
Open Nets, Contexts and Their Properties

Michele Loreti

joint work with Rocco De Nicola

Open Nets, Contexts and Their Properties – p. 1/24

Properties for Global applications...

• Modal logics can be used for specifying and verifying
properties of global applications

• However, for this class of applications, one has a limited
knowledge of the involved components

• We present a new approach for partial and incremental
specification of global applications:
◦ not all the components are completely specified
◦ a stepwise approach is used to refine the specification

Open Nets, Contexts and Their Properties – p. 2/24

Our proposal...

• A global application can be thought as composed of two
parts:
◦ a fully known component;
◦ its (partially known) operating context.

• We shall rely on:
◦ A calculus for modelling distributed and mobile systems
◦ A context-specification language for modelling contexts
◦ A location aware modal logic
◦ An agreement relation (preserving formulae satisfaction)

for refining context components

µKLAIM

Open Nets, Contexts and Their Properties – p. 3/24

Our proposal...

• A global application can be thought as composed of two
parts:
◦ a fully known component;
◦ its (partially known) operating context.

• We shall rely on:
◦ A calculus for modelling distributed and mobile systems
◦ A context-specification language for modelling contexts
◦ A location aware modal logic
◦ An agreement relation (preserving formulae satisfaction)

for refining context components

µKLAIM

Open Nets, Contexts and Their Properties – p. 3/24

µKLAIM Nodes...

• Locality
• Processes
• Tuple Space

l

P
Q (t1)

(t2)

eval(P)@l out(t)@l

in(T)@l

read(T)@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)

Open Nets, Contexts and Their Properties – p. 4/24

µKLAIM Nodes...

• Locality
• Processes
• Tuple Space

l

P
Q (t1)

(t2)

eval(P)@l out(t)@l

in(T)@l

read(T)@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)

Open Nets, Contexts and Their Properties – p. 4/24

µKLAIM Nodes...

• Locality

• Processes
• Tuple Space

l

P
Q (t1)

(t2)

eval(P)@l out(t)@l

in(T)@l

read(T)@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)

Open Nets, Contexts and Their Properties – p. 4/24

µKLAIM Nodes...

• Locality
• Processes

• Tuple Space

l

P
Q

(t1)

(t2)

eval(P)@l out(t)@l

in(T)@l

read(T)@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)

Open Nets, Contexts and Their Properties – p. 4/24

µKLAIM Nodes...

• Locality
• Processes
• Tuple Space

l

P
Q (t1)

(t2)

eval(P)@l out(t)@l

in(T)@l

read(T)@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)

Open Nets, Contexts and Their Properties – p. 4/24

µKLAIM Nodes...

• Locality
• Processes
• Tuple Space

l

P
Q (t1)

(t2)

eval(P)@l out(t)@l

in(T)@l

read(T)@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)

Open Nets, Contexts and Their Properties – p. 4/24

µKLAIM Nodes...

• Locality
• Processes
• Tuple Space

l

P
Q (t1)

(t2)

eval(P)@l out(t)@l

in(T)@l

read(T)@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)

Open Nets, Contexts and Their Properties – p. 4/24

µKLAIM Nodes...

• Locality
• Processes
• Tuple Space

l

P
Q (t1)

(t2)

eval(P)@l out(t)@l

in(T)@l

read(T)@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)

Open Nets, Contexts and Their Properties – p. 4/24

µKLAIM Nets...

l1

(t1) (t2)

l2

P (t3)

l3

Q1
Q2

l1 :: (t1) ‖ l1 :: (t2) ‖

l2 :: P ‖ l2 :: (t3) ‖ l3 :: Q1 ‖ l3 :: Q2

Open Nets, Contexts and Their Properties – p. 5/24

µKLAIM Nets...

l1

(t1) (t2)

l2

P (t3)

l3

Q1
Q2

l1 :: (t1) ‖ l1 :: (t2) ‖

l2 :: P ‖ l2 :: (t3) ‖ l3 :: Q1 ‖ l3 :: Q2

Open Nets, Contexts and Their Properties – p. 5/24

µKLAIM syntax...

