
Re-classification and
Multi-threading: F ickleMT

MYTHS/MIKADO/DART Meeting, Venice, June 14, 2004

joint work with Ferruccio Damiani and Paola Giannini

FickleMT , SAC-OOP 2004 – p. 1/30

Contents of the talk

Introduction and Motivation
through examples

Operational Semantics

Type System

Soundness

Translation

FickleMT , SAC-OOP 2004 – p. 2/30

Example

Frogs and princes play. Frogs blow up their pouch when
woken up, princes swing their sword.

FickleMT , SAC-OOP 2004 – p. 3/30

Example

Frogs and princes play. Frogs blow up their pouch when
woken up, princes swing their sword.

class Player{ int age; void wake(){...} }

FickleMT , SAC-OOP 2004 – p. 3/30

Example

Frogs and princes play. Frogs blow up their pouch when
woken up, princes swing their sword.

class Player{ int age; void wake(){...} }

class Frog extends Player{

Vocal pouch;

void wake(){pouch.blow() }

}

class Prince extends Player{

Weapon sword;

void wake(){sword.swing()}

}

FickleMT , SAC-OOP 2004 – p. 3/30

Example

Frogs and princes play. Frogs blow up their pouch when
woken up, princes swing their sword.

class Player{ int age; void wake(){...} }

class Frog extends Player{

Vocal pouch;

void wake(){pouch.blow() }

}

class Prince extends Player{

Weapon sword;

void wake(){sword.swing()}

}

but then, ...

FickleMT , SAC-OOP 2004 – p. 3/30

Example cont.
Frogs turn into princes when kissed

FickleMT , SAC-OOP 2004 – p. 4/30

Example cont.
Frogs turn into princes when kissed

root class Player{int age; void wake(){...} void kissed(){...} }

FickleMT , SAC-OOP 2004 – p. 4/30

Example cont.
Frogs turn into princes when kissed

root class Player{int age; void wake(){...} void kissed(){...} }

state class Frog extends Player{

Vocal pouch;

void wake(){pouch.blow() }

void kissed(){this⇓Prince}

}

state class Prince extends Player{

Weapon sword;

void wake(){sword.swing()}

void kissed(){...}

}

FickleMT , SAC-OOP 2004 – p. 4/30

Example cont.
Frogs turn into princes when kissed

root class Player{int age; void wake(){...} void kissed(){...} }

state class Frog extends Player{

Vocal pouch;

void wake(){pouch.blow() }

void kissed(){this⇓Prince}

}

state class Prince extends Player{

Weapon sword;

void wake(){sword.swing()}

void kissed(){...}

}

Player p1, p2; p1:= new Frog; p2:= p1 ;

FickleMT , SAC-OOP 2004 – p. 4/30

Example cont.
Frogs turn into princes when kissed

root class Player{int age; void wake(){...} void kissed(){...} }

state class Frog extends Player{

Vocal pouch;

void wake(){pouch.blow() }

void kissed(){this⇓Prince}

}

state class Prince extends Player{

Weapon sword;

void wake(){sword.swing()}

void kissed(){...}

}

Player p1, p2; p1:= new Frog; p2:= p1 ;

p2.wake(); blow up pouch

FickleMT , SAC-OOP 2004 – p. 4/30

Example cont.
Frogs turn into princes when kissed

root class Player{int age; void wake(){...} void kissed(){...} }

state class Frog extends Player{

Vocal pouch;

void wake(){pouch.blow() }

void kissed(){this⇓Prince}

}

state class Prince extends Player{

Weapon sword;

void wake(){sword.swing()}

void kissed(){...}

}

Player p1, p2; p1:= new Frog; p2:= p1 ;

p2.wake(); blow up pouch

p1.kissed(); p1 and p2 turn into prince

FickleMT , SAC-OOP 2004 – p. 4/30

Example cont.
Frogs turn into princes when kissed

root class Player{int age; void wake(){...} void kissed(){...} }

state class Frog extends Player{

Vocal pouch;

void wake(){pouch.blow() }

void kissed(){this⇓Prince}

}

state class Prince extends Player{

Weapon sword;

void wake(){sword.swing()}

void kissed(){...}

}

Player p1, p2; p1:= new Frog; p2:= p1 ;

p2.wake(); blow up pouch

p1.kissed(); p1 and p2 turn into prince

p2.wake(); swing sword

FickleMT , SAC-OOP 2004 – p. 4/30

Reclassification

F ickle = minimal Java-like language extended with

FickleMT , SAC-OOP 2004 – p. 5/30

Reclassification

F ickle = minimal Java-like language extended with

operation this⇓c sets class of this to c (p1.kiss()
reclassifies p1 and all its aliases to Prince);

