Open Nets, Contexts and Their Properties

Michele Loreti

joint work with Rocco De Nicola

Open Nets, Contexts and Their Properties - p. 1/24

Properties for Global applications...

- Modal logics can be used for specifying and verifying properties of global applications
- However, for this class of applications, one has a limited knowledge of the *involved* components
- We present a new approach for *partial* and *incremental* specification of global applications:
 - not all the components are completely specified
 - a stepwise approach is used to refine the specification

Our proposal...

- A global application can be thought as composed of two parts:
 - a fully known component;
 - its (partially known) operating context.
- We shall rely on:
 - A calculus for modelling distributed and mobile systems
 - A context-specification language for modelling contexts
 - A location aware modal logic
 - An agreement relation (preserving formulae satisfaction) for refining context components

Our proposal...

- A global application can be thought as composed of two parts:
 - a fully known component;
 - its (partially known) operating context.

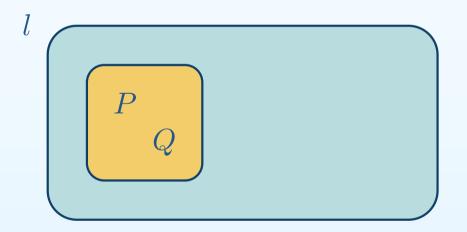
 μ KLAIM

- We shall rely
 - A calculus
 - A context-

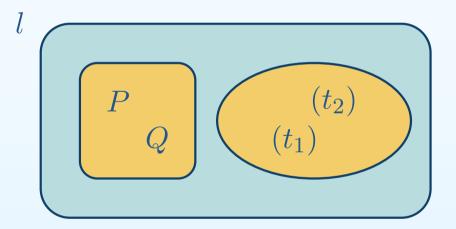
- ed and mobile systems for modelling contexts
- A location aware modal logic
- An agreement relation (preserving formulae satisfaction) for refining context components

