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In this paper we onsider the spei� problem of automatially hekingP BNDC. In partiular, we desribe two methods for determining whether asystem is P BNDC. The �rst method is based on the derivation of Charateris-ti Formulae [21, 24℄ in the language of modal �-alulus [16℄. The harateristiformulae an be automatially veri�ed using model hekers for �-alulus, suhas NCSU Conurreny Workbenh [4℄. The seond method is in the spirit of [24℄:it is based on the omputation of a sort of transitive losure (Closure up to highlevel ations) of the system and on the veri�ation of a Strong Bisimulation. Thisallows us to use existing tools as a large number of algorithms for omputingthe largest strong bisimulation between two proesses have been proposed [22, 2,17, 7℄ and are integrated in model hekers, suh as NCSU Conurreny Work-benh, XEVE [1℄, FDR2 [23℄. In partiular, this seond approah improves onthe polynomial time omplexity of the Compositional Seurity Cheker CoSeCpresented in [9℄, sine only one bisimulation test is neessary.The paper is organized as follows. In Setion 2 we reall the Seurity ProessAlgebra (SPA, for short) and the notions of Strong and Weak bisimulation. InSetion 3 we introdue the P BNDC property and we reall its haraterizationin terms of weak bisimulation up to high level ations. In Setion 4 we proposetwo methods to prove the weak bisimulation up high level ations and we demon-strate some omplexity results. Finally, in Setion 5 we draw some onlusions.2 PreliminariesThe Seurity Proess Algebra (SPA, for short) [10℄ is a slight extension of Milner'sCCS [20℄, where the set of visible ations is partitioned into high level ationsand low level ones in order to speify multilevel systems. SPA syntax is based onthe same elements as CCS that is: a set L of visible ations suh that L = I [Owhere I = fa; b; : : :g is a set of input ations and O = f�a;�b; : : :g is a set of outputations; a speial ation � whih models internal omputations, i.e., not visibleoutside the system; a omplementation funtion �� : L ! L, suh that ��a = a,for all a 2 L, and �� = � ; At = L [ f�g is the set of all ations. The set ofvisible ations is partitioned into two sets, AtH and AtL, of high and low levelations suh that AtH = AtH and AtL = AtL, and AtH [ AtL = L andAtH \AtL = ;. The syntax of SPA agents (or proesses) is de�ned as follows:E ::= 0 j a:E j E +E j EjE j E n v j E[f ℄ j Zwhere a 2 At , v � L, f : At ! At is suh that f(��) = f(�) and f(�) = � ,and Z is a onstant that must be assoiated with a de�nition Z def= E.Intuitively, 0 is the empty proess that does nothing; a:E is a proess thatan perform an ation a and then behaves as E; E1 + E2 represents the nondeterministi hoie between the two proesses E1 and E2; E1jE2 is the parallelomposition of E1 and E2, where exeutions are interleaved, possibly synhro-nized on omplementary input/output ations, produing an internal ation � ;



Pre�x a:E a! EE1 a! E01 E2 a! E02Sum E1 +E2 a! E01 E1 +E2 a! E02E1 a! E01 E2 a! E02 E1 a! E01 E2 �a! E02Parallel a 2 LE1jE2 a! E01jE2 E1jE2 a! E1jE02 E1jE2 �! E01jE02E a! E0Restrition if a 62 vE n v a! E0 n vE a! E0Relabelling E[f ℄ f(a)! E0[f ℄E a! E0Constant if A def= EA a! E0Fig. 1. The operational rules for SPAE n v is a proess E prevented from performing ations in v1; E[f ℄ is the proessE whose ations are renamed via the relabelling funtion f .The operational semantis of SPA agents is given in terms of Labelled Tran-sition Systems. A Labelled Transition System (LTS) is a triple (S;A;!) whereS is a set of states, A is a set of labels (ations),!� S�A�S is a set of labelledtransitions. The notation (S1; a; S2) 2! (or equivalently S1 a! S2) means thatthe system an move from the state S1 to the state S2 through the ation a.The operational semantis of SPA is the LTS (E ;At ;!), where the states arethe terms of the algebra and the transition relation !� E �At � E is de�nedby strutural indution as the least relation generated by the axioms and infer-ene rules reported in Fig. 1. The operational semantis for an agent E is thesubpart of the SPA LTS reahable from the initial state E and we refer to it asLTS (E) = (SE ;At ;!), where SE is the set of proesses reahable from E. Aproess E is said to be �nite-state if SE is �nite.The onept of observation equivalene between two proesses is based onthe idea that two systems have the same semantis if and only if they annot bedistinguished by an external observer. This is obtained by de�ning an equivalenerelation over E , equating two proesses when they are indistinguishable. In thefollowing, we report the de�nitions of two observation equivalenes alled strongbisimulation and weak bisimulation [20℄.1 In CCS the operator n requires that the ations of E n v do not belong to v [ �v.



