
Why What How Conclusion

Security Policies as Membranes
in Systems for Global Computing

Vladimiro Sassone

University of Sussex, UK

GC 2004: MyThS/MIKADO/DART Meeting
Venice 15.06.04

with D. Gorla, M. Hennessy

V. Sassone Security Polices as Membranes

Why What How Conclusion

1 Why

2 What

3 How
Barring actions
Counting actions
Sequencing actions
Controlling coalitions

4 Conclusion

V. Sassone Security Polices as Membranes

Why What How Conclusion

Why

Most calculi/languages for GC rely on code mobility to model
interprocesses interactions;

This leads to security concerns (malicious agents can
compromise ‘good’ sites through viruses, spammings,
denial-of-service attacks, ...);

Thus, code mobility usually equipped with security checks:

1 static checks: make the run-time as efficient as possible, but
it may be not adequate in practice;

2 dynamic checks: make the runtime heavier, execution
slower, but are flexible.

V. Sassone Security Polices as Membranes

Why What How Conclusion

Why

Most calculi/languages for GC rely on code mobility to model
interprocesses interactions;

This leads to security concerns (malicious agents can
compromise ‘good’ sites through viruses, spammings,
denial-of-service attacks, ...);

Thus, code mobility usually equipped with security checks:

1 static checks: make the run-time as efficient as possible, but
it may be not adequate in practice;

2 dynamic checks: make the runtime heavier, execution
slower, but are flexible.

V. Sassone Security Polices as Membranes

Why What How Conclusion

Simple

Systems are (plain) collections of sites;

Sites are places for computations, divided in at least two layers:

a computing body

a membrane, to carry on security related issues

membranes regulate the interactions between the computing
body and the environment around the site

differently from Boudol’s and Stefani’s: our membranes are not
fully-fledged computing entities. They only implement
higher-level (type related) verification on incoming agents.

V. Sassone Security Polices as Membranes

Why What How Conclusion

The Objectives

Run an initial investigation into what kind of security policies can be
implemented through membranes, and how.

This is related to, and aims at generalizing for the specific application

the security types developed for Dπ and KLAIM;

the session types by Honda et al;

the generic types by Igarashi, Kobayashi.

V. Sassone Security Polices as Membranes

Why What How Conclusion

What

1 a formal framework to formalize processes running in a GC
system, whose activities are local computations and migrations;

2 membranes to implement advanced checks on incoming
agents (including notions of trust and proof-carrying code);

3 tools to enforce different kind of policies.

V. Sassone Security Polices as Membranes

Why What How Conclusion

A Calculus for Migrations
A minimal calculus (Turing not an issue here)

BasicActions a, b, c, ... ∈ Act

Localities l, h, k , ... ∈ Loc

Agents P, Q, R ::= nil
∣∣ a.P

∣∣ goT l.P
∣∣ P | Q

∣∣ !P

Systems N ::= 0
∣∣ l[[M |〉 P]]

∣∣ N1 ‖ N2

where

l[[M |〉 P]] is a site with address l, membrane M and hosting
process P;

goT l.P is an agent willing to migrate on l, whose body is P and
exhibiting as PCC the policy T .

V. Sassone Security Polices as Membranes

Why What How Conclusion

A Calculus for Migrations
A minimal calculus (Turing not an issue here)

BasicActions a, b, c, ... ∈ Act

Localities l, h, k , ... ∈ Loc

Agents P, Q, R ::= nil
∣∣ a.P

∣∣ goT l.P
∣∣ P | Q

∣∣ !P

Systems N ::= 0
∣∣ l[[M |〉 P]]

∣∣ N1 ‖ N2

where

l[[M |〉 P]] is a site with address l, membrane M and hosting
process P;

goT l.P is an agent willing to migrate on l, whose body is P and
exhibiting as PCC the policy T .

V. Sassone Security Polices as Membranes

Why What How Conclusion

Dynamic Semantics – local

Local behaviours:

l[[M |〉 a.P|Q]] −→ l[[M |〉 P|Q]]

Remark: we are not really interested in the local computations.

