
A Core Calculus of Mixin-Based
Incomplete Objects

GC Meeting, Venezia, June 2004

Lorenzo Bettini1, Viviana Bono2, Silvia Likavec2

1Dip. di Sistemi e Informatica, Univ. di Firenze
2Dip. di Informatica, Univ. di Torino

A Core Calculus of Mixin-Based Incomplete Objects– p. 1/37

Rationale

«Ideally, you shouldn’t have to create new components
to achieve reuse. You should be able to get all the
functionalities you need just by assembling existing
components through object composition [...]» [Design
Patterns]

Favor object composition over class inheritance

Sometimes inheritance is (wrongly) used instead of
object composition

Design patterns may help, but they are often a
“programming patch” to a feature that is missing in the
programming language

A Core Calculus of Mixin-Based Incomplete Objects– p. 2/37

Mixin...

... a class definition parameterized over the superclass

... a function that takes a class as an argument and
produces another (sub)class

... minimizes code dependencies
A subclass can be implemented before a
superclass
The same mixin can be applied to many
superclasses

A Core Calculus of Mixin-Based Incomplete Objects– p. 3/37

Our approach

Extend the calculus of classes and mixins
[BonoPatelShmatikov99] with incomplete objects

We can:
apply a mixin to a class to obtain a subclass
instantiate a class to create an object
instantiate a mixin to produce an incomplete object
complete incomplete objects to obtain a complete
object

A Core Calculus of Mixin-Based Incomplete Objects– p. 4/37

The syntax of the core calculus

e :: = const| x | λx.e | e1 e2 | fix | ref | ! | :=
| {xi = ei}

i∈I | e.x | H h.e | new e
| classval〈vg,M 〉 | e1 ⋄ e2

| e1 ←+ mi = e2 | e1 ←+ e2

| mixin

method mj = vmj ;
(j∈New)

redefine mk = vmk;
(k∈Redef)

expect mi; (i∈Expect)

constructor vc;
end

A Core Calculus of Mixin-Based Incomplete Objects– p. 5/37

Some details

An extension of a functional calculus with side effects

All of the methods are function of one private field and
of self :
λmyfield. λselfbody . . .

Overriding methods are also function of next , that can
be used to access the superclass implementation of
the method:
λmyfield. λself . λnextbody . . .

The constructor takes an argument and returns:
the value to initialize the private field
the argument to pass to the superclass constructor

A Core Calculus of Mixin-Based Incomplete Objects– p. 6/37

Mixins

A mixin is made of
defined methods
method mj = vmj ;

(j∈New)

redefined methods
redefine mk = vmk;

(k∈Redef)

expected methods
expect mi; (i∈Expect)

a constructor
constructor vc;

A Core Calculus of Mixin-Based Incomplete Objects– p. 7/37

Mixin application

A mixin m can be applied to a class c that provides:
all of the methods expected by the mixin
all of the methods that a mixin expects to redefine

The mixin application m⋄c will generate a new
(sub)class with:

all of the methods defined (and redefined) by the
mixin and
all of the methods defined by the class (and not
redefined by the mixin)

A Core Calculus of Mixin-Based Incomplete Objects– p. 8/37

Root class

We define the root of the class hierarchy, class Object ,
as a predefined class

Only mixins can be written

A user-defined class can be obtained by applying a
mixin with all defined methods (no expectations) to
Object

class
method mj = vmj ;
constructor vc;
end

≡

mixin
method mj = vmj ;
constructor vc;
end

⋄Object

A Core Calculus of Mixin-Based Incomplete Objects– p. 9/37

(Complete) objects

A (complete) object can be created by instantiating a
class and passing an argument to the constructor:
new(m⋄c) myarg

All of its methods can be invoked:
let o = new(m⋄c) myargin o.m x

A Core Calculus of Mixin-Based Incomplete Objects– p. 10/37

Incomplete objects

An incomplete object can be created by instantiating a
mixin
new m myarg

Only methods that are “complete” can be invoked
(those that are not expected and in turn do not use
expected methods)

Can be completed:
one method at time, via method addition:
o←+ mi = vi

in one step, via object composition (with a
complete object):
o←+ o′

A Core Calculus of Mixin-Based Incomplete Objects– p. 11/37

Method addition

It can be applied only to incomplete objects

The added method is parameterized over self :
it can make type assumptions on self
it can call methods on self (once it is added to an
incomplete object)

