
Why

A Calculus for Trust Management

Vladimiro Sassone

University of Sussex, UK

GC 2004: MyThS/MIKADO/DART Meeting
Venice 16.06.04

with M. Carbone and M. Nielsen

V. Sassone CTM

Why

Trust and Trust Management
Trust: What is it?

Think of the usual human-like notion. . .

. . . but on a global computing scale.

Trust Management: Fundamental aspects?

1 Trust is gathered by individuals from personal experiences;
2 Trust is shared by communities, e.g. to form “reputation systems”;

Which means:

Principals act according to “policies” upon consulting “trust
tables,” and “update” these constantly according to the
outcome of transactions.

V. Sassone CTM

Why

Trust and Trust Management
Trust: What is it?

Think of the usual human-like notion. . .

. . . but on a global computing scale.

Trust Management: Fundamental aspects?

1 Trust is gathered by individuals from personal experiences;
2 Trust is shared by communities, e.g. to form “reputation systems”;

Which means:

Principals act according to “policies” upon consulting “trust
tables,” and “update” these constantly according to the
outcome of transactions.

V. Sassone CTM

Why

Trust and Trust Management
Trust: What is it?

Think of the usual human-like notion. . .

. . . but on a global computing scale.

Trust Management: Fundamental aspects?

1 Trust is gathered by individuals from personal experiences;
2 Trust is shared by communities, e.g. to form “reputation systems”;

Which means:

Principals act according to “policies” upon consulting “trust
tables,” and “update” these constantly according to the
outcome of transactions.

V. Sassone CTM

Why

Trust and Trust Management
Trust: What is it?

Think of the usual human-like notion. . .

. . . but on a global computing scale.

Trust Management: Fundamental aspects?

1 Trust is gathered by individuals from personal experiences;
2 Trust is shared by communities, e.g. to form “reputation systems”;

Which means:

Principals act according to “policies” upon consulting “trust
tables,” and “update” these constantly according to the
outcome of transactions.

V. Sassone CTM

Why

The Framework

a{ P }α | N

It consists of:

The Principal’s name

The Principal’s program

The Principal’s policy

The rest of the network

φ :: b · c〈n〉: if a can prove φ according to α, it will grant n to b
along c. E.g.

x · print(y) . Access(x , ColorPrinter) :: colPr · print〈y〉

b · c(y) . P: Receive y from b along c, and record the
observation in policy α.

V. Sassone CTM

Why

The Framework

a{ P }α | N

It consists of:

The Principal’s name

The Principal’s program

The Principal’s policy

The rest of the network

φ :: b · c〈n〉: if a can prove φ according to α, it will grant n to b
along c. E.g.

x · print(y) . Access(x , ColorPrinter) :: colPr · print〈y〉

b · c(y) . P: Receive y from b along c, and record the
observation in policy α.

V. Sassone CTM

Why

The Framework

a{ P }α | N

It consists of:

The Principal’s name

The Principal’s program

The Principal’s policy

The rest of the network

φ :: b · c〈n〉: if a can prove φ according to α, it will grant n to b
along c. E.g.

x · print(y) . Access(x , ColorPrinter) :: colPr · print〈y〉

b · c(y) . P: Receive y from b along c, and record the
observation in policy α.

V. Sassone CTM

Why

The Interaction Rule

Interaction

β ` φ α′ = α upd(b · c B m̃) b : m̃ match p : x̃ = σ

a{ p · c(x̃) . P }α | b{ φ :: a · c〈m̃〉 . Q }β → a{ Pσ }α′ | b{ Q }β

V. Sassone CTM

Why

The logic
Val = P + N.

Val = P × Val+: observations (p, ch, mess).

Definition

Fix a signature Σ augmented with:

constants Val;

upd : s × Val→ s (s distinguished sort).

Definition

A message structure S, Op is a term algebra for the Σ above. Let R
be a set of predicate symbols.

Let π be a set of Horn clauses L← L1, . . . Lk over such S and R.

Principal’s policies α is of the form (π,#), for # ∈ S.

V. Sassone CTM

Why

The calculus

Definition

N, M ::= ε (empty) P, Q ::= 0 (null)
| N | N (net-par) | Z (sub)
| a{ P }α (principal) | P | P (par)
|| (νn) N (new-net) | (νn) P (new)

| !P (bang)
Z ::= p · u(ṽ) . P (output)

| φ :: p · u〈ṽ〉 . P (input) φ ::= L(̃l) L ∈ P (null)
| Z + Z (sum)

V. Sassone CTM

Why

Example: A print server
Basic predicate Access(x , y), for x a principal and y ∈ {Color , BW}.

Site policy π : { x · −B junk < 3→ Access(x , Color),
x · −B junk < 6→ Access(x , BW)}

where x · −B junk counts the occurrences of junk messages.

Let a, the print server, and b be principals with resp. protocols:

P =!x · printCol(y) . Access(x , Color) :: printer · printCol〈y〉 |
!x · printBW(y) . Access(x , BW) :: printer · printBW〈y〉

Q = a · printCol〈junk〉 . a · printBW〈junk〉 . a · printCol〈junk〉
| a · printCol〈doc〉

Consider N = a{ P }(π,∅) | b{ Q }α.

V. Sassone CTM

Why

Example: A print server
Basic predicate Access(x , y), for x a principal and y ∈ {Color , BW}.

Site policy π : { x · −B junk < 3→ Access(x , Color),
x · −B junk < 6→ Access(x , BW)}

where x · −B junk counts the occurrences of junk messages.

Let a, the print server, and b be principals with resp. protocols:

P =!x · printCol(y) . Access(x , Color) :: printer · printCol〈y〉 |
!x · printBW(y) . Access(x , BW) :: printer · printBW〈y〉

Q = a · printCol〈junk〉 . a · printBW〈junk〉 . a · printCol〈junk〉
| a · printCol〈doc〉

Consider N = a{ P }(π,∅) | b{ Q }α.

V. Sassone CTM

Why

Example: A print server
Basic predicate Access(x , y), for x a principal and y ∈ {Color , BW}.

Site policy π : { x · −B junk < 3→ Access(x , Color),
x · −B junk < 6→ Access(x , BW)}

where x · −B junk counts the occurrences of junk messages.

Let a, the print server, and b be principals with resp. protocols:

P =!x · printCol(y) . Access(x , Color) :: printer · printCol〈y〉 |
!x · printBW(y) . Access(x , BW) :: printer · printBW〈y〉

Q = a · printCol〈junk〉 . a · printBW〈junk〉 . a · printCol〈junk〉
| a · printCol〈doc〉

Consider N = a{ P }(π,∅) | b{ Q }α.

V. Sassone CTM

Why

Example: A bank recommendation system
Interpret messages as recommendations.

Assume message structure is list of last k recommendations for each
user. Let’s consider the protocol

P = !x · mg(y) . Grant(x , y) :: x · mg〈〉 . x · pay(y) |
!ITAbank · rec(x , y)

Policy for principal UKBank :

π = {ITAbank · rec B (x , Bad) + x · pay B no = 0→ Grant(x , y)}

which checks if the sum of messages from ITAbank of type (x , Bad)
and from x of type no is zero.

Mortgage allowed whenever there is not bad observed or bad
recommended behaviour.

V. Sassone CTM

Why

Results

A nice cluster of bisimulations I don’t have time to tell you about.

V. Sassone CTM

	Why

