Type-Based Discretionary Access Control

Silvia Crafa

joint work with M. Bugliesi and D. Colazzo

MYTHS

Dipartimento di Informatica Università di Venezia, Ca' Foscari

Access Control in the pi calculus

Printing jobs via a spooler:

Print Spooler $S \triangleq !spool(x). \overline{print}\langle x \rangle$ Print Client $C \triangleq \overline{spool}\langle j_1 \rangle. \overline{spool}\langle j_2 \rangle...$

- Spooling channel *spool* publicly known
- Can we guarantee that client jobs are printed?
- No! ... clients may steel jobs: $S \mid C \mid ! spool(x).0$

Types for Access Control

Associate names with capabilities

• deliver spooling channel with read-only capabilities

 $S \triangleq (\boldsymbol{\nu} spool) \ !(\ \overline{p} \langle spool \rangle \ | \ spool(y).\overline{print} \langle y \rangle \)$

 $C \triangleq p(x:T^{\mathsf{w}}). \overline{x}\langle j_1 \rangle. \overline{x}\langle j_2 \rangle...$

- p is the connecting port, publicly known; spool is the spooling channel, now private
- Can we guarantee that client jobs are printed?
- Yes: $S \mid C \mid p(x) .! x(y) .0$ is not type correct ... in all contexts to which p is known as $p : ((T)^{w})^{rw}$

Stronger guarantees may be desirable

• Client jobs should not be logged or leaked

 \implies disallow leaking spoolers like

 $!spool(x). \overline{log}\langle x \rangle. \overline{print}\langle x \rangle | log(y).SPY$

Stronger guarantees may be desirable

● Client jobs should not be logged or leaked
 ⇒ must disallow leaking spoolers like

 $!spool(x). \overline{log}\langle x \rangle. \overline{print}\langle x \rangle \quad | \quad log(y).SPY$

• Clients want to receive reliable ackowledgements as in

$$\underbrace{!spool(x). \overline{print}\langle x \rangle}_{spooler} \mid \underbrace{!print(x).(\mathsf{P} \mid \overline{ack}\langle x \rangle)}_{printer}$$

 \implies must disallow cheating spoolers like

 $!spool(x). \overline{ack}\langle x \rangle$

Need more informative types

- Control the flow of names among system components
- One needs the ability to express/enforce discretionary policies of access control governing
 - which authorities may legally receive values of a given type
 - what (type) capabilities should be passed along with the values
- Capability types, à la Pierce-Sangiorgi, do not help provide the intended guarantees

Controlling delivery of names

Associate names with delivery policies

- Capability-based control system + new information to describe/prescribe the ways that values may be exchanged among system components.
- the new types generalize **Group Types** [CGG00]

$\mathsf{G}[\ T\ \parallel\ \Delta\]$

- G : the authority in control of the values of the type
- T : structural information about values
- $-\Delta$: delivery policy, to control how values are passed around (to which authorities, with which capabilities)

