
Dynamic and Local Typing for
Mobile Ambients

MYTHS / MIKADO / DART Meeting, Venice, June 14, 2004

M. Coppo1, M. Dezani1, E. Giovannetti1, R. Pugliese2

(1) Dipartimento di Informatica – Università di Torino

(2) Dip. di Sistemi e Informatica – Università di Firenze

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 1/21

Modelling of wide-area distributed and mobile computing:

interacting components from different locations
are unknown or only partially known to each other

⇓

each component must carry behavioural
information, to be checked at runtime

Γ ` t : T

assumptions on the world ` component : behavioural properties

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 2/21

A proposal

A typed ambient calculus with:

behavioural type assumptions local to each ambient

no global type assumptions on ambient names

ambient types attached to single ambient constructions,
not to ambient names

runtime types used to check compatibility
between components from different localities

Specific features of the calculus:

no ambient opening

only local communication

general process mobility

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 3/21

The typed calculus: mobility primitives

ambient mobility: in, out

(R-in) n[inm.P |Q] |m[R] → m[n[P |Q] |R]

(R-out) m[n[outm.P |Q] |R] → n[P |Q] |m[R]

process mobility: down, up

down n . P |n[Q] → n[P |Q]

m[n[upm.P |Q] |R] → m[P |n[Q] |R]

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 4/21

Process mobility: down

down m moves the continuation process
from its ambient down to an enclosed ambient m

 down m . P |

m

R

m

P | R

The down primitive

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 5/21

Process mobility: up

up m moves the continuation process
from its ambient up to the enclosing ambient m

m

 | R

n

up m . P | Q

The up primitive

m

 | P | R

n

Q

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 6/21

Types
describe communication and mobility properties
An ambient has:

active mobility – static typing: the ambients it may cross and the
ambients it may send processes to;

passive mobility – dynamic typing: the ambients by which it may be
crossed and the ones by which it may be sent processes to.

A process has:

active mobility – static typing: the ambients to which it may drive its
enclosing ambient, and the ones to which it may go.

are based on ambient groups:

a group is a name that labels a set of ambients

different ambients with the same name
may belong to different groups

mobility properties are expressed via groups

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 7/21

Types
describe communication and mobility properties
An ambient has:

active mobility – static typing: the ambients it may cross and the
ambients it may send processes to;

passive mobility – dynamic typing: the ambients by which it may be
crossed and the ones by which it may be sent processes to.

A process has:

active mobility – static typing: the ambients to which it may drive its
enclosing ambient, and the ones to which it may go.

are based on ambient groups:

a group is a name that labels a set of ambients

different ambients with the same name
may belong to different groups

mobility properties are expressed via groups

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 7/21

Types
describe communication and mobility properties
An ambient has:

active mobility – static typing: the ambients it may cross and the
ambients it may send processes to;

passive mobility – dynamic typing: the ambients by which it may be
crossed and the ones by which it may be sent processes to.

A process has:

active mobility – static typing: the ambients to which it may drive its
enclosing ambient, and the ones to which it may go.

are based on ambient groups:

a group is a name that labels a set of ambients

different ambients with the same name
may belong to different groups

mobility properties are expressed via groups

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 7/21

Types
describe communication and mobility properties
An ambient has:

active mobility – static typing: the ambients it may cross and the
ambients it may send processes to;

passive mobility – dynamic typing: the ambients by which it may be
crossed and the ones by which it may be sent processes to.

A process has:

active mobility – static typing: the ambients to which it may drive its
enclosing ambient, and the ones to which it may go.

are based on ambient groups:

a group is a name that labels a set of ambients

different ambients with the same name
may belong to different groups

mobility properties are expressed via groups

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 7/21

Types
describe communication and mobility properties
An ambient has:

active mobility – static typing: the ambients it may cross and the
ambients it may send processes to;

passive mobility – dynamic typing: the ambients by which it may be
crossed and the ones by which it may be sent processes to.

A process has:

active mobility – static typing: the ambients to which it may drive its
enclosing ambient, and the ones to which it may go.

are based on ambient groups:

a group is a name that labels a set of ambients

different ambients with the same name
may belong to different groups

mobility properties are expressed via groups

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 7/21

Types
describe communication and mobility properties
An ambient has:

active mobility – static typing: the ambients it may cross and the
ambients it may send processes to;

passive mobility – dynamic typing: the ambients by which it may be
crossed and the ones by which it may be sent processes to.

A process has:

active mobility – static typing: the ambients to which it may drive its
enclosing ambient, and the ones to which it may go.

are based on ambient groups:

a group is a name that labels a set of ambients

different ambients with the same name
may belong to different groups

mobility properties are expressed via groups

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 7/21

Types
describe communication and mobility properties
An ambient has:

active mobility – static typing: the ambients it may cross and the
ambients it may send processes to;

passive mobility – dynamic typing: the ambients by which it may be
crossed and the ones by which it may be sent processes to.

A process has:

active mobility – static typing: the ambients to which it may drive its
enclosing ambient, and the ones to which it may go.

are based on ambient groups:

a group is a name that labels a set of ambients

different ambients with the same name
may belong to different groups

mobility properties are expressed via groups

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 7/21

Types
describe communication and mobility properties
An ambient has:

active mobility – static typing: the ambients it may cross and the
ambients it may send processes to;

passive mobility – dynamic typing: the ambients by which it may be
crossed and the ones by which it may be sent processes to.