• Locality

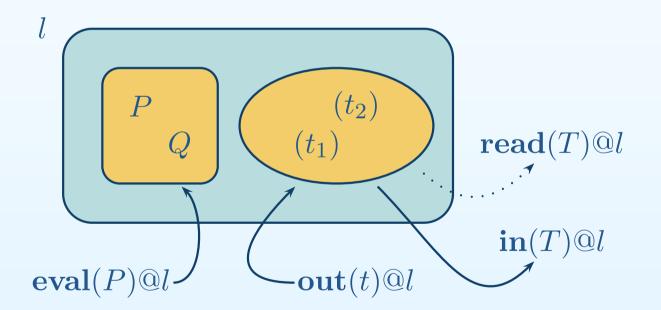
- Locality
- Processes



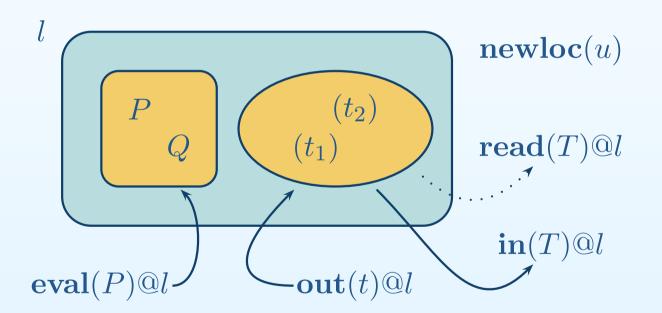
- Locality
- Processes
- Tuple Space



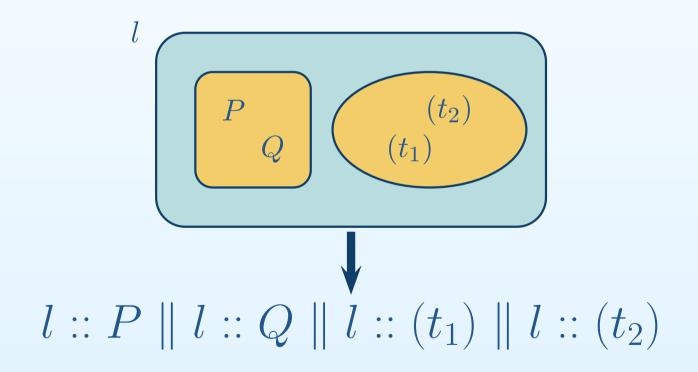
- Locality
- Processes
- Tuple Space

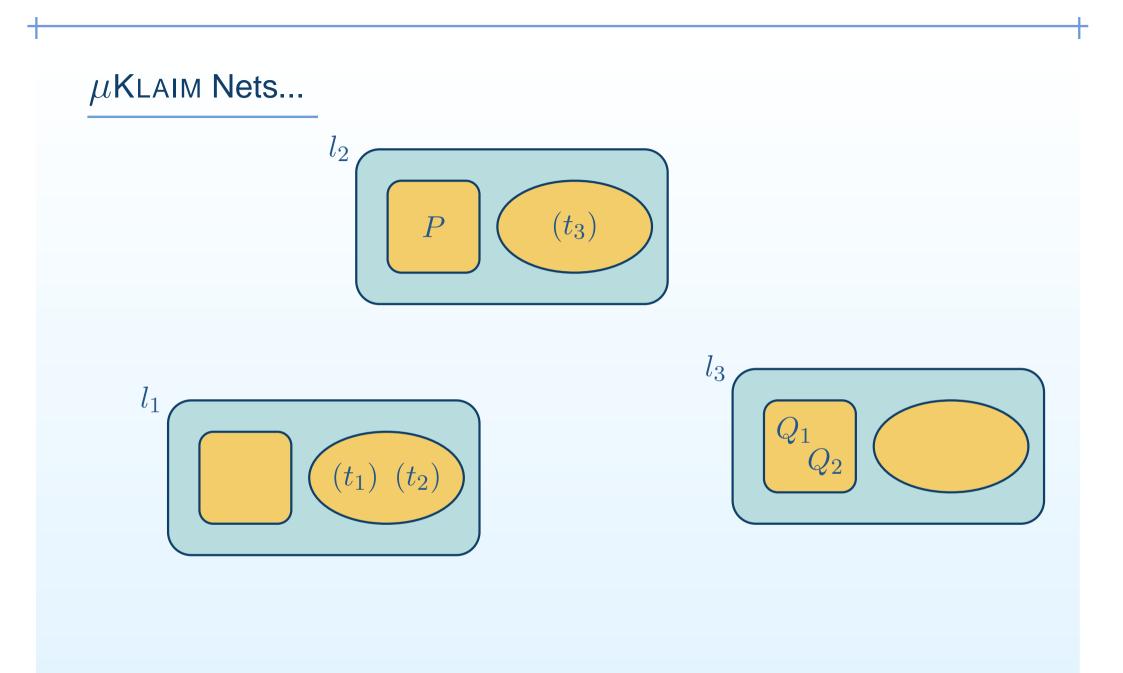


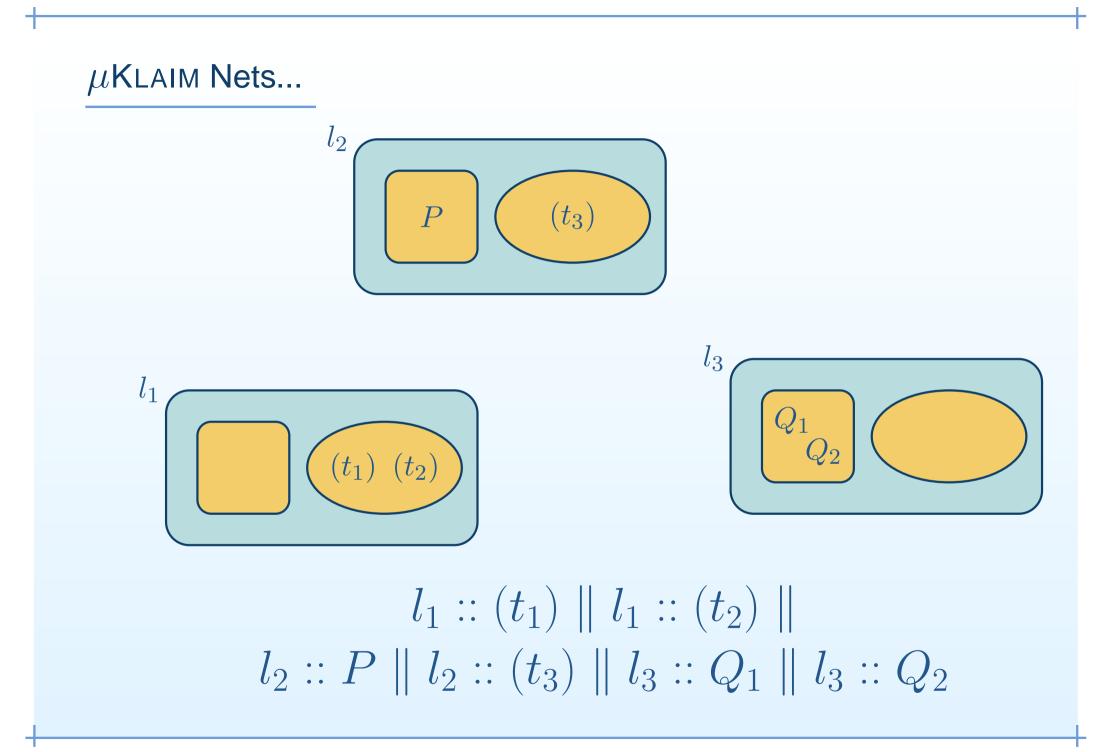
- Locality
- Processes
- Tuple Space



- Locality
- Processes
- Tuple Space







μ KLAIM syntax...

$$N ::= l :: R | N_1 || N_2$$

$$R ::= P | (et)$$

$$P ::= nil | act.P | P_1 | P_2 | X | recX.P$$

$$act ::= out(t)@l | in(T)@l | read(T)@l$$

$$eval(P)@l | newloc(u)$$

$$t ::= f | f, t$$

$$f ::= e | l | u$$

$$T ::= F | F, T$$

$$F ::= f | !x | !u$$

Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

$$\lambda ::= l : act \mid \tau$$

• the operational semantics of μ KLAIM nets is defined using relation $\succ \dot{}$

Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

$$\lambda ::= l : act \mid \tau$$

- the operational semantics of μ KLAIM nets is defined using relation \rightarrowtail