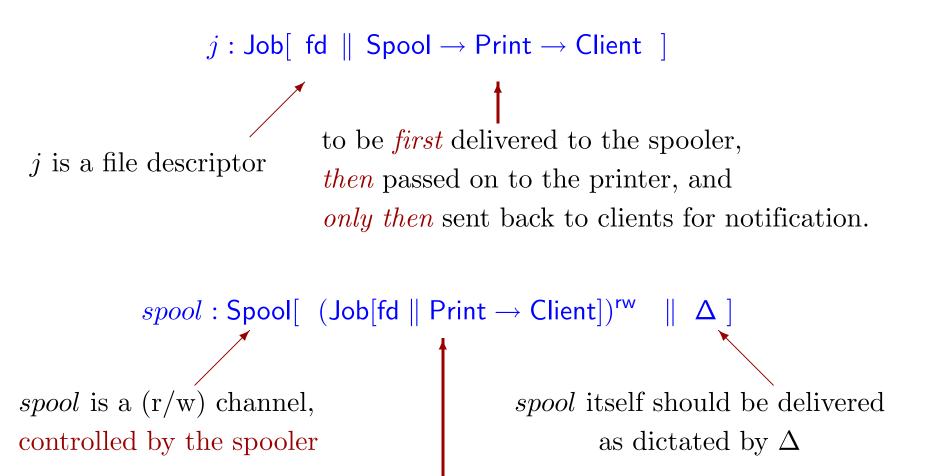
Type based control of the spooler

 $j: \mathsf{Job}[\mathsf{fd} \parallel \mathsf{Spool} \to \mathsf{Print} \to \mathsf{Client}]$

j is a file descriptor

to be *first* delivered to the spooler, *then* passed on to the printer, and *only then* sent back to clients for notification.

Type based control of the spooler



it carries file desc. which may be passed on to a client only after having been transmitted to the printer

Type based control of the spooler

$$J = Job[fd \parallel Spool \rightarrow Print \rightarrow Client]$$

$$S = Spool[\underbrace{(Job[fd \parallel Print \rightarrow Client])^{rw}}_{SJ} \parallel \Delta]$$

$$j: J, spool: S \vdash \underbrace{spool(x:SJ)...}_{spooler} \mid \underbrace{spool(j)}_{client}$$

- x (hence j) may only be delivered as prescribed by SJ
- there is no possibility of logging/cheating: $!spool(x:SJ). \overline{ack}\langle x \rangle$ and $!spool(x:SJ). \overline{log}\langle x \rangle. \overline{print}\langle x \rangle$

Note: <u>j</u> must be given different types as it is delivered: $Job[fd \parallel Spool \rightarrow Print \rightarrow Client]$ $Job[fd \parallel Print \rightarrow Client]$ $Job[fd \parallel Client]$

Type Based DAC Policies

Our types support powerful policies

- delivery chains of bounded/unbounded depth;
- multiple (branching) chains along alternative paths

 $\mathsf{G}[T \parallel \mathsf{G}_1 \to \mathsf{G}_2 \to \mathsf{G}_3 ; \mathsf{G}'_1 \to (\mathsf{G}'_2; \mathsf{G}'_3 \to \mathsf{G}'_4)]$

• delivery at different (super) types depending on recipients

 $n: \mathsf{G}[(\mathsf{int})^{\mathsf{rw}} \parallel \mathsf{G}_1@(\mathsf{int})^{\mathsf{w}} \to \mathsf{G}_2@(\mathsf{int})^{\mathsf{w}}; \ \mathsf{G}_3@(\mathsf{int})^{\mathsf{r}}]$

Main Result (Safety)

In well-typed processes all names flow according to the delivery policies specified by their types, and are received at the intended sites with the intended capabilities.

A typed pi calculus with groups

Syntax as in [CGG00]

$$P ::= \mathbf{0} \mid a(x_1 : \tau_1, \dots, x_n : \tau_n) . P \mid \overline{a} \langle b_1, \dots, b_n \rangle . P$$
$$\mid (\boldsymbol{\nu} n : \tau) P \mid (\boldsymbol{\nu} G) P \mid P \mid P \mid P$$

Types generalize those in [CGG00]

Structural Types $T ::= \mathsf{B} \mid (\tau_1, \dots, \tau_n)^{\nu}$ $(\tau_i \text{ closed})$ Resource Types $\tau ::= \mathsf{G}[T \parallel \Delta] \mid X \mid \mu X.\mathsf{G}[T \parallel \Delta\{X\}]$ Delivery Policies $\Delta ::= [\mathsf{G}_i \to \tau_i]_{i \in I}$ $(\mathsf{G}_i = \mathsf{G}_j \Rightarrow i = j)$ • Channels of group G that may be received and re-transmitted at group F only as write-only channels.