A process has:

active mobility – static typing: the ambients to which it may drive its
enclosing ambient, and the ones to which it may go.

are based on ambient groups:

a group is a name that labels a set of ambients

different ambients with the same name
may belong to different groups

mobility properties are expressed via groups

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 7/21

Static types: active mobility

process types Pro ::= g(G)

g group names

G ::= mc(C ,E , T) mobcom (mobility + communication) types,

where:

C set of groups of ambients into which the process may drive

(through an in or out action) its enclosing ambient

E is the set of (groups of) ambients to which it may send

(through a down or up action) a continuation process

T is the process communication type

ambient type amb (atomic type)

no mobcom types for ambient names

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 8/21

Static types: active mobility

process types Pro ::= g(G)

g group names

G ::= mc(C ,E , T) mobcom (mobility + communication) types,

where:

C set of groups of ambients into which the process may drive

(through an in or out action) its enclosing ambient

E is the set of (groups of) ambients to which it may send

(through a down or up action) a continuation process

T is the process communication type

ambient type amb (atomic type)

no mobcom types for ambient names

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 8/21

Static types: active mobility

process types Pro ::= g(G)

g group names

G ::= mc(C ,E , T) mobcom (mobility + communication) types,

where:

C set of groups of ambients into which the process may drive

(through an in or out action) its enclosing ambient

E is the set of (groups of) ambients to which it may send

(through a down or up action) a continuation process

T is the process communication type

ambient type amb (atomic type)

no mobcom types for ambient names

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 8/21

Static types: active mobility

process types Pro ::= g(G)

g group names

G ::= mc(C ,E , T) mobcom (mobility + communication) types,

where:

C set of groups of ambients into which the process may drive

(through an in or out action) its enclosing ambient

E is the set of (groups of) ambients to which it may send

(through a down or up action) a continuation process

T is the process communication type

ambient type amb (atomic type)

no mobcom types for ambient names

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 8/21

Static types: active mobility

process types Pro ::= g(G)

g group names

G ::= mc(C ,E , T) mobcom (mobility + communication) types,

where:

C set of groups of ambients into which the process may drive

(through an in or out action) its enclosing ambient

E is the set of (groups of) ambients to which it may send

(through a down or up action) a continuation process

T is the process communication type

ambient type amb (atomic type)

no mobcom types for ambient names

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 8/21

Runtime packing of static types

ambient mobility actions specify target’s name and group:
in/out α:g

parallel processes must have, as usual, the same process type;

if P is well typed with type g(G) and m is an ambient name,
the ambient construction of skeleton m[P] is always well typed,
and g(G) is the ambient inner type;

a process going up or down into an ambient must have a type
compatible with the ambient’s inner type:
runtime checking is needed, therefore:

ambient
carries at runtime its inner type: m:g(G)[X]

process mobility action
carries the type of its continuation: down/up α:g withG

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 9/21

Runtime packing of static types

ambient mobility actions specify target’s name and group:
in/out α:g

parallel processes must have, as usual, the same process type;

if P is well typed with type g(G) and m is an ambient name,
the ambient construction of skeleton m[P] is always well typed,
and g(G) is the ambient inner type;

a process going up or down into an ambient must have a type
compatible with the ambient’s inner type:
runtime checking is needed, therefore:

ambient
carries at runtime its inner type: m:g(G)[X]

process mobility action
carries the type of its continuation: down/up α:g withG

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 9/21

Runtime packing of static types

ambient mobility actions specify target’s name and group:
in/out α:g

parallel processes must have, as usual, the same process type;

if P is well typed with type g(G) and m is an ambient name,
the ambient construction of skeleton m[P] is always well typed,
and g(G) is the ambient inner type;

a process going up or down into an ambient must have a type
compatible with the ambient’s inner type:
runtime checking is needed, therefore:

ambient
carries at runtime its inner type: m:g(G)[X]

process mobility action
carries the type of its continuation: down/up α:g withG

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 9/21

Runtime packing of static types

ambient mobility actions specify target’s name and group:
in/out α:g

parallel processes must have, as usual, the same process type;

if P is well typed with type g(G) and m is an ambient name,
the ambient construction of skeleton m[P] is always well typed,
and g(G) is the ambient inner type;

a process going up or down into an ambient must have a type
compatible with the ambient’s inner type:
runtime checking is needed, therefore:

ambient
carries at runtime its inner type: m:g(G)[X]

process mobility action
carries the type of its continuation: down/up α:g withG

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 9/21

Runtime packing of static types

ambient mobility actions specify target’s name and group:
in/out α:g

parallel processes must have, as usual, the same process type;

if P is well typed with type g(G) and m is an ambient name,
the ambient construction of skeleton m[P] is always well typed,
and g(G) is the ambient inner type;

a process going up or down into an ambient must have a type
compatible with the ambient’s inner type:
runtime checking is needed, therefore:

ambient
carries at runtime its inner type: m:g(G)[X]

process mobility action
carries the type of its continuation: down/up α:g withG

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 9/21

Runtime packing of static types

ambient mobility actions specify target’s name and group:
in/out α:g

parallel processes must have, as usual, the same process type;

if P is well typed with type g(G) and m is an ambient name,
the ambient construction of skeleton m[P] is always well typed,
and g(G) is the ambient inner type;

a process going up or down into an ambient must have a type
compatible with the ambient’s inner type:
runtime checking is needed, therefore:

ambient
carries at runtime its inner type: m:g(G)[X]

process mobility action
carries the type of its continuation: down/up α:g withG

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 9/21

The syntax of types

G ::= mc(C , E , T) mobcom type: mobility and communication type

Pro ::= g(G) process type: processes of group g with mobcom type G

Cap ::= g(G)Ã g′(G′) capabilities that can be consumed by processes of type g(G)

and leave processes of type g′(G′) as continuations

W ::= message type

Cap capability type

group group

amb ambient type

T ::= communication type

shh no communication
−→
W communication of messages of type

−→
W

Σ ::= ∅ variable environment

Σ, x : W

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 10/21

Dynamic types: passive mobility

Each ambient contains a dynamic characterization of its passive mobility.