FickleMT , SAC-OOP 2004 – p. 5/30

Reclassification

F ickle = minimal Java-like language extended with

operation this⇓c sets class of this to c (p1.kiss()
reclassifies p1 and all its aliases to Prince);

state-classes (Frog, Prince), whose objects may be
re-classified;

FickleMT , SAC-OOP 2004 – p. 5/30

Reclassification

F ickle = minimal Java-like language extended with

operation this⇓c sets class of this to c (p1.kiss()
reclassifies p1 and all its aliases to Prince);

state-classes (Frog, Prince), whose objects may be
re-classified;

root-classes (Player), the superclasses of state-classes;

FickleMT , SAC-OOP 2004 – p. 5/30

Reclassification

F ickle = minimal Java-like language extended with

operation this⇓c sets class of this to c (p1.kiss()
reclassifies p1 and all its aliases to Prince);

state-classes (Frog, Prince), whose objects may be
re-classified;

root-classes (Player), the superclasses of state-classes;

reclassification restricted across subclasses of same
root-class.

FickleMT , SAC-OOP 2004 – p. 5/30

Reclassification

F ickle = minimal Java-like language extended with

operation this⇓c sets class of this to c (p1.kiss()
reclassifies p1 and all its aliases to Prince);

state-classes (Frog, Prince), whose objects may be
re-classified;

root-classes (Player), the superclasses of state-classes;

reclassification restricted across subclasses of same
root-class.

This allows us to express frogs turning into princes, windows
being iconified and expanded, empty stacks becoming non-
empty and non-empty stacks becoming empty, etc., etc., etc.

FickleMT , SAC-OOP 2004 – p. 5/30

Multi-threading: F ickleMT

spawn(e) starts the evaluation of the expression e

in a new thread

FickleMT , SAC-OOP 2004 – p. 6/30

Multi-threading: F ickleMT

spawn(e) starts the evaluation of the expression e

in a new thread
class Game extends Object{

bool play(Player x)
{spawn(x.wake());
spawn(x.kissed())}

}

FickleMT , SAC-OOP 2004 – p. 6/30

Multi-threading: F ickleMT

spawn(e) starts the evaluation of the expression e

in a new thread
class Game extends Object{

bool play(Player x)
{spawn(x.wake());
spawn(x.kissed())}

}
(new Game).play(new Frog)

FickleMT , SAC-OOP 2004 – p. 6/30

Key Example

FickleMT , SAC-OOP 2004 – p. 7/30

Key Example

FickleMT , SAC-OOP 2004 – p. 8/30

Key Example

FickleMT , SAC-OOP 2004 – p. 9/30

Key Example

FickleMT , SAC-OOP 2004 – p. 10/30

The Problem

Prevent executions in which one
thread reclassifies an object while
another one is executing a method

on the same object

FickleMT , SAC-OOP 2004 – p. 11/30

The Problem

Prevent executions in which one
thread reclassifies an object while
another one is executing a method

on the same object

without causing deadlocks

FickleMT , SAC-OOP 2004 – p. 11/30

Our Solution

We need to know:
the objects that may be reclassified by a thread
the re-classifiable objects that are used as receivers
of method calls by a thread

FickleMT , SAC-OOP 2004 – p. 12/30

Our Solution

We need to know:
the objects that may be reclassified by a thread
the re-classifiable objects that are used as receivers
of method calls by a thread

The type system gathers information on the type of
objects reclassified and/or used as receivers

FickleMT , SAC-OOP 2004 – p. 12/30

Our Solution

We need to know:
the objects that may be reclassified by a thread
the re-classifiable objects that are used as receivers
of method calls by a thread

