Simplification and Computation

Eugenio Moggi

moggi@disi.unige.it

DISI, Univ. of Genova

Overall Goal

A framework for operational semantics based on

- ideas from monadic metalanguages [MF03]
- simplification $e \longrightarrow e^{\prime}$ compatible\&confluent relation on terms
- computation $\mathrm{Cfg}_{1} \longmapsto \mathrm{Cfg}_{2}$ relation on configurations
- ideas from CHAM [BB92] and related calculi (Join [FG96], Kell [Ste03,BS03])
- configurations as multisets of terms (and reaction rules)
- computation as chemical reaction (and heating)
- expressive patterns
- patterns p for simplification subsume ML\& PMC [Kah03] Do we need more? LINDA/KLAIM, XML
- join patterns J with weaken linearity assumptions Kell patterns $a[!x]$ address a different issue: match for active kells.
- distinguish atoms a from varaibles y (as in FreshML [GP99,SGP03])

Use framework for multi-lingual extensions and for defining monadic interpreters.

Overview of Key Properties

- we distinguish atoms a, name variables y and term variables x
- a term e may have free occurrences of atoms $\mathrm{FN}(e)$ and variables $\mathrm{FV}(e)$
- a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)

Overview of Key Properties

- we distinguish atoms a, name variables y and term variables x
- a term e may have free occurrences of atoms $\mathrm{FN}(e)$ and variables $\mathrm{FV}(e)$
- a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)

The SIMPLIFICATION relation $e \longrightarrow e^{\prime}$ is

- name/variable preserving, i.e. $\mathrm{FN}\left(e^{\prime}\right) \subseteq \mathrm{FN}(e)$ and $\mathrm{FV}\left(e^{\prime}\right) \subseteq \mathrm{FV}(e)$
- compatible, i.e. can be performed in any context
- confluent, i.e. can be performed in any order
- invariant w.r.t. permutations π of atoms and substitutions ρ of name/term
variables with names/terms, i.e. $\frac{e \longrightarrow e^{\prime}}{e[\pi] \longrightarrow e^{\prime}[\pi]} \quad \frac{e \longrightarrow e^{\prime}}{e[\rho] \longrightarrow e^{\prime}[\rho]}$

Overview of Key Properties

- we distinguish atoms a, name variables y and term variables x
- a term e may have free occurrences of atoms $\mathrm{FN}(e)$ and variables $\mathrm{FV}(e)$
- a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)

The COMPUTATION relation $\mathrm{Cfg}_{1} \longmapsto \mathrm{Cfg}_{2}$ is

- invariant w.r.t. permutations π of atoms

$$
\mathrm{Cfg}_{1} \longmapsto \text { Cfg }_{2}
$$

- preserved by simplification, i.e. $* \downarrow$

$$
\text { Cfg }_{1}^{\prime} 1-\cdots>\text { Cfg }_{2}^{\prime}
$$

- preserved by extension, i.e. $\mathrm{Cfg} \uplus \mathrm{Cfg}_{1} \longmapsto \mathrm{Cfg} \uplus \mathrm{Cfg}_{2}$ when $\mathrm{Cfg}_{1} \longmapsto \mathrm{Cfg}_{2}$ and $\mathrm{FN}(\mathrm{Cfg}) \#\left(\mathrm{FN}\left(\mathrm{Cfg}_{2}\right)-\mathrm{FN}\left(\mathrm{Cfg}_{1}\right)\right)$. Thus atomic broadcast not allowed.