De�nition 1 (Strong Bisimulation).A binary relation R � E�E over agentsis a strong bisimulation if (E;F ) 2 R implies, for all a 2 At,� if E a! E0, then there exists F 0 suh that F a! F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 suh that E a! E0 and (E0; F 0) 2 R.Two agents E;F 2 E are strongly bisimilar, denoted by E � F , if there exists astrong bisimulation R ontaining the pair (E;F ).A weak bisimulation is a bisimulation whih does not are about internal� ations. So, when F simulates an ation of E, it an also exeute some �ations before or after that ation. We will use the following auxiliary notations.If t = a1 � � �an 2 At� and E a1! � � � an! E0, then we write E t! E0. We alsowrite E t=) E0 if E( �!)� a1! ( �!)� � � � ( �!)� an! ( �!)�E0 where ( �!)� denotes a(possibly empty) sequene of � labelled transitions. If t 2 At�, then t̂ 2 L� isthe sequene gained by deleting all ourrenes of � from t. Hene, E â=) E0stands for E a=) E0 if a 2 L, and for E( �!)�E0 if a = � .De�nition 2 (Weak Bisimulation). A binary relation R � E�E over agentsis a weak bisimulation if (E;F ) 2 R implies, for all a 2 At,� if E a! E0, then there exists F 0 suh that F â=) F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 suh that E â=) E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar, denoted by E � F , if there exists aweak bisimulation R ontaining the pair (E;F ).In [20℄ it is proved that � is the largest strong bisimulation, � is the largestweak bisimulation and they are equivalene relations.3 Seurity PropertiesWe reall the Persistent BNDC (P BNDC, for short) seurity property and itsharaterization in terms of weak bisimulation up to high level ations [11, 12℄.We �rst give the de�nition of Bisimulation-based Non Deduibility on Com-positions (BNDC, for short) [8, 10℄. The BNDC seurity property aims at guar-anteeing that no information ow from the high to the low level is possible,even in the presene of maliious proesses. The main motivation is to proteta system also from internal attaks, whih ould be performed by the so alledTrojan Horse programs. Property BNDC is based on the idea of heking thesystem against all high level potential interations, representing every possiblehigh level maliious program. In partiular, a system E is BNDC if for everyhigh level proess � a low level user annot distinguish E from (Ej�) n AtH ,i.e., if � annot interfere [13℄ with the low level exeution of the system E.De�nition 3 (BNDC). Let E 2 E.E 2 BNDC i� 8 � 2 EH ; E nAtH � (Ej�) nAtH :



In [11, 12℄ it is shown that the BNDC property is not strong enough to analy-se systems in dynami exeution environments. For example, if ode mobilityis allowed, a program ould migrate to a di�erent host in the middle of itsomputation. In this setting we have to guarantee that every reahable state ofthe proess is seure. Another interesting example is the exeution of an appleton a Java Card, where an attaker ould try to bring the ard in an unstable(inseure) state by powering o� the ard in the middle of applet omputation.To deal with these situations, in [11, 12℄ it has been introdued the seurityproperty named P BNDC.De�nition 4 (Persistent BNDC). Let E 2 E.E 2 P BNDC i� 8 E0 reahable from E and 8 � 2 EH ;E0 nAtH � (E0j�) nAtH :; i.e., E0 2 BNDC :Example 1. Consider the proess E1 = l:h:j:0+ l:(�:j:0+ �:0) where l; j 2 AtLand h 2 AtH . E1 an be proved to be BNDC . Indeed, the ausality betweenh and j in the �rst branh of the proess is \hidden" by the seond branhl:(�:j:0 + �:0), whih may simulate all the possible interations with a highlevel proess. Suppose now that E1 is moved in the middle of a omputation.This might happen when it �nd itself in the state h:j:0 (after the �rst l isexeuted). Now it is lear that this proess is not seure, as a diret ausalitybetween h and j is present. In partiular h:j:0 is not BNDC and this givesevidene that E1 is not P BNDC. The proess may be \repaired" as follows:E2 = l:(h:j:0+�:j:0+�:0)+l:(�:j:0+�:0). It may be proved that E2 is P BNDC.Note that, from this example it follows that P BNDC � BNDC.In [12℄ it has been proven that property P BNDC is equivalent to the seurityproperty SBSNNI [9, 10℄ whih is automatially hekable over �nite state pro-esses. However, this property still requires a universal quanti�ation over all thepossible reahable states from the initial proess. In [11, 12℄ it has been shownthat this an be avoided, by inluding the idea of \being seure in every state"inside the bisimulation equivalene notion. This is done by de�ning an equiva-lene notion whih just fous on observable ations not belonging to AtH . Morein detail, it is de�ned an observation equivalene, named weak bisimulation up toAtH , where ations from AtH are allowed to be ignored, i.e., they are allowedto be mathed by zero or more � ations. To do this, it is used a transitionrelation whih does not take are of both internal and high level ations.We use the following notations. For an ation a 2 At , we write ( a!)f0;1gto denote a sequene of zero or one a ations. The expression E â=)nAtH E0is a shorthand for E â=) E0 if a 62 AtH , and for E( ��!)�( a�!)f0;1g( ��!)�E0 ifa 2 AtH . Notie that the relation â=)nAtH is a generalization of the relationâ=) used in the de�nition of weak bisimulation [20℄. In fat, if AtH = ;, thenfor all a 2 At , E â=)nAtH E0 oinides with E â=) E0.



