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Properties for Global applications...

• Modal logics can be used for specifying and verifying
properties of global applications

• However, for this class of applications, one has a limited
knowledge of the involved components

• We present a new approach for partial and incremental
specification of global applications:
◦ not all the components are completely specified
◦ a stepwise approach is used to refine the specification
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Our proposal...

• A global application can be thought as composed of two
parts:
◦ a fully known component;
◦ its (partially known) operating context.

• We shall rely on:
◦ A calculus for modelling distributed and mobile systems
◦ A context-specification language for modelling contexts
◦ A location aware modal logic
◦ An agreement relation (preserving formulae satisfaction)

for refining context components

µKLAIM
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µKLAIM Nodes...

• Locality
• Processes
• Tuple Space

l

P
Q (t1)

(t2)

eval(P )@l out(t)@l

in(T )@l

read(T )@l

newloc(u)

l :: P ‖ l :: Q ‖ l :: (t1) ‖ l :: (t2)
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µKLAIM Nets...

l1

(t1) (t2)

l2

P (t3)

l3

Q1
Q2

l1 :: (t1) ‖ l1 :: (t2) ‖

l2 :: P ‖ l2 :: (t3) ‖ l3 :: Q1 ‖ l3 :: Q2
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µKLAIM Nets...

l1
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l2
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µKLAIM syntax...

N ::= l :: R
∣

∣

∣
N1 ‖ N2

R ::= P
∣

∣

∣
(et)

P ::= nil

∣

∣

∣
act.P

∣

∣

∣
P1 | P2

∣

∣

∣
X

∣

∣

∣
recX.P

act ::= out(t)@l
∣

∣

∣
in(T )@l

∣

∣

∣
read(T )@l

∣

∣

∣

eval(P )@l
∣

∣

∣
newloc(u)

t ::= f
∣

∣

∣
f, t

f ::= e
∣

∣

∣
l
∣

∣

∣
u

T ::= F
∣

∣

∣
F, T

F ::= f
∣

∣

∣
! x

∣

∣

∣
! u
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Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

λ ::= l : act
∣

∣

∣
τ

• the operational semantics of µKLAIM nets is defined using
relation �

·
−→

Open Nets, Contexts and Their Properties – p. 7/24



Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

λ ::= l : act
∣

∣

∣
τ

• the operational semantics of µKLAIM nets is defined using
relation �

·
−→

• some rules:

l1 :: out(t)@l2.P �
l1:out(T [[ t ]])@l2

−−−−−−−−−−−−→ l1 :: P

N1 �
l1:out(et)@l2

−−−−−−−−−→ N2

N1 ‖ l2 :: P �
τ

−→ N2 ‖ l2 :: P ‖ l2 :: (et)

Open Nets, Contexts and Their Properties – p. 7/24



Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

λ ::= l : act
∣

∣

∣
τ

• the operational semantics of µKLAIM nets is defined using
relation �

·
−→

• some rules:

l1 :: in(T )@l2.P �
l1:in(T )@l2

−−−−−−−−→ l :: P

N1 �
l1:in(T )@l2

−−−−−−−−→ N2 σ = match(T, et)

N1 ‖ l2 :: (et) �
τ

−→ N2σ ‖ l2 :: nil
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Dining philosophers in µKLAIM...

• There is a node for each fork (fi)
◦ the i−th fork is free if (′′fork′′) is at fi

• There is a node for each philosopher (pi)
◦ the process below is at pi:

Pi = rec X.

# think...
in(′′fork′′)@fi.

in(′′fork′′)@f(i+1)mod n.

# eat...
out(′′fork′′)@fi.

out(′′fork′′)@f(i+1)mod n.

X
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Dining philosophers in µKLAIM (1)...

NDP = f0 :: (′′fork′′) ‖ p0 :: P0 ‖

f1 :: (′′fork′′) ‖ p1 :: P1 ‖

f2 :: (′′fork′′) ‖ p2 :: P2 ‖

f3 :: (′′fork′′) ‖ p3 :: P3 ‖

f4 :: (′′fork′′) ‖ p4 :: P4 ‖

f5 :: (′′fork′′) ‖ p5 :: P5
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Properties of dining philosophers...