The type system gathers information on the type of
objects reclassified and/or used as receivers

The operational semantics uses this static information
to block threads that could cause errors (dynamic
check)

FickleMT , SAC-OOP 2004 – p. 12/30

Our Solution

We need to know:
the objects that may be reclassified by a thread
the re-classifiable objects that are used as receivers
of method calls by a thread

The type system gathers information on the type of
objects reclassified and/or used as receivers

The operational semantics uses this static information
to block threads that could cause errors (dynamic
check)

This blocking threads does not cause deadlock

FickleMT , SAC-OOP 2004 – p. 12/30

Our Solution

We need to know:
the objects that may be reclassified by a thread
the re-classifiable objects that are used as receivers
of method calls by a thread

The type system gathers information on the type of
objects reclassified and/or used as receivers

The operational semantics uses this static information
to block threads that could cause errors (dynamic
check)

This blocking threads does not cause deadlock : a top-
level method call acquires the right to have all the objects
that may be reclassified or be method call’s receivers
during its call.

FickleMT , SAC-OOP 2004 – p. 12/30

Contents of the talk

Introduction and Motivation
through examples

Operational Semantics

Type System

Soundness

Translation

FickleMT , SAC-OOP 2004 – p. 13/30

Method Declaration

t m (t′ x) Θ { e }

FickleMT , SAC-OOP 2004 – p. 14/30

Method Declaration

t m (t′ x) Θ { e }

t is the result type

FickleMT , SAC-OOP 2004 – p. 14/30

Method Declaration

t m (t′ x) Θ { e }

t is the result type

t′ is the type of the formal parameter x

FickleMT , SAC-OOP 2004 – p. 14/30

Method Declaration

t m (t′ x) Θ { e }

t is the result type

t′ is the type of the formal parameter x

e is the method’s body

FickleMT , SAC-OOP 2004 – p. 14/30

Method Declaration

t m (t′ x) Θ { e }

t is the result type

t′ is the type of the formal parameter x

e is the method’s body

Θ is the effect: a pair 〈φ, ψ〉

FickleMT , SAC-OOP 2004 – p. 14/30

Method Declaration

t m (t′ x) Θ { e }

t is the result type

t′ is the type of the formal parameter x

e is the method’s body

Θ is the effect: a pair 〈φ, ψ〉
φ, the re-classification effect, is a set of root classes
whose objects could be re-classified during the
evaluation of e

FickleMT , SAC-OOP 2004 – p. 14/30

Method Declaration

t m (t′ x) Θ { e }

t is the result type

t′ is the type of the formal parameter x

e is the method’s body

Θ is the effect: a pair 〈φ, ψ〉
φ, the re-classification effect, is a set of root classes
whose objects could be re-classified during the
evaluation of e

ψ, the receive effect, is a set of root classes whose
objects could receive a method call during the
evaluation of e

FickleMT , SAC-OOP 2004 – p. 14/30

Example cont.
root class Player{ int age;

void wake() {...}

void kissed() {...}

}

state class Frog extends Player{ Vocal pouch;

void wake() {pouch.blow()}

void kissed() {this⇓Prince}

}

state class Prince extends Player{ Weapon sword;

void wake() {sword.swing()}

void kissed() {...}

}

more

FickleMT , SAC-OOP 2004 – p. 15/30

Example cont.
root class Player{ int age;

void wake() {...}

void kissed() {...}

}

state class Frog extends Player{ Vocal pouch;

void wake() {pouch.blow()}

void kissed() {this⇓Prince}

}

state class Prince extends Player{ Weapon sword;

void wake()〈{ }, {}〉{sword.swing()}

void kissed()〈{}, { }〉{...}

}

more

FickleMT , SAC-OOP 2004 – p. 15/30

Example cont.
root class Player{ int age;

void wake() {...}

void kissed() {...}

}

state class Frog extends Player{ Vocal pouch;

void wake()〈{ }, {}〉{pouch.blow()}

void kissed()〈 {Player } , { }〉{this⇓Prince}

}

state class Prince extends Player{ Weapon sword;

void wake()〈{ }, {}〉{sword.swing()}

void kissed()〈{}, { }〉{...}

}

more

FickleMT , SAC-OOP 2004 – p. 15/30

Example cont.
root class Player{ int age;

