Confining Data and Processes

in (Global Computing Applications

Daniele Gorla

Joint work with Rocco De Nicola and Rosario Pugliese

Dipartimento di Sistemi e Informatica — Universita di Firenze

Work partially supported by Mikado/MyThS/Dart joint workshop

EU project MIKADO IST-2001-32222 Venice, June 15th, 2004

Outline I

e Motivations
o KLAIM

— Main Features and Syntax

— Confining Data and Processes

x Annotating Data and Network Nodes
x A Static Compilation Phase
x Operational Semantics with Dynamic Type Checking

+x Main results: subject reduction & safety

— Implementing Access Control and Ruling out Denial-of-Services
e Confining Data and Processes Statically: Dm and Ambient

e Conclusions

Motivations I

Process mobility is a fundamental aspect of global computing;

however it gives rise to a lot of relevant security problems

e Malicious agents can attempt to access private information of

the nodes hosting them

e Malicious hosts can try to compromise agent’s secrecy

Our Aim:
e enforcing data secrecy at the level of the programming language

e developing a simple (but powerful) alternative to cryptography

KrLAIM: Kernel Language for Agent Interaction and Mobility.

A LINDA derived language:

e Asynchronous Communication via shared repositories (tuple spaces)
o Tuples: sequences of fields

e Tuples are anonymous and associatively selected via pattern

matching

G C Features:

e Network Awareness
e Dynamically Evolving Flat Net Architecture (node creation)
e Process Distribution and Mobility

e Local and Remote Operations (withdraw/generate tuples, spawn

processes)

Nets

Components

Processes

Actions

Templates

CKLAIM Syntax'

[C) Ny || N

P () | cilc

nil | a.P (P | P \ « P

in(T)@Qu \ out(u)@y \ eval(P)@y | newloc(])

!m‘u

Annotating Data and Nodes for Conﬁnement'

Main ideas:
e Regions are finite sets of node addresses

(to refer all node addresses we use T)

e cach datum is tagged with a region to program the subnet where

the datum can appear

e a process can retrieve a datum if its execution does not violate

the region tagging the datum

Moreover, to add flexibility and expressiveness

e cach node [is tagged with two regions r4 and 7,

— r4 controls the nodes that can create data in [
— 1, controls the nodes that spawn processes over [

Preserving Confinement through Computations'

Communication Rule:

[in(l2)QU.P || U = ([d],) =— [: Pldz]| ! :: nil

Main Check: ensure that P[d/z] does not violate r, i.e.
e P[d/x] writes d only in nodes of r

e P[d/z] spawns processes containing d only to nodes of r

This would require code inspection (too expensive at run-time)

A Static Compilation'

Annotating input variables to describe how data retrieved are used

E.g.
[:: in(!2)@l .out(z)@h.eval(out(z)Ql".Q)Qk
should be annotated as
[in([lz] BRI @l out(2)@Qh.eval (out(x)Ql”.Q)Qk

assuming that does not occur in @)

Variables are annotated by a (simple and efficient) static compilation

phase, whose main judgment is N >= N’ (we say that N’ is compiled)

Dynamic Semantics I

Communication Rule:
r Cr

Lin([l2))@U.P || U ([d],) = 1 Pldk] ||l nil

Main Results:

Subject Reduction: If N is compiled and N =— N’ then N’ is

compiled

Safety: If N is compiled then, for any [d|, occurring in N and for

all possible evolutions of NV, it holds that d only crosses nodes in r

Localized Safety: the results above also hold if only a (properly
defined) subnet of N is compiled (see the paper)

9

Ruling out Denial-of-Service Attacks'

A client application like
client :: out(|service_req|icient servery)@server. P
robustly avoids the denial-of-service attack
intruder :: in(service_req)Qserver

aiming at cancelling the service request from the server

Indeed, only processes located at client and server can see the

datum service_req

10

Implementing Access Control Lists'

If res is the name of a resource in [readable by nodes in r, then the

datum
[2 (res,|infol,)

implements the access control list for res. Indeed, reading res could

be programmed as
" = in(res,!z)Ql.P

that, upon compilation, becomes
' = in(res, [lz]-hHail.p

This process can evolve only if I’ € r

11

Dynamic vs Static Type Checking'

e KLAIM uses a combination of both static and dynamic type
checking (the inference of regions for template variables vs region

inclusions)

e Everything can be done statically, if we assume that each tuple

space hosts tuples of the same sort

— this SHARPLY CONTRASTS the tuple spaces paradigm!

— it is standard in languages based on channels or derived from
Ambient

12

Dn Syntax'

NETS N s= I[P] ‘ Ny || N, ‘ (ver) N
PROCESSES P := stop ‘ a.P ‘ P | P ‘ (ve)P ' * P

ACTIONS a == ul{(W) ' u?(X) ‘ go U

13

D7 with Regions'

e Region annotations: u!([W],)

e Communiation rule:

[a{W],).P | a?(X).Q] — I[P | QMW/X]]

provided that Q[W/X] carries W only through sites whose

addresses are in r
e Typing channels (adapted from [Pierce & Sangiorgi|):

— a is associated to region 7,
— outputs on a can be specified only with r,,; 2 7,
— data retrieved from a can be used only in r;, C r,

— this enforces the required r;, C 7oy

14

The Ambient Calculus'

0 (vn)P x P

CL[P] ‘ o. P | P1|P2

() | (n)

in_u | out_u ' open_1u

15

Confinement in Ambient'

e As usual, we tag data in output actions with regions, (|d],)

e Most problems arises from the open. E.g., consider the ambient

nl(dny). -]

where the secrecy of d is respected. However, the compound

system

m| n[{[d]gny).---] | openn | — m[([d]py). -]

breaks d’s secrecy!

16

Types for Confinement in Ambient (1)'

The type of an ambient takes the form
ri>robrs [T]

If an ambient v is assigned such a type, then

e r; is the set of ambients that can see the name u
e 1 is the set of ambients that can contain ambients named u

e r3 is the set where u can asssume its name (this is useful only

when v is a variable and avoids dependent types)

e T is the topic of conversation (like in [Cardelli & Gordon))

17

Types for Confinement in Ambient (2)'

Key requirements:

1. whenever n is contained in m (i.e., m[n[---] | ---]), it must hold
that {m} U cont(m) C cont(n)

2. for any datum ([d],) in n, we must have that r U cont(n) C r

This prevents leaks of data security:
m| n[{|d],).--- | open_n | — m[(d,).- -]
Well-typedness of m| n[([d],).--- | open_n | implies that
m € cont(n) Cr

that implies well-typedness of m/[{[d],). - -]

18

Conclusions I

e the approach presented is simple and efficient, and can be adapted

to different calculi

e it is powerful enough to easily implement access control and rule

out denial-of-service attacks

e it is useful also in a cryptographic setting
(to ensure the secrecy of an encrypted datum we need to ensure the

confinement of the decryption key!)

My homepage: http://www.dsi.uniromal.it/“gorla/

19

Controlling Incoming Data/ Processes'

Datum Creation (to refuse undesired data):

ler),

Lrgiie, out([d],)QUP [y C = Ly, P[0 C] ([d],)

Process Spawning (to refuse possibly dangerous processes):

ler,
lrir, eval(Q)Ql'. P || ll?“ﬁz::% C — Il P l,rﬁz::% ClQ

20