 $\mu X. \ \mathsf{G}[\ (\mathsf{nat})^{\mathsf{rw}} \ \parallel \ \mathsf{G} \to X; \ \ \mathsf{F} \to \mu Y.\mathsf{G}[(\mathsf{nat})^{\mathsf{w}} \parallel \mathsf{F} \to Y] \]$

• Channels of group G that may be received and re-transmitted at group F only as write-only channels.

 $\mu X. \ \mathsf{G}[\ (\mathsf{nat})^{\mathsf{rw}} \ \parallel \ \mathsf{G} \to X; \ \ \mathsf{F} \to \mu Y.\mathsf{G}[(\mathsf{nat})^{\mathsf{w}} \parallel \mathsf{F} \to Y] \]$

• Default entries also allowed:

 $\mu X. \operatorname{\mathsf{G}}[(\operatorname{\mathsf{nat}})^{\mathsf{rw}} \parallel \operatorname{\mathsf{G}} \to X; \operatorname{\mathsf{Default}} \to \mu Y.\operatorname{\mathsf{G}}[(\operatorname{\mathsf{nat}})^{\mathsf{w}} \parallel \operatorname{\mathsf{Default}} \to Y]]$

• Channels of group G that may be received and re-transmitted at group F only as write-only channels.

 $\mu X. \ \mathsf{G}[\ (\mathsf{nat})^{\mathsf{rw}} \ \parallel \ \mathsf{G} \to X; \ \ \mathsf{F} \to \mu Y.\mathsf{G}[(\mathsf{nat})^{\mathsf{w}} \parallel \mathsf{F} \to Y] \]$

• Default entries also allowed:

 $\mu X. \mathsf{G}[\ (\mathsf{nat})^{\mathsf{rw}} \ \| \ \mathsf{G} \to X; \ \mathsf{Default} \to \mu Y. \mathsf{G}[(\mathsf{nat})^{\mathsf{w}} \ \| \ \mathsf{Default} \to Y] \]$

• Two parties, Alice and Bob, establish a private exchange. Alice sends a fresh name c_{AB} to a trusted Server and delegates it to forward it to Bob. The Server should only act as a forwarder, and not interfere with the exchanges between Alice and Bob.

 $c_{AB}: \mathsf{Alice}[(\mathsf{data})^{\mathsf{rw}} \parallel \mathsf{Server} \to \mathsf{Alice}[(\mathsf{data}) \parallel \mathsf{Bob} \to \mathsf{Alice}[(\mathsf{data})^{\mathsf{rw}} \parallel]]]$

Operational Semantics

Different occurrences of the same name may flow along different paths: Let $n_1:G_1[\ldots], n_2:G_2[\ldots], n_3:G_3[\ldots]$ and $m: G[B \parallel G_1 \rightarrow G_2; G_3].$

$$P \triangleq \overline{n_1} \langle \mathbf{m} \rangle \mid \overline{n_3} \langle \mathbf{m} \rangle \mid n_1(\mathbf{x}) \cdot n_3(\mathbf{y}) \cdot \overline{n_2} \langle \mathbf{x} \rangle$$

$$Q \triangleq \overline{n_1} \langle \mathbf{m} \rangle \mid \overline{n_3} \langle \mathbf{m} \rangle \mid n_1(\mathbf{x}) \cdot n_3(\mathbf{y}) \cdot \overline{n_2} \langle \mathbf{y} \rangle$$

Operational Semantics

Different occurrences of the same name may flow along different paths: Let $n_1:G_1[\ldots], n_2:G_2[\ldots], n_3:G_3[\ldots]$ and $m: G[B \parallel G_1 \rightarrow G_2; G_3].$

$$P \triangleq \overline{n_1} \langle m \rangle \mid \overline{n_3} \langle m \rangle \mid n_1(x) \cdot n_3(y) \cdot \overline{n_2} \langle x \rangle$$
$$Q \triangleq \overline{n_1} \langle m \rangle \mid \overline{n_3} \langle m \rangle \mid n_1(x) \cdot n_3(y) \cdot \overline{n_2} \langle y \rangle$$