• Deadlock freedom
• Philosopher at pi accesses only fi and f(i+1)mod n

• The i−th philosopher can hope to eat
• The i−th philosopher cannot starve
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A Modal logic for µKLAIM...

• The proposed logic is a variant of HML where:
◦ the modal operator 〈·〉 is indexed with a label predicate
◦ state formulae are introduced for specifying the

distribution of resources (i.e. data stored in nodes) in the
system
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Some definitions...

• N1 and N2 are data equivalent (N1 � N2) if and only if they
have the same tuple spaces

• ε
=⇒ denotes the reflexive and transitive closure of � τ

−→

• N1
l:act
=⇒ N2 if and only if there exist N ′

1 and N ′
2 such that:

N1
ε

=⇒ N ′
1 �

l:act
−−−→ N ′

2
ε

=⇒ N2

• N1
τ

=⇒ N2 if and only if there exist N ′
1 and N ′

2 such that
N ′

1 6� N ′
2 and:

N1
ε

=⇒ N ′
1 �

τ
−→ N ′

2
ε

=⇒ N2
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Syntax of Formulae...

φ ::= true

∣

∣

∣
φ ∨ φ

∣

∣

∣
¬φ

∣

∣

∣
(T )@` ⇒ φ

∣

∣

∣
(et)@` ⇐ φ

∣

∣

∣
n(u).φ

∣

∣

∣
〈A〉φ

∣

∣

∣
κ

∣

∣

∣
νκ.φ

A ::= τ
∣

∣

∣
`1 : O(et)@`2

∣

∣

∣
`1 : I(T )@`2

∣

∣

∣
`1 : R(T )@`2

∣

∣

∣
`1 : E(φ)@`2

∣

∣

∣
`1 : N(u)
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• N1 |= (T )@l ⇒ φ if and only if there exists N2 such that:
◦ N1 ≡ N2 ‖ l :: (et)
◦ σ = match(T, et)
◦ N2σ |= φσ
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• N1 |= n(u).φ if and only if there exists l 6∈ N1 such that
N1[l/u] ‖ l :: nil |= φ[l/u]
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∣
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• N1 |= 〈A〉φ if and only if N1
λ

=⇒ N2, λ |= A and N2 |= φ

• where:
◦ τ |= τ
◦ l1 : out(et)@l2 |= l1 : O(et)@l2
◦ l1 : in(T )@l2 |= l1 : I(T )@l2
◦ l1 : read(T )@l2 |= l1 : R(T )@l2
◦ l1 : eval(P )@l2 |= l1 : E(φ)@l2 if and only l2 :: P |= φ
◦ l1 : newloc(u) |= l1 : N(u)
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Derivable operators...

Formulae:
• [A]φ

• φ1 ∧ φ2

• µκ.φ

Label predicates:
• Src(l1), to denote actions performed at l1 (l1 : act |= Src(l))

• Trg(l2), to denote actions that take effect at l2
(l2 : a@l2 |= Trg(l2))

• A1 ∪ A2, disjunction (λ |= A1 ∪ A2 ⇔ λ |= A1 or λ |= A2)

• A1 ∩ A2, conjunction (λ |= A1 ∩ A2 ⇔ λ |= A1 and λ |= A2)

• A1 −A2, difference (λ |= A1 −A2 ⇔ λ |= A1 and λ 6|= A2)
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Properties of dining philosophers...

• Deadlock freedom

NDF 6|=

νκ.〈τ〉true ∨ [τ ]κ

• Philosopher at pi accesses only fi and f(i+1)mod n

NDF |=

¬(µκ.〈Src(pi) − (Trg(fi) ∪ Trg(f(i+1)mod n))〉true∨〈τ〉κ)

• The i−th philosopher can hope to eat

picki = 〈pi : in(′′fork′′)@f(i+1)mod n〉(
′′fork′′) ⇒ true

NDF |=

µκ.picki ∨ 〈τ〉κ

• The i−th philosopher cannot starve

NDF 6|=

µκ.takei ∨ [τ ]κ
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Different kinds of systems...

