A Distributed Calculus
for Role-Based Access Control

Chiara Braghin

joint work with D. Gorla and V. Sassone

MyThS Meeting, Venice, June, 14th, 2004

A Distributed Calculus for Role-Based Access Control — p.1/18

RBAC

Why: Role-Based Access Control is attracting increasing attention because:
® 1t reduces complexity and cost of security administration;
permission’s management is less error-prone;

it 1s flexible (rOle’s hierarchy, separation of duty, etc.);

o o @

it 1s least privilege-oriented.

A Distributed Calculus for Role-Based Access Control — p.2/18

RBAC

Why: Role-Based Access Control is attracting increasing attention because:

9
o
9
o

it reduces complexity and cost of security administration;
permission’s management is less error-prone;
it 1s flexible (rOle’s hierarchy, separation of duty, etc.);

it 1s least privilege-oriented.

Our work: Formalize the behaviour of concurrent and distributed systems
under security policies defined in a RBAC fashion, similar to

¥

¥

the types developed in D7 and KLAIM to implement discretionary
access control

the types developed for Boxed Ambients to implement mandatory
access control

A Distributed Calculus for Role-Based Access Control — p.2/18

L

Contents

the RBAC96 model

a formal framework for concurrent systems running under a RBAC
policy: an extension of the 7-calculus

a type system ensuring that the specified policy i1s respected during
computations

a bisimulation to reason on systems’ behaviours

some useful applications of the theory:
o finding the ‘minimal’ schema to run a given system
® refining a system to be run under a given schema
e minimize the number of users in a given system.

A Distributed Calculus for Role-Based Access Control — p.3/18

The Basic RBAC model

USER ASSIGNMENT PERM. ASSIGNMENT
- >

SESSIONS

A Distributed Calculus for Role-Based Access Control — p.4/18

The starting point: m-calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | w(v).P | [u=v]P | (va:R)P
| nil | P|Q | IP

A Distributed Calculus for Role-Based Access Control — p.5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | w(v).P | [u=v]P | (va:R)P
| nil | P|Q | !P | roleR.P | yield R.P

A Distributed Calculus for Role-Based Access Control — p.5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | w(v).P | [u=v]P | (va:R)P
| nil | P|Q | !P | roleR.P | yield R.P

USER SESSIONS: r{|P|},

A Distributed Calculus for Role-Based Access Control — p.5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | w(v).P | [u=v]P | (va:R)P
| nil | P|Q | !P | roleR.P | yield R.P

SysTeEMs: A,B == 0| r{P}, | A||B | (va":R)A

A Distributed Calculus for Role-Based Access Control — p.5/18

The Syntax of our Calculus

Concurrent processes communicating on channels.

PROCESSES: P,Q == a(z).P | w(v).P | [u=v]P | (va:R)P
| nil | P|Q | !P | roleR.P | yield R.P

SYysTEMS: A,B == 0| r{P}, | A|| B | (va":R)A

Channels are allocated to users to enable a distibuted implementation

A Distributed Calculus for Role-Based Access Control — p.5/18

Dynamic Semantics

It 1s given in the form of a reduction relation

Communication.:

s{la”(n) Pl || rialz). QL

A Distributed Calculus for Role-Based Access Control — p.6/18

Dynamic Semantics

It 1s given in the form of a reduction relation

Communication:

sia”(n).Plp || ra(x) Qlty = s{PL, [| r{ Q"] [}y

A Distributed Calculus for Role-Based Access Control — p.6/18

Dynamic Semantics

It 1s given in the form of a reduction relation

Communication:

sia”(n).Plp || ra(x) Qlty = siPL, [| m{ QY] [}y

Role activation:

r{lrole R.P|},

A Distributed Calculus for Role-Based Access Control — p.6/18

Dynamic Semantics

It 1s given in the form of a reduction relation

Communication:

sia”(n).Plp || ra(x) Qlty = siPL, [| m{ QY] [}y

Role activation:

rirole R.Pl}y, — Pl uir)

A Distributed Calculus for Role-Based Access Control — p.6/18

Dynamic Semantics

It 1s given in the form of a reduction relation

Communication:

sia”(n).Plp || ra(x) Qlty = siPL, [| m{ QY] [}y

Role activation:

rirole R.Pl}y, — r{Pl[,u(r)

Roéle deactivation:

r{lyield R.P|},

A Distributed Calculus for Role-Based Access Control — p.6/18

Dynamic Semantics

It 1s given in the form of a reduction relation

Communication:

sia”(n).Plp || ra(x) Qlty = siPL, [| m{ QY] [}y

Role activation:

rirole R.Pl}y, — r{Pl[,u(r)

Roéle deactivation:

r{lyield R.P|}, — 7{P|},—(r)

A Distributed Calculus for Role-Based Access Control — p.6/18

RBAC schema

® Permissions are capabilities that enable process actions. Thus,

A . .
4 ={R!,R’, R'} rer is the set of permissions.

