
Confining Data and Processes

in Global Computing Applications

Daniele Gorla

Joint work with Rocco De Nicola and Rosario Pugliese

Dipartimento di Sistemi e Informatica – Università di Firenze

Work partially supported by

EU project MIKADO IST-2001-32222

Mikado/MyThS/Dart joint workshop

Venice, June 15th, 2004

1

Outline

• Motivations

• Klaim

– Main Features and Syntax

– Confining Data and Processes

∗ Annotating Data and Network Nodes

∗ A Static Compilation Phase

∗ Operational Semantics with Dynamic Type Checking

∗ Main results: subject reduction & safety

– Implementing Access Control and Ruling out Denial-of-Services

• Confining Data and Processes Statically: Dπ and Ambient

• Conclusions

2

Motivations

Process mobility is a fundamental aspect of global computing;

however it gives rise to a lot of relevant security problems

• Malicious agents can attempt to access private information of

the nodes hosting them

• Malicious hosts can try to compromise agent’s secrecy

Our Aim:

• enforcing data secrecy at the level of the programming language

• developing a simple (but powerful) alternative to cryptography

3

Klaim: Kernel Language for Agent Interaction and Mobility

A Linda derived language:

• Asynchronous Communication via shared repositories (tuple spaces)

• Tuples: sequences of fields

• Tuples are anonymous and associatively selected via pattern

matching

GC Features:

• Network Awareness

• Dynamically Evolving Flat Net Architecture (node creation)

• Process Distribution and Mobility

• Local and Remote Operations (withdraw/generate tuples, spawn

processes)

4

cKlaim Syntax

Nets N ::= l :: C
∣∣∣ N1 ‖ N2

Components C ::= P
∣∣∣ 〈d〉

∣∣∣ C1|C2

Processes P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ ∗ P

Actions a ::= in(T)@v
∣∣∣ out(u)@v

∣∣∣ eval(P)@v
∣∣∣ newloc(l)

Templates T ::= !x
∣∣∣ u

5

Annotating Data and Nodes for Confinement

Main ideas:

• Regions are finite sets of node addresses

(to refer all node addresses we use >)

• each datum is tagged with a region to program the subnet where

the datum can appear

• a process can retrieve a datum if its execution does not violate

the region tagging the datum

Moreover, to add flexibility and expressiveness

• each node l is tagged with two regions rd and rp

– rd controls the nodes that can create data in l

– rp controls the nodes that spawn processes over l

6

Preserving Confinement through Computations

Communication Rule:

l :: in(!x)@l′.P ‖ l′ :: 〈[d]r〉 Â−→ l :: P [d/x] ‖ l′ :: nil

Main Check: ensure that P [d/x] does not violate r, i.e.

• P [d/x] writes d only in nodes of r

• P [d/x] spawns processes containing d only to nodes of r

This would require code inspection (too expensive at run-time)

7

A Static Compilation

Annotating input variables to describe how data retrieved are used

E.g.

l :: in(!x)@l′.out(x)@h.eval(out(x)@l′′.Q)@k

should be annotated as

l :: in([!x]{l,h,k,l′′})@l′.out(x)@h.eval(out(x)@l′′.Q)@k

assuming that x does not occur in Q

Variables are annotated by a (simple and efficient) static compilation

phase, whose main judgment is N Â N ′ (we say that N ′ is compiled)

8

Dynamic Semantics

Communication Rule:
r ⊆ r′

l :: in([!x]r)@l′.P ‖ l′ :: 〈[d]r′〉 Â−→ l :: P [d/x] ‖ l′ :: nil

Main Results:

Subject Reduction: If N is compiled and N Â−→ N ′ then N ′ is

compiled

Safety: If N is compiled then, for any [d]r occurring in N and for

all possible evolutions of N , it holds that d only crosses nodes in r

Localized Safety: the results above also hold if only a (properly

defined) subnet of N is compiled (see the paper)

9

Ruling out Denial-of-Service Attacks

A client application like

client :: out([service req]{client,server})@server.P

robustly avoids the denial-of-service attack

intruder :: in(service req)@server

aiming at cancelling the service request from the server

Indeed, only processes located at client and server can see the

datum service req

10

Implementing Access Control Lists

If res is the name of a resource in l readable by nodes in r, then the

datum

l :: 〈res, [info]r〉
implements the access control list for res. Indeed, reading res could

be programmed as

l′ :: in(res, !x)@l.P

that, upon compilation, becomes

l′ :: in(res, [!x]{l
′,...})@l.P

This process can evolve only if l′ ∈ r

11

Dynamic vs Static Type Checking

• Klaim uses a combination of both static and dynamic type

checking (the inference of regions for template variables vs region

inclusions)

• Everything can be done statically, if we assume that each tuple

space hosts tuples of the same sort

– this SHARPLY CONTRASTS the tuple spaces paradigm!