• Closed systems:
◦ Complete knowledge of all system components

• Open systems:
◦ Partial knowledge of systems, some components are

fully known, others are unknown or partially known.
• Context dependent systems:

◦ Abstract context specification plus concrete specification
of some components
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Dealing with context dependent nets...

• Describe known components of a system with µKLAIM.
• Partially specify contexts (the rest of the systems) with an

ad-hoc formalism.
• Specify system properties with µKLAIM logics and related

tools.
• Guarantee properties preservation while instantiating (part

of) the context.
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Abstract nets...

• New syntax for nets: AN ::= N
∣

∣

∣
c
∣

∣

∣
AN1 ‖ AN2

• Context specification:
◦ Deadlocked context: 0

◦ Resources:
• localities (@l)
• data ((et)@l2)

◦ Computations: (l1 : act).c
◦ Composition: c1 ⊗ c2

◦ Choice: c1 ⊕ c2

◦ Recursion: recπ.c
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Context operational semantics...

• Operational semantics of µKLAIM is extended in order to
consider contexts

• Some rules:

(l1 : out(t)@l2).c �
l1:out(T [[ t ]])@l2

−−−−−−−−−−−−→ c

AN1 �
l1:out(et)@l2

−−−−−−−−−→ AN2

AN1 ‖ @l2 �
τ

−→ AN2 ‖ @l2 ‖ l2 :: (et)

Open Nets, Contexts and Their Properties – p. 19/24



Dining philosophers in µKLAIM: open specification...

NDP = f0 :: (′′fork′′) ‖ p0 :: P0 ‖

f1 :: (′′fork′′) ‖ p1 :: P1 ‖

f2 :: (′′fork′′) ‖ p2 :: P2 ‖

f3 :: (′′fork′′) ‖ p3 :: P3 ‖

f4 :: (′′fork′′) ‖ p4 :: P4 ‖

f5 :: (′′fork′′) ‖ p5 :: P5
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Dining philosophers in µKLAIM: open specification...

ANDP = f1 :: (′′fork′′) ‖ p1 :: P1 ‖ f2 :: (′′fork′′) ‖ cdp

where:

cdp
def
= rec π1. (p0 : in(′′fork′′)@f1).(p0 : out(′′fork′′)@f1).π1

⊕

(p2 : in(′′fork′′)@f2).(p2 : out(′′fork′′)@f2).π1)

⊕

(p0 : in(′′fork′′)@f1).(p2 : in(′′fork′′)@f2).

(p0 : out(′′fork′′)@f1).(p2 : out(′′fork′′)@f2).π1)

⊕

(p2 : in(′′fork′′)@f2).(p0 : in(′′fork′′)@f1).

(p2 : out(′′fork′′)@f2).(p0 : out(′′fork′′)@f1).π1
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Context concretion...

• Let L be a set of localities, we have defined two relations:
◦ vL, inspired by branching simulation
◦ 'L, inspired by branching bisimulation

• A net N approximates the context c over the abstract net
c1 ‖ N1 if and only if:

c vloc(c1‖N1) N

• A net N agrees with the context c over the abstract net
c1 ‖ N1 if and only if:

N 'loc(c1‖N1) c
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Context concretion...

• If N approximates c over c1 ‖ N1, for each φ positive
localized at L:

if c1 ∧ c ‖ N1 |= ¬φ then c1 ‖ N ‖ N1 |= ¬φ

• If N agrees with c over c1 ‖ N1, for each φ localized at L:

c1 ∧ c ‖ N1 |= φ if and only if c1 ‖ N ‖ N1 |= φ
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Conclusions...

• Klaim can be used to model concurrent mobile spatially
distributed systems

• Klaim logics can be used to verify properties of Klaim nets
• Contexts and the logics are tools for modelling open nets

and establishing their properties guaranteeing properties
preservation during progressive implementation of the
context.

Future works:
• Evaluating the expressive (descriptive) power of our logic;
• Contrast it with other logics (pi-logics, spatial logics,...)
• Apply the open framework to other formalisms (Dpi, variants

of Ambient,...)
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The End
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