De�nition 5 (Weak Bisimulation up to AtH). A binary relation R � E�Eover agents is a weak bisimulation up to AtH if (E;F ) 2 R implies, for alla 2 At,� if E a! E0, then there exists F 0 suh that F â=)nAtH F 0 and (E0; F 0) 2 R;� if F a! F 0, then there exists E0 suh that E â=)nAtH E0 and (E0; F 0) 2 R.Two agents E;F 2 E are weakly bisimilar up to AtH , written E �nAtH F , if(E;F ) 2 R for some weak bisimulation R up to AtH .The relation �nAtH is the largest weak bisimulation up to AtH and it is anequivalene relation. In [12℄ it is proven that P BNDC an be haraterized interms of �nAtH as follows. We will exploit this result for verifying P BNDC.Theorem 1. Let E 2 E. Then, E 2 P BNDC i� E �nAtH E nAtH :4 Cheking P BNDCIn this setion we present two methods to determine whether E �nAtH EnAtH ,in the ase that E is a �nite-state proess. In partiular, we takle the problem ofproving E �nAtH F , when E and F are �nite-state proesses. The �rst methodwe propose onsists in de�ning from a given proessE a modal �-alulus formula��nAtH (E) suh that F satis�es ��nAtH (E) if and only if E �nAtH F . Theseond method onsists in deriving from the LTS's of E and F two transformedLTS's that are strongly bisimilar if and only if E �nAtH F .4.1 Charateristi FormulaeThe modal �-alulus [16℄ is a small, yet expressive proess logi. We onsidermodal �-alulus formulae onstruted aording to the following grammar:� ::= true j false j �1 ^ �2 j �1 _ �2 j hai� j [a℄� j X j �X:� j �X:�where X ranges over an in�nite set of variables and a over a set of ations At .The �xpoint operators �X and �X bind the respetive variable X and we adoptthe usual notion of losed formula. For a �nite setM of formulae, we write VMand WM for the onjuntion and disjuntion of the formulae in M .Modal �-alulus formulae are interpreted over proesses, whih are modelledby LTS's. Let E be a proess and LTS (E) = (SE ;AtH ;!). The subset of statesthat satisfy a formula �, denoted by ME(�)(�), is intuitively de�ned in Fig. 2.We use the notion of environment that is a partial mapping � : Var 6! 2SE whihinterprets at least the free variables of � by subsets of SE . For a set x � SE anda variable X , we write �[X 7! x℄ for the environment that maps X to x and thatis de�ned on a variable Y 6= X i� � is de�ned on Y and maps Y then to �(Y ).Intuitively, true and false hold for all resp. no states and ^ and _ areinterpreted by onjuntion and disjuntion, hai� holds for a state E0 2 SE ifthere is a state E00 reahable from E0 with an ation a whih satis�es �, and [a℄�



ME(true)(�) = SEME(false)(�) = ;ME(�1 ^ �2)(�) = ME(�1)(�) \ME(�2)(�)ME(�1 _ �2)(�) = ME(�1)(�) [ME(�2)(�)ME(hai�)(�) = fE0 j 9E00 : E0 a! E00 ^ E0 2ME(�)(�)gME([a℄�)(�) = fE0 j 8E00 : E0 a! E00 ) E00 2ME(�)(�)gME(X)(�) = �(X)ME(�X:�)(�) = Tfx � SE j ME(�)(�[X 7! x℄) � xgME(�X:�)(�) = Sfx � Se j ME(�)(�[X 7! x℄) � xgFig. 