A Distributed Calculus for Role-Based Access Control — p.7/18

RBAC schema

Permissions are capabilities that enable process actions. Thus,

A . .
4 ={R!,R’, R'} rer is the set of permissions.

In our framework, the RBAC schema is a pair of finite relations (u ; ?),
such that

u Cgn (NM,UC) X R ? Cqy R X 2

A Distributed Calculus for Role-Based Access Control — p.7/18

An Example

A banking scenario:

9
9

¥

two users, the client r and the bank s
cashiers are modelled as channels ¢y, ..., ¢, of user s

the roles available are client and cashier.

r{role client.enqueue®(r).dequeue(z).z(req). - - - .z(reqy).z(stop).yield client[}, ||

s{ (v free)(lenqueuve(x).free(y).dequeue®(y) | IIT_, free®(c?) |
I lej(x).([x = withdrw_req] <handle withdraw request > |
[x = dep_req] <handle deposit request> | ... |

[z = stop]free®(c])))}

A Distributed Calculus for Role-Based Access Control — p.8/18

Static Semantics - Types

® The syntax of types:

Types T .= UT ‘ C
User Types Ul = plai: Ri(Ty),...,a, : R,(T},)]
Channel Types C == R(T)

A Distributed Calculus for Role-Based Access Control — p.9/18

Static Semantics - Types

® The syntax of types:

Types T .= UT ‘ C
User Types Ul = plai: Ri(Ty),...,a, : R,(T},)]
Channel Types C == R(T)

® [:phk" P states that P respects I' and # when it is run in a session of r
with rdles p activated

A Distributed Calculus for Role-Based Access Control — p.9/18

Static Semantics - Types

The syntax of types:
Types T = UT | C
User Types Ul = p[a1 ; Rl(T1), ceey Oy Rn(Tn)]
Channel Types C == R(T)

I'; p =, P states that P respects I' and # when it is run in a session of r
with rdles p activated

A typing environment is a mapping from user names and variables to
user types that respects the assignments in «

A Distributed Calculus for Role-Based Access Control — p.9/18

Static Semantics - The Type System

An example: performing input actions.

(T-INPUT)
I'a:R(T) Ree(p) T,o—T;pktP
[p b a(x). P

A Distributed Calculus for Role-Based Access Control — p.10/18

Static Semantics - The Type System

An example: performing input actions.

(T-INPUT)
I'a:R(T) Ree(p) T,o—T;pktP
[p b a(x). P

Type Safety: Let A be a well-typed system for (2; 2). Then, whenever
A= (vanR)(A" | r{b(z).Pl},), it holds that

® cither .S € a": R and S € 2(p),
® orb" ¢ a" and S* € 2»(p), where {S} = u (b")

A Distributed Calculus for Role-Based Access Control — p.10/18

The Example Again

® The banking scenario again:
» now each available operation 1s modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)

s the communication among different channels requires different
roles

o 2 1S such that {(rich_client,cc'), (rich,rich_client)} C ».

A Distributed Calculus for Role-Based Access Control — p.11/18

The Example Again

® The banking scenario again:
» now each available operation 1s modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)

s the communication among different channels requires different

roles
o 2 1S such that {(rich_client,cc'), (rich,rich_client)} C ».

7 r{lrole client.enqueue®(r).dequeue(z).z(creditcard_req).cc®(signature).z(stop) |} fuser}

A Distributed Calculus for Role-Based Access Control — p.11/18

The Example Again

® The banking scenario again:
» now each available operation 1s modelled as a different channel
(wdrw = withdraw, opn = open account, cc = credit card request)

s the communication among different channels requires different

roles
o 2 1S such that {(rich_client,cc'), (rich,rich_client)} C ».

7/ r{lrole client.enqueue®(r).dequeue(z).z(creditcard_req).cc®(signature).z{stop)|} fuser}

= r{lrolerich _client.enqueue®(r).dequeue(z).z(creditcard_req).cc®(signature).z(stop)} fricn}

A Distributed Calculus for Role-Based Access Control — p.11/18

LTS Semantics

The labels of the LTS are derived from those of the w-calculus:
w == 1 | an | an:R | an | an:R

the LTS relates configurations, i.e. pairs (u;®) > A made up of a
RBAC schema (u;) and a system A.