void wake()〈{ }, {}〉{...}

void kissed()〈 {Player } , { }〉{...}

}

state class Frog extends Player{ Vocal pouch;

void wake()〈{ }, {}〉{pouch.blow()}

void kissed()〈 {Player } , { }〉{this⇓Prince}

}

state class Prince extends Player{ Weapon sword;

void wake()〈{ }, {}〉{sword.swing()}

void kissed()〈{}, { }〉{...}

}

more

FickleMT , SAC-OOP 2004 – p. 15/30

Contents of the talk

Introduction and Motivation
through examples

Operational Semantics

Type System

Soundness

Translation

FickleMT , SAC-OOP 2004 – p. 16/30

Typing Judgments

P , Γ ` e : t [] c [] Θ

more
FickleMT , SAC-OOP 2004 – p. 17/30

Typing Judgments

P , Γ ` e : t [] c [] Θ

P (the program) contains the class definitions;

more
FickleMT , SAC-OOP 2004 – p. 17/30

Typing Judgments

P , Γ ` e : t [] c [] Θ

P (the program) contains the class definitions;

Γ gives the class of this (before the evaluation of e)
and the type of the formal parameter

more
FickleMT , SAC-OOP 2004 – p. 17/30

Typing Judgments

P , Γ ` e : t [] c [] Θ

P (the program) contains the class definitions;

Γ gives the class of this (before the evaluation of e)
and the type of the formal parameter

t is the type of values returned by the evaluation of e

more
FickleMT , SAC-OOP 2004 – p. 17/30

Typing Judgments

P , Γ ` e : t [] c [] Θ

P (the program) contains the class definitions;

Γ gives the class of this (before the evaluation of e)
and the type of the formal parameter

t is the type of values returned by the evaluation of e

c is the class of this after the evaluation of e

more
FickleMT , SAC-OOP 2004 – p. 17/30

Typing Judgments

P , Γ ` e : t [] c [] Θ

P (the program) contains the class definitions;

Γ gives the class of this (before the evaluation of e)
and the type of the formal parameter

t is the type of values returned by the evaluation of e

c is the class of this after the evaluation of e

Θ is the effect of the evaluation of e

more
FickleMT , SAC-OOP 2004 – p. 17/30

Typing Judgments

P , Γ ` e : t [] c [] Θ

P (the program) contains the class definitions;

Γ gives the class of this (before the evaluation of e)
and the type of the formal parameter

t is the type of values returned by the evaluation of e

c is the class of this after the evaluation of e

Θ is the effect of the evaluation of e : a pair 〈φ,ψ〉

φ, the re-classification effect, is a set of root classes whose

objects could be re-classified during the evaluation of e

ψ, the receive effect, is a set of root classes whose objects

could receive a method call during the evaluation of e

more
FickleMT , SAC-OOP 2004 – p. 17/30

Contents of the talk

Introduction and Motivation
through examples

Operational Semantics

Type System

Soundness

Translation

FickleMT , SAC-OOP 2004 – p. 18/30

Soundness

Subject Reduction: if a well-typed configuration
reduces to another configuration then the new configuration
is well-typed too (no message-not-understood errors)

more

FickleMT , SAC-OOP 2004 – p. 19/30

Soundness

Subject Reduction: if a well-typed configuration
reduces to another configuration then the new configuration
is well-typed too (no message-not-understood errors)

Progress: a well-typed configuration either is a final
one or it reduces (no deadlock)

more

FickleMT , SAC-OOP 2004 – p. 19/30

Contents of the talk

Introduction and Motivation
through examples

Operational Semantics

Type System

Soundness

Translation

FickleMT , SAC-OOP 2004 – p. 20/30

Translation into Java
the re-classification was already translated (Ancona,
Anderson, Damiani, Drossopoulou, Giannini, Zucca)

FickleMT , SAC-OOP 2004 – p. 21/30

Translation into Java
the re-classification was already translated (Ancona,
Anderson, Damiani, Drossopoulou, Giannini, Zucca)

a class Spawn which extends Thread:
for each spawn(e) a fresh class SpawnLabel which
extends Spawn with fields recording effects and
where the translation of e is the body of the run

method;
the translation of spawn(e) is
new SpawnLabel(x).start(); true ;

