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Motivations

Process mobility is a fundamental aspect of global computing;

however it gives rise to a lot of relevant security problems

• Malicious agents can attempt to access private information of

the nodes hosting them

• Malicious hosts can try to compromise agent’s secrecy

Our Aim:

• enforcing data secrecy at the level of the programming language

• developing a simple (but powerful) alternative to cryptography
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Klaim: Kernel Language for Agent Interaction and Mobility

A Linda derived language:

• Asynchronous Communication via shared repositories (tuple spaces)

• Tuples: sequences of fields

• Tuples are anonymous and associatively selected via pattern

matching

GC Features:

• Network Awareness

• Dynamically Evolving Flat Net Architecture (node creation)

• Process Distribution and Mobility

• Local and Remote Operations (withdraw/generate tuples, spawn

processes)
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cKlaim Syntax

Nets N ::= l :: C
∣∣∣ N1 ‖ N2

Components C ::= P
∣∣∣ 〈d〉

∣∣∣ C1|C2

Processes P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ ∗ P

Actions a ::= in(T )@v
∣∣∣ out(u)@v

∣∣∣ eval(P )@v
∣∣∣ newloc(l)

Templates T ::= !x
∣∣∣ u
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Annotating Data and Nodes for Confinement

Main ideas:

• Regions are finite sets of node addresses

(to refer all node addresses we use >)

• each datum is tagged with a region to program the subnet where

the datum can appear

• a process can retrieve a datum if its execution does not violate

the region tagging the datum

Moreover, to add flexibility and expressiveness

• each node l is tagged with two regions rd and rp

– rd controls the nodes that can create data in l

– rp controls the nodes that spawn processes over l
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Preserving Confinement through Computations

Communication Rule:

l :: in(!x)@l′.P ‖ l′ :: 〈[d]r〉 Â−→ l :: P [d/x] ‖ l′ :: nil

Main Check: ensure that P [d/x] does not violate r, i.e.

• P [d/x] writes d only in nodes of r

• P [d/x] spawns processes containing d only to nodes of r

This would require code inspection (too expensive at run-time)
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A Static Compilation

Annotating input variables to describe how data retrieved are used

E.g.

l :: in(!x)@l′.out(x)@h.eval(out(x)@l′′.Q)@k

should be annotated as

l :: in([!x]{l,h,k,l′′})@l′.out(x)@h.eval(out(x)@l′′.Q)@k

assuming that x does not occur in Q

Variables are annotated by a (simple and efficient) static compilation

phase, whose main judgment is N Â N ′ (we say that N ′ is compiled)
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Dynamic Semantics

Communication Rule:
r ⊆ r′

l :: in([!x]r)@l′.P ‖ l′ :: 〈[d]r′〉 Â−→ l :: P [d/x] ‖ l′ :: nil

Main Results:

Subject Reduction: If N is compiled and N Â−→ N ′ then N ′ is

compiled

Safety: If N is compiled then, for any [d]r occurring in N and for

all possible evolutions of N , it holds that d only crosses nodes in r

Localized Safety: the results above also hold if only a (properly

defined) subnet of N is compiled (see the paper)
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Ruling out Denial-of-Service Attacks

A client application like

client :: out([service req]{client,server})@server.P

robustly avoids the denial-of-service attack

intruder :: in(service req)@server

aiming at cancelling the service request from the server

Indeed, only processes located at client and server can see the

datum service req
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Implementing Access Control Lists

If res is the name of a resource in l readable by nodes in r, then the

datum

l :: 〈res, [info]r〉
implements the access control list for res. Indeed, reading res could

be programmed as

l′ :: in(res, !x)@l.P

that, upon compilation, becomes

l′ :: in(res, [!x]{l
′,...})@l.P

This process can evolve only if l′ ∈ r
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Dynamic vs Static Type Checking

• Klaim uses a combination of both static and dynamic type

checking (the inference of regions for template variables vs region

inclusions)

• Everything can be done statically, if we assume that each tuple

space hosts tuples of the same sort

– this SHARPLY CONTRASTS the tuple spaces paradigm!