N ::= l :: R
∣

∣

∣
N1 ‖ N2

R ::= P
∣

∣

∣
(et)

P ::= nil

∣

∣

∣
act.P

∣

∣

∣
P1 | P2

∣

∣

∣
X

∣

∣

∣
recX.P

act ::= out(t)@l
∣

∣

∣
in(T)@l

∣

∣

∣
read(T)@l

∣

∣

∣

eval(P)@l
∣

∣

∣
newloc(u)

t ::= f
∣

∣

∣
f, t

f ::= e
∣

∣

∣
l
∣

∣

∣
u

T ::= F
∣

∣

∣
F, T

F ::= f
∣

∣

∣
! x

∣

∣

∣
! u

Open Nets, Contexts and Their Properties – p. 6/24

Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

λ ::= l : act
∣

∣

∣
τ

• the operational semantics of µKLAIM nets is defined using
relation �

·
−→

Open Nets, Contexts and Their Properties – p. 7/24

Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

λ ::= l : act
∣

∣

∣
τ

• the operational semantics of µKLAIM nets is defined using
relation �

·
−→

• some rules:

l1 :: out(t)@l2.P �
l1:out(T [[t]])@l2

−−−−−−−−−−−−→ l1 :: P

N1 �
l1:out(et)@l2

−−−−−−−−−→ N2

N1 ‖ l2 :: P �
τ

−→ N2 ‖ l2 :: P ‖ l2 :: (et)

Open Nets, Contexts and Their Properties – p. 7/24

Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

λ ::= l : act
∣

∣

∣
τ

• the operational semantics of µKLAIM nets is defined using
relation �

·
−→

• some rules:

l1 :: in(T)@l2.P �
l1:in(T)@l2

−−−−−−−−→ l :: P

N1 �
l1:in(T)@l2

−−−−−−−−→ N2 σ = match(T, et)

N1 ‖ l2 :: (et) �
τ

−→ N2σ ‖ l2 :: nil

Open Nets, Contexts and Their Properties – p. 7/24

Dining philosophers in µKLAIM...

• There is a node for each fork (fi)
◦ the i−th fork is free if (′′fork′′) is at fi

• There is a node for each philosopher (pi)
◦ the process below is at pi:

Pi = rec X.

think...
in(′′fork′′)@fi.

in(′′fork′′)@f(i+1)mod n.

eat...
out(′′fork′′)@fi.

out(′′fork′′)@f(i+1)mod n.

X

Open Nets, Contexts and Their Properties – p. 8/24

Dining philosophers in µKLAIM (1)...

NDP = f0 :: (′′fork′′) ‖ p0 :: P0 ‖

f1 :: (′′fork′′) ‖ p1 :: P1 ‖

f2 :: (′′fork′′) ‖ p2 :: P2 ‖

f3 :: (′′fork′′) ‖ p3 :: P3 ‖

f4 :: (′′fork′′) ‖ p4 :: P4 ‖

f5 :: (′′fork′′) ‖ p5 :: P5

Open Nets, Contexts and Their Properties – p. 9/24

Properties of dining philosophers...

• Deadlock freedom
• Philosopher at pi accesses only fi and f(i+1)mod n

• The i−th philosopher can hope to eat
• The i−th philosopher cannot starve

Open Nets, Contexts and Their Properties – p. 10/24

A Modal logic for µKLAIM...

• The proposed logic is a variant of HML where:
◦ the modal operator 〈·〉 is indexed with a label predicate
◦ state formulae are introduced for specifying the

distribution of resources (i.e. data stored in nodes) in the
system

Open Nets, Contexts and Their Properties – p. 11/24

Some definitions...

• N1 and N2 are data equivalent (N1 � N2) if and only if they
have the same tuple spaces

• ε
=⇒ denotes the reflexive and transitive closure of � τ

−→

• N1
l:act
=⇒ N2 if and only if there exist N ′

1 and N ′
2 such that:

N1
ε

=⇒ N ′
1 �

l:act
−−−→ N ′

2
ε

=⇒ N2

• N1
τ

=⇒ N2 if and only if there exist N ′
1 and N ′

2 such that
N ′

1 6� N ′
2 and:

N1
ε

=⇒ N ′
1 �

τ
−→ N ′

2
ε

=⇒ N2

Open Nets, Contexts and Their Properties – p. 12/24

Syntax of Formulae...