Example:

(LTS-F-InrPUT)
u(a”) = {R} R € 2(p) n & dom()

(u;2) > r{a(z).P}, =% (uw {n: She) o r{ P[]},

A Distributed Calculus for Role-Based Access Control — p.12/18

Bisimulation Equivalence

® We can define a standard bisimulation over the LTS

® (Bisimulation) It is a binary symmetric relation & between
configurations such that, if (D, E) € S and D - I, there exists a
configuration £’ such that £/ L. ' and (D', E') € S. Bisimilarity, =,
1s the largest bisimulation.

#® the bisimulation is adequate with respect to a standardly defined (typed)
barbed congruence.

A Distributed Calculus for Role-Based Access Control — p.13/18

Some Algebraic Laws

#® 1f an action is not enabled, then the process cannot evolve:

r{la.Pl},~ 0 if #(p) does not enable «

A Distributed Calculus for Role-Based Access Control — p.14/18

Some Algebraic Laws

#® 1f an action is not enabled, then the process cannot evolve:
r{la.Pl},~ 0 if #(p) does not enable «

#® Differently from some distributed calculi, a terminated session does not
affect the evolution of the system:

r{nill}, = 0

A Distributed Calculus for Role-Based Access Control — p.14/18

Some Algebraic Laws

if an action 1s not enabled, then the process cannot evolve:
r{la.Pl},~ 0 if #(p) does not enable «

Differently from some distributed calculi, a terminated session does not
affect the evolution of the system:

r{nill}, = 0

the user performing an output action is irrelevant; the only relevant
aspect is the set of permissions activated when performing the action:

r{b°(n).nill}, = t{b°(n).nill},

A Distributed Calculus for Role-Based Access Control — p.14/18

Finding the “Minimal” Schema

® Goal: to look for a ‘minimal’ schema to execute a given system A
while mantaining its behaviour w.r.t. (u;?)

» Algorithm:

»

fix a metrics (number of roles in the schema, permissions
associated to each roOle, etc.)

define the set

CONF 4, = {(u';2¢") > A: (u’;2")is a RBAC schema} of
configurations for A

partition CONF' 4 w.r.t. =~ and consider the equivalence class
containing (u;?) > A

choose the minimal schema according to the chosen metrics

A Distributed Calculus for Role-Based Access Control — p.15/18

°

| J

Refining Systems

Goal: to add rdle activations/deactivations within a system in such a
way that the resulting system can be executed under a given schema

(u;)
we want a role to be active only when needed

the refining procedure replaces any input/output prefix o occurring in
session | - - - [}, with the sequence of prefixes role R.a.yield R

where R is formed by rbles assigned to r, activable when having
activated p and enabling the execution of «

the refining procedure adapts the type system

Improvement: we can give an algorithm to minimize the number of
these actions added

A Distributed Calculus for Role-Based Access Control — p.16/18

Relocating Activities

® Goal: to transfer a process from one user to another without changing
the overall system behaviour, in order to minimize the number of users
in a system

® 1t 1s possible to infer axiomatically judgments of the form:
(u;2) > riPl}, = (u;2) > s{Pl},

This judgment says that the process P can be executed by r and s
without affecting the overall system behaviour.

® Thus, the session r{| P|}, can be removed. If no other session of 7 is left
in the system, then 7 1s a useless user and 1s erased.

A Distributed Calculus for Role-Based Access Control — p.17/18

Conclusion

We have defined a formal framework for reasoning about concurrent
systems running under an RBAC schema;

a number of papers deal with the specification and verification of
RBAC schema;

Future Works:
s extend the framework to deal with more complex RBAC models;

s prove that bisimilarity 1s complete for barbed congruence;
o study information flow in terms of RBAC?

http://www.dsi.unive.it/“dbraghin/publications.html

A Distributed Calculus for Role-Based Access Control — p.18/18

	RBAC
	Contents
	The Basic RBAC model
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	Dynamic Semantics
	RBAC schema
	An Example
	Static Semantics - Types
	Static Semantics - The Type System
	The Example Again
	LTS Semantics
	Bisimulation Equivalence
	Some Algebraic Laws
	Finding the ``Minimal'' Schema
	Refining Systems
	Relocating Activities
	Conclusion

