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Overall Goal

A framework for operational semantics based on

ideas from monadic metalanguages [MF03]
simplification e > e′ compatible&confluent relation on terms
computation Cfg

1
> Cfg

2
relation on configurations

ideas from CHAM [BB92] and related calculi ( Join [FG96], Kell [Ste03,BS03])
configurations as multisets of terms (and reaction rules)
computation as chemical reaction (and heating)

expressive patterns
patterns p for simplification subsume ML& PMC [Kah03]
Do we need more? LINDA/KLAIM, XML
join patterns J with weaken linearity assumptions
Kell patterns a[!x] address a different issue: match for active kells.
distinguish atoms a from varaibles y (as in FreshML [GP99,SGP03])

Use framework for multi-lingual extensions and for defining monadic interpreters.
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Overview of Key Properties

we distinguish atoms a, name variables y and term variables x

a term e may have free occurrences of atoms FN(e) and variables FV(e)

a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)
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Overview of Key Properties

we distinguish atoms a, name variables y and term variables x

a term e may have free occurrences of atoms FN(e) and variables FV(e)

a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)

The SIMPLIFICATION relation e > e′ is

name/variable preserving, i.e. FN(e′) ⊆ FN(e) and FV(e′) ⊆ FV(e)

compatible, i.e. can be performed in any context

confluent, i.e. can be performed in any order

invariant w.r.t. permutations π of atoms and substitutions ρ of name/term

variables with names/terms, i.e.
e > e′

e[π] > e′[π]

e > e′

e[ρ] > e′[ρ]
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Overview of Key Properties

we distinguish atoms a, name variables y and term variables x

a term e may have free occurrences of atoms FN(e) and variables FV(e)

a configuration Cfg is a finite multiset of closed terms (i.e. no free variables)

The COMPUTATION relation Cfg
1

> Cfg
2

is

invariant w.r.t. permutations π of atoms

preserved by simplification, i.e.

Cfg
1

> Cfg
2

Cfg′

1

∗

∨

> Cfg′

2

∗

∨

preserved by extension, i.e. Cfg ] Cfg
1

> Cfg ] Cfg
2

when Cfg
1

> Cfg
2

and FN(Cfg)#(FN(Cfg
2
) − FN(Cfg

1
)). Thus atomic broadcast not allowed.
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Syntax

atom a ∈ A, name variable y, term variable x, Name u ∈ N : := a | y

Term e ∈ E, Pattern p, Join pattern J , Match m

e : := x | u e constructor (name) u applied to sequence e of terms
| fail | (p⇒e1|e2) | e1@e2 | (m; e′) analogies with PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions
| νy.e | {(ei|i ∈ n)} | J > e freshness, multiset, and reaction rule

p : := !x | !y p | u p u matches only itself, !y matches any constructor u

J : := {(ui p
i
|i ∈ n)} generalizes the Join-calculus

m : := ok e | e: p⇒m analogies with PMC [Kal03]

Meaning of matches and related constructs:

ok e succeeds and returns e

e: p⇒m if e matches p try instance of m, otherwise fail

(m; e′) returns e when m succeeds and returns e, and e′ when m fails

(p⇒e1|e2)@e > (e: p⇒e1; e2@e) is β-reduction
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Syntax

atom a ∈ A, name variable y, term variable x, Name u ∈ N : := a | y

Term e ∈ E, Pattern p, Join pattern J , Match m

e : := x | u e constructor (name) u applied to sequence e of terms
| fail | (p⇒e1|e2) | e1@e2 | (m; e′) analogies with PMC [Kal03]
| let {xi = ei|i ∈ n} in e binding for mutual recursive definitions
| νy.e | {(ei|i ∈ n)} | J > e freshness, multiset, and reaction rule

p : := !x | !y p | u p u matches only itself, !y matches any constructor u

J : := {(ui p
i
|i ∈ n)} generalizes the Join-calculus

m : := ok e | e: p⇒m analogies with PMC [Kal03]