Syntax

- atom $a \in \mathrm{~A}$, name variable y, term variable x, Name $u \in \mathrm{~N}::=a \mid y$
- Term $e \in \mathrm{E}$, Pattern p, Join pattern J, Match m

e		$x \mid u \bar{e} \quad$ constructor (name) u applied to sequence \bar{e} of termsfail $\left\|\left(p \Rightarrow e_{1} \mid e_{2}\right)\right\| e_{1} @ e_{2} \mid\left(m ; e^{\prime}\right) \quad$ analogies with PMC [Kal03]et $\left\{x_{i}=e_{i} \mid i \in n\right\}$ in $e \quad$ binding for mutual recursive definitions$\nu y . e\left\|\left\{\left(e_{i} \mid i \in n\right)\right\}\right\| J>e \quad$ freshness, multiset, and reaction rule	
		$!x\|!y \bar{p}\| u \bar{p} \quad u$ matches only	matches any constructor u
J		$\left\{\left(u_{i} \bar{p}_{i} \mid i \in n\right)\right\}$	generalizes the Join-calculus
	:: $=$	ok e $\mid e: p \Rightarrow m$	analogies with PMC [Kal03]

Meaning of matches and related constructs:

- ok e succeeds and returns e
- $e: p \Rightarrow m$ if e matches p try instance of m, otherwise fail
- ($m ; e^{\prime}$) returns e when m succeeds and returns e, and e^{\prime} when m fails
- $\left(p \Rightarrow e_{1} \mid e_{2}\right) @ e \longrightarrow\left(e: p \Rightarrow e_{1} ; e_{2} @ e\right)$ is β-reduction

Syntax

- atom $a \in \mathrm{~A}$, name variable y, term variable x, Name $u \in \mathrm{~N}::=a \mid y$
- Term $e \in \mathrm{E}$, Pattern p, Join pattern J, Match m

e		$x \mid u \bar{e} \quad$ constructor (name) u applied to sequence \bar{e} of termsfail $\left\|\left(p \Rightarrow e_{1} \mid e_{2}\right)\right\| e_{1} @ e_{2} \mid\left(m ; e^{\prime}\right) \quad$ analogies with PMC [Kal03]et $\left\{x_{i}=e_{i} \mid i \in n\right\}$ in $e \quad$ binding for mutual recursive definitions$\nu y . e\left\|\left\{\left(e_{i} \mid i \in n\right)\right\}\right\| J>e \quad$ freshness, multiset, and reaction rule	
		$!x\|!y \bar{p}\| u \bar{p} \quad u$ matches only	matches any constructor u
J		$\left\{\left(u_{i} \bar{p}_{i} \mid i \in n\right)\right\}$	generalizes the Join-calculus
	:: $=$	ok e $\mid e: p \Rightarrow m$	analogies with PMC [Kal03]

Linearity constrains and binding in patterns:

- in p a variable ! x or ! y can be declared at most once
* the occurrences of y after ! y are bound
- in J a term variable ! x can be declared at most one $u_{i} \bar{p}_{i}$
* while a name variable ! y can be declared in several $u_{i} \bar{p}_{i}$.

Examples of patterns p and J without free variables

- $p_{0} \equiv c(c!x)$ matches $c(c e)$, where $c \in \mathrm{~A}$
- $p_{1} \equiv c!y y$ matches $c a a$ for any $a \in \mathrm{~A}$
- $p_{2} \equiv!y(y!x)$ matches $a(a e)$ for any $a \in \mathrm{~A}$

How to express function eq to test equality of names (e.g. references)

$$
e q=\left(!y \Rightarrow\left(y \Rightarrow t r u e \mid!y^{\prime} \Rightarrow \text { false } \mid \text { fail }\right) \mid \text { fail }\right)
$$

eq fails when an argument is not an atom (does not simplify to an atom)

Examples of patterns p and J without free variables

We define reaction rules for the operation on ML-references, represented by atoms new R, get R and set R (term constructor names). Program represented by molecule named prog, store represented by molecules named ref.

