
Type-Based Discretionary Access Control

Silvia Crafa

joint work with
M. Bugliesi and D. Colazzo

MYTHS
Dipartimento di Informatica

Università di Venezia, Ca’ Foscari

Access Control in the pi calculus

Printing jobs via a spooler:

Print Spooler S � ! spool (x). print〈x〉

Print Client C � spool〈 j1 〉. spool〈 j2 〉. . . .

• Spooling channel spool publicly known

• Can we guarantee that client jobs are printed?

• No! ... clients may steel jobs: S | C | ! spool(x).0

1

Types for Access Control

Associate names with capabilities

• deliver spooling channel with read-only capabilities

S � (νspool) !(p〈spool〉 | spool(y).print〈y〉)

C � p(x : Tw). x〈 j1 〉. x〈 j2 〉. . . .

• p is the connecting port, publicly known;
spool is the spooling channel, now private

• Can we guarantee that client jobs are printed?

• Yes: S | C | p(x).! x(y).0 is not type correct
... in all contexts to which p is known as p : ((T)w)rw

2

Stronger guarantees may be desirable

• Client jobs should not be logged or leaked
=⇒ disallow leaking spoolers like

!spool(x). log〈x〉. print〈x〉 | log(y).SPY

Clients want to receive reliable ackowledgements as in

!s(x).pr〈x〉
︸ ︷︷ ︸

spool

| !pr(x).(print | ack〈x〉)
︸ ︷︷ ︸

print

must disallow cheating spoolers like the following

!s(x).ack〈x〉

3

Stronger guarantees may be desirable

• Client jobs should not be logged or leaked
=⇒ must disallow leaking spoolers like

!spool(x). log〈x〉. print〈x〉 | log(y).SPY

• Clients want to receive reliable ackowledgements as in

!spool(x). print〈x〉
︸ ︷︷ ︸

spooler

| !print(x).(P | ack〈x〉)
︸ ︷︷ ︸

printer

=⇒ must disallow cheating spoolers like

!spool(x). ack〈x〉

4

Need more informative types

• Control the flow of names among system components

• One needs the ability to express/enforce
discretionary policies of access control governing

– which authorities may legally receive values of a given type

– what (type) capabilities should be passed along with the
values

• Capability types, à la Pierce-Sangiorgi, do not help provide the
intended guarantees

5

Controlling delivery of names

Associate names with delivery policies

• Capability-based control system + new information to
describe/prescribe the ways that values may be exchanged
among system components.

• the new types generalize Group Types [CGG00]

G[T ‖ ∆]

– G : the authority in control of the values of the type

– T : structural information about values

– ∆ : delivery policy, to control how values are passed around
(to which authorities, with which capabilities)

6

Type based control of the spooler

j : Job[fd ‖ Spool → Print → Client]

j is a file descriptor

�
to be first delivered to the spooler,
then passed on to the printer, and
only then sent back to clients for notification.

�

7

Type based control of the spooler

j : Job[fd ‖ Spool → Print → Client]

j is a file descriptor

�
to be first delivered to the spooler,
then passed on to the printer, and
only then sent back to clients for notification.

�

spool : Spool[(Job[fd ‖ Print → Client])rw ‖ ∆]

spool is a (r/w) channel,
controlled by the spooler

�

spool itself should be delivered
as dictated by ∆

�

it carries file desc. which may be passed on to a client
only after having been transmitted to the printer

�

8

Type based control of the spooler

J = Job[fd ‖ Spool → Print → Client]

S = Spool[(Job[fd ‖ Print → Client])rw

| {z }

SJ

‖ ∆]

j : J , spool : S � spool(x : SJ). . . .
︸ ︷︷ ︸

spooler

| spool〈 j 〉. . . .
︸ ︷︷ ︸

client

• x (hence j) may only be delivered as prescribed by SJ

• there is no possibility of logging/cheating:
!spool(x:SJ). ack〈x〉 and !spool(x:SJ). log〈x〉. print〈x〉

Note: j must be given different types as it is delivered:

Job[fd ‖ Spool → Print → Client] Job[fd ‖ Print → Client] Job[fd ‖ Client]

9

Type Based DAC Policies

Our types support powerful policies

• delivery chains of bounded/unbounded depth;

• multiple (branching) chains along alternative paths

G[T ‖ G1 → G2 → G3 ; G′
1 → (G′

2 ; G′
3 → G′

4)]

• delivery at different (super) types depending on recipients

n : G[(int)rw ‖ G1@(int)w → G2@(int)w; G3@(int)r]

Main Result (Safety)

In well-typed processes all names flow according to
the delivery policies specified by their types, and are received

at the intended sites with the intended capabilities.