FickleMT , SAC-OOP 2004 – p. 21/30

Translation into Java
the re-classification was already translated (Ancona,
Anderson, Damiani, Drossopoulou, Giannini, Zucca)

a class Spawn which extends Thread:
for each spawn(e) a fresh class SpawnLabel which
extends Spawn with fields recording effects and
where the translation of e is the body of the run

method;
the translation of spawn(e) is
new SpawnLabel(x).start(); true ;

a class Gamma monitoring objects by means of
synchronised methods:

each method call waits until it can look the required
objects;
each method return notifies objects unlocks.

FickleMT , SAC-OOP 2004 – p. 21/30

Configuration

� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

FickleMT , SAC-OOP 2004 – p. 22/30

Configuration

� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

e is the expression to be evaluated

FickleMT , SAC-OOP 2004 – p. 22/30

Configuration

� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

e is the expression to be evaluated

χ is the heap

FickleMT , SAC-OOP 2004 – p. 22/30

Configuration

� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

e is the expression to be evaluated

χ is the heap

ρ is the frame

FickleMT , SAC-OOP 2004 – p. 22/30

Configuration

� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

e is the expression to be evaluated

χ is the heap

ρ is the frame

Θ is the effect: a pair 〈φ, ψ〉

FickleMT , SAC-OOP 2004 – p. 22/30

Configuration

� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

e is the expression to be evaluated

χ is the heap

ρ is the frame

Θ is the effect: a pair 〈φ, ψ〉
φ, the re-classification effect, is a set of root classes
whose objects could be re-classified during the
evaluation of e

ψ, the receive effect, is a set of classes whose
objects could receive a method call during the
evaluation of e

FickleMT , SAC-OOP 2004 – p. 22/30

Configuration
� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

FickleMT , SAC-OOP 2004 – p. 23/30

Configuration
� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

γ is the global object state: Addresses→ {−1, 0, 1, 2, ...}

FickleMT , SAC-OOP 2004 – p. 23/30

Configuration
� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

γ is the global object state: Addresses→ {−1, 0, 1, 2, ...}

γ(ι) = −1 means that the object at address ι could
be re-classified
γ(ι) ≥ 0 means that γ(ι) threads could use the object
at address ι as receiver.

FickleMT , SAC-OOP 2004 – p. 23/30

Configuration
� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

γ is the global object state: Addresses→ {−1, 0, 1, 2, ...}

γ(ι) = −1 means that the object at address ι could
be re-classified
γ(ι) ≥ 0 means that γ(ι) threads could use the object
at address ι as receiver.

λ is the local object state: Addresses→ {−1, 0, 1}

FickleMT , SAC-OOP 2004 – p. 23/30

Configuration
� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

γ is the global object state: Addresses→ {−1, 0, 1, 2, ...}

γ(ι) = −1 means that the object at address ι could
be re-classified
γ(ι) ≥ 0 means that γ(ι) threads could use the object
at address ι as receiver.

λ is the local object state: Addresses→ {−1, 0, 1}

λ(ι) = −1 means that the object at address ι could
be re-classified by the current thread
λ(ι) = 0 means that the current thread does not use
the object at address ι as receiver
λ(ι) = 1 means that the current thread uses the
object at address ι as receiver.

FickleMT , SAC-OOP 2004 – p. 23/30

Top Level Method Call

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
γ is 0 for all objects belonging to classes in φ

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
γ is 0 for all objects belonging to classes in φ
γ is ≥ 0 for all objects belonging to classes in ψ ∪ {c}

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
γ is 0 for all objects belonging to classes in φ
γ is ≥ 0 for all objects belonging to classes in ψ ∪ {c}

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

↓P
� χ, γ′, {..., 〈ρ, λ′, 〈φ, ψ ∪ {c}〉, returno(ρ′, e)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
γ is 0 for all objects belonging to classes in φ
γ is ≥ 0 for all objects belonging to classes in ψ ∪ {c}