Complete form of the ambient construct:

α:g(G)[c,e‖P]

c,e: two multisets of dynamic mobility permissions (w.r.t. itself)
granted to other ambients:

c: multiset of groups of ambients allowed to go in or out of it;

e: multiset of permits for processes to go up or down into it:
element of e: a pair 〈g′, G′〉, entrance permit
for a g’-process with a G’-behaviour; constraint: G′ ≤ G

execution of a statically allowed action:

only possible if a corresponding dynamic permit is present;

consumes the permit

elements of infinite multiplicity, representing permanent permits,
may be present in multisets.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 11/21

Dynamic types: passive mobility

Each ambient contains a dynamic characterization of its passive mobility.

Complete form of the ambient construct:

α:g(G)[c,e‖P]

c,e: two multisets of dynamic mobility permissions (w.r.t. itself)
granted to other ambients:

c: multiset of groups of ambients allowed to go in or out of it;

e: multiset of permits for processes to go up or down into it:
element of e: a pair 〈g′, G′〉, entrance permit
for a g’-process with a G’-behaviour; constraint: G′ ≤ G

execution of a statically allowed action:

only possible if a corresponding dynamic permit is present;

consumes the permit

elements of infinite multiplicity, representing permanent permits,
may be present in multisets.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 11/21

Dynamic types: passive mobility

Each ambient contains a dynamic characterization of its passive mobility.

Complete form of the ambient construct:

α:g(G)[c,e‖P]

c,e: two multisets of dynamic mobility permissions (w.r.t. itself)
granted to other ambients:

c: multiset of groups of ambients allowed to go in or out of it;

e: multiset of permits for processes to go up or down into it:
element of e: a pair 〈g′, G′〉, entrance permit
for a g’-process with a G’-behaviour; constraint: G′ ≤ G

execution of a statically allowed action:

only possible if a corresponding dynamic permit is present;

consumes the permit

elements of infinite multiplicity, representing permanent permits,
may be present in multisets.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 11/21

Dynamic types: passive mobility

Each ambient contains a dynamic characterization of its passive mobility.

Complete form of the ambient construct:

α:g(G)[c,e‖P]

c,e: two multisets of dynamic mobility permissions (w.r.t. itself)
granted to other ambients:

c: multiset of groups of ambients allowed to go in or out of it;

e: multiset of permits for processes to go up or down into it:
element of e: a pair 〈g′, G′〉, entrance permit
for a g’-process with a G’-behaviour; constraint: G′ ≤ G

execution of a statically allowed action:

only possible if a corresponding dynamic permit is present;

consumes the permit

elements of infinite multiplicity, representing permanent permits,
may be present in multisets.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 11/21

Dynamic types: passive mobility

Each ambient contains a dynamic characterization of its passive mobility.

Complete form of the ambient construct:

α:g(G)[c,e‖P]

c,e: two multisets of dynamic mobility permissions (w.r.t. itself)
granted to other ambients:

c: multiset of groups of ambients allowed to go in or out of it;

e: multiset of permits for processes to go up or down into it:
element of e: a pair 〈g′, G′〉, entrance permit
for a g’-process with a G’-behaviour; constraint: G′ ≤ G

execution of a statically allowed action:

only possible if a corresponding dynamic permit is present;

consumes the permit

elements of infinite multiplicity, representing permanent permits,
may be present in multisets.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 11/21

Dynamic modification of mobility permits

c and e allow and forbid movements at runtime. They can therefore be
changed dynamically without breaking the subject reduction, by:

consuming one (non-permanent) permit: automatic when a
movement action is performed;

adding a (possibly multiple) permit: explicitly by means of the
permit-adding primitives:

addc gϕ in m:gm adds the group g with multiplicity ϕ

to the c component of a local ambient of name m and group gm

adde 〈g,G1〉
ϕ in m:gm

adds the group/type pair 〈g,G1 uGm〉 with multiplicity ϕ

to the e component of a local ambient m:gm(Gm)[c, e‖P]
intersection preserves the invariant 〈g′, G′〉 ∈ e ⇒ G′ ≤ Gm

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 12/21

Dynamic modification of mobility permits

c and e allow and forbid movements at runtime. They can therefore be
changed dynamically without breaking the subject reduction, by:

consuming one (non-permanent) permit: automatic when a
movement action is performed;

adding a (possibly multiple) permit: explicitly by means of the
permit-adding primitives:

addc gϕ in m:gm adds the group g with multiplicity ϕ

to the c component of a local ambient of name m and group gm

adde 〈g,G1〉
ϕ in m:gm

adds the group/type pair 〈g,G1 uGm〉 with multiplicity ϕ

to the e component of a local ambient m:gm(Gm)[c, e‖P]
intersection preserves the invariant 〈g′, G′〉 ∈ e ⇒ G′ ≤ Gm

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 12/21

Dynamic modification of mobility permits

c and e allow and forbid movements at runtime. They can therefore be
changed dynamically without breaking the subject reduction, by:

consuming one (non-permanent) permit: automatic when a
movement action is performed;

adding a (possibly multiple) permit: explicitly by means of the
permit-adding primitives:

addc gϕ in m:gm adds the group g with multiplicity ϕ

to the c component of a local ambient of name m and group gm

adde 〈g,G1〉
ϕ in m:gm

adds the group/type pair 〈g,G1 uGm〉 with multiplicity ϕ

to the e component of a local ambient m:gm(Gm)[c, e‖P]
intersection preserves the invariant 〈g′, G′〉 ∈ e ⇒ G′ ≤ Gm