- some rules:

$$l_1 :: \mathbf{out}(t) @l_2.P \succ \xrightarrow{l_1:\mathbf{out}(\mathcal{T}\llbracket t \rrbracket) @l_2} l_1 :: P$$

$$\frac{N_1 \succ \stackrel{l_1:\mathbf{out}(et)@l_2}{\longrightarrow} N_2}{N_1 \parallel l_2 :: P \succ \stackrel{\tau}{\longrightarrow} N_2 \parallel l_2 :: P \parallel l_2 :: (et)}$$

Labelled Operational Semantics...

• Λ denotes the set of transizion label λ defined as follows:

$$\lambda ::= l : act \mid \tau$$

- the operational semantics of μ KLAIM nets is defined using relation \rightarrowtail
- some rules:

$$l_1 :: \mathbf{in}(T) @l_2.P \rightarrowtail \stackrel{l_1:\mathbf{in}(T)@l_2}{\longrightarrow} l :: P$$

$$\begin{array}{cccc}
 N_1 \succ \stackrel{l_1:\mathbf{in}(T)@l_2}{\longrightarrow} N_2 \ \sigma = match(T,et) \\
 \overline{N_1 \parallel l_2 :: (et)} \succ \stackrel{\tau}{\longrightarrow} N_2 \sigma \parallel l_2 :: \mathbf{nil}
 \end{array}$$

Dining philosophers in μ KLAIM...