Statically checked by the type system

Thus, when a method is added it becomes an effective
component of the host object:

not only the methods of the object can invoke the
new added method
but also the new added method can use any of its
sibling methods

A Core Calculus of Mixin-Based Incomplete Objects– p. 12/37

Object composition

It is the “transposition” of mixin application to the object
level

An incomplete object can be completed with a
complete object that has:

all of the methods that are missing in the
incomplete object (the mixin expected methods)
all of the methods that the incomplete object
expects to redefine (the mixin redefined methods)

Dynamic binding will be applied for redefined methods,
thus also the self of the complete object will be
updated

Not just syntactic sugar for many method additions (the
object has a state)

A Core Calculus of Mixin-Based Incomplete Objects– p. 13/37

Object completion via
method addition

A Core Calculus of Mixin-Based Incomplete Objects– p. 14/37

A scenario

Sometimes it is desirable to add some functionalities to
existing objects without creating new mixins only for
this purpose:

consider the development of a graphical application
that uses widgets such as buttons, menus and
keyboard shortcuts
these widgets are associated an event listener
(callback function) that is triggered upon specific
events (e.g., mouse click)

You only need to add a function to an existing object

A Core Calculus of Mixin-Based Incomplete Objects– p. 15/37

The command design pattern

«Encapsulate a request as an object, thereby letting
one parameterize clients with different requests»

Allows to parameterize a widget over the event handler

The same event handler can be reused for similar
widgets

E.g., the event handler “save file” can be
associated with the “save” button, with the “save”
menu item and with the keyboard shortcut Ctrl+S

A Core Calculus of Mixin-Based Incomplete Objects– p. 16/37

Drawbacks of the pattern

One must manually program the pattern

One must create a class for the command, while a
simple function would do

One must check that the handler is associated at
run-time (to avoid “null pointer” problem)

A Core Calculus of Mixin-Based Incomplete Objects– p. 17/37

Widget mixins

let Button =
mixin
method display
method setEnabled
expect onClick
. . .

end in

let MenuItem =
mixin
method show
method setEnabled
expect onClick
. . .

end in

let ShortCut =
mixin
method setEnab
expect onClick
. . .

end in

let ClickHandler =
λ self doc.save() . . . self .setEnabled(false)
in
let button = new Button("Save") in
let item = new MenuItem("Save") in
let short = new ShortCut("Ctrl+S") in

button ←+ (OnClick = ClickHandler);
mydialog.addButton(button); // now it is safe to use it
item ←+ (OnClick = ClickHandler);
mymenu.addItem(item);
short ←+ (OnClick = ClickHandler);
system.addShortCut(short);

A Core Calculus of Mixin-Based Incomplete Objects– p. 18/37

Advantages

The system is implemented through language
constructs (we do not need to bother to manually
implement the command pattern class structures)

The correct use is statically type-checked:

button ←+ (OnClick = ClickHandler);
mydialog.addButton(button);
item ←+ (OnClick = ClickHandler);
mymenu.addItem(item);
short ←+ (OnClick = ClickHandler);
system.addShortCut(short);

These methods require complete objects and the type
system “knows” that at this point the objects are
complete

A Core Calculus of Mixin-Based Incomplete Objects– p. 19/37

Advantages (cntd.)

The same listener can be simply installed to more
incomplete objects (ensuring consistency in the
application)

The added method can rely on methods of the host
object:

λ self doc.save() . . . self .setEnabled(false)

The type system will check that the host object
provides this method

A Core Calculus of Mixin-Based Incomplete Objects– p. 20/37

Widget mixins (cntd.)

let FunnyButton =
mixin
method display
method setEnabled
method playSound
redefine onClick =
λself . λnext next() . . .

self .playSound("tada.wav");
end in

let funnybutton = new FunnyButton("Save") in
funnybutton.display();
funnybutton ←+ (OnClick = ClickHandler);
toolbar.addButton(funnybutton);

A Core Calculus of Mixin-Based Incomplete Objects– p. 21/37

Object completion via
object composition

A Core Calculus of Mixin-Based Incomplete Objects– p. 22/37

Object composition & aggregation

It is often advocated as a powerful alternative to class
inheritance in that it is defined at run-time and it
enables dynamic object code reuse by assembling
existing components

Used in conjunction with delegation to forward method
requests to other objects

You build a “chain” or “cascade” of objects (an object
has a sub-object to whom it delegates a method
invocation after performing some actions)

It is often the right alternative to some forms of multiple
inheritance

A Core Calculus of Mixin-Based Incomplete Objects– p. 23/37

The decorator design pattern

«Attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to
subclassing for extending functionalities.»