2. Semantis of modal mu-alulusholds for E0 if all states E00 reahable from E0 with an ation a satisfy �. Theinterpretation of a variable X is as presribed by the environment. The formula�X:�, alled least �xpoint formula, is interpreted by the smallest subset x of SEthat reurs when � is interpreted with the substitution of x for X . Similarly,�X:�, alled greatest �xpoint formula, is interpreted by the largest suh set. Exi-stene of suh sets follow from the well-known Knaster-Tarski �xpoint theorem.As the meaning of a losed formula � does not depend on the environment, wesometimes write ME(�) for ME(�)(�) where � is an arbitrary environment.The set of proesses satisfying a losed formula � is Pro(�) = fF j F 2MF (�)g. We also refer to (losed) equation systems of modal �-alulus formulae,Eqn : X1 = �1; : : : ; Xn = �nwhere X1; : : : ; Xn are mutually distint variables and �1; : : : ; �n are modal �-alulus formulae having at most X1; : : : ; Xn as free variables.An environment � : fX1; : : : ; Xng ! 2SE is a solution of an equation sys-tem Eqn, if �(Xi) = ME(�i)(�). The fat that solutions always exist, is againa onsequene of the Knaster-Tarski �xpoint theorem. In fat the set of envi-ronments that are andidates for solutions, EnvE = f� j � : fX1; : : : ; Xng !2SEg, together with the lifting v of the inlusion order on 2SE , de�ned by� v �0 i� �(Xi) � �0(Xi) for i 2 [1::n℄ forms a omplete lattie. Now, we ande�ne the equation funtional FunEqnE : EnvE ! EnvE by FunEqnE (�)(Xi) =ME(�i)(�) for i 2 [1::n℄, the �xpoints of whih are just the solutions of Eqn .FunEqnE is monotoni asME(�i) is monotoni. In partiular, there is the largestsolution �FunEqnE of Eqn (with respet to v), whih we denote by ME(Eqn).This de�nition interprets equation systems on the states of a given proess E.We lift this to proesses by agreeing that a proess satis�es an equation systemEqn , if its initial state is in the largest solution of the �rst equation. Thus the setof proesses satisfying the system Eqn is Pro(Eqn) = fF j F 2MF (Eqn)(X1)g.The relation �nAtH� E � E an be haraterized as the greatest �xpoint�Fun�nAtH of the monotoni funtional Fun�nAtH on the omplete lattie ofrelations R � E � E ordered by set inlusion, where (E;F ) 2 Fun�nAtH (R) ifand only if points (1) and (2) of De�nition 5 hold. Thus a relation R is a weak



bisimulation up to AtH if and only if R � Fun�nAtH (R), i.e., R is a post-�xpoint of Fun�nAtH . By the Knaster-Tarski �xpoint theorem, �Fun�nAtH isthe union of all post-�xpoints of Fun�nAtH , i.e., it is the largest weak bisimula-tion up to AtH . If we restrit to the omplete lattie of relations R � SE �SFwe obtain a monotoni funtional Fun(E;F )�nAtH whose greatest �xpoint is exatly�Fun�nAtH \ (SE � SF ), and this is enough to determine if E �nAtH F .Let E be a �nite-state proess, E1; : : : ; En its jSE j = n states, and E1 = Eits initial state. We onstrut a harateristi equation system [21℄Eqn�nAtH : XE1 = ��nAtHE1 ; : : : ; XEn = ��nAtHEnonsisting of one equation for eah state E1; : : : ; En 2 SE . We de�ne the formu-lae ��nAtHEi suh that the largest solution MF (Eqn�nAtH ) of Eqn�nAtH on anarbitrary proess F assoiates the variables XE0 just with the states F 0 of Fwhih are weakly bisimilar up to AtH to E0. Theorem 2 is in the spirit of [21℄and shows the exat form of suh formulae. We use these notations:hhaiinAtH� def= 8<: hh�ii� if a = �hhaii� if a 62 AtH and a 6= �hhaii� _ hh�ii� if a 2 AtH and a 6= �where hh�ii� def= �X:� _ h�iX and hhaii� def= hh�iihaihh�ii�: Notie that hhaiinAtH ,hh�ii and hhaii orrespond to a=)nAtH , �̂) and a), respetively, sineME(hhaiinAtH�)(�) = fE0 j 9E00 : E0 â=)nAtH E00 ^E00 2ME(�)(�)g;ME(hh�ii�)(�) = fE0 j 9E00 : E0 �̂=) E00 ^ E00 