Linearity constrains and binding in patterns:

in p a variable !x or !y can be declared at most once

* the occurrences of y after !y are bound

in J a term variable !x can be declared at most one ui p
i

* while a name variable !y can be declared in several ui p
i
.
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Examples of patterns p and J without free variables

p0 ≡ c (c !x) matches c (c e), where c ∈ A

p1 ≡ c !y y matches c a a for any a ∈ A

p2 ≡!y (y !x) matches a (a e) for any a ∈ A

How to express function eq to test equality of names (e.g. references)

eq = (!y⇒(y⇒true|!y′⇒false|fail)|fail)

eq fails when an argument is not an atom (does not simplify to an atom)
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Examples of patterns p and J without free variables

We define reaction rules for the operation on ML-references, represented by atoms
newR, getR and setR (term constructor names). Program represented by molecule
named prog, store represented by molecules named ref .

{(prog (newR !x !x′))} > νy. {(prog (x′@y) | ref y x)}
semantics of let val y=ref x in x′y

{(prog (getR !y !x′) | ref !y !x)} > {(prog (x′@x) | ref y x)}
semantics of let val x=!y in x′x

{(prog (setfR !yx1 !x′) | ref !y !x2)} > {(prog x′ | ref y x1)}
semantics of y:=x; x′
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Simplification rules: left-linear and non-overlapping

v : := u e | fail | (p⇒e1|e2) | νy.e | {(ei|i ∈ n)} | J > e p: :=!x | !y p | u p

e : := x | v | e1@e2 | (m; e) | let {xi = ei|i ∈ n} in e m : := ok e | e: p⇒m

Unfolding of recursive definitions

let {xi = ei|i ∈ n} in e > e[xi: let {xi = ei|i ∈ n} in ei|i ∈ n]

Application

fail@e > fail

(p⇒e1|e2)@e > (e: p⇒ok e1; e2@e)
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Simplification rules: left-linear and non-overlapping

v : := u e | fail | (p⇒e1|e2) | νy.e | {(ei|i ∈ n)} | J > e p: :=!x | !y p | u p

e : := x | v | e1@e2 | (m; e) | let {xi = ei|i ∈ n} in e m : := ok e | e: p⇒m

Simplification of matching

(ok e; e′) > e

(e: !x⇒m; e′) > (m[x: e]; e′)

(u e: !y p⇒m; e′) > (e: p[y: u]⇒m[y: u]; e′) when |e| = |p|

(v: !y p⇒m; e′) > e′ when v 6≡ u e with |e| = |p|

(a1 e: a2 p⇒m; e′) >

{

(e: p⇒m; e′) if a1 = a2

e′ if a1 6= a2

when |e| = |p|

(v: u p⇒m; e′) > e′ when v 6≡ u e with |e| = |p|
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Computation rules: heating and chemical reaction

v : := u e | fail | (p⇒e1|e2) | νy.e | {(ei|i ∈ n)} | J > e

p: :=!x | !y p | u p J : := {(ui p
i
|i ∈ n)}

Heating

Cfg, {(ei|i ∈ n)} > Cfg, {ei|i ∈ n}

Cfg, νy.e > Cfg, e[y: a] with a 6∈ FN(Cfg, νy.e)

Reaction a la Join-calculus

Cfg, J > e, Jρ > Cfg, e[ρ], J > e ρ closed substitution

Jρ is the multiset obtained by replacing the only occurrence of !x in J with ρ(x), and
occurrences of !y and y in J with ρ(y) (each occurrence of y in ui p

i
is bound by a !y)
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Conclusion: multi-lingual extensions and interpreters

new term constructors encoded as fresh atoms

new term destructors (and their simplification rules) defined using let-binding

encoding of natural numbers: zero z and successor s are atoms,
iterator it: X → (X → X) → N → X is a variable defined recursively

νz. νs. let it = (!x⇒!f⇒(z⇒x | s !n⇒it@x@f@n | fail)) in . . .

interpreter for existing term constructors as reaction rules for new molecules

interpreter for operation on references newR, getR and more

νp. νr. molecule names for interpreted programs and local store
















{(p (newR !x !x′))} > νy. {(p (x′@y) | r y x)} ,

{(p (getR !y !x′) | r !y !x)} > {(p (x′@x) | r y x)} ,

. . .

















restrict visibility of r to ensure that store is manipulated only by the interpreter
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