P should be safe, Q unsafe, but $P \rightarrow \overline{n_2} \langle m \rangle \leftarrow \overline{n_2} \langle m \rangle$

Operational Semantics

Use names that are tagged to record their flow history: $m_{[npq]}$

$$\overline{n_{[\varphi]}} \langle m_{1[\varphi_1]}, \dots, m_{k[\varphi_k]} \rangle A \mid n_{[\psi]}(x_1 : \tau_1, \dots, x_k : \tau_k) B$$
$$\longrightarrow A \mid B\{x_i := m_{i[\varphi_i n]}\}$$

Now the computation exhibits different flows for P and Q:

$$P = \overline{n_1} \langle m \rangle \mid \overline{n_3} \langle m \rangle \mid n_1(x) \cdot n_3(y) \cdot \overline{n_2} \langle x \rangle \quad \to \to \quad \overline{n_2} \langle m_{[n_1]} \rangle$$
$$Q = \overline{n_1} \langle m \rangle \mid \overline{n_3} \langle m \rangle \mid n_1(x) \cdot n_3(y) \cdot \overline{n_2} \langle y \rangle \quad \to \to \quad \overline{n_2} \langle m_{[n_3]} \rangle$$

Theorem

- If $A \longrightarrow^* B$ then $|A| \mapsto^* |B|$.
- If $|A| \mapsto^* Q$, then $\exists B$ such that $A \longrightarrow^* B$ and $|B| \equiv Q$.

Good types

Good types

$$\mathsf{G}[T \parallel \mathsf{G}_1 \to \mathsf{G}[T_1 \parallel]]$$

Good types

 $\mathsf{G}[\ T \parallel \mathsf{G}_1 \to \mathsf{G}[T_1 \parallel \mathsf{G}_2 \to \mathsf{G}[T_1 \parallel \Delta]]]$

- delivery preserves the authority in control of values
- T_i are supertypes of T

Good types

 $\mathsf{G}[T \parallel \mathsf{G}_1 \to \mathsf{G}[T_1 \parallel \mathsf{G}_2 \to \mathsf{G}[T_1 \parallel \Delta]]]$

- delivery preserves the authority in control of values
- T_i are supertypes of T

Subtyping

 $\begin{array}{ll} (\mathcal{T}\text{-TYPE}) & (\mathcal{T}\text{-POLICY}) \\ \\ \hline \Gamma \vdash T \leq T' & \Gamma \vdash \Delta \preccurlyeq \Delta' \\ \hline \Gamma \vdash \mathsf{G}[T \parallel \Delta] & \leq & \mathsf{G}[T' \parallel \Delta] & \Gamma \vdash \mathsf{G}[T \parallel \Delta] & \leq & \mathsf{G}[T \parallel \Delta'] \end{array}$

• $\Delta \preccurlyeq \Delta'$ implies Δ' is at least as restrictive as Δ

Core Typing Rules

Good Messages

(DELIVERY)

 $\Gamma \vdash \boldsymbol{n}_{[\boldsymbol{\varphi}]}:\mathsf{G}[T \parallel \Delta] \quad \Gamma \vdash m:\mathsf{G}_1[T_1 \parallel \Delta_1] \quad (\mathsf{G}_1 \to \mathcal{T} \in \Delta) \text{ 'or'} (\mathsf{Default} \to \mathcal{T} \in \Delta)$

 $\Gamma \vdash n_{[\varphi m]} : \mathcal{T}$

Good Processes

(INPUT)

$$\Gamma \vdash a : \mathsf{G}[(\tau_1, \dots, \tau_k)^r] \quad \Gamma, x_1 : \tau_1, \dots, x_k : \tau_k \vdash P$$