V. Sassone Security Polices as Membranes

Why What How Conclusion

Dynamic Semantics – migration

Migration:

k[[M |〉 goT l.P|Q]] ‖ l[[M′ |〉 R]] −→ k[[M |〉 Q]] ‖ l[[M′ |〉 P|R]]

This reduction may happen only if P complies with M′.

But checking whole processes at migration can be very expensive!

Solution: PCCs. A source-generated and certified ‘process outline’
accepted as such at destination.

V. Sassone Security Polices as Membranes

Why What How Conclusion

Dynamic Semantics – migration

Migration:

k[[M |〉 goT l.P|Q]] ‖ l[[M′ |〉 R]] −→ k[[M |〉 Q]] ‖ l[[M′ |〉 P|R]]

This reduction may happen only if P complies with M′.

But checking whole processes at migration can be very expensive!

Solution: PCCs. A source-generated and certified ‘process outline’
accepted as such at destination.

V. Sassone Security Polices as Membranes

Why What How Conclusion

The matter with certification
When can we consider PCCs?

They are easy to verify (they are usually very small, if compared
to the process they refer to), but

they can be dangerous (if they don’t certify properly the
process behaviour)

A compromise:

we can safely consider PCCs of agents coming from trusted
sites, i.e. sites that calculate the PCC attached to a
migrating agent “properly.”

V. Sassone Security Polices as Membranes

Why What How Conclusion

The matter with certification
When can we consider PCCs?

They are easy to verify (they are usually very small, if compared
to the process they refer to), but

they can be dangerous (if they don’t certify properly the
process behaviour)

A compromise:

we can safely consider PCCs of agents coming from trusted
sites, i.e. sites that calculate the PCC attached to a
migrating agent “properly.”

V. Sassone Security Polices as Membranes

Why What How Conclusion

Trust

Each site store the trust it has on other sites, as part of its membrane.

Thus, a membrane is a couple (Mt , Mp), where

Mt : Loc → {good, bad, unknown};

Mp is an upper bound to the local actions of incoming agents.

V. Sassone Security Polices as Membranes

Why What How Conclusion

The Migration Rule – revised

k[[M |〉 goT l.P|Q]] ‖ l[[M′ |〉 R]]
−→ k[[M |〉 Q]] ‖ l[[M′ |〉 P|R]] if M′ `k

T P

where M′ `k
T P is

if M′
t(k) = good then (T enforces M′

p) else ` P : M′
p

and

predicate enforces is a partial order on policies;

` is a compliance check of a process against a policy.

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Policies as Constraints on Legal Actions

a site only provides some methods (i.e. only some actions can
be executed while running in it)

a policy T is a subset of Act ∪ Loc where

a process can only execute locally actions in T

a process can only migrate on sites in T

T enforces T ′ is simply defined as T ⊆ T ′;

judgment ` is simple. The key rules are

` P : T
` a.P : T

a ∈ T
` P : T ′

` goT ′ l.P : T
l ∈ T

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Policies as Constraints on Legal Actions

a site only provides some methods (i.e. only some actions can
be executed while running in it)

a policy T is a subset of Act ∪ Loc where

a process can only execute locally actions in T

a process can only migrate on sites in T

T enforces T ′ is simply defined as T ⊆ T ′;

judgment ` is simple. The key rules are

` P : T
` a.P : T

a ∈ T
` P : T ′

` goT ′ l.P : T
l ∈ T

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Policies as Constraints on Legal Actions

a site only provides some methods (i.e. only some actions can
be executed while running in it)

a policy T is a subset of Act ∪ Loc where

a process can only execute locally actions in T

a process can only migrate on sites in T

T enforces T ′ is simply defined as T ⊆ T ′;

judgment ` is simple. The key rules are

` P : T
` a.P : T

a ∈ T
` P : T ′

` goT ′ l.P : T
l ∈ T

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Policies as Constraints on Legal Actions (ctd)

a system N is well-formed, written ` N : ok, if “good” nodes only
hosts “good” agents. Formally:

` P : Mp

` l[[M |〉 P]] : ok
l good

` l[[M |〉 P]] : ok
l not good

Subject Reduction: If ` N : ok and N −→ N′, then ` N′ : ok.