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

↓P
� χ, γ′, {..., 〈ρ, λ′, 〈φ, ψ ∪ {c}〉, returno(ρ′, e)〉, ...} �

ρ′ = [x 7→ v, this 7→ ι]

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
γ is 0 for all objects belonging to classes in φ
γ is ≥ 0 for all objects belonging to classes in ψ ∪ {c}

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

↓P
� χ, γ′, {..., 〈ρ, λ′, 〈φ, ψ ∪ {c}〉, returno(ρ′, e)〉, ...} �

ρ′ = [x 7→ v, this 7→ ι]
γ′ is −1 for all objects belonging to classes in φ

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
γ is 0 for all objects belonging to classes in φ
γ is ≥ 0 for all objects belonging to classes in ψ ∪ {c}

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

↓P
� χ, γ′, {..., 〈ρ, λ′, 〈φ, ψ ∪ {c}〉, returno(ρ′, e)〉, ...} �

ρ′ = [x 7→ v, this 7→ ι]
γ′ is −1 for all objects belonging to classes in φ
γ′ is γ + 1 for all objects belonging to classes in ψ ∪ {c}

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
γ is 0 for all objects belonging to classes in φ
γ is ≥ 0 for all objects belonging to classes in ψ ∪ {c}

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

↓P
� χ, γ′, {..., 〈ρ, λ′, 〈φ, ψ ∪ {c}〉, returno(ρ′, e)〉, ...} �

ρ′ = [x 7→ v, this 7→ ι]
γ′ is −1 for all objects belonging to classes in φ
γ′ is γ + 1 for all objects belonging to classes in ψ ∪ {c}
λ′ is −1 for all objects belonging to classes in φ

FickleMT , SAC-OOP 2004 – p. 24/30

Top Level Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
γ is 0 for all objects belonging to classes in φ
γ is ≥ 0 for all objects belonging to classes in ψ ∪ {c}

� χ, γ, {..., 〈ρ, λ0, 〈{}, {}〉, ι.m(v)〉, ...} �

↓P
� χ, γ′, {..., 〈ρ, λ′, 〈φ, ψ ∪ {c}〉, returno(ρ′, e)〉, ...} �

ρ′ = [x 7→ v, this 7→ ι]
γ′ is −1 for all objects belonging to classes in φ
γ′ is γ + 1 for all objects belonging to classes in ψ ∪ {c}
λ′ is −1 for all objects belonging to classes in φ
λ′ is 1 for all objects belonging to classes in ψ ∪ {c}

FickleMT , SAC-OOP 2004 – p. 24/30

Inner Method Call

� χ, γ, {..., 〈ρ, λ,Θ, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 25/30

Inner Method Call

χ(ι) = [[...]]c

� χ, γ, {..., 〈ρ, λ,Θ, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 25/30

Inner Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }

� χ, γ, {..., 〈ρ, λ,Θ, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 25/30

Inner Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
Θ 6= 〈{}, {}〉

� χ, γ, {..., 〈ρ, λ,Θ, ι.m(v)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 25/30

Inner Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
Θ 6= 〈{}, {}〉

� χ, γ, {..., 〈ρ, λ,Θ, ι.m(v)〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, returni(ρ′, e)〉, ...} �

FickleMT , SAC-OOP 2004 – p. 25/30

Inner Method Call

χ(ι) = [[...]]c

M(P, c,m) = t m (t′ x) 〈φ, ψ〉 { e }
Θ 6= 〈{}, {}〉

� χ, γ, {..., 〈ρ, λ,Θ, ι.m(v)〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, returni(ρ′, e)〉, ...} �

ρ′ = [x 7→ v, this 7→ ι]

FickleMT , SAC-OOP 2004 – p. 25/30

Spawn

� χ, γ, {..., 〈ρ, λ,Θ, C[spawn(e)]〉, ...} �

FickleMT , SAC-OOP 2004 – p. 26/30

Spawn

C does not contain returnη(..., ...)

� χ, γ, {..., 〈ρ, λ,Θ, C[spawn(e)]〉, ...} �

FickleMT , SAC-OOP 2004 – p. 26/30

Spawn

C does not contain returnη(..., ...)