φ ::= true

∣

∣

∣
φ ∨ φ

∣

∣

∣
¬φ

∣

∣

∣
(T)@` ⇒ φ

∣

∣

∣
(et)@` ⇐ φ

∣

∣

∣
n(u).φ

∣

∣

∣
〈A〉φ

∣

∣

∣
κ

∣

∣

∣
νκ.φ

A ::= τ
∣

∣

∣
`1 : O(et)@`2

∣

∣

∣
`1 : I(T)@`2

∣

∣

∣
`1 : R(T)@`2

∣

∣

∣
`1 : E(φ)@`2

∣

∣

∣
`1 : N(u)

Open Nets, Contexts and Their Properties – p. 13/24

Syntax of Formulae...

φ ::= true

∣

∣

∣
φ ∨ φ

∣

∣

∣
¬φ

∣

∣

∣
(T)@` ⇒ φ

∣

∣

∣
(et)@` ⇐ φ

∣

∣

∣
n(u).φ

∣

∣

∣
〈A〉φ

∣

∣

∣
κ

∣

∣

∣
νκ.φ

A ::= τ
∣

∣

∣
`1 : O(et)@`2

∣

∣

∣
`1 : I(T)@`2

∣

∣

∣
`1 : R(T)@`2

∣

∣

∣
`1 : E(φ)@`2

∣

∣

∣
`1 : N(u)

• N1 |= (T)@l ⇒ φ if and only if there exists N2 such that:
◦ N1 ≡ N2 ‖ l :: (et)
◦ σ = match(T, et)
◦ N2σ |= φσ

Open Nets, Contexts and Their Properties – p. 13/24

Syntax of Formulae...

φ ::= true

∣

∣

∣
φ ∨ φ

∣

∣

∣
¬φ

∣

∣

∣
(T)@` ⇒ φ

∣

∣

∣
(et)@` ⇐ φ

∣

∣

∣
n(u).φ

∣

∣

∣
〈A〉φ

∣

∣

∣
κ

∣

∣

∣
νκ.φ

A ::= τ
∣

∣

∣
`1 : O(et)@`2

∣

∣

∣
`1 : I(T)@`2

∣

∣

∣
`1 : R(T)@`2

∣

∣

∣
`1 : E(φ)@`2

∣

∣

∣
`1 : N(u)

• N1 |= (et)@l ⇐ φ if and only if N1 ‖ l :: (et) |= φ

Open Nets, Contexts and Their Properties – p. 13/24

Syntax of Formulae...

φ ::= true

∣

∣

∣
φ ∨ φ

∣

∣

∣
¬φ

∣

∣

∣
(T)@` ⇒ φ

∣

∣

∣
(et)@` ⇐ φ

∣

∣

∣
n(u).φ

∣

∣

∣
〈A〉φ

∣

∣

∣
κ

∣

∣

∣
νκ.φ

A ::= τ
∣

∣

∣
`1 : O(et)@`2

∣

∣

∣
`1 : I(T)@`2

∣

∣

∣
`1 : R(T)@`2

∣

∣

∣
`1 : E(φ)@`2

∣

∣

∣
`1 : N(u)

• N1 |= n(u).φ if and only if there exists l 6∈ N1 such that
N1[l/u] ‖ l :: nil |= φ[l/u]

Open Nets, Contexts and Their Properties – p. 13/24

Syntax of Formulae...

φ ::= true

∣

∣

∣
φ ∨ φ

∣

∣

∣
¬φ

∣

∣

∣
(T)@` ⇒ φ

∣

∣

∣
(et)@` ⇐ φ

∣

∣

∣
n(u).φ

∣

∣

∣
〈A〉φ

∣

∣

∣
κ

∣

∣

∣
νκ.φ

A ::= τ
∣

∣

∣
`1 : O(et)@`2

∣

∣

∣
`1 : I(T)@`2

∣

∣

∣
`1 : R(T)@`2

∣

∣

∣
`1 : E(φ)@`2

∣

∣

∣
`1 : N(u)

• N1 |= 〈A〉φ if and only if N1
λ

=⇒ N2, λ |= A and N2 |= φ

• where:
◦ τ |= τ
◦ l1 : out(et)@l2 |= l1 : O(et)@l2
◦ l1 : in(T)@l2 |= l1 : I(T)@l2
◦ l1 : read(T)@l2 |= l1 : R(T)@l2
◦ l1 : eval(P)@l2 |= l1 : E(φ)@l2 if and only l2 :: P |= φ
◦ l1 : newloc(u) |= l1 : N(u)

Open Nets, Contexts and Their Properties – p. 13/24

Derivable operators...