2ME(�)(�)g;ME(hhaii�)(�) = fE0 j 9E00 : E0 a=) E00 ^ E00 2ME(�)(�)g:Theorem 2. MF (Eqn�nAtH )(XE0) = fF 0 2 SF j E0 �nAtH F 0g when��nAtHE0 def= VfVfhhâiinAtHXE00 j E0 a! E00g j a 2 Atg^Vf[a℄WfXE00 j E0 â=)nAtH E00g j a 2 Atg:Example 2. Consider the proess E1 of Example 1. For every state E0 reahablefrom E0, let  E0 denote ��nAtHE0 . Then E1 = hhliinAtHXh:j:0 ^ hhliinAtHX�:j:0+�:0^[l℄(Xh:j:0 _X�:j:0+�:0 _Xj:0 _X0) ^ [� ℄XE1 ^ [h℄XE1 �:j:0+�:0 = hh�iinAtHXj:0 ^ hh�iinAtHX0^[� ℄(X�:j:0+�:0 _X�:j:0 _Xj:0 _X�:0 _X0)^[h℄(X�:j:0+�:0 _X�:j:0 _Xj:0 _X�:0 _X0) �:j:0 = hh�iinAtHXj:0 ^ [� ℄(X�:j:0 _Xj:0) ^ [h℄(X�:j:0 _Xj:0) h:j:0 = hhhiinAtHXj:0 ^ [� ℄Xh:j:0 ^ [h℄(Xh:j:0 _Xj:0) j:0 = hhjiinAtHX0 ^ [h℄Xj:0 ^ [� ℄Xj:0 ^ [j℄X0 �:0 = hh�iinAtHX0 ^ [� ℄(X�:0 _X0) ^ [h℄(X�:0 _X0) 0 = [h℄X0 ^ [� ℄X0



Corollary 1. Pro(Eqn�nAtH ) = fF j E �nAtH Fg:This result holds for all proesses F as Eqn�nAtH does not depend on F .Charateristi formulae, i.e., single formulae haraterizing proesses an beonstruted by applying simple semantis-preserving transformation rules onequation systems as desribed in [21℄. These rules are similar to the ones usedby A. Mader in [19℄ as a mean of solving Boolean equation systems (with alter-nation) by Gauss elimination. Hene, sine for any equation system Eqn thereis a formula � suh that Pro(Eqn) = Pro(�), we obtain that:Theorem 3. For all �nite-state proesses E there is a modal �-alulus formu-lae ��nAtH (E) suh that Pro(��nAtH (E)) = fF j E �nAtH Fg:Using this method we an for instane exploit the model heker NCSUConurreny Workbenh ([4℄) to hek whether E �nAtH F . Unfortunately,in the �-alulus formula we obtain for a proess E there are both � and �operators (see [21℄). In the worst ase the number of � and � alternations in��nAtH (E) is 2jSEj+1 (when LST (E) has a unique strongly onneted ompo-nent) and in that ase the omplexity of model heking ��nAtH (E) on LTS(F )is O(jSF j(2jSEj+1)=2) (see [18, 3℄).4.2 Strong BisimulationWe show now how to redue the problem of testing whether two proesses areweakly bisimilar up to AtH to a strong bisimulation problem. The next propertyfollows from the de�nition of â=)nAtH .Proposition 1. A binary relation R � E�E over agents is a weak bisimulationup to AtH if and only if (E;F ) 2 R implies, for all a 2 At� if E â=)nAtH E0, there is F 0 2 E suh that F â=)nAtH F 0 and (E0; F 0) 2 R;� if F â=)nAtH F 0, there is E0 2 E suh that E â=)nAtH E0 and (E0; F 0) 2 R.Proof. ()). We prove that if R � E �E is a weak bisimulation up to AtH , and(E;F ) 2 R, then, for all a 2 At we have� if E â=)nAtH E0, there is F 0 2 E suh that F â=)nAtH F 0 and (E0; F 0) 2 R;� if F â=)nAtH F 0, there is E0 2 E suh that E â=)nAtH E0 and (E0; F 0) 2 R.We distinguish three ases.Case 1. a = � . In this ase E â=)nAtH E0 oinides with E( �!)�E0. Theproof follows by indution on the number of � ations in E( �!)�E0. The basease arises when zero � ations are performed and it is trivial. For the indutionstep, let E �! E00( �!)�E0. Sine, (E;F ) 2 R, by De�nition 5 there exists F 00 2 Esuh that F �̂=)nAtH F 00, i.e., F ( �!)�F 00 and (E00; F 00) 2 R. By the indutionhypothesis, there exists F 0 2 E suh that F 00 �̂=)nAtH F 0, i.e., F 00( �!)�F 0 and(E0; F 0) 2 R. This proves the thesis sine F ( �!)�F 00( �!)�F 0, i.e., F �̂=)nAtH F 0.