10

A typed pi calculus with groups

Syntax as in [CGG00]

P ::= 0 | a(x1 : τ 1, . . . , xn : τn).P | a〈b1, . . . , bn〉.P
| (νn : τ)P | (νG)P | P |P | !P

Types generalize those in [CGG00]

Structural Types T ::= B | (τ 1, . . . , τn)ν (τ i closed)

Resource Types τ ::= G[T ‖ ∆] | X | µX.G[T ‖ ∆{X}]
Delivery Policies ∆ ::= [Gi → τ i]i∈I (Gi = Gj ⇒ i = j)

11

Sample Types

• Channels of group G that may be received and re-transmitted
at group F only as write-only channels.

µX. G[(nat)rw ‖ G → X ; F → µY.G[(nat)w ‖ F → Y]]

12

Sample Types

• Channels of group G that may be received and re-transmitted
at group F only as write-only channels.

µX. G[(nat)rw ‖ G → X ; F → µY.G[(nat)w ‖ F → Y]]

• Default entries also allowed:

µX. G[(nat)rw ‖ G → X ; Default → µY.G[(nat)w ‖ Default → Y]]

13

Sample Types

• Channels of group G that may be received and re-transmitted
at group F only as write-only channels.

µX. G[(nat)rw ‖ G → X ; F → µY.G[(nat)w ‖ F → Y]]

• Default entries also allowed:

µX. G[(nat)rw ‖ G → X ; Default → µY.G[(nat)w ‖ Default → Y]]

• Two parties, Alice and Bob, establish a private exchange. Alice
sends a fresh name cAB to a trusted Server and delegates it to
forward it to Bob. The Server should only act as a forwarder,
and not interfere with the exchanges between Alice and Bob.

cAB : Alice[(data)rw ‖ Server → Alice[(data) ‖ Bob → Alice[(data)rw ‖]]]

14

Operational Semantics

Different occurrences of the same name may flow along different paths:

Let n1:G1[. . .], n2:G2[. . .], n3:G3[. . .] and m : G[B ‖ G1 → G2 ; G3].

P � n1〈m〉 | n3〈m〉 | n1(x). n3(y). n2〈x〉

Q � n1〈m〉 | n3〈m〉 | n1(x). n3(y). n2〈y〉

P should be safe, Q unsafe, but P →→ n2〈m〉 ←← Q.

15

Operational Semantics

Different occurrences of the same name may flow along different paths:

Let n1:G1[. . .], n2:G2[. . .], n3:G3[. . .] and m : G[B ‖ G1 → G2 ; G3].

P � n1〈m〉 | n3〈m〉 | n1(x). n3(y). n2〈x〉

Q � n1〈m〉 | n3〈m〉 | n1(x). n3(y). n2〈y〉

P should be safe, Q unsafe, but P →→ n2〈m〉 ←← Q.

16

Operational Semantics

Use names that are tagged to record their flow history: m[npq]

n[ϕ]〈m1[ϕ1], . . . , mk [ϕk]〉.A | n[ψ](x1 : τ 1, . . . , xk : τ k).B

−→ A | B{xi := mi[ϕi n]}

Now the computation exhibits different flows for P and Q:

P = n1〈m〉 | n3〈m〉 | n1(x).n3(y).n2〈x〉 →→ n2〈m[n1]〉

Q = n1〈m〉 | n3〈m〉 | n1(x).n3(y).n2〈y〉 →→ n2〈m[n3]〉

Theorem

• If A −→∗ B then |A| �→∗ |B|.
• If |A| �→∗ Q , then ∃B such that A −→∗ B and |B| ≡ Q.