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 12/21

Dynamic modification of mobility permits

c and e allow and forbid movements at runtime. They can therefore be
changed dynamically without breaking the subject reduction, by:

consuming one (non-permanent) permit: automatic when a
movement action is performed;

adding a (possibly multiple) permit: explicitly by means of the
permit-adding primitives:

addc gϕ in m:gm adds the group g with multiplicity ϕ

to the c component of a local ambient of name m and group gm

adde 〈g,G1〉
ϕ in m:gm

adds the group/type pair 〈g,G1 uGm〉 with multiplicity ϕ

to the e component of a local ambient m:gm(Gm)[c, e‖P]
intersection preserves the invariant 〈g′, G′〉 ∈ e ⇒ G′ ≤ Gm

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 12/21

Dynamic modification of mobility permits

c and e allow and forbid movements at runtime. They can therefore be
changed dynamically without breaking the subject reduction, by:

consuming one (non-permanent) permit: automatic when a
movement action is performed;

adding a (possibly multiple) permit: explicitly by means of the
permit-adding primitives:

addc gϕ in m:gm adds the group g with multiplicity ϕ

to the c component of a local ambient of name m and group gm

adde 〈g,G1〉
ϕ in m:gm

adds the group/type pair 〈g,G1 uGm〉 with multiplicity ϕ

to the e component of a local ambient m:gm(Gm)[c, e‖P]
intersection preserves the invariant 〈g′, G′〉 ∈ e ⇒ G′ ≤ Gm

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 12/21

An example: a public transportation system

a top-level untrusted ambient, named world , which includes named
ambients representing cities, countryside, etc.

cities in turn contain stations (which are ambients)

trains are mobile ambients moving between stations

travellers, represented by mobile processes, get into and off trains at
the stations in order to move between cities.

A simplified system

two cities tur and flo, with their respective stations st tur and stflo

one train commuting between st tur and stflo.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 13/21

An example: a public transportation system

a top-level untrusted ambient, named world , which includes named
ambients representing cities, countryside, etc.

cities in turn contain stations (which are ambients)

trains are mobile ambients moving between stations

travellers, represented by mobile processes, get into and off trains at
the stations in order to move between cities.

A simplified system

two cities tur and flo, with their respective stations st tur and stflo

one train commuting between st tur and stflo.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 13/21

An example: a public transportation system

a top-level untrusted ambient, named world , which includes named
ambients representing cities, countryside, etc.

cities in turn contain stations (which are ambients)

trains are mobile ambients moving between stations

travellers, represented by mobile processes, get into and off trains at
the stations in order to move between cities.

A simplified system

two cities tur and flo, with their respective stations st tur and stflo

one train commuting between st tur and stflo.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 13/21

An example: a public transportation system

a top-level untrusted ambient, named world , which includes named
ambients representing cities, countryside, etc.

cities in turn contain stations (which are ambients)

trains are mobile ambients moving between stations

travellers, represented by mobile processes, get into and off trains at
the stations in order to move between cities.

A simplified system

two cities tur and flo, with their respective stations st tur and stflo

one train commuting between st tur and stflo.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 13/21

An example: a public transportation system

a top-level untrusted ambient, named world , which includes named
ambients representing cities, countryside, etc.

cities in turn contain stations (which are ambients)

trains are mobile ambients moving between stations

travellers, represented by mobile processes, get into and off trains at
the stations in order to move between cities.

A simplified system

two cities tur and flo, with their respective stations st tur and stflo

one train commuting between st tur and stflo.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 13/21

A public transportation system: stations

A station is an ambient of group gst and of name stX , with X = tur ,flor :

stX :gst(Gst)[cst, est ‖ . . .], where:

Gst specifies the station’s active properties, statically checked:

Gst = mc(∅, {gtr , gcity})

1. a station cannot go in or out of ambients (is immobile);

2. may send out processes (i.e., passengers)
to the train and to the surrounding city;

cst, est specify station passive properties, dynamically checked:

1. cst = {g
∗
tr} may be crossed by trains (which are ambients);

2. est = {〈gtr , Garr〉
∗, 〈gcity , Gdep〉

∗} may receive processes (i.e.,
travellers) both from the city and from the train, in an unlimited
number.

Garr, Gdep are accepted behaviours for processes entering the station: the

constraints Gdep ≤ Gst and Garr ≤ Gst are statically checked.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 14/21

A public transportation system: stations

A station is an ambient of group gst and of name stX , with X = tur ,flor :

stX :gst(Gst)[cst, est ‖ . . .], where:

Gst specifies the station’s active properties, statically checked:

Gst = mc(∅, {gtr , gcity})

1. a station cannot go in or out of ambients (is immobile);

2. may send out processes (i.e., passengers)
to the train and to the surrounding city;

cst, est specify station passive properties, dynamically checked:

1. cst = {g
∗
tr} may be crossed by trains (which are ambients);

2. est = {〈gtr , Garr〉
∗, 〈gcity , Gdep〉

∗} may receive processes (i.e.,
travellers) both from the city and from the train, in an unlimited
number.

Garr, Gdep are accepted behaviours for processes entering the station: the

constraints Gdep ≤ Gst and Garr ≤ Gst are statically checked.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 14/21

A public transportation system: stations

A station is an ambient of group gst and of name stX , with X = tur ,flor :

stX :gst(Gst)[cst, est ‖ . . .], where:

Gst specifies the station’s active properties, statically checked:

Gst = mc(∅,

{gtr , gcity}

)

1. a station cannot go in or out of ambients (is immobile);

2. may send out processes (i.e., passengers)
to the train and to the surrounding city;

cst, est specify station passive properties, dynamically checked:

1. cst = {g
∗
tr} may be crossed by trains (which are ambients);

2. est = {〈gtr , Garr〉
∗, 〈gcity , Gdep〉

∗} may receive processes (i.e.,
travellers) both from the city and from the train, in an unlimited
number.