 $\Gamma \vdash a(x_1:\tau_1,\ldots,x_k:\tau_k).P$

(OUTPUT) $\Gamma \vdash a : \mathsf{G}[(\tau_1, \dots, \tau_k)^{\mathsf{w}}] \quad \Gamma \vdash P \quad \Gamma \vdash b_i : G_i[T_i \parallel \Delta_i] \quad \Gamma \vdash \Delta_i(\mathsf{G}) \preccurlyeq \tau_i$

 $\Gamma \vdash \overline{a} \langle b_1, \ldots, b_k \rangle. P$

Theorem: <u>Access Control</u>

If $\Gamma \vdash \overline{n_{[\varphi]}} \langle a_1, \dots, a_k \rangle A' \mid n_{[\varphi']}(x_1 : \rho_1, \dots, x_l : \rho_l) B'$ then

Theorem: <u>Access Control</u>

If $\Gamma \vdash \overline{n_{[\varphi]}} \langle a_1, \dots, a_k \rangle A' \mid n_{[\varphi']}(x_1 : \rho_1, \dots, x_l : \rho_l) B'$ then

$$\Gamma \vdash n_{[\varphi]} : \mathsf{G}[(\tau_1, \dots, \tau_k)^{\mathsf{w}} \parallel \Delta]$$

The write capability has been granted to the writer process $\Gamma \vdash n_{[\varphi']} : \mathsf{G}[(\rho_1, \dots, \rho_k)^{\mathsf{r}} \parallel \Delta']$

The read capability has been granted to the reader process Theorem: <u>Access Control</u>

If
$$\Gamma \vdash \overline{n_{[\varphi]}} \langle a_1, \dots, a_k \rangle A' \mid n_{[\varphi']}(x_1 : \rho_1, \dots, x_l : \rho_l) B'$$
 then
 $\Gamma \vdash n_{[\varphi]} : \mathsf{G}[(\tau_1, \dots, \tau_k)^{\mathsf{w}} \parallel \Delta]$
 $\Gamma \vdash n_{[\varphi']} : \mathsf{G}[(\rho_1, \dots, \rho_k)^{\mathsf{r}} \parallel \Delta']$
 $\Gamma \vdash a_i : \sigma_i$
 $\sigma_i \downarrow \mathsf{G} \le \tau_i$
 $\tau_i \le \rho_i$

The types σ_i of the emitted values allow a_i to be delivered to **G** at a subtype of the type ρ_i at which they are received

Type soundness

Theorem: **Flow Control**

 $\begin{array}{c} n \text{ flowed} \\ \text{as described in } \varphi \end{array}$

Let $\Gamma \vdash A$ be a derivable judgement depending on the judgement $\Gamma' \vdash n_{[\varphi]} : \tau$

Type soundness

Theorem: **Flow Control**

 $\begin{array}{c} n \text{ flowed} \\ \text{as described in } \varphi \end{array}$

Let $\Gamma \vdash A$ be a derivable judgement depending on the judgement $\Gamma' \vdash n_{[\varphi]} : \tau$ then $\Gamma'(n) = \rho$ such that $\rho \downarrow \varphi \leq \tau$. The type ρ allows nto be delivered at a subtype of τ after flowing according to φ

Type soundness

Access Control + Flow Control

+ Subject Reduction

 \Downarrow

Safety properties preserved along the computation

... Secrecy as in [CGG00] observing that

 $\llbracket \mathsf{G}[T_1, \dots, T_n] \rrbracket = \mu X. \ \mathsf{G}[(\llbracket T_1 \rrbracket, \dots, \llbracket T_n \rrbracket)^{\mathsf{rw}} \parallel \mathsf{Default} \to X]$

Conclusions

What we have done

- developed a new type foundation for discretionary policies for access control
- flexible/powerful and provides strong security guarantees
- a conservative extension of the type system by [CGG00]

A lot to be done

- allow changes in the ownership of names, account for ordering relationships over authorities,
- accommodate declassification mechanisms
- study import of type-based policies with typed behavioral equivalences