- $\left\{\left(\operatorname{prog}\left(\right.\right.\right.$ new $\left.\left.\left.R!x!x^{\prime}\right)\right)\right\}>\nu y$. $\left\{\left(\operatorname{prog}\left(x^{\prime} @ y\right) \mid\right.\right.$ ref $\left.\left.y x\right)\right\}$ semantics of let val $y=$ ref x in $x^{\prime} y$
- $\left\{\left(\operatorname{prog}\left(\operatorname{get} R!y!x^{\prime}\right) \mid \operatorname{ref}!y!x\right)\right\}>\left\{\left(\operatorname{prog}\left(x^{\prime} @ x\right) \mid\right.\right.$ ref $\left.\left.y x\right)\right\}$ semantics of let val $x=!y$ in $x^{\prime} x$
- $\left\{\left(\operatorname{prog}\left(\operatorname{setfR} R!y x_{1}!x^{\prime}\right) \mid \operatorname{ref}!y!x_{2}\right)\right\}>\left\{\left(\operatorname{prog} x^{\prime} \mid \operatorname{ref} y x_{1}\right)\right\}$ semantics of $y:=x ; x^{\prime}$

Simplification rules: left-linear and non-overlapping

| $v::=u \bar{e} \mid$ fail $\left\|\left(p \Rightarrow e_{1} \mid e_{2}\right)\right\| \nu y . e\left\|\left\{\left(e_{i} \mid i \in n\right)\right\}\right\| J>e$ | $p::=!x\|!y \bar{p}\| u \bar{p}$ |
| :--- | :--- | :--- |
| $e::=x\|v\| e_{1} @ e_{2}\|(m ; e)\|$ let $\left\{x_{i}=e_{i} \mid i \in n\right\}$ in e | $m::=o k e \mid e: p \Rightarrow m$ |

Unfolding of recursive definitions

$$
\text { let }\left\{x_{i}=e_{i} \mid i \in n\right\} \text { in } e \quad \longrightarrow \quad e\left[x_{i} \text { : let }\left\{x_{i}=e_{i} \mid i \in n\right\} \text { in } e_{i} \mid i \in n\right]
$$

Application

$$
\begin{aligned}
f a i l @ e & \longrightarrow \text { fail } \\
\left(p \Rightarrow e_{1} \mid e_{2}\right) @ e & \longrightarrow\left(e: p \Rightarrow o k e_{1} ; e_{2} @ e\right)
\end{aligned}
$$

Simplification rules: left-linear and non-overlapping

| $v::=u \bar{e} \mid$ fail $\left\|\left(p \Rightarrow e_{1} \mid e_{2}\right)\right\|$ 立.e $\left\|\left\{\left(e_{i} \mid i \in n\right)\right\}\right\| J>e$ | $p:=!x\|!y \bar{p}\| u \bar{p}$ |
| :--- | :--- | :--- |
| $e::=x\|v\| e_{1} @ e_{2}\|(m ; e)\|$ let $\left\{x_{i}=e_{i} \mid i \in n\right\}$ in e | $m::=o k e \mid e: p \Rightarrow m$ |

Simplification of matching

$$
\begin{aligned}
&\left(o k e ; e^{\prime}\right) \longrightarrow e \\
&\left(e:!x \Rightarrow m ; e^{\prime}\right) \longrightarrow\left(m[x: e] ; e^{\prime}\right) \\
&\left(u \bar{e}:!y \bar{p} \Rightarrow m ; e^{\prime}\right) \longrightarrow\left(\bar{e}: \bar{p}[y: u] \Rightarrow m[y: u] ; e^{\prime}\right) \quad \text { when }|\bar{e}|=|\bar{p}| \\
&\left(v:!y \bar{p} \Rightarrow m ; e^{\prime}\right) \longrightarrow \\
& e^{\prime} \quad \text { when } v \not \equiv u \bar{e} \text { with }|\bar{e}|=|\bar{p}| \\
&\left(a_{1} \bar{e}: a_{2} \bar{p} \Rightarrow m ; e^{\prime}\right) \longrightarrow\left\{\begin{array}{ll}
\left(\bar{e}: \bar{p} \Rightarrow m ; e^{\prime}\right) & \text { if } a_{1}=a_{2} \\
e^{\prime} & \text { if } a_{1} \neq a_{2}
\end{array} \quad \text { when }|\bar{e}|=|\bar{p}|\right. \\
&\left(v: u \bar{p} \Rightarrow m ; e^{\prime}\right) \longrightarrow
\end{aligned} \begin{aligned}
& \text { when } v \not \equiv u \bar{e} \text { with }|\bar{e}|=|\bar{p}|
\end{aligned}
$$