Garr, Gdep are accepted behaviours for processes entering the station: the

constraints Gdep ≤ Gst and Garr ≤ Gst are statically checked.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 14/21

A public transportation system: stations

A station is an ambient of group gst and of name stX , with X = tur ,flor :

stX :gst(Gst)[cst, est ‖ . . .], where:

Gst specifies the station’s active properties, statically checked:

Gst = mc(∅, {gtr , gcity})

1. a station cannot go in or out of ambients (is immobile);

2. may send out processes (i.e., passengers)
to the train and to the surrounding city;

cst, est specify station passive properties, dynamically checked:

1. cst = {g
∗
tr} may be crossed by trains (which are ambients);

2. est = {〈gtr , Garr〉
∗, 〈gcity , Gdep〉

∗} may receive processes (i.e.,
travellers) both from the city and from the train, in an unlimited
number.

Garr, Gdep are accepted behaviours for processes entering the station: the

constraints Gdep ≤ Gst and Garr ≤ Gst are statically checked.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 14/21

A public transportation system: stations

A station is an ambient of group gst and of name stX , with X = tur ,flor :

stX :gst(Gst)[cst, est ‖ . . .], where:

Gst specifies the station’s active properties, statically checked:

Gst = mc(∅, {gtr , gcity})

1. a station cannot go in or out of ambients (is immobile);

2. may send out processes (i.e., passengers)
to the train and to the surrounding city;

cst, est specify station passive properties, dynamically checked:

1. cst = {g
∗
tr} may be crossed by trains (which are ambients);

2. est = {〈gtr , Garr〉
∗, 〈gcity , Gdep〉

∗} may receive processes (i.e.,
travellers) both from the city and from the train, in an unlimited
number.

Garr, Gdep are accepted behaviours for processes entering the station: the

constraints Gdep ≤ Gst and Garr ≤ Gst are statically checked.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 14/21

A public transportation system: stations

A station is an ambient of group gst and of name stX , with X = tur ,flor :

stX :gst(Gst)[cst, est ‖ . . .], where:

Gst specifies the station’s active properties, statically checked:

Gst = mc(∅, {gtr , gcity})

1. a station cannot go in or out of ambients (is immobile);

2. may send out processes (i.e., passengers)
to the train and to the surrounding city;

cst, est specify station passive properties, dynamically checked:

1. cst = {g
∗
tr} may be crossed by trains (which are ambients);

2. est = {〈gtr , Garr〉
∗, 〈gcity , Gdep〉

∗} may receive processes (i.e.,
travellers) both from the city and from the train, in an unlimited
number.

Garr, Gdep are accepted behaviours for processes entering the station: the

constraints Gdep ≤ Gst and Garr ≤ Gst are statically checked.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 14/21

A public transportation system: stations

A station is an ambient of group gst and of name stX , with X = tur ,flor :

stX :gst(Gst)[cst, est ‖ . . .], where:

Gst specifies the station’s active properties, statically checked:

Gst = mc(∅, {gtr , gcity})

1. a station cannot go in or out of ambients (is immobile);

2. may send out processes (i.e., passengers)
to the train and to the surrounding city;

cst, est specify station passive properties, dynamically checked:

1. cst = {g
∗
tr} may be crossed by trains (which are ambients);

2. est = {〈gtr , Garr〉
∗, 〈gcity , Gdep〉

∗} may receive processes (i.e.,
travellers) both from the city and from the train, in an unlimited
number.

Garr, Gdep are accepted behaviours for processes entering the station: the

constraints Gdep ≤ Gst and Garr ≤ Gst are statically checked.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 14/21

A public transportation system: stations

A station is an ambient of group gst and of name stX , with X = tur ,flor :

stX :gst(Gst)[cst, est ‖ . . .], where:

Gst specifies the station’s active properties, statically checked:

Gst = mc(∅, {gtr , gcity})

1. a station cannot go in or out of ambients (is immobile);

2. may send out processes (i.e., passengers)
to the train and to the surrounding city;

cst, est specify station passive properties, dynamically checked:

1. cst = {g
∗
tr} may be crossed by trains (which are ambients);

2. est = {〈gtr , Garr〉
∗, 〈gcity , Gdep〉

∗} may receive processes (i.e.,
travellers) both from the city and from the train, in an unlimited
number.

Garr, Gdep are accepted behaviours for processes entering the station: the

constraints Gdep ≤ Gst and Garr ≤ Gst are statically checked.
Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 14/21

A public transportation system: the train

A train TRAINX,Y commuting between X and Y is a mobile ambient:
TRAIN ,

tr :gtr (Gtr)[ctr, etr‖ ! out stX :gst . PATHXY . in stY :gst . out stY :gst . PATHYX . in stX :gst]

where:

Gtr = mc({gst , gcity , . . .}, {gst}) is the train’s active mobility:

1. the train may cross stations, cities, etc.;

2. may send out processes (i.e., passengers) only to stations

ctr, etr is the train’s passive mobility:

ctr = ∅ the cannot be crossed by ambients

etr = {〈gst , Gpsng〉
n}

may be entered by at most n processes coming from stations and
exhibiting a certified good passenger behaviour Gpsng

Gpsng = mc(∅, {gst})

a good passenger cannot drive any ambient (no train
hijacking), and may only get off the train into a station

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 15/21

A public transportation system: the train

A train TRAINX,Y commuting between X and Y is a mobile ambient:
TRAIN ,

tr :gtr (Gtr)[ctr, etr‖ ! out stX :gst . PATHXY . in stY :gst . out stY :gst . PATHYX . in stX :gst]

where:

Gtr = mc({gst , gcity , . . .},

{gst})

is the train’s active mobility:

1. the train may cross stations, cities, etc.;

2. may send out processes (i.e., passengers) only to stations

ctr, etr is the train’s passive mobility:

ctr = ∅ the cannot be crossed by ambients

etr = {〈gst , Gpsng〉
n}

may be entered by at most n processes coming from stations and
exhibiting a certified good passenger behaviour Gpsng

Gpsng = mc(∅, {gst})

a good passenger cannot drive any ambient (no train
hijacking), and may only get off the train into a station

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 15/21

A public transportation system: the train

A train TRAINX,Y commuting between X and Y is a mobile ambient:
TRAIN ,

tr :gtr (Gtr)[ctr, etr‖ ! out stX :gst . PATHXY . in stY :gst . out stY :gst . PATHYX . in stX :gst]

where:

Gtr = mc({gst , gcity , . . .}, {gst}) is the train’s active mobility:

1. the train may cross stations, cities, etc.;

2. may send out processes (i.e., passengers) only to stations

ctr, etr is the train’s passive mobility:

ctr = ∅ the cannot be crossed by ambients

etr = {〈gst , Gpsng〉
n}

may be entered by at most n processes coming from stations and
exhibiting a certified good passenger behaviour Gpsng

Gpsng = mc(∅, {gst})

a good passenger cannot drive any ambient (no train
hijacking), and may only get off the train into a station

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 15/21

A public transportation system: the train

A train TRAINX,Y commuting between X and Y is a mobile ambient:
TRAIN ,

tr :gtr (Gtr)[ctr, etr‖ ! out stX :gst . PATHXY . in stY :gst . out stY :gst . PATHYX . in stX :gst]

where:

Gtr = mc({gst , gcity , . . .}, {gst}) is the train’s active mobility:

1. the train may cross stations, cities, etc.;

2. may send out processes (i.e., passengers) only to stations

ctr, etr is the train’s passive mobility:

ctr = ∅ the cannot be crossed by ambients

etr = {〈gst , Gpsng〉
n}

may be entered by at most n processes coming from stations and
exhibiting a certified good passenger behaviour Gpsng

Gpsng = mc(∅, {gst})

a good passenger cannot drive any ambient (no train
hijacking), and may only get off the train into a station

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 15/21

A public transportation system: the train

A train TRAINX,Y commuting between X and Y is a mobile ambient:
TRAIN ,

tr :gtr (Gtr)[ctr, etr‖ ! out stX :gst . PATHXY . in stY :gst . out stY :gst . PATHYX . in stX :gst]

where:

Gtr = mc({gst , gcity , . . .}, {gst}) is the train’s active mobility:

1. the train may cross stations, cities, etc.;

2. may send out processes (i.e., passengers) only to stations

ctr, etr is the train’s passive mobility:

ctr = ∅ the cannot be crossed by ambients

etr = {〈gst , Gpsng〉
n}

may be entered by at most n processes coming from stations and
exhibiting a certified good passenger behaviour Gpsng

Gpsng = mc(∅, {gst})

a good passenger cannot drive any ambient (no train
hijacking), and may only get off the train into a station

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 15/21

A public transportation system: the train

A train TRAINX,Y commuting between X and Y is a mobile ambient:
TRAIN ,

tr :gtr (Gtr)[ctr, etr‖ ! out stX :gst . PATHXY . in stY :gst . out stY :gst . PATHYX . in stX :gst]

where:

Gtr = mc({gst , gcity , . . .}, {gst}) is the train’s active mobility:

1. the train may cross stations, cities, etc.;

2. may send out processes (i.e., passengers) only to stations

ctr, etr is the train’s passive mobility:

ctr = ∅ the cannot be crossed by ambients

etr = {〈gst , Gpsng〉
n}

may be entered by at most n processes coming from stations and
exhibiting a certified good passenger behaviour Gpsng

Gpsng = mc(∅, {gst})

a good passenger cannot drive any ambient (no train
hijacking), and may only get off the train into a station

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 15/21

A public transportation system: the train

A train TRAINX,Y commuting between X and Y is a mobile ambient:
TRAIN ,

tr :gtr (Gtr)[ctr, etr‖ ! out stX :gst . PATHXY . in stY :gst . out stY :gst . PATHYX . in stX :gst]

where:

Gtr = mc({gst , gcity , . . .}, {gst}) is the train’s active mobility:

1. the train may cross stations, cities, etc.;

2. may send out processes (i.e., passengers) only to stations

ctr, etr is the train’s passive mobility:

ctr = ∅ the cannot be crossed by ambients

etr = {〈gst , Gpsng〉
n}

may be entered by at most n processes coming from stations and
exhibiting a certified good passenger behaviour Gpsng

Gpsng = mc(∅, {gst})

a good passenger cannot drive any ambient (no train
hijacking), and may only get off the train into a station

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 15/21

A public transportation system: travellers

traveller TRAVELERX,Y from city X to city Y: is a mobile process that
goes into X’s station where he becomes a passenger bound for Y:

TRAVELERX,Y , down stX :gst with Gdep . PSNGY

Gdep = mc(∅, {gtr}): good behaviour for departing passengers
(cannot move the station, may only leave the station by getting into a train)

PSNGY , down tr :gtr with Gpsng . up stY :gst with Garr

. adde 〈gst , Gpsng〉 in tr : gtr . up Y :gcity with GY .P

A passenger bound for Y is a process that:

1. boards the train; Gpsng certifies good train-passenger behaviour;

2. gets off the train at the other station;
Garr = mc(∅, {gcity}): certificate of good arriving-passenger behaviour
(cannot move the station; may only exit into the city)

3. frees its place, by explicitly adding one entrance permit to the train;

4. goes out from the station into the city.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 16/21