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Policies as Constraints on Legal Actions (ctd)

a system N is well-formed, written ` N : ok, if “good” nodes only
hosts “good” agents. Formally:

` P : Mp

` l[[M |〉 P]] : ok
l good

` l[[M |〉 P]] : ok
l not good

Subject Reduction: If ` N : ok and N −→ N′, then ` N′ : ok.

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Counting Legal Actions

sometimes, legal actions can be performed only a certain
number of times. E.g.:

a fair mail server allows its clients to send mails, but:

it should block spamming activities of malicious clients; thus:

it could allow sending at most K mails for each login of each client.

Policies are multisets containing elements from Act ∪ Loc ;

T enforces T ′ is multisets inclusion;

` adapts straightforwardly from the case of sets:

` P : T
` a.P : T ∪ {a}

` P : T ′

` goT ′ l.P : T ∪ {l}
` P : T1 ` Q : T2

` P | Q : T1 ∪ T2

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Counting Legal Actions

sometimes, legal actions can be performed only a certain
number of times. E.g.:

a fair mail server allows its clients to send mails, but:

it should block spamming activities of malicious clients; thus:

it could allow sending at most K mails for each login of each client.

Policies are multisets containing elements from Act ∪ Loc ;

T enforces T ′ is multisets inclusion;

` adapts straightforwardly from the case of sets:

` P : T
` a.P : T ∪ {a}

` P : T ′

` goT ′ l.P : T ∪ {l}
` P : T1 ` Q : T2

` P | Q : T1 ∪ T2

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Counting Legal Actions (ctd)

This setting enforces a thread-wise property. Indeed,

if two different agents P and Q individually send at most K mails,

when they both run in the mail server, the agent P | Q can send
more than K mails (actually, it can send 2K mails)

Thus, the well-formedness predicate for good sites is changed as

∀i . (Pi a thread and ` Pi : Mp)

` l[[M |〉 P1| . . . |Pn]] : ok
l good

Subject reduction holds for this modified judgment

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Sequencing Legal Actions

sometimes, legal actions can be performed only in a certain
order. E.g.

before exploiting the functionalities of a mail server, you must have
logged in, and

before loggin out, you must have saved the status of the
transaction.

This can be easily formalized by (deterministic) finite automata

usr.pwd.(list + send + retr + del + reset)∗.quit

Policies are DFAs;

T enforces T ′ is inclusion of DFAs’s languages;

` P : T holds if the language of P is accepted by T .

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Sequencing Legal Actions

sometimes, legal actions can be performed only in a certain
order. E.g.

before exploiting the functionalities of a mail server, you must have
logged in, and

before loggin out, you must have saved the status of the
transaction.

This can be easily formalized by (deterministic) finite automata

usr.pwd.(list + send + retr + del + reset)∗.quit

Policies are DFAs;

T enforces T ′ is inclusion of DFAs’s languages;

` P : T holds if the language of P is accepted by T .

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Sequencing Legal Actions (ctd)

As well-known, inclusion of regular languages can be
calculated easily, once given the associated DFAs

What about predicate ` P : T?

we expect that calculating it is harder than verifying PCCs
(i.e. verifying predicate enforces)

But, how harder? Is it decidable?

what is the language associated to an agent?

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Sequencing Legal Actions (ctd2)

an agent can be easily associated to a concurrent regular
expression: regular exprs with shuffle ⊗ and shuffle closure �.

e.g., agent !(a.b | c.goT l.P) can be represented as

((a · b)⊗ (c · l))�

we are only interested in the local behaviour of the agent.

we can derive the language associated to this CRE and check
whether it is contained in the language accepted by the policy;

CREs can be represented as Petri nets. Inclusion of a Petri net in
a DFA is decidable, even if super-exponential;

This is done by static analysis algorithm, not by a type system!