Used in implementing stream in class libraries:
a base class defines the stream interface
some final derived classes provides specific stream
functionalities (e.g., file streams, network streams,
etc.)
other derived classes add functionalities (e.g.,
buffering, compression, etc.) and their objects can
be composed with objects of stream classes

A Core Calculus of Mixin-Based Incomplete Objects– p. 24/37

Stream mixins

let File =
mixin
method write = . . .
method read = . . .
. . .
end in

let Socket =
mixin
method write = . . .
method read = . . .
method IP = . . .
. . .

end in

let Console =
mixin
method write = . . .
method read = . . .
method setFont = . . .
. . .

end in
let Compress =
mixin
redefine write = λ level. λ self . λ next . λ data. next (compress(data,
redefine read = λ level. λ self . λ next . λ . uncompress(next (), lev
constructor λ (level, arg). {fieldinit=level, superinit=arg};

end in . . .
let Buffer =
mixin
redefine write = λ size. λ self . λ next . λ data. // bufferize write requests
redefine read = λ size. λ self . λ next . λ . // read from the buffer ;
constructor λ (size, arg). {fieldinit=size, superinit=arg};

end in . . .

A Core Calculus of Mixin-Based Incomplete Objects– p. 25/37

Using streams as incomplete objects

We can create a stream that writes into a compressed
file by completing a Compress object with a File object:

let fileoutput =
(new Compress("HIGH")) ←+
(new (File ⋄ Object) ("foo.txt")) in
fileoutput.write("bar")

We can also create a chain of streams:

let fileoutput =
(new UUEncode("base64")) ←+

(new Compress("HIGH")) ←+
(new Buffer(1024)) ←+
(new (File ⋄ Object) ("foo.txt")) in
fileoutput.write("bar")

A Core Calculus of Mixin-Based Incomplete Objects– p. 26/37

Using streams as incomplete objects

The same additional functionalities (compression,
buffering) can be applied also to other basic streams
such as sockets (since Socket is able to fulfill all the
expectations of incomplete objects):

let outsocket =
(new Compress("HIGH")) ←+
(new (Socket ⋄ Object) ("192.168.0.71:8080")) in
outsocket.write("GET foo")

let outsocket =
(new UUEncode("base64")) ←+

(new Compress("HIGH")) ←+
(new Buffer(1024)) ←+
(new (Socket ⋄ Object) ("192.168.0.71:8080")) in
outsocket.write("GET foo")

A Core Calculus of Mixin-Based Incomplete Objects– p. 27/37

Logging functionalities

We can program a Logger that is parameterized over a
stream:

let Logger =
mixin
method doLog = λ verb. λ self . λ msg.

write(self .getTime() + ": " + msg);
method getTime = . . .
expect write;
. . .

end in

let logger = new Logger(verbosity) ←+ output in
output.doLog("logging started...");
output.doLog("log some actions...");

where output must provide at least write (can be
either fileoutput or outsocket seen before)

A Core Calculus of Mixin-Based Incomplete Objects– p. 28/37

A multiplexer

We can further exploit object composition:

let Multiplexer =
mixin
method addTarget =

// add the target to the list ;
method removeTarget =

// remove the target from the list ;
method write =

// call “write” on every object in the list
. . .

end in

let multi = new Multiplexer ⋄ Object in
multi.addTarget(fileoutput);
multi.addTarget(outsocket);
let logger = new Logger(verbosity) ←+ multi in

output.doLog("logging started...");
output.doLog("log some actions...");

A Core Calculus of Mixin-Based Incomplete Objects– p. 29/37

Type System & Properties

A Core Calculus of Mixin-Based Incomplete Objects– p. 30/37

Mixin types

mixin〈γb,γd,Σnew,Σred,Σexp,Σold〉

γb, expected argument of the superclass generator

γd, argument of the mixin generator

Σnew= {mj : τ↓
mj}, methods introduced by the mixin

Σred = {mk : τ↓
mk}, methods redefined by the mixin

Σexp= {mi : τ↑
mi}, methods that are expected to be

supported by the superclass

Σold = {mk : τ↑
mk}, types of next ’s

A Core Calculus of Mixin-Based Incomplete Objects– p. 31/37

Mixin application

Γ ⊢ e1 :mixin〈γb,γd,Σnew,Σred,Σexp,Σold〉

Γ ⊢ e2 : class〈γc,Σb〉

Γ ⊢ γb<:γc

Γ ⊢ Σb<:(Σexp∪Σold)

