A Calculus for Trust Management

Vladimiro Sassone

University of Sussex, UK

GC 2004: MyThS/MIKADO/DART Meeting Venice 16.06.04

with M. Carbone and M. Nielsen

Why

Trust and Trust Management

Trust: What is it?

• Think of the usual human-like notion...

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 🕨 🖌 3

Trust and Trust Management

Trust: What is it?

• Think of the usual human-like notion...

Why

• ... but on a *global computing* scale.

Trust and Trust Management

Trust: What is it?

- Think of the usual human-like notion...
- ... but on a *global computing* scale.

Trust Management: Fundamental aspects?

- Trust is gathered by individuals from personal experiences;
- Irust is shared by communities, e.g. to form "reputation systems";

Trust and Trust Management

Trust: What is it?

- Think of the usual human-like notion...
- ... but on a *global computing* scale.

Trust Management: Fundamental aspects?

- Trust is gathered by individuals from personal experiences;
- Irust is shared by communities, e.g. to form "reputation systems";

Which means:

 Principals act according to "policies" upon consulting "trust tables," and "update" these constantly according to the outcome of transactions.

The Framework

$\mathbf{a}\{\mathbf{P}\}_{\alpha} \mid \mathbf{N}$

It consists of:

- The Principal's name
- The Principal's program
- The Principal's policy
- The rest of the network

The Framework

 $a\{P\}_{\alpha} \mid N$

It consists of:

- The Principal's name
- The Principal's program
- The Principal's policy
- The rest of the network
- $\phi :: b \cdot c\langle n \rangle$: if *a* can prove ϕ according to α , it will grant *n* to *b* along *c*. E.g.

 $x \cdot \text{print}(y)$. Access(x, ColorPrinter) :: colPr · print $\langle y \rangle$

The Framework

 $a\{P\}_{\alpha} \mid N$

It consists of:

- The Principal's name
- The Principal's program
- The Principal's policy
- The rest of the network
- $\phi :: b \cdot c\langle n \rangle$: if *a* can prove ϕ according to α , it will grant *n* to *b* along *c*. E.g.

 $x \cdot \text{print}(y) \cdot Access(x, ColorPrinter) :: colPr \cdot \text{print}(y)$

• $b \cdot c(y) \cdot P$: Receive y from b along c, and record the observation in policy α .

The Interaction Rule

Interaction

 $\frac{\beta \vdash \phi \quad \alpha' = \alpha \text{ upd}(b \cdot c \triangleright \tilde{m}) \quad b : \tilde{m} \text{ match } p : \tilde{X} = \sigma}{a\{ p \cdot c(\tilde{X}) \cdot P \}_{\alpha} \mid b\{ \phi :: a \cdot c\langle \tilde{m} \rangle \cdot Q \}_{\beta} \rightarrow a\{ P\sigma \}_{\alpha'} \mid b\{ Q \}_{\beta}}$

3

The logic

Val = P + N.

 $\overline{Val} = P \times Val^+$: observations (*p*, *ch*, *mess*).

Definition

Fix a signature Σ augmented with:

- constants Val;
- $upd: s \times Val \rightarrow s$ (s distinguished sort).

Definition

A message structure S, Op is a term algebra for the Σ above. Let \mathcal{R} be a set of predicate symbols.

Let π be a set of Horn clauses $L \leftarrow L_1, \ldots L_k$ over such S and \mathcal{R} .

Principal's policies α is of the form $(\pi, \#)$, for $\# \in S$.

(日) (四) (三) (三)

The calculus

Definition

$N, M ::= \epsilon$	(empty)	<i>P</i> , <i>Q</i> ::= 0	(null)
N N	(net-par)	<i>Z</i>	(sub)
$ a\{P\}_{\alpha}$	(principal)	<i>P</i> <i>P</i>	(par)
(µn) N	(new-net)	(<i>ν</i> n) P	(new)
		! <i>P</i>	(bang)
$Z ::= p \cdot u(\tilde{v}) \cdot P$	(output)		
$ \phi:: p \cdot u \langle \tilde{v} \rangle \cdot P$ $ Z + Z$	(input) (sum)	$\phi ::= L(\tilde{l}) L \in \mathcal{P}$	(null)

CTM

V. Sassone

(日) (四) (王) (王)

2

Example: A print server

Basic predicate Access(x, y), for x a principal and $y \in \{Color, BW\}$.

Why

Site policy
$$\pi : \{ x \cdot - \rhd \text{ junk} < 3 \rightarrow Access(x, Color), x \cdot - \rhd \text{ junk} < 6 \rightarrow Access(x, BW) \}$$

where $X \cdot - \triangleright$ junk counts the occurrences of junk messages.

Example: A print server

Basic predicate Access(x, y), for x a principal and $y \in \{Color, BW\}$.

Why

Site policy
$$\pi : \{ x \cdot - \rhd \text{ junk} < 3 \rightarrow Access(x, Color), x \cdot - \rhd \text{ junk} < 6 \rightarrow Access(x, BW) \}$$

where $x \cdot - \triangleright junk$ counts the occurrences of junk messages. Let *a*, the print server, and *b* be principals with resp. protocols:

 $P = [x \cdot printCol(y) \cdot Access(x, Color) :: printer \cdot printCol(y) |$ $!x \cdot printBW(y) \cdot Access(x, BW) :: printer \cdot printBW(y)$

Example: A print server

Basic predicate Access(x, y), for x a principal and $y \in \{Color, BW\}$.

Why

Site policy
$$\pi : \{ x \cdot - \rhd \text{ junk} < 3 \rightarrow Access(x, Color), x \cdot - \rhd \text{ junk} < 6 \rightarrow Access(x, BW) \}$$

where $x \cdot - \triangleright junk$ counts the occurrences of junk messages. Let *a*, the print server, and *b* be principals with resp. protocols:

 $P = !x \cdot printCol(y) \cdot Access(x, Color) :: printer \cdot printCol(y) |$ $!x \cdot printBW(y) \cdot Access(x, BW) :: printer \cdot printBW(y)$

$$\begin{split} \mathcal{Q} &= \mathit{a} \cdot \texttt{printCol}(\texttt{junk}) \, . \, \mathit{a} \cdot \texttt{printBW}(\texttt{junk}) \, . \, \mathit{a} \cdot \texttt{printCol}(\texttt{junk}) \\ &\mid \mathit{a} \cdot \texttt{printCol}(\texttt{doc}) \end{split}$$

Consider $N = a\{P\}_{(\pi,\emptyset)} \mid b\{Q\}_{\alpha}$.

Example: A bank recommendation system

Interpret messages as recommendations.

Assume message structure is list of last k recommendations for each user. Let's consider the protocol

 $P = !x \cdot mg(y) \cdot Grant(x, y) :: x \cdot mg() \cdot x \cdot pay(y) |$!ITAbank \cdot rec(x, y)

Policy for principal UKBank:

 $\pi = \{\texttt{ITAbank} \cdot \texttt{rec} \rhd (X, \texttt{Bad}) + X \cdot \texttt{pay} \rhd \texttt{no} = 0 \rightarrow \texttt{Grant}(X, Y)\}$

which checks if the sum of messages from ITAbank of type (x, Bad) and from x of type no is zero.

Mortgage allowed whenever there is not bad observed or bad recommended behaviour.

A ∰ ► A ∃ ► A

A nice cluster of bisimulations I don't have time to tell you about.

3

< 3