Formulae:
• [A]φ

• φ1 ∧ φ2

• µκ.φ

Label predicates:
• Src(l1), to denote actions performed at l1 (l1 : act |= Src(l))

• Trg(l2), to denote actions that take effect at l2
(l2 : a@l2 |= Trg(l2))

• A1 ∪ A2, disjunction (λ |= A1 ∪ A2 ⇔ λ |= A1 or λ |= A2)

• A1 ∩ A2, conjunction (λ |= A1 ∩ A2 ⇔ λ |= A1 and λ |= A2)

• A1 −A2, difference (λ |= A1 −A2 ⇔ λ |= A1 and λ 6|= A2)

Open Nets, Contexts and Their Properties – p. 14/24

Properties of dining philosophers...

• Deadlock freedom

NDF 6|=

νκ.〈τ〉true ∨ [τ]κ

• Philosopher at pi accesses only fi and f(i+1)mod n

NDF |=

¬(µκ.〈Src(pi) − (Trg(fi) ∪ Trg(f(i+1)mod n))〉true∨〈τ〉κ)

• The i−th philosopher can hope to eat

picki = 〈pi : in(′′fork′′)@f(i+1)mod n〉(
′′fork′′) ⇒ true

NDF |=

µκ.picki ∨ 〈τ〉κ

• The i−th philosopher cannot starve

NDF 6|=

µκ.takei ∨ [τ]κ

Open Nets, Contexts and Their Properties – p. 15/24

Properties of dining philosophers...

• Deadlock freedom

NDF 6|=νκ.〈τ〉true ∨ [τ]κ

• Philosopher at pi accesses only fi and f(i+1)mod n

NDF |=¬(µκ.〈Src(pi) − (Trg(fi) ∪ Trg(f(i+1)mod n))〉true∨〈τ〉κ)

• The i−th philosopher can hope to eat

picki = 〈pi : in(′′fork′′)@f(i+1)mod n〉(
′′fork′′) ⇒ true

NDF |=µκ.picki ∨ 〈τ〉κ

• The i−th philosopher cannot starve

NDF 6|=µκ.takei ∨ [τ]κ

Open Nets, Contexts and Their Properties – p. 15/24

Different kinds of systems...

• Closed systems:
◦ Complete knowledge of all system components

• Open systems:
◦ Partial knowledge of systems, some components are

fully known, others are unknown or partially known.
• Context dependent systems:

◦ Abstract context specification plus concrete specification
of some components

Open Nets, Contexts and Their Properties – p. 16/24

Dealing with context dependent nets...

• Describe known components of a system with µKLAIM.
• Partially specify contexts (the rest of the systems) with an

ad-hoc formalism.
• Specify system properties with µKLAIM logics and related

tools.
• Guarantee properties preservation while instantiating (part

of) the context.

Open Nets, Contexts and Their Properties – p. 17/24

Abstract nets...

• New syntax for nets: AN ::= N
∣

∣

∣
c
∣

∣

∣
AN1 ‖ AN2

• Context specification:
◦ Deadlocked context: 0

◦ Resources:
• localities (@l)
• data ((et)@l2)

◦ Computations: (l1 : act).c
◦ Composition: c1 ⊗ c2

◦ Choice: c1 ⊕ c2

◦ Recursion: recπ.c

Open Nets, Contexts and Their Properties – p. 18/24

Context operational semantics...

• Operational semantics of µKLAIM is extended in order to
consider contexts

• Some rules:

(l1 : out(t)@l2).c �
l1:out(T [[t]])@l2

−−−−−−−−−−−−→ c

AN1 �
l1:out(et)@l2

−−−−−−−−−→ AN2

AN1 ‖ @l2 �
τ

−→ AN2 ‖ @l2 ‖ l2 :: (et)

Open Nets, Contexts and Their Properties – p. 19/24

Dining philosophers in µKLAIM: open specification...