Case 2. a 2 L and a 62 AtH . In this ase we have that E â=)nAtH E0oinides with E( �!)�E00 a! E000( �!)�E0. By Case 1 above, there exists �F 00 2 Esuh that F ( �!)� �F 00 and (E00; �F 00) 2 R. By De�nition 5 there exists �F 000 2 Esuh that �F 00 â=)nAtH �F 000, i.e., �F 00( �!)�F 00 a! F 000( �!)� �F 000 and (E000; �F 000) 2 R.Again, by Case 1 above, there exists F 0 2 E suh that �F 000( �!)�F 0 and (E0; F 0) 2R. This proves the thesis sine F ( �!)�F 00 a! F 000( �!)�F 0, i.e., F â=)nAtH F 0.Case 3. a 2 AtH . In this aseE â=)nAtH E0 oinides either with E( �!)�E0or with E( �!)�E00 a! E000( �!)�E0. The proof follows by Case 1 and Case 2 above.((). It is easy to prove that if R � E � E is a binary relation over agentssuh that for all (E;F ) 2 R, a 2 At it holds� if E â=)nAtH E0, there is F 0 2 E suh that F â=)nAtH F 0 and (E0; F 0) 2 R;� if F â=)nAtH F 0, there is E0 2 E suh that E â=)nAtH E0 and (E0; F 0) 2 R;then R is a weak bisimulation up to AtH . In partiular, this follows from thefat that, by the de�nition of â=)nAtH , E a! E0 implies E â=)nAtH E0 for eahE;E0 2 E and a 2 At.A diret onsequene of this theorem is that two systems E and F are weaklybisimilar up to AtH if and only if they are strongly bisimilar when in plae ofthe transition relation a! we onsider the set of labelled transitions â=)nAtH .We an exploit this fat to determine whether E �nAtH F by: (i) translatingthe two labelled transition systems LTS(E) and LTS(F ), into LTSH(E) andLTSH(F ); (ii) omputing the largest strong bisimulation � between LTSH(E)and LTSH(F ). More formally we de�ne:De�nition 6 (Closure up to AtH). Let E 2 E with LTS(E) = (SE ;At ;!).The losure up to AtH of E is the labelled transition system LTSH(E) =(SE ;At ; ,!), where a,! is de�ned as â=)nAtH , i.e.:E0 a,! E00 = 8<:E0( �!)�E00 if a = �E0( �!)�F 0 a! F 00( �!)�E00 if a 62 AtHE0( �!)�F 0 a! F 00( �!)�E00 or E0( �!)�E00 if a 2 AtHLet us denote with EH a proess whose operational semantis is given bythe transformed transition system LTSH(E), i.e., LTS(EH) = LTSH(E). Thenext result is an immediate onsequene of Proposition 1.Corollary 2. Let E;F 2 E. Then, E �nAtH F i� EH � FH :Now, our �rst problem is to ompute LTSH(E) from LTS (E), using De�ni-tion 6. This an be immediately obtained with the following algorithm:Algorithm 1 Let E 2 E with LTS(E) = (SE ;At ;!). The losure up to AtHof E, LTSH(E) = (SE ;At ; ,!), is omputed as follows:



1. alulate �,! as ( �!)�, i.e., as the reexive and transitive losure of �!;2. alulate a,! as the omposition �,! Æ a! Æ �,!;3. if a 2 AtH then add E a,! F , every time E �,! F .Corretness of algorithm above is trivially obtained by observing that (byDe�nition 6): �,! is equivalent to ( �!)�; a,! with a 2 L n AtH is equivalent to( �!)�Æ a! Æ( �!)�, i.e., to �,! Æ a! Æ �,!; a,! with a 2 AtH is equivalent to theunion of ( �!)�Æ a! Æ( �!)� (alulated in step 2 above) and ( �!)� (alulated instep 3 above). As far as time and spae omplexities are onerned, we notie thatthey depend on the algorithms used for omputing the reexive and transitivelosure and the omposition of relations. We start by �xing some notations. Letn = jSE j be the number of states in LTS (E), for eah a 2 At, let ma be thenumber of a! transitions in LTS (E), and m =Pa2Atma. Similarly, let m̂a bethe number of a,! transitions in LTSH(E), and m̂ =Pa2At m̂a.The next theorem shows that E �nAtH F an be heked in polynomial timewith respet to the number of states of the system.Theorem 4. Algorithm 1 an be exeuted in time O(nm̂� + nw) and spaeO(n2), where w denotes the exponent in the running time of the matrix mul-tipliation algorithm used.2 If m̂ � n, then it is possible to work in time O(nm̂)and spae O(n).Proof. First of all we have to determine the transitive losure of �!. The algo-rithm proposed in [14℄ omputes the transitive losure of a graph representedwith adjaeny-lists in time O(m� + ne), where e is the number of edges inthe transitive losure of the graph of the strongly onneted omponents. Sinem� ; e � m̂� , an upper bound to the ost of the omputation of ( �!)