- There is a node for each fork (f_i)
 the *i*-th fork is *free* if ("fork") is at f_i
- There is a node for each philosopher (*p_i*)
 the process below is at *p_i*:

```
P_{i} = \operatorname{rec} X.
# think...
in("fork")@f_{i}.
in("fork")@f_{(i+1)mod n}.
# eat...
out("fork")@f_{i}.
out("fork")@f_{i}.
X
```

Dining philosophers in μ KLAIM (1)...

$$N_{DP} = f_0 :: ("fork") || p_0 :: P_0 || f_1 :: ("fork") || p_1 :: P_1 || f_2 :: ("fork") || p_2 :: P_2 || f_3 :: ("fork") || p_3 :: P_3 || f_4 :: ("fork") || p_4 :: P_4 || f_5 :: ("fork") || p_5 :: P_5$$

Properties of dining philosophers...

- Deadlock freedom
- Philosopher at p_i accesses only f_i and $f_{(i+1) \mod n}$
- The i-th philosopher can hope to eat
- The *i*-th philosopher cannot starve

A Modal logic for μ KLAIM...

- The proposed logic is a variant of HML where:
 - $^{\circ}\,$ the modal operator $\langle\cdot\rangle$ is indexed with a *label predicate*
 - state formulae are introduced for specifying the distribution of resources (i.e. data stored in nodes) in the system

Some definitions...

- N_1 and N_2 are *data equivalent* ($N_1 \asymp N_2$) if and only if they have the *same* tuple spaces
- $\stackrel{\varepsilon}{\Longrightarrow}$ denotes the reflexive and transitive closure of $\succ \stackrel{\tau}{\longrightarrow}$
- $N_1 \stackrel{l:act}{\Longrightarrow} N_2$ if and only if there exist N'_1 and N'_2 such that:

$$N_1 \stackrel{\varepsilon}{\Longrightarrow} N'_1 \xrightarrow{l:act} N'_2 \stackrel{\varepsilon}{\Longrightarrow} N_2$$

• $N_1 \stackrel{\tau}{\Longrightarrow} N_2$ if and only if there exist N'_1 and N'_2 such that $N'_1 \not\simeq N'_2$ and:

$$N_1 \stackrel{\varepsilon}{\Longrightarrow} N_1' \xrightarrow{\tau} N_2' \stackrel{\varepsilon}{\Longrightarrow} N_2$$

$$\phi ::= \mathbf{true} \left| \phi \lor \phi \right| \neg \phi \left| (T) @\ell \Rightarrow \phi \right| (et) @\ell \Leftarrow \phi \left| n(u) \cdot \phi \right| \langle \mathcal{A} \rangle \phi \left| \kappa \right| \nu \kappa \cdot \phi$$
$$\mathcal{A} ::= \tau \left| \ell_1 : \mathsf{O}(et) @\ell_2 \right| \ell_1 : \mathsf{I}(T) @\ell_2 \left| \ell_1 : \mathsf{R}(T) @\ell_2 \right| \ell_1 : \mathsf{E}(\phi) @\ell_2 \left| \ell_1 : \mathsf{N}(u) \right|$$

$$\phi ::= \mathbf{true} \left| \phi \lor \phi \right| \neg \phi \left| (T) @\ell \Rightarrow \phi \right| (et) @\ell \Leftarrow \phi \left| n(u) \cdot \phi \right| \langle \mathcal{A} \rangle \phi \left| \kappa \right| \nu \kappa \cdot \phi$$
$$\mathcal{A} ::= \tau \left| \ell_1 : \mathsf{O}(et) @\ell_2 \right| \ell_1 : \mathsf{I}(T) @\ell_2 \left| \ell_1 : \mathsf{R}(T) @\ell_2 \right| \ell_1 : \mathsf{E}(\phi) @\ell_2 \left| \ell_1 : \mathsf{N}(u) \right|$$

