrm{sk} \mid M^{\prime} . \mathrm{sk}
\end{gathered}
$$

Theorems

- Strong context bisimilarity \sim^{c} is based on the LTS $\xrightarrow{\alpha}$
- Strong barbed bisimilarity \sim_{b} is based on the reduction \longrightarrow and a definition for observables

We have:

- For all P and $Q, P \xrightarrow{\tau} \equiv Q$ iff $P \longrightarrow Q$.
- Under some conditions for the pattern languages (matching may not distinguish bisimilar messages), \sim^{c} is a congruence.
- If the pattern language also contains the jK simple patterns, the largest congruence included in \sim_{b} coincides with \sim^{c}.

Technical details in LNCS volume on Global Computing 2004

Current and Future work

- Equivalences
\triangleright Tractable Bisimulations (no universal quantification on concretions and abstractions)
\triangleright Weak approach
- Type systems
\triangleright Inspired by the M -calculus and $\mathrm{D} \pi$ type systems
- Testing the calculus expressivity
\triangleright Complete modelisation of Fractal
\triangleright Application to Dream (http://dream.objectweb.org)
- Locality sharing
\triangleright In Fractal, a component may have more than one parent
\triangleright Very useful feature to represent shared resources
- Joint work with ENS Lyon

Bonus slide: Complex patterns

$$
\begin{aligned}
& \xi::=J \quad\left|\quad \xi_{k} \quad\right| \quad J \mid \xi_{k} \\
& J::=\xi_{m} \quad\left|\quad \xi^{\downarrow} \quad\right| \quad \xi^{\uparrow} \quad|\quad J| J \\
& \xi_{m}::=a\langle\bar{\rho}\rangle \\
& \xi^{\uparrow}::=a\langle\bar{\rho}\rangle^{\uparrow} \\
& \xi^{\downarrow}::=a\langle\bar{\rho}\rangle^{\downarrow} \\
& \xi_{k}::=a[x] \\
& \rho::=a\langle\bar{\rho}\rangle \quad|\quad \rho| \rho \\
& \bar{\rho}::=x \quad|\quad \rho \quad| \quad(a)\langle\bar{\rho}\rangle \quad|\quad \bar{a}\langle\bar{\rho}\rangle \quad| \quad((m) \neq a)\langle\bar{\rho}\rangle \quad \mid \quad-
\end{aligned}
$$