� is O(nm̂� ).Let us onsider the omputation of the omposition ( �!)�Æ a! Æ( �!)�. Giventwo transition relations!1 and!2 on a set of n nodes, the problem of determi-ning the omposition !1 Æ !2 is known to be equivalent to the n� n Booleanmatrix multipliation problem (see [6℄). In partiular, if Ai is the adjaeny-matrix de�ned by !i, for i = 1; 2, then the adjaeny-matrix of !1 Æ !2 isthe matrix A1 �A2. Hene, in our ase, we have to: (i) determine the adjaeny-matrixes A�� and Aa assoiated to ( �!)� and a! respetively; (ii) ompute theprodut (A�� � Aa) � A��; (iii) rebuild the adjaeny-list representation (in theomputation of the strong bisimulation it is important to use the adjaeny-listrepresentation). Starting from the adjaeny-list representations of ( �!)� and a!in time O(n2) we obtain their adjaeny-matrix representations A�� and Aa.The matrix produt (A�� � Aa) �A�� an be determined in time O(n2:376) usingtwie the algorithm in [5℄. Then, again in time O(n2), we rebuild the adjaeny-list representation. So, the global ost of the omputation of ( �!)�Æ a! Æ( �!)� isO(n2:376). We have to perform this step one for eah a 2 L, assuming that jLj is2 In the algorithm in [5℄, whih is at the moment the fastest in literature, we havethat w = 2:376.



a onstant wrt. n. Notie that we ould work using only 2 matrix multipliations,instead of 2jLj matrix multipliations, but in this ase we would have to usematrixes in whih eah element is an array of length L of bits, hene also in thisway it is not possible to drop the assumption that jLj is a onstant wrt. n.Hene, we have desribed a proedure whih maps E into LTSH(E) in timeO(nm̂� + nw) and spae O(n2), where w is the exponent in the running time ofthe matrix multipliation algorithm used (w = 2:376 using [5℄).In the proedure just desribed we use the adjaeny-matrix representationto ompute a! Æ( �!)�. If we know that m̂ � n, then using the adjaeny-listrepresentation and a na��ve algorithm (two iterations of the na��ve algorithm forthe transitive losure [6℄) we an perform this step in time O(nm̂). Thus, whenm̂ � n, we determine LTSH(E) in time O(nm̂) and spae O(n + m̂) = O(n).The theorem above is appliable to the general ase E �nAtH F . However,sine in our ase F = E nAtH , we an interleave the omputation of LTSH(E)and LTSH(E n AtH), lowering the onstant involved in the time omplexity.To do so, we need the notion of AtH -Completion de�ned as follows:De�nition 7 (AtH-Completion). Let E 2 E with LTS(E) = (SE ;At ;!).The AtH-Completion of E, LTSC(E) = (SE ;At ; ,!), is de�ned as follows:we have E a,! E0 every time E a! E0. Moreover, every time E �! E0 we haveE a,! E0 for all a 2 AtH .Intuitively, the AtH -ompletion extends a given LTS by adding an edge a,!,with a 2 AtH , eah time that there is an edge �! in the original LTS.Let us denote with E; a proess whose operational semantis is given by thelosure up to ; of LTS(E). Note that this amounts to saying that LTS(E;) =(SE ; At; â=)). In fat, reall that if AtH = ;, then E â=)nAtH E0 oinideswith E â=) E0 for all a 2 At . The following holds:Proposition 2. Let E 2 E be a proess.(i) LTSH(E) = LTSC(E;)(ii) LTSH(E nAtH) = LTSC(E; nAtH)Proof. The �rst equation follows immediately from the de�nitions and statesthat the AtH -Completion of E; is the losure up to high level ations of E.We prove the seond equation. By de�nition, LTSH(E n AtH) is the LTSobtained by substituting a! with â=) in LTS(E n AtH), as E n AtH annotexeute high level ations. Thus, if E0 is a state in LTSH(E nAtH), then E0 isalso a state in LTS(E nAtH), i.e., there is a path from E to E0 whih does notinvolve ations of AtH . This implies that E0 is a state of LTS(E; nAtH), andhene it belongs also to LTSC(E; n AtH). Similarly we an prove that if E0 isa state in LTSC(E; nAtH), then E0 is a state in LTSH(E nAtH).Now, we prove that E0 a,! E00 in LTSH(E nAtH) if and only if E0 a,! E00 inLTSC(E; nAtH). We distinguish three ases.