Computation rules: heating and chemical reaction

$$
\begin{array}{lr}
v::=u \bar{e} \mid \text { fail }\left|\left(p \Rightarrow e_{1} \mid e_{2}\right)\right| \text { vy.e }\left|\left\{\left(e_{i} \mid i \in n\right)\right\}\right| J>e \\
p::=!x|!y \bar{p}| u \bar{p} \quad J::=\left\{\left(u_{i} \bar{p}_{i} \mid i \in n\right)\right\} \\
\hline
\end{array}
$$

Heating

$$
\begin{aligned}
\text { Cfg, }\left\{\left(e_{i} \mid i \in n\right)\right\} & \longmapsto C f g,\left\{e_{i} \mid i \in n\right\} \\
\text { Cfg, vy.e } & \longmapsto C f, e[y: a] \text { with } a \notin \mathrm{FN}(C f g, \nu y . e)
\end{aligned}
$$

Reaction a la Join-calculus
Cfg, $J>e, J \rho \quad$ Cfg, $e[\rho], J>e \quad \rho$ closed substitution
$J \rho$ is the multiset obtained by replacing the only occurrence of $!x$ in J with $\rho(x)$, and occurrences of $!y$ and y in J with $\rho(y)$ (each occurrence of y in $u_{i} \bar{p}_{i}$ is bound by a !y)

Conclusion: multi-lingual extensions and interpreters

- new term constructors encoded as fresh atoms
new term destructors (and their simplification rules) defined using let-binding encoding of natural numbers: zero z and successor s are atoms, iterator $i t: X \rightarrow(X \rightarrow X) \rightarrow N \rightarrow X$ is a variable defined recursively

$$
\nu z . \nu s \text {. let } i t=(!x \Rightarrow!f \Rightarrow(z \Rightarrow x|s!n \Rightarrow i t @ x @ f @ n| f a i l)) \text { in } \ldots
$$

- interpreter for existing term constructors as reaction rules for new molecules interpreter for operation on references new R, get R and more
$\nu p . \nu r$. molecule names for interpreted programs and local store

$$
\left\{\left(\begin{array}{l}
\left\{\left(p\left(\text { new } R!x!x^{\prime}\right)\right)\right\}>\nu y \cdot\left\{\left(p\left(x^{\prime} @ y\right) \mid r y x\right)\right\}, \\
\left\{\left(p\left(\operatorname{get} R!y!x^{\prime}\right) \mid r!y!x\right)\right\}>\left\{\left(p\left(x^{\prime} @ x\right) \mid r y x\right)\right\}, \\
\cdots
\end{array}\right)\right\}
$$

restrict visibility of r to ensure that store is manipulated only by the interpreter

Conclusion: multi-lingual extensions and interpreters

- new term constructors encoded as fresh atoms new term destructors (and their simplification rules) defined using let-binding
- interpreter for existing term constructors as reaction rules for new molecules interpreter for operation on references new R, get R and more
$\nu p . \nu r$. molecule names for interpreted programs and local store

$$
\left\{\left(\begin{array}{l}
\left\{\left(p\left(\text { new } R!x!x^{\prime}\right)\right)\right\}>\nu y .\left\{\left(p\left(x^{\prime} @ y\right) \mid r y x\right)\right\}, \\
\left\{\left(p\left(\operatorname{get} R!y!x^{\prime}\right) \mid r!y!x\right)\right\}>\left\{\left(p\left(x^{\prime} @ x\right) \mid r y x\right)\right\}, \\
\cdots
\end{array}\right)\right\}
$$

restrict visibility of r to ensure that store is manipulated only by the interpreter