� χ, γ, {..., 〈ρ, λ,Θ, C[spawn(e)]〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, C[true]〉, 〈ρ, λ0,Θ0, e〉, ...} �

FickleMT , SAC-OOP 2004 – p. 26/30

Spawn

C does not contain returnη(..., ...)

� χ, γ, {..., 〈ρ, λ,Θ, C[spawn(e)]〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, C[true]〉, 〈ρ, λ0,Θ0, e〉, ...} �

Θ0 = 〈{}, {}〉

FickleMT , SAC-OOP 2004 – p. 26/30

Spawn

C does not contain returnη(..., ...)

� χ, γ, {..., 〈ρ, λ,Θ, C[spawn(e)]〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, C[true]〉, 〈ρ, λ0,Θ0, e〉, ...} �

Θ0 = 〈{}, {}〉

� χ, γ, {..., 〈ρ, λ,Θ, E [returnη(ρ′, C[spawn(e)])]〉, ...} �

back

FickleMT , SAC-OOP 2004 – p. 26/30

Spawn

C does not contain returnη(..., ...)

� χ, γ, {..., 〈ρ, λ,Θ, C[spawn(e)]〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, C[true]〉, 〈ρ, λ0,Θ0, e〉, ...} �

Θ0 = 〈{}, {}〉

� χ, γ, {..., 〈ρ, λ,Θ, E [returnη(ρ′, C[spawn(e)])]〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, E [return

η(ρ′, C[true])]〉, 〈ρ′, λ0,Θ0, e〉, ...} �

back

FickleMT , SAC-OOP 2004 – p. 26/30

Typing Rules

c′ = root-superclass of c

= root-superclass of Γ(this)
(recl)

P , Γ ` this⇓c : c [] c [] 〈{c′}, {}〉

back
FickleMT , SAC-OOP 2004 – p. 27/30

Typing Rules

c′ = root-superclass of c

= root-superclass of Γ(this)
(recl)

P , Γ ` this⇓c : c [] c [] 〈{c′}, {}〉

P, {t1 x,Object this} ` e : t [] Object [] Θ
(spawn)

P, {t1 x, c this} ` spawn(e) : bool [] c [] 〈{}, {}〉

back
FickleMT , SAC-OOP 2004 – p. 27/30

Typing Rules

c′ = root-superclass of c

= root-superclass of Γ(this)
(recl)

P , Γ ` this⇓c : c [] c [] 〈{c′}, {}〉

P, {t1 x,Object this} ` e : t [] Object [] Θ
(spawn)

P, {t1 x, c this} ` spawn(e) : bool [] c [] 〈{}, {}〉

P, Γ ` e0 : c [] Γ(this) [] 〈φ0, ψ0〉

P, Γ ` e1 : t1 [] Γ(this) [] 〈φ1, ψ1〉

root-superclass of Γ(this) 6∈ φ0 ∪ φ1

M(P, c,m) = t m(t1 x) 〈φ, ψ〉 { ... }
(meth)

P, Γ ` e0.m(e1) : t [] φ@P Γ(this) [] Θ

Θ = 〈φ, ψ〉 ∪ 〈φ0, ψ0〉 ∪ 〈φ1, ψ1〉 ∪ 〈{}, {c}〉

back
FickleMT , SAC-OOP 2004 – p. 27/30

Subject Reduction

� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

↓P
� χ′, γ′, {..., 〈ρ′, λ′,Θ′, e′〉, ...} �

P , Γ ` e : t [] c [] Θ′′

FickleMT , SAC-OOP 2004 – p. 28/30

Subject Reduction

� χ, γ, {..., 〈ρ, λ,Θ, e〉, ...} �

↓P
� χ′, γ′, {..., 〈ρ′, λ′,Θ′, e′〉, ...} �

P , Γ ` e : t [] c [] Θ′′

⇓

P, Γ′ ` e′ : t [] c [] Θ′′

FickleMT , SAC-OOP 2004 – p. 28/30

Subject Reduction cont.

� χ, γ, {..., 〈ρ, λ,Θ, E [spawn(e)]〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, E [true]〉, 〈ρ′, λ0,Θ0, e〉, ...} �

P , Γ ` E [spawn(e)] : t [] c [] Θ′′

FickleMT , SAC-OOP 2004 – p. 29/30

Subject Reduction cont.

