
Simplification and Computation

Eugenio Moggi

moggi@disi.unige.it

DISI, Univ. of Genova

S.Servolo 13-16/06/2004 – p.1/8

Overall Goal

A framework for operational semantics based on

ideas from monadic metalanguages [MF03]
simplification e > e′ compatible&confluent relation on terms
computation Cfg

1
> Cfg

2
relation on configurations

ideas from CHAM [BB92] and related calculi (Join [FG96], Kell [Ste03,BS03])
configurations as multisets of terms (and reaction rules)
computation as chemical reaction (and heating)

expressive patterns
patterns p for simplification subsume ML& PMC [Kah03]
Do we need more? LINDA/KLAIM, XML
join patterns J with weaken linearity assumptions
Kell patterns a[!x] address a different issue: match for active kells.
distinguish atoms a from varaibles y (as in FreshML [GP99,SGP03])

Use framework for multi-lingual extensions and for defining monadic interpreters.

S.Servolo 13-16/06/2004 – p.2/8

Overview of Key Properties

we distinguish atoms a, name variables y and term variables x

a term e may have free occurrences of atoms FN(e) and variables FV(e)

a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)

S.Servolo 13-16/06/2004 – p.3/8

Overview of Key Properties

we distinguish atoms a, name variables y and term variables x

a term e may have free occurrences of atoms FN(e) and variables FV(e)

a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)

The SIMPLIFICATION relation e > e′ is

name/variable preserving, i.e. FN(e′) ⊆ FN(e) and FV(e′) ⊆ FV(e)

compatible, i.e. can be performed in any context

confluent, i.e. can be performed in any order

invariant w.r.t. permutations π of atoms and substitutions ρ of name/term

variables with names/terms, i.e.
e > e′

e[π] > e′[π]

e > e′

e[ρ] > e′[ρ]

S.Servolo 13-16/06/2004 – p.3/8

Overview of Key Properties

we distinguish atoms a, name variables y and term variables x

a term e may have free occurrences of atoms FN(e) and variables FV(e)

a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)

The COMPUTATION relation Cfg
1

> Cfg
2

is

invariant w.r.t. permutations π of atoms

preserved by simplification, i.e.

Cfg
1

> Cfg
2

Cfg′

1

∗

∨

> Cfg′

2

∗

∨

preserved by extension, i.e. Cfg] Cfg
1

> Cfg] Cfg
2

when Cfg
1

> Cfg
2

and FN(Cfg)#(FN(Cfg
2
) − FN(Cfg

1
)). Thus atomic broadcast not allowed.

S.Servolo 13-16/06/2004 – p.3/8

Syntax

atom a ∈ A, name variable y, term variable x, Name u ∈ N : := a | y

Term e ∈ E, Pattern p, Join pattern J , Match m

e : := x | u e constructor (name) u applied to sequence e of terms
| fail | (p⇒e1|e2) | e1@e2 | (m; e′) analogies with PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions
| νy.e | {(ei|i ∈ n)} | J > e freshness, multiset, and reaction rule

p : := !x | !y p | u p u matches only itself, !y matches any constructor u

J : := {(ui p
i
|i ∈ n)} generalizes the Join-calculus

m : := ok e | e: p⇒m analogies with PMC [Kal03]

Meaning of matches and related constructs:

ok e succeeds and returns e

e: p⇒m if e matches p try instance of m, otherwise fail

(m; e′) returns e when m succeeds and returns e, and e′ when m fails

(p⇒e1|e2)@e > (e: p⇒e1; e2@e) is β-reduction
S.Servolo 13-16/06/2004 – p.4/8

Syntax

atom a ∈ A, name variable y, term variable x, Name u ∈ N : := a | y

Term e ∈ E, Pattern p, Join pattern J , Match m

e : := x | u e constructor (name) u applied to sequence e of terms
| fail | (p⇒e1|e2) | e1@e2 | (m; e′) analogies with PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions
| νy.e | {(ei|i ∈ n)} | J > e freshness, multiset, and reaction rule

p : := !x | !y p | u p u matches only itself, !y matches any constructor u

J : := {(ui p
i
|i ∈ n)} generalizes the Join-calculus

m : := ok e | e: p⇒m analogies with PMC [Kal03]

Linearity constrains and binding in patterns:

in p a variable !x or !y can be declared at most once

* the occurrences of y after !y are bound

in J a term variable !x can be declared at most one ui p
i

* while a name variable !y can be declared in several ui p
i
.

S.Servolo 13-16/06/2004 – p.4/8

Examples of patterns p and J without free variables

p0 ≡ c (c !x) matches c (c e), where c ∈ A

p1 ≡ c !y y matches c a a for any a ∈ A

p2 ≡!y (y !x) matches a (a e) for any a ∈ A

How to express function eq to test equality of names (e.g. references)

eq = (!y⇒(y⇒true|!y′⇒false|fail)|fail)

eq fails when an argument is not an atom (does not simplify to an atom)

S.Servolo 13-16/06/2004 – p.5/8

Examples of patterns p and J without free variables

We define reaction rules for the operation on ML-references, represented by atoms
newR, getR and setR (term constructor names). Program represented by molecule
named prog, store represented by molecules named ref .