• $N_1 \models (T) @l \Rightarrow \phi$ if and only if there exists N_2 such that: • $N_1 \equiv N_2 \parallel l :: (et)$ • $\sigma = match(T, et)$

$$\circ N_2\sigma \models \phi\sigma$$

$$\phi ::= \mathbf{true} \left| \phi \lor \phi \right| \neg \phi \left| (T) @\ell \Rightarrow \phi \right| (et) @\ell \Leftarrow \phi \left| n(u) \cdot \phi \right| \langle \mathcal{A} \rangle \phi \left| \kappa \right| \nu \kappa \cdot \phi$$
$$\mathcal{A} ::= \tau \left| \ell_1 : \mathsf{O}(et) @\ell_2 \right| \ell_1 : \mathsf{I}(T) @\ell_2 \left| \ell_1 : \mathsf{R}(T) @\ell_2 \right| \ell_1 : \mathsf{E}(\phi) @\ell_2 \left| \ell_1 : \mathsf{N}(u) \right|$$

• $N_1 \models (et) @l \Leftarrow \phi$ if and only if $N_1 \parallel l :: (et) \models \phi$

$$\phi ::= \mathbf{true} \left| \phi \lor \phi \right| \neg \phi \left| (T) @\ell \Rightarrow \phi \right| (et) @\ell \Leftarrow \phi \left| n(u) \cdot \phi \right| \langle \mathcal{A} \rangle \phi \left| \kappa \right| \nu \kappa \cdot \phi$$
$$\mathcal{A} ::= \tau \left| \ell_1 : \mathsf{O}(et) @\ell_2 \right| \ell_1 : \mathsf{I}(T) @\ell_2 \left| \ell_1 : \mathsf{R}(T) @\ell_2 \right| \ell_1 : \mathsf{E}(\phi) @\ell_2 \left| \ell_1 : \mathsf{N}(u) \right|$$

• $N_1 \models n(u).\phi$ if and only if there exists $l \notin N_1$ such that $N_1[l/u] \parallel l :: \mathbf{nil} \models \phi[l/u]$

$$\phi ::= \mathbf{true} \left| \phi \lor \phi \right| \neg \phi \left| (T) @\ell \Rightarrow \phi \right| (et) @\ell \Leftarrow \phi \left| n(u) \cdot \phi \right| \langle \mathcal{A} \rangle \phi \left| \kappa \right| \nu \kappa \cdot \phi$$
$$\mathcal{A} ::= \tau \left| \ell_1 : \mathsf{O}(et) @\ell_2 \right| \ell_1 : \mathsf{I}(T) @\ell_2 \left| \ell_1 : \mathsf{R}(T) @\ell_2 \right| \ell_1 : \mathsf{E}(\phi) @\ell_2 \left| \ell_1 : \mathsf{N}(u) \right|$$

•
$$N_1 \models \langle \mathcal{A} \rangle \phi$$
 if and only if $N_1 \stackrel{\lambda}{\Longrightarrow} N_2$, $\lambda \models \mathcal{A}$ and $N_2 \models \phi$

• where:

$$\circ \tau \models \tau$$

$$\circ l_1: \mathbf{out}(et) @l_2 \models l_1: \mathsf{O}(et) @l_2$$

- $\circ l_1 : \mathbf{in}(T) @ l_2 \models l_1 : \mathbf{I}(T) @ l_2$
- $l_1: \mathbf{read}(T) @l_2 \models l_1: \mathbb{R}(T) @l_2$
- $\circ l_1: \mathbf{eval}(P) @l_2 \models l_1: \mathbf{E}(\phi) @l_2 \text{ if and only } l_2:: P \models \phi$
- $\circ l_1 : \mathbf{newloc}(u) \models l_1 : \mathbb{N}(u)$

Derivable operators...