NDP = f0 :: (′′fork′′) ‖ p0 :: P0 ‖

f1 :: (′′fork′′) ‖ p1 :: P1 ‖

f2 :: (′′fork′′) ‖ p2 :: P2 ‖

f3 :: (′′fork′′) ‖ p3 :: P3 ‖

f4 :: (′′fork′′) ‖ p4 :: P4 ‖

f5 :: (′′fork′′) ‖ p5 :: P5

Open Nets, Contexts and Their Properties – p. 20/24

Dining philosophers in µKLAIM: open specification...

ANDP = f1 :: (′′fork′′) ‖ p1 :: P1 ‖ f2 :: (′′fork′′) ‖ cdp

where:

cdp
def
= rec π1. (p0 : in(′′fork′′)@f1).(p0 : out(′′fork′′)@f1).π1

⊕

(p2 : in(′′fork′′)@f2).(p2 : out(′′fork′′)@f2).π1)

⊕

(p0 : in(′′fork′′)@f1).(p2 : in(′′fork′′)@f2).

(p0 : out(′′fork′′)@f1).(p2 : out(′′fork′′)@f2).π1)

⊕

(p2 : in(′′fork′′)@f2).(p0 : in(′′fork′′)@f1).

(p2 : out(′′fork′′)@f2).(p0 : out(′′fork′′)@f1).π1

Open Nets, Contexts and Their Properties – p. 20/24

Context concretion...

• Let L be a set of localities, we have defined two relations:
◦ vL, inspired by branching simulation
◦ 'L, inspired by branching bisimulation

• A net N approximates the context c over the abstract net
c1 ‖ N1 if and only if:

c vloc(c1‖N1) N

• A net N agrees with the context c over the abstract net
c1 ‖ N1 if and only if:

N 'loc(c1‖N1) c

Open Nets, Contexts and Their Properties – p. 21/24

Context concretion...

• If N approximates c over c1 ‖ N1, for each φ positive
localized at L:

if c1 ∧ c ‖ N1 |= ¬φ then c1 ‖ N ‖ N1 |= ¬φ

• If N agrees with c over c1 ‖ N1, for each φ localized at L:

c1 ∧ c ‖ N1 |= φ if and only if c1 ‖ N ‖ N1 |= φ

Open Nets, Contexts and Their Properties – p. 22/24

Conclusions...

• Klaim can be used to model concurrent mobile spatially
distributed systems

• Klaim logics can be used to verify properties of Klaim nets
• Contexts and the logics are tools for modelling open nets

and establishing their properties guaranteeing properties
preservation during progressive implementation of the
context.

Future works:
• Evaluating the expressive (descriptive) power of our logic;
• Contrast it with other logics (pi-logics, spatial logics,...)
• Apply the open framework to other formalisms (Dpi, variants

of Ambient,...)

Open Nets, Contexts and Their Properties – p. 23/24

The End

Open Nets, Contexts and Their Properties – p. 24/24

	Properties for Global applications...
	Our proposal...
	Our proposal...

	KKlaim {} Nodes...
	KKlaim {} Nodes...
	KKlaim {} Nodes...
	KKlaim {} Nodes...
	KKlaim {} Nodes...
	KKlaim {} Nodes...
	KKlaim {} Nodes...
	KKlaim {} Nodes...

	KKlaim {} Nets...
	KKlaim {} Nets...

	KKlaim {} syntax...
	Labelled Operational Semantics...
	Labelled Operational Semantics...
	Labelled Operational Semantics...

	Dining philosophers in KKlaim {}...
	Dining philosophers in KKlaim {} (1)...
	Properties of dining philosophers...
	A Modal logic for KKlaim {}...
	Some def/initions...
	Syntax of Formulae...
	Syntax of Formulae...
	Syntax of Formulae...
	Syntax of Formulae...
	Syntax of Formulae...

	Derivable operators...
	Properties of dining philosophers...
	Properties of dining philosophers...

	Different kinds of systems...
	Dealing with context dependent nets...
	Abstract nets...
	Context operational semantics...
	Dining philosophers in KKlaim {}: open specif/ication...
	Dining philosophers in KKlaim {}: open specif/ication...

	Context concretion...
	Context concretion...
	Conclusions...
	The End