17

Type formation and Subtyping

Good types

G[T ‖ G1 → G[T1 ‖ G2 → G[T1 ‖ ∆]]]

18

Type formation and Subtyping

Good types

G[T ‖ G1 → G[T1 ‖ G2 → G[T1 ‖ ∆]]]

19

Type formation and Subtyping

Good types

G[T ‖ G1 → G[T1 ‖ G2 → G[T1 ‖ ∆]]]

• delivery preserves the authority in control of values

• Ti are supertypes of T

20

Type formation and Subtyping

Good types

G[T ‖ G1 → G[T1 ‖ G2 → G[T1 ‖ ∆]]]

• delivery preserves the authority in control of values

• Ti are supertypes of T

Subtyping

(τ -Type)

Γ � T ≤ T ′

Γ � G[T ‖ ∆] ≤ G[T ′ ‖ ∆]

(τ -Policy)

Γ � ∆ � ∆′

Γ � G[T ‖ ∆] ≤ G[T ‖ ∆′]

• ∆ � ∆′ implies ∆′ is at least as restrictive as ∆

21

Core Typing Rules
Good Messages

(Delivery)

Γ � n[ϕ]:G[T ‖ ∆] Γ � m:G1[T1 ‖ ∆1] (G1 → τ ∈ ∆) ’or’ (Default → τ ∈ ∆)

Γ � n[ϕm] : τ

Good Processes

(Input)

Γ � a : G[(τ1, . . . , τk)
r
] Γ, x1 : τ1, . . . , xk : τk � P

Γ � a(x1 : τ1, . . . , xk : τk).P

(Output)

Γ � a : G[(τ1, . . . , τk)w] Γ � P Γ � bi : Gi[Ti ‖ ∆i] Γ � ∆i(G) � τi

Γ � a〈b1, . . . , bk〉.P

22

Type soundness

Theorem: Access Control

If Γ � n[ϕ]〈a1, . . . , ak〉.A′ | n[ϕ′](x1 : ρ1, . . . , xl : ρl).B′ then

23

Type soundness

Theorem: Access Control

If Γ � n[ϕ]〈a1, . . . , ak〉.A′ | n[ϕ′](x1 : ρ1, . . . , xl : ρl).B′ then

Γ � n[ϕ] : G[(τ1, . . . , τk)w ‖ ∆]

�

The write capability
has been granted
to the writer process

Γ � n[ϕ′] : G[(ρ1, . . . , ρk)r ‖ ∆′]

�

The read capability
has been granted
to the reader process

24

Type soundness

Theorem: Access Control

If Γ � n[ϕ]〈a1, . . . , ak〉.A′ | n[ϕ′](x1 : ρ1, . . . , xl : ρl).B′ then

Γ � n[ϕ] : G[(τ1, . . . , τk)w ‖ ∆]

�

Γ � n[ϕ′] : G[(ρ1, . . . , ρk)r ‖ ∆′]

�

Γ � ai : σi σi ↓ G ≤ τi τi ≤ ρi

�

The types σi of the emitted values
allow ai to be delivered to G at a subtype
of the type ρi at which they are received

25

Type soundness

Theorem: Flow Control
n flowed

as described in ϕ

�
Let Γ � A be a derivable judgement

depending on the judgement Γ′ � n[ϕ] : τ

Γ′(n) = ρ such that ρ ↓ ϕ ≤ τ .

26

Type soundness

Theorem: Flow Control
n flowed

as described in ϕ

�
Let Γ � A be a derivable judgement

depending on the judgement Γ′ � n[ϕ] : τ

then

Γ′(n) = ρ such that ρ ↓ ϕ ≤ τ .

The type ρ allows n

to be delivered at a subtype of τ

after flowing according to ϕ

�

27

Type soundness

Accees Control + Flow Control

+ Subject Reduction

⇓
Safety properties preserved along the computation

... Secrecy as in [CGG00] observing that

[[G[T1, . . . , Tn]]] = µX. G[([[T1]] , . . . , [[Tn]])rw ‖ Default → X]

28

Conclusions

What we have done

• developed a new type foundation for discretionary policies for
access control

• flexible/powerful and provides strong security guarantees

• a conservative extension of the type system by [CGG00]

A lot to be done

• allow changes in the ownership of names, account for ordering
relationships over authorities,

• accommodate declassification mechanisms

• study import of type-based policies with typed behavioral
equivalences

29