Case 1. a = � . Sine operation nAtH has no e�ets on � transitions in bothases the � transitions are exatly those in the transitive losure ( �!)� of E.Case 2. a 2 L and a 62 AtH . Again, sine operation nAtH has no e�etson the a transitions in both ases the a transitions are exatly the transitions in( �!)�Æ a! Æ( �!)� omputed on E.Case 3. a 2 AtH . The a transitions whih are in LTSH(E n AtH) areexatly the transitions in ( �!)� omputed on E and also the a transitions whihare in LTSC(E; nAtH) are exatly the transitions in ( �!)� omputed on E.Hene we an determine LTSH(E) and LTSH(E nAtH) as follows:Algorithm 2 Let E 2 E . We alulate LTSH(E) and LTSH(EnAtH) throughthe following steps:1. ompute E;;2. ompute and give as output LTSC(E;);3. ompute E; nAtH ;4. ompute and give as output LTSC(E; nAtH).The orretness of the algorithm is given by Proposition 2 whih proves thatLTSC(E;) = LTSH(E) (step 2 above) and LTSC(E;nAtH) = LTSH(EnAtH)(step 4 above). The time and spae omplexity of the algorithm are the ones inTheorem 4, sine steps 2, 3, and 4 an be performed using three visits.One we have the LTS's LTSH(E) and LTSH(E n AtH) there are manyalgorithms whih an be used to deide whether EH � (E n AtH)H (e.g., [22,15, 17, 2, 7℄). Some of these algorithms are integrated in model hekers [1, 4, 23℄.The worst ase time omplexity of the algorithms in [22, 7℄ to deide EH � (E nAtH)H is O(m̂ logn), assuming that the LTS's are represented using adjaeny-lists. Using these omplexity results together with Theorem 4 we obtain that:Corollary 3. It is possible to deide E �nAtH E nAtH in time O(nm̂� +nw+m̂ logn) and spae O(n2), where w denotes the exponent in the running time ofthe matrix multipliation algorithm used. If m̂ � n, then it is possible to work intime O(nm̂) and spae O(n).Notie that using this approah in many pratial ases there are a largenumber of states whih our both in LTSH(E) and in LTSH(EnAtH). We anavoid to repliate these states, share them among the two LTS's, and test whetherthe two roots are bisimilar. In partiular, this an be done in the following way:after the omputation of E;, using a bakward visit, mark all the nodes ofE; whih do not reah a transition whose label is in AtH ; while omputingLTSC(E; nAtH) with a breath-�rst visit onsider that if E0 is a marked node,then E0 is also a node in LTSC(E;), hene share E0 with LTSC(E;) and donot all the breath-�rst visit on E0. In this way we lower again the onstantsinvolved in the e�etive time and spae omplexities: if we mark n0 nodes, thenin steps 3. and 4. of Algorithm 2 we have to visit only n � n0 nodes, and thetotal spae required to store the nodes is 2n� n0 instead of 2n.
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Fig. 4. The labelled transition systems LTSH(E1) and LTSH(E1 n AtH).Example 3. Consider again proess E1 = l:h:j:0+ l:(�:j:0+ �:0) of Example 1.In Fig. 3 we show LTS(E1) and LTS (E1 n AtH). By performing the losureup to AtH (Algorithm 1) we obtain the transformed labelled transition systemsLTSH(E1) and LTSH(E1 nAtH) reported in Fig. 4. In partiular, the �rst stepjust adds the � -loops in every state; the seond one, adds two transitions labelledwith l orresponding to l:� and one transition labelled with j orresponding to�:j; �nally, step 3 adds a h-labelled transition every time there is a � transition.The two transformed transition systems are not strongly bisimilar: the leftmostnode after l in LTSH(E1) is not bisimilar to any node in LTSH(E1 n AtH),sine in LTSH(E1 n AtH) all the nodes are either \sink-nodes" (whih onlyexeutes � and h loops) or they have at least one outgoing edge with label j orl. Indeed, that node in LTSH(E1) may exeute only h and � ations and ouldthus be simulated only by sink-nodes in LTSH(E1 nAtH). However, di�erentlyfrom sink-nodes, after one h, it is also able to exeute a j. This proves that
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