– it is standard in languages based on channels or derived from

Ambient
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Dπ Syntax

Nets N ::= l[[ P ]]
∣∣∣∣ N1 ‖ N2

∣∣∣∣ (νek)N

Processes P ::= stop
∣∣∣∣ α.P

∣∣∣∣ P1 | P2

∣∣∣∣ (νe)P
∣∣∣∣ ∗ P

Actions α ::= u!〈W 〉
∣∣∣∣ u?(X)

∣∣∣∣ go u
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Dπ with Regions

• Region annotations: u!〈[W ]r〉

• Communiation rule:

l[[ a!〈[W ]r〉.P | a?(X).Q ]] → l[[ P | Q[W/X] ]]

provided that Q[W/X] carries W only through sites whose

addresses are in r

• Typing channels (adapted from [Pierce & Sangiorgi]):

– a is associated to region ra

– outputs on a can be specified only with rout ⊇ ra

– data retrieved from a can be used only in rin ⊆ ra

– this enforces the required rin ⊆ rout
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The Ambient Calculus

P ::= 0
∣∣∣∣ a[P ]

∣∣∣∣ α.P

∣∣∣∣ P1 | P2

∣∣∣∣ (νn)P
∣∣∣∣ ∗ P

α ::= in u

∣∣∣∣ out u

∣∣∣∣ open u

∣∣∣∣ (x)
∣∣∣∣ 〈n〉
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Confinement in Ambient

• As usual, we tag data in output actions with regions, 〈[d]r〉

• Most problems arises from the open. E.g., consider the ambient

n[〈[d]{n}〉. · · ·]

where the secrecy of d is respected. However, the compound

system

m[ n[〈[d]{n}〉. · · ·] | openn ] → m[ 〈[d]{n}〉. · · · ]

breaks d’s secrecy!
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Types for Confinement in Ambient (1)

The type of an ambient takes the form

r1 . r2 . r3[T ]

If an ambient u is assigned such a type, then

• r1 is the set of ambients that can see the name u

• r2 is the set of ambients that can contain ambients named u

• r3 is the set where u can asssume its name (this is useful only

when u is a variable and avoids dependent types)

• T is the topic of conversation (like in [Cardelli & Gordon])
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Types for Confinement in Ambient (2)

Key requirements:

1. whenever n is contained in m (i.e., m[n[· · ·] | · · ·]), it must hold

that {m} ∪ cont(m) ⊆ cont(n)

2. for any datum 〈[d]r〉 in n, we must have that r ∪ cont(n) ⊆ r

This prevents leaks of data security:

m[ n[〈[d]r〉. · · · | open n ] → m[〈dr〉. · · ·]

Well-typedness of m[ n[〈[d]r〉. · · · | open n ] implies that

m ∈ cont(n) ⊆ r

that implies well-typedness of m[〈[d]r〉. · · ·]

18



Conclusions

• the approach presented is simple and efficient, and can be adapted

to different calculi

• it is powerful enough to easily implement access control and rule

out denial-of-service attacks

• it is useful also in a cryptographic setting

(to ensure the secrecy of an encrypted datum we need to ensure the

confinement of the decryption key!)

My homepage: http://www.dsi.uniroma1.it/~gorla/
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Controlling Incoming Data/Processes

Datum Creation (to refuse undesired data):

l ∈ r′d

l rd
:: rp out([d]r)@l′.P ‖ l′ r′

d
:: r′p C Â−→ l rd

:: rp P ‖ l′ r′
d
:: r′p C | 〈[d]r〉

Process Spawning (to refuse possibly dangerous processes):

l ∈ r′p

l rd
:: rp eval(Q)@l′.P ‖ l′ r′

d
:: r′p C Â−→ l rd

:: rp P ‖ l′ r′
d
:: r′p C | Q
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