A public transportation system: travellers

traveller TRAVELERX,Y from city X to city Y: is a mobile process that
goes into X’s station where he becomes a passenger bound for Y:

TRAVELERX,Y , down stX :gst with Gdep . PSNGY

Gdep = mc(∅, {gtr}): good behaviour for departing passengers
(cannot move the station, may only leave the station by getting into a train)

PSNGY ,

down tr :gtr with Gpsng

.

up stY :gst with Garr

. adde 〈gst , Gpsng〉 in tr : gtr . up Y :gcity with GY .P

A passenger bound for Y is a process that:

1. boards the train; Gpsng certifies good train-passenger behaviour;

2. gets off the train at the other station;
Garr = mc(∅, {gcity}): certificate of good arriving-passenger behaviour
(cannot move the station; may only exit into the city)

3. frees its place, by explicitly adding one entrance permit to the train;

4. goes out from the station into the city.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 16/21

A public transportation system: travellers

traveller TRAVELERX,Y from city X to city Y: is a mobile process that
goes into X’s station where he becomes a passenger bound for Y:

TRAVELERX,Y , down stX :gst with Gdep . PSNGY

Gdep = mc(∅, {gtr}): good behaviour for departing passengers
(cannot move the station, may only leave the station by getting into a train)

PSNGY , down tr :gtr with Gpsng .

up stY :gst with Garr

. adde 〈gst , Gpsng〉 in tr : gtr . up Y :gcity with GY .P

A passenger bound for Y is a process that:

1. boards the train; Gpsng certifies good train-passenger behaviour;

2. gets off the train at the other station;
Garr = mc(∅, {gcity}): certificate of good arriving-passenger behaviour
(cannot move the station; may only exit into the city)

3. frees its place, by explicitly adding one entrance permit to the train;

4. goes out from the station into the city.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 16/21

A public transportation system: travellers

traveller TRAVELERX,Y from city X to city Y: is a mobile process that
goes into X’s station where he becomes a passenger bound for Y:

TRAVELERX,Y , down stX :gst with Gdep . PSNGY

Gdep = mc(∅, {gtr}): good behaviour for departing passengers
(cannot move the station, may only leave the station by getting into a train)

PSNGY , down tr :gtr with Gpsng . up stY :gst with Garr

. adde 〈gst , Gpsng〉 in tr : gtr . up Y :gcity with GY .P

A passenger bound for Y is a process that:

1. boards the train; Gpsng certifies good train-passenger behaviour;

2. gets off the train at the other station;
Garr = mc(∅, {gcity}): certificate of good arriving-passenger behaviour
(cannot move the station; may only exit into the city)

3. frees its place, by explicitly adding one entrance permit to the train;

4. goes out from the station into the city.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 16/21

A public transportation system: travellers

traveller TRAVELERX,Y from city X to city Y: is a mobile process that
goes into X’s station where he becomes a passenger bound for Y:

TRAVELERX,Y , down stX :gst with Gdep . PSNGY

Gdep = mc(∅, {gtr}): good behaviour for departing passengers
(cannot move the station, may only leave the station by getting into a train)

PSNGY , down tr :gtr with Gpsng . up stY :gst with Garr

. adde 〈gst , Gpsng〉 in tr : gtr

. up Y :gcity with GY .P

A passenger bound for Y is a process that:

1. boards the train; Gpsng certifies good train-passenger behaviour;

2. gets off the train at the other station;
Garr = mc(∅, {gcity}): certificate of good arriving-passenger behaviour
(cannot move the station; may only exit into the city)

3. frees its place, by explicitly adding one entrance permit to the train;

4. goes out from the station into the city.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 16/21

A public transportation system: travellers

traveller TRAVELERX,Y from city X to city Y: is a mobile process that
goes into X’s station where he becomes a passenger bound for Y:

TRAVELERX,Y , down stX :gst with Gdep . PSNGY

Gdep = mc(∅, {gtr}): good behaviour for departing passengers
(cannot move the station, may only leave the station by getting into a train)

PSNGY , down tr :gtr with Gpsng . up stY :gst with Garr

. adde 〈gst , Gpsng〉 in tr : gtr . up Y :gcity with GY .P

A passenger bound for Y is a process that:

1. boards the train; Gpsng certifies good train-passenger behaviour;

2. gets off the train at the other station;
Garr = mc(∅, {gcity}): certificate of good arriving-passenger behaviour
(cannot move the station; may only exit into the city)

3. frees its place, by explicitly adding one entrance permit to the train;

4. goes out from the station into the city.
Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 16/21

A public transportation system: initial configuration

The initial configuration is with the train in tur :

(ν tur ,flo, st tur , stflo) world :gw(Gw)[cw, ew‖ REST-OF-THE-WORLD |

tur :gcity(Gtur)[ctur, etur‖Rt | TRVLRStur,flo | st tur :gst(Gst)[cst, est‖ TRAIN]] |

flo :gcity(Gflo) [cflo, eflo‖Rf | TRVLRSflo,tur | stflo :gst(Gst)[cst, est‖0]]]

where TRVLRSX,Y is a parallel composition of processes TRAVELERX,Y.
Properties:

at most n PSNG processes can be within the train at the same time,
by the initial definitions of etr and TRAVELERX,Y;

no traveller can get into the train when this is outside a station: any
such action is dynamically blocked by etr;

. . .