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Sequencing Legal Actions (ctd2)

an agent can be easily associated to a concurrent regular
expression: regular exprs with shuffle ⊗ and shuffle closure �.

e.g., agent !(a.b | c.goT l.P) can be represented as

((a · b)⊗ (c · l))�

we are only interested in the local behaviour of the agent.

we can derive the language associated to this CRE and check
whether it is contained in the language accepted by the policy;

CREs can be represented as Petri nets. Inclusion of a Petri net in
a DFA is decidable, even if super-exponential;

This is done by static analysis algorithm, not by a type system!

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Controlling Coalitions at a Site

policies as multisets and as DFAs can only express
thread-oriented properties;

Dealing with the overall behaviour of a site; Two options: When
agent P want to migrate on l, containing agent R

1 freeze and retrieve the current content of the site, viz. R;
check whether P | R respects the policy of the site;
reactivate R and, according to the result of the checking
phase, activate P.

2 let membranes evolving at run-time: they are decreased
with the privileges granted to P.

I’m sure you see that the first option is just crazy. . .

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Controlling Coalitions at a Site

policies as multisets and as DFAs can only express
thread-oriented properties;

Dealing with the overall behaviour of a site; Two options: When
agent P want to migrate on l, containing agent R

1 freeze and retrieve the current content of the site, viz. R;
check whether P | R respects the policy of the site;
reactivate R and, according to the result of the checking
phase, activate P.

2 let membranes evolving at run-time: they are decreased
with the privileges granted to P.

I’m sure you see that the first option is just crazy. . .

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Controlling Coalitions at a Site

policies as multisets and as DFAs can only express
thread-oriented properties;

Dealing with the overall behaviour of a site; Two options: When
agent P want to migrate on l, containing agent R

1 freeze and retrieve the current content of the site, viz. R;
check whether P | R respects the policy of the site;
reactivate R and, according to the result of the checking
phase, activate P.

2 let membranes evolving at run-time: they are decreased
with the privileges granted to P.

I’m sure you see that the first option is just crazy. . .

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Controlling Coalitions at a Site

policies as multisets and as DFAs can only express
thread-oriented properties;

Dealing with the overall behaviour of a site; Two options: When
agent P want to migrate on l, containing agent R

1 freeze and retrieve the current content of the site, viz. R;
check whether P | R respects the policy of the site;
reactivate R and, according to the result of the checking
phase, activate P.

2 let membranes evolving at run-time: they are decreased
with the privileges granted to P.

I’m sure you see that the first option is just crazy. . .

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Controlling Coalitions at a Site (ctd)

A new migration rule:

k[[M |〉 goT l.P|Q]] ‖ l[[M′ |〉 R]]

−→ k[[M |〉 Q]] ‖ l[[M′′ |〉 P|R]] if M′ `k
T P � M′′

where M′ `k
T P � M′′:

verifies whether P respects M′
p (by examining its PCC T or its

code, according to the trust level in its origin, k);

if P respects M′
p, it decrease M′

p with the privileges granted to P.
This returns M′′

p

V. Sassone Security Polices as Membranes

Why What How Conclusion Barring actions Counting actions Sequencing actions Controlling coalitions

Controlling Coalitions at a Site (ctd2)
Well-formed systems are now defined w.r.t. a function Θ associating
each good site to a initial policy.

Θ ` l[[M |〉 P]] : ok
l good
(pol(P) tMp) enforces Θ(l)

where

pol(P) returns the minimal policy satisfied by P;

t merges together two policies.

Subject Reduction: If Θ ` N : ok and N −→ N′, then Θ ` N′ : ok.

V. Sassone Security Polices as Membranes

Why What How Conclusion

Conclusions

a formal framework to reason on the role of membranes as
security policies

several variations expressing finer and finer policies

to be done:
a richer calculus (including communications, restrictions, ...)
more complex policies (not expressible with DFAs)
...

the paper is available at
www.dsi.uniroma1.it/~gorla/papers/GHS-membranes.ps

V. Sassone Security Polices as Membranes

www.dsi.uniroma1.it/~gorla/papers/GHS-membranes.ps

	Why
	What
	How
	Barring actions
	Counting actions
	Sequencing actions
	Controlling coalitions

	Conclusion