{(prog (newR !x !x′))} > νy. {(prog (x′@y) | ref y x)}
semantics of let val y=ref x in x′y

{(prog (getR !y !x′) | ref !y !x)} > {(prog (x′@x) | ref y x)}
semantics of let val x=!y in x′x

{(prog (setfR !yx1 !x′) | ref !y !x2)} > {(prog x′ | ref y x1)}
semantics of y:=x; x′

S.Servolo 13-16/06/2004 – p.5/8

Simplification rules: left-linear and non-overlapping

v : := u e | fail | (p⇒e1|e2) | νy.e | {(ei|i ∈ n)} | J > e p: :=!x | !y p | u p

e : := x | v | e1@e2 | (m; e) | let {xi = ei|i ∈ n} in e m : := ok e | e: p⇒m

Unfolding of recursive definitions

let {xi = ei|i ∈ n} in e > e[xi: let {xi = ei|i ∈ n} in ei|i ∈ n]

Application

fail@e > fail

(p⇒e1|e2)@e > (e: p⇒ok e1; e2@e)

S.Servolo 13-16/06/2004 – p.6/8

Simplification rules: left-linear and non-overlapping

v : := u e | fail | (p⇒e1|e2) | νy.e | {(ei|i ∈ n)} | J > e p: :=!x | !y p | u p

e : := x | v | e1@e2 | (m; e) | let {xi = ei|i ∈ n} in e m : := ok e | e: p⇒m

Simplification of matching

(ok e; e′) > e

(e: !x⇒m; e′) > (m[x: e]; e′)

(u e: !y p⇒m; e′) > (e: p[y: u]⇒m[y: u]; e′) when |e| = |p|

(v: !y p⇒m; e′) > e′ when v 6≡ u e with |e| = |p|

(a1 e: a2 p⇒m; e′) >

{

(e: p⇒m; e′) if a1 = a2

e′ if a1 6= a2

when |e| = |p|

(v: u p⇒m; e′) > e′ when v 6≡ u e with |e| = |p|

S.Servolo 13-16/06/2004 – p.6/8

Computation rules: heating and chemical reaction

v : := u e | fail | (p⇒e1|e2) | νy.e | {(ei|i ∈ n)} | J > e

p: :=!x | !y p | u p J : := {(ui p
i
|i ∈ n)}

Heating

Cfg, {(ei|i ∈ n)} > Cfg, {ei|i ∈ n}

Cfg, νy.e > Cfg, e[y: a] with a 6∈ FN(Cfg, νy.e)

Reaction a la Join-calculus

Cfg, J > e, Jρ > Cfg, e[ρ], J > e ρ closed substitution

Jρ is the multiset obtained by replacing the only occurrence of !x in J with ρ(x), and
occurrences of !y and y in J with ρ(y) (each occurrence of y in ui p

i
is bound by a !y)

S.Servolo 13-16/06/2004 – p.7/8

Conclusion: multi-lingual extensions and interpreters

new term constructors encoded as fresh atoms

new term destructors (and their simplification rules) defined using let-binding

encoding of natural numbers: zero z and successor s are atoms,
iterator it: X → (X → X) → N → X is a variable defined recursively

νz. νs. let it = (!x⇒!f⇒(z⇒x | s !n⇒it@x@f@n | fail)) in . . .

interpreter for existing term constructors as reaction rules for new molecules

interpreter for operation on references newR, getR and more

νp. νr. molecule names for interpreted programs and local store
















{(p (newR !x !x′))} > νy. {(p (x′@y) | r y x)} ,

{(p (getR !y !x′) | r !y !x)} > {(p (x′@x) | r y x)} ,

. . .

















restrict visibility of r to ensure that store is manipulated only by the interpreter

S.Servolo 13-16/06/2004 – p.8/8

Conclusion: multi-lingual extensions and interpreters

new term constructors encoded as fresh atoms

new term destructors (and their simplification rules) defined using let-binding

interpreter for existing term constructors as reaction rules for new molecules

interpreter for operation on references newR, getR and more

νp. νr. molecule names for interpreted programs and local store
















{(p (newR !x !x′))} > νy. {(p (x′@y) | r y x)} ,

{(p (getR !y !x′) | r !y !x)} > {(p (x′@x) | r y x)} ,

. . .

















restrict visibility of r to ensure that store is manipulated only by the interpreter

S.Servolo 13-16/06/2004 – p.8/8

	Overall Goal
	Overview of Key Properties
	Syntax
	Examples of patterns $p $ and $J $ without free variables
	Simplification rules: left-linear and non-overlapping
	Computation rules: heating and chemical reaction
	Conclusion: multi-lingual extensions and interpreters