– it is standard in languages based on channels or derived from

Ambient

12

Dπ Syntax

Nets N ::= l[[P]]
∣∣∣∣ N1 ‖ N2

∣∣∣∣ (νek)N

Processes P ::= stop
∣∣∣∣ α.P

∣∣∣∣ P1 | P2

∣∣∣∣ (νe)P
∣∣∣∣ ∗ P

Actions α ::= u!〈W 〉
∣∣∣∣ u?(X)

∣∣∣∣ go u

13

Dπ with Regions

• Region annotations: u!〈[W]r〉

• Communiation rule:

l[[a!〈[W]r〉.P | a?(X).Q]] → l[[P | Q[W/X]]]

provided that Q[W/X] carries W only through sites whose

addresses are in r

• Typing channels (adapted from [Pierce & Sangiorgi]):

– a is associated to region ra

– outputs on a can be specified only with rout ⊇ ra

– data retrieved from a can be used only in rin ⊆ ra

– this enforces the required rin ⊆ rout

14

The Ambient Calculus

P ::= 0
∣∣∣∣ a[P]

∣∣∣∣ α.P

∣∣∣∣ P1 | P2

∣∣∣∣ (νn)P
∣∣∣∣ ∗ P

α ::= in u

∣∣∣∣ out u

∣∣∣∣ open u

∣∣∣∣ (x)
∣∣∣∣ 〈n〉

15

Confinement in Ambient

• As usual, we tag data in output actions with regions, 〈[d]r〉

• Most problems arises from the open. E.g., consider the ambient

n[〈[d]{n}〉. · · ·]

where the secrecy of d is respected. However, the compound

system

m[n[〈[d]{n}〉. · · ·] | openn] → m[〈[d]{n}〉. · · ·]

breaks d’s secrecy!

16

Types for Confinement in Ambient (1)

The type of an ambient takes the form

r1 . r2 . r3[T]

If an ambient u is assigned such a type, then

• r1 is the set of ambients that can see the name u

• r2 is the set of ambients that can contain ambients named u

• r3 is the set where u can asssume its name (this is useful only

when u is a variable and avoids dependent types)

• T is the topic of conversation (like in [Cardelli & Gordon])

17

Types for Confinement in Ambient (2)

Key requirements:

1. whenever n is contained in m (i.e., m[n[· · ·] | · · ·]), it must hold

that {m} ∪ cont(m) ⊆ cont(n)

2. for any datum 〈[d]r〉 in n, we must have that r ∪ cont(n) ⊆ r

This prevents leaks of data security:

m[n[〈[d]r〉. · · · | open n] → m[〈dr〉. · · ·]

Well-typedness of m[n[〈[d]r〉. · · · | open n] implies that

m ∈ cont(n) ⊆ r

that implies well-typedness of m[〈[d]r〉. · · ·]

18

Conclusions

• the approach presented is simple and efficient, and can be adapted

to different calculi

• it is powerful enough to easily implement access control and rule

out denial-of-service attacks

• it is useful also in a cryptographic setting

(to ensure the secrecy of an encrypted datum we need to ensure the

confinement of the decryption key!)

My homepage: http://www.dsi.uniroma1.it/~gorla/

19

Controlling Incoming Data/Processes

Datum Creation (to refuse undesired data):

l ∈ r′d

l rd
:: rp out([d]r)@l′.P ‖ l′ r′

d
:: r′p C Â−→ l rd

:: rp P ‖ l′ r′
d
:: r′p C | 〈[d]r〉

Process Spawning (to refuse possibly dangerous processes):

l ∈ r′p

l rd
:: rp eval(Q)@l′.P ‖ l′ r′

d
:: r′p C Â−→ l rd

:: rp P ‖ l′ r′
d
:: r′p C | Q

20