Formulae:

- $[\mathcal{A}]\phi$
- $\phi_1 \wedge \phi_2$
- μκ.φ

Label predicates:

- $Src(l_1)$, to denote actions performed at l_1 $(l_1 : act \models Src(l))$
- $\operatorname{Trg}(l_2)$, to denote actions that take effect at l_2 $(l_2: a@l_2 \models \operatorname{Trg}(l_2))$
- $\mathcal{A}_1 \cup \mathcal{A}_2$, disjunction $(\lambda \models \mathcal{A}_1 \cup \mathcal{A}_2 \Leftrightarrow \lambda \models \mathcal{A}_1 \text{ or } \lambda \models \mathcal{A}_2)$
- $\mathcal{A}_1 \cap \mathcal{A}_2$, conjunction $(\lambda \models \mathcal{A}_1 \cap \mathcal{A}_2 \Leftrightarrow \lambda \models \mathcal{A}_1 \text{ and } \lambda \models \mathcal{A}_2)$
- $\mathcal{A}_1 \mathcal{A}_2$, difference $(\lambda \models \mathcal{A}_1 \mathcal{A}_2 \Leftrightarrow \lambda \models \mathcal{A}_1 \text{ and } \lambda \not\models \mathcal{A}_2)$

Properties of dining philosophers...

• Deadlock freedom

 $\nu\kappa.\langle \tau \rangle \mathbf{true} \lor [\tau]\kappa$

• Philosopher at p_i accesses only f_i and $f_{(i+1) \mod n}$

 $\neg(\mu\kappa.\langle \operatorname{Src}(p_i) - (\operatorname{Trg}(f_i) \cup \operatorname{Trg}(f_{(i+1)\mathbf{mod n}}))\rangle \mathbf{true} \lor \langle \tau \rangle \kappa)$

• The i-th philosopher can hope to eat

 $pick_i = \langle p_i : \mathbf{in}("fork") @ f_{(i+1)\mathbf{mod }n} \rangle ("fork") \Rightarrow \mathbf{true}$

 $\mu\kappa.pick_i \vee \langle \tau \rangle \kappa$

• The *i*-th philosopher cannot starve

$$\mu\kappa.take_i \vee [\tau]\kappa$$

Properties of dining philosophers...

• Deadlock freedom

 $N_{DF} \not\models \nu \kappa. \langle \tau \rangle \mathbf{true} \lor [\tau] \kappa$

• Philosopher at p_i accesses only f_i and $f_{(i+1) \mod n}$

 $N_{DF} \models \neg(\mu \kappa. \langle \operatorname{Src}(p_i) - (\operatorname{Trg}(f_i) \cup \operatorname{Trg}(f_{(i+1) \operatorname{mod} \mathbf{n}})) \rangle \operatorname{true} \lor \langle \tau \rangle \kappa)$

• The i-th philosopher can hope to eat

 $pick_i = \langle p_i : \mathbf{in}("fork") @ f_{(i+1)\mathbf{mod }n} \rangle ("fork") \Rightarrow \mathbf{true}$

 $N_{DF} \models \mu \kappa. pick_i \lor \langle \tau \rangle \kappa$

• The *i*-th philosopher cannot starve

 $N_{DF} \not\models \mu \kappa. take_i \lor [\tau] \kappa$

Different kinds of systems...

- Closed systems:
 - Complete knowledge of all system components
- Open systems:
 - Partial knowledge of systems, some components are fully known, others are unknown or partially known.
- Context dependent systems:
 - Abstract context specification plus concrete specification of some components

Dealing with context dependent nets...

- Describe known components of a system with μ KLAIM.
- Partially specify contexts (the rest of the systems) with an ad-hoc formalism.
- Specify system properties with $\mu {\rm KLAIM}$ logics and related tools.
- Guarantee properties preservation while instantiating (part of) the context.

Abstract nets...

- New syntax for nets: $AN ::= N \mid c \mid AN_1 \mid \mid AN_2$
- Context specification:
 - Deadlocked context: 0
 - Resources:
 - localities (@l)
 - data ((*et*)@*l*₂)
 - Computations: $(l_1 : act).c$
 - Composition: $c_1 \otimes c_2$
 - Choice: $c_1 \oplus c_2$
 - Recursion: $rec\pi.c$

Context operational semantics...