� χ, γ, {..., 〈ρ, λ,Θ, E [spawn(e)]〉, ...} �

↓P
� χ, γ, {..., 〈ρ, λ,Θ, E [true]〉, 〈ρ′, λ0,Θ0, e〉, ...} �

P , Γ ` E [spawn(e)] : t [] c [] Θ′′

⇓

P, Γ ` E [true] : t [] c [] Θ′′

P , Γ′ ` e : t′ [] Object [] Θ′′′

Γ′ = {Γ(x) x,Object this}

FickleMT , SAC-OOP 2004 – p. 29/30

Progress
e0 is a well-typed expression

� χ0, γ0, {〈ρ0, λ0,Θ0, e0〉} �

↓P...
↓P

� χ, γ, {〈ρ1, λ1,Θ1, e1〉, ..., 〈ρn, λn,Θn, en〉} �

there is one ei which is not a value

back FickleMT , SAC-OOP 2004 – p. 30/30

Progress
e0 is a well-typed expression

� χ0, γ0, {〈ρ0, λ0,Θ0, e0〉} �

↓P...
↓P

� χ, γ, {〈ρ1, λ1,Θ1, e1〉, ..., 〈ρn, λn,Θn, en〉} �

there is one ei which is not a value

⇓

� χ, γ, {〈ρ1, λ1,Θ1, e1〉, ..., 〈ρn, λn,Θn, en〉} �

↓P
· · ·

back FickleMT , SAC-OOP 2004 – p. 30/30

	
	Contents of the talk
	myred {Example}
	myred {Example}
	myred {Example}
	myred {Example}

	myred {Example cont.}
	myred {Example cont.}
	myred {Example cont.}
	myred {Example cont.}
	myred {Example cont.}
	myred {Example cont.}
	myred {Example cont.}

	myred {Reclassi{f}ication}
	myred {Reclassi{f}ication}
	myred {Reclassi{f}ication}
	myred {Reclassi{f}ication}
	myred {Reclassi{f}ication}
	myred {Reclassi{f}ication}

	myred {Multi-threading: $LangMT $}
	myred {Multi-threading: $LangMT $}
	myred {Multi-threading: $LangMT $}

	myred Key Example
	myred Key Example
	myred Key Example
	myred Key Example
	myred {The Problem}
	myred {The Problem}

	myred {Our Solution}
	myred {Our Solution}
	myred {Our Solution}
	myred {Our Solution}
	myred {Our Solution}

	Contents of the talk
	myred {Method Declaration}
	myred {Method Declaration}
	myred {Method Declaration}
	myred {Method Declaration}
	myred {Method Declaration}
	myred {Method Declaration}
	myred {Method Declaration}

	myred {Example cont.}
	myred {Example cont.}
	myred {Example cont.}
	myred {Example cont.}

	Contents of the talk
	myred {Typing Judgments}
	myred {Typing Judgments}
	myred {Typing Judgments}
	myred {Typing Judgments}
	myred {Typing Judgments}
	myred {Typing Judgments}
	myred {Typing Judgments}

	Contents of the talk
	myred Soundness
	myred Soundness

	Contents of the talk
	myred Translation into Java
	myred Translation into Java
	myred Translation into Java

	myred {Configuration}
	myred {Configuration}
	myred {Configuration}
	myred {Configuration}
	myred {Configuration}
	myred {Configuration}

	myred {Configuration}
	myred {Configuration}
	myred {Configuration}
	myred {Configuration}
	myred {Configuration}

	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}
	myred {Top Level Method Call}

	myred {Inner Method Call}
	myred {Inner Method Call}
	myred {Inner Method Call}
	myred {Inner Method Call}
	myred {Inner Method Call}
	myred {Inner Method Call}

	myred {Spawn}
	myred {Spawn}
	myred {Spawn}
	myred {Spawn}
	myred {Spawn}
	myred {Spawn}

	myred {Typing Rules}
	myred {Typing Rules}
	myred {Typing Rules}

	myred Subject Reduction
	myred Subject Reduction

	myred Subject Reduction cont.
	myred Subject Reduction cont.

	myred Progress
	myred Progress