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 17/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

Public transportation system: static and dynamic checking
Let FLORENTINE be a process whose behaviour is accepted in flor . Then:

the process TOURIST = up flor :gcity with Gflo . FLORENTINE, willing to
exit into flor from a (possibly mobile) nested ambient, is well typed

the process BADPSNG = down tr :gtr with Gbad . TOURIST,
where Gbad = mc(∅, {gcity}), is also well typed, since:

Gbad truthfully declares TOURIST’s intention to get off into a city

no global assumptions on the ambient names like tr (there might
be other trains named tr where getting off is always allowed . . .)

the process TOURIST cannot be statically put within the train,
since Gtr doesn’t allow processes to go directly to cities: gcity 6∈ E (Gtr)

on the other hand, the process BADPSNG:

statically can be put inside a station,
since Gst allows processes to go to trains: gtr ∈ E (Gst)

dynamically is prevented from boarding the train, since
no permit 〈gst , Gbad〉 is available in the train’s e-component.

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 18/21

The global permit-granting hierarchy

Static global assumption of a partial order O over group names:
the action

add• δϕ in m:g (with • = c,e

is statically allowed in a g′-process only if g ≤O g′.

〈〈g, g′〉〉 ∈ O O; Σ ` α : amb O; Σ ` γ : group

O; Σ ` addc γϕ in α:g : g′(G)Ã g′(G)
(ADD-C)

〈〈g, g′〉〉 ∈ O O; Σ ` α : amb O; Σ ` γ : group

O; Σ ` adde 〈γ,G〉ϕ in α:g : g′(G′)Ã g′(G′)
(ADD-E)

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 19/21

In the full paper:

Complete definitions of:

1. typing rules

2. (typed) reduction semantics
observational equivalence (barbed congruence)

3. typed LTS
bisimilarity

Results:

subject reduction

soundness of bisimilarity w.r.t. the barbed congruence

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 20/21

In the full paper:

Complete definitions of:

1. typing rules

2. (typed) reduction semantics
observational equivalence (barbed congruence)

3. typed LTS
bisimilarity

Results:

subject reduction

soundness of bisimilarity w.r.t. the barbed congruence

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 20/21

Conclusions

A typed ambient/process calculus with:

interplay between static and dynamic type-checking, and between active and passive
rights, for handling the security requirements of global computing applications:

static type-checking controls (communication and) active mobility rights;

dynamic type-checking controls passive rights;

packing of a type within a mobile process and its check at destination as a (very)
abstract modelling of the proof-carrying code approach;

purely local static type checking, except for the global O hierarchy.

Some unsatisfactory aspects (future work?):

authorization to add permits is too coarse-grain (either no adding, or adding with any
multiplicity)

absence of group restriction, useful for protection from external untrusted agents;

lack of expressive synchronizing mechanisms (only communication), making awkward
to control unwanted nondeterminism;

...

Dynamic and Local Typing for Mobile Ambients – Venice, June 14, 2004 – p. 21/21

	
ormalsize Modelling of wide-area distributed and mobile computing:
	A proposal
	
ormalsize The typed calculus: mobility primitives
	
ormalsize Process mobility: 	extsf {down}
	
ormalsize Process mobility: 	extsf {up}
	Types
	Types
	Types
	Types
	Types
	Types
	Types
	Types

	
ormalsize Static types: active mobility
	
ormalsize Static types: active mobility
	
ormalsize Static types: active mobility
	
ormalsize Static types: active mobility
	
ormalsize Static types: active mobility

	
ormalsize Runtime packing of static types
	
ormalsize Runtime packing of static types
	
ormalsize Runtime packing of static types
	
ormalsize Runtime packing of static types
	
ormalsize Runtime packing of static types
	
ormalsize Runtime packing of static types

	
ormalsize The syntax of types
	
ormalsize Dynamic types: passive mobility
	
ormalsize Dynamic types: passive mobility
	
ormalsize Dynamic types: passive mobility
	
ormalsize Dynamic types: passive mobility
	
ormalsize Dynamic types: passive mobility

	
ormalsize Dynamic modification of mobility permits
	
ormalsize Dynamic modification of mobility permits
	
ormalsize Dynamic modification of mobility permits
	
ormalsize Dynamic modification of mobility permits
	
ormalsize Dynamic modification of mobility permits

	
ormalsize An example: a public transportation system
	
ormalsize An example: a public transportation system
	
ormalsize An example: a public transportation system
	
ormalsize An example: a public transportation system
	
ormalsize An example: a public transportation system

	
ormalsize A public transportation system: stations
	
ormalsize A public transportation system: stations
	
ormalsize A public transportation system: stations
	
ormalsize A public transportation system: stations
	
ormalsize A public transportation system: stations
	
ormalsize A public transportation system: stations
	
ormalsize A public transportation system: stations
	
ormalsize A public transportation system: stations

	
ormalsize A public transportation system: the train
	
ormalsize A public transportation system: the train
	
ormalsize A public transportation system: the train
	
ormalsize A public transportation system: the train
	
ormalsize A public transportation system: the train
	
ormalsize A public transportation system: the train
	
ormalsize A public transportation system: the train

	
ormalsize A public transportation system: travellers
	
ormalsize A public transportation system: travellers
	
ormalsize A public transportation system: travellers
	
ormalsize A public transportation system: travellers
	
ormalsize A public transportation system: travellers
	
ormalsize A public transportation system: travellers

	
ormalsize A public transportation system: initial configuration
	
ormalsize Public transportation system: static and dynamic checking
	
ormalsize Public transportation system: static and dynamic checking
	
ormalsize Public transportation system: static and dynamic checking
	
ormalsize Public transportation system: static and dynamic checking
	
ormalsize Public transportation system: static and dynamic checking
	
ormalsize Public transportation system: static and dynamic checking
	
ormalsize Public transportation system: static and dynamic checking
	
ormalsize Public transportation system: static and dynamic checking
	
ormalsize Public transportation system: static and dynamic checking

	
ormalsize The global permit-granting hierarchy
	
ormalsize In the full paper:
	
ormalsize In the full paper:

	
ormalsize Conclusions