Γ ⊢ Σred<:Σb/Σold

Subj(Σb)∩Subj(Σnew) = /0

Γ ⊢ e1⋄e2 : class〈γd,Σd〉
(mixin app)

where Σd = Σnew∪Σred∪ (Σb− (Σb/Σred))

A Core Calculus of Mixin-Based Incomplete Objects– p. 32/37

Incomplete object type

obj〈Σnew,Σred,Σexp,Σold〉

Σnew= {mj : τ↓
mj}, methods introduced by the mixin

Σred = {mk : τ↓
mk}, methods redefined by the mixin

Σexp= {mi : τ↑
mi}, methods that are to be provided

through method addition or object composition

Σold = {mk : τ↑
mk}, types of next ’s

no information about constructors since an incomplete
object has already been initialized (the private field is
already bound)

A Core Calculus of Mixin-Based Incomplete Objects– p. 33/37

Method addition

Γ ⊢ e:obj〈Σnew,Σred,Σexp,Σold〉

mi : τ↑
mi ∈ Σexp

Γ ⊢ τmi <:τ↑
mi

Γ ⊢ vmi : Σ1 → τmi

Γ ⊢ (Σnew∪{mi : τmi}∪Σred∪Σexp−{mi : τ↑
mi})<:Σ1

Γ ⊢ e←+ (mi = vmi):
obj〈Σnew∪{mi : τmi},Σred,Σexp−{mi : τ↑

mi},Σold〉

Rule for addition of a method that will be “redefined” is
similar

A Core Calculus of Mixin-Based Incomplete Objects– p. 34/37

Method invocation

Γ ⊢ e:obj〈Σnew,Σred,Σexp,Σold〉

mi : τmi ∈ Σnew

TransDep(mi) ⊆ Subj(Σnew)

Γ ⊢ e.mi : τmi

A method m on an incomplete object can be invoked
provided the method is “complete” (defined in the object)
and all of the methods called by m are complete, recursively.

A Core Calculus of Mixin-Based Incomplete Objects– p. 35/37

Properties

Subject Reduction (reduction preserves types)
If Γ ⊢ e: τ and e→→ e′, then Γ ⊢ e′ : τ.

Soundness (under the condition that a program terminates,
if the program is well-typed, it will not “get stuck”, i.e.,
no “message-not-understood” error will occur during
the computation)
Let p be a program: if ε ⊢ p: τ then either p⇑ or p 7→→ v
and ε ⊢ v: τ, for some value v.

A Core Calculus of Mixin-Based Incomplete Objects– p. 36/37

Conclusions

A tradeoff between flexibility and static type safety

It provides two linguistic features that are usually
emulated through manual programming (command
and decorator patterns)

At the moment we do not have subtyping even on
complete objects (subtyping/inheritance conflicts):
WORK-IN-PROGRESS [RieckeStone2002,
BeBoVe2004]

Study possible other further extensions:
higher-order mixins (i.e., mixins that can be
composed with other mixins) and a more general
object composition operation, that matches mixin
composition
an object-based method override

A Core Calculus of Mixin-Based Incomplete Objects– p. 37/37

	Rationale
	Mixin...
	Our approach
	The syntax of the core calculus
	Some details
	Mixins
	Mixin application
	Root class
	(Complete)
objects
	Incomplete objects
	Method addition
	Object composition
		extcolor {blue}{Object completion via\ emph {method addition}}
	A scenario
	The emph {command} design pattern
	Drawbacks of the pattern
	Widget mixins
	Advantages
	Advantages (cntd.)
	Widget mixins (cntd.)
		extcolor {blue}{Object completion via\ emph {object composition}}
	Object composition & aggregation
	The emph {decorator} design pattern
	Stream mixins
	Using streams as incomplete objects
	Using streams as incomplete objects
	Logging functionalities
	A multiplexer
		extcolor {blue}{Type System & Properties}
	Mixin types
	Mixin application
	Incomplete object type
	Method addition
	Method invocation
	Properties
	Conclusions