- Operational semantics of μ KLAIM is extended in order to consider contexts
- Some rules:

$$(l_1: \mathbf{out}(t)@l_2).c \succ \xrightarrow{l_1:\mathbf{out}(\mathcal{T}\llbracket t \rrbracket)@l_2} c$$

$$\begin{array}{cccc}
AN_1 & \xrightarrow{l_1:\mathbf{out}(et)@l_2} & AN_2 \\
\hline
AN_1 \parallel @l_2 & \xrightarrow{\tau} & AN_2 \parallel @l_2 \parallel l_2 :: (et)
\end{array}$$

Dining philosophers in μ KLAIM: open specification...

$$N_{DP} = f_0 :: ("fork") || p_0 :: P_0 || f_1 :: ("fork") || p_1 :: P_1 || f_2 :: ("fork") || p_2 :: P_2 || f_3 :: ("fork") || p_3 :: P_3 || f_4 :: ("fork") || p_4 :: P_4 || f_5 :: ("fork") || p_5 :: P_5$$

Dining philosophers in μ KLAIM: open specification...

$$AN_{DP} = f_1 :: (''fork'') \parallel p_1 :: P_1 \parallel f_2 :: (''fork'') \parallel c_{dp}$$

where:

$$c_{dp} \stackrel{\text{def}}{=} \mathbf{rec} \pi_{1}. \quad (p_{0} : \mathbf{in}("fork")@f_{1}).(p_{0} : \mathbf{out}("fork")@f_{1}).\pi_{1} \\ \oplus \\ (p_{2} : \mathbf{in}("fork")@f_{2}).(p_{2} : \mathbf{out}("fork")@f_{2}).\pi_{1}) \\ \oplus \\ (p_{0} : \mathbf{in}("fork")@f_{1}).(p_{2} : \mathbf{in}("fork")@f_{2}). \\ (p_{0} : \mathbf{out}("fork")@f_{1}).(p_{2} : \mathbf{out}("fork")@f_{2}).\pi_{1}) \\ \oplus \\ (p_{2} : \mathbf{in}("fork")@f_{2}).(p_{0} : \mathbf{in}("fork")@f_{1}). \\ (p_{2} : \mathbf{out}("fork")@f_{2}).(p_{0} : \mathbf{out}("fork")@f_{1}).\pi_{1} \\ \end{cases}$$

Context concretion...

- Let *L* be a set of localities, we have defined two relations:
 - $\circ \sqsubseteq_L$, inspired by *branching simulation*
 - $^{\circ} \simeq_L$, inspired by *branching bisimulation*
- A net *N* approximates the context *c* over the abstract net $c_1 \parallel N_1$ if and only if:

$$c \sqsubseteq_{loc(c_1 \parallel N_1)} N$$

• A net *N* agrees with the context *c* over the abstract net $c_1 \parallel N_1$ if and only if:

 $N \simeq_{loc(c_1 \parallel N_1)} c$

Context concretion...

• If *N* approximates *c* over $c_1 \parallel N_1$, for each ϕ *positive* localized at *L*:

if $c_1 \wedge c \parallel N_1 \models \neg \phi$ then $c_1 \parallel N \parallel N_1 \models \neg \phi$

• If N agrees with c over $c_1 \parallel N_1$, for each ϕ localized at L:

 $c_1 \wedge c \parallel N_1 \models \phi$ if and only if $c_1 \parallel N \parallel N_1 \models \phi$

Conclusions...

- Klaim can be used to model concurrent mobile spatially distributed systems
- Klaim logics can be used to verify properties of Klaim nets
- Contexts and the logics are tools for modelling open nets and establishing their properties guaranteeing properties preservation during progressive implementation of the context.

Future works:

- Evaluating the expressive (descriptive) power of our logic;
- Contrast it with other logics (pi-logics, spatial logics,...)
- Apply the open framework to other formalisms (Dpi, variants of Ambient,...)

The End