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Abstract

We consider systems with a single queue and multiple parallel servers. Each
server fetches a job from the queue immediately after completing its current
work. We propose a pulling strategy that aims at achieving a fair distribution
of the number of processed jobs among the servers. We show that if the service
times are exponentially distributed then our strategy ensures that in the long run
the expected difference among the processed jobs at each server is finite while
maintaining a reasonable throughput. We give the analytical expressions for the
stationary distribution and the relevant stationary performance indices like the
throughput and the system’s balance. Interestingly, the proposed strategy can
be used to control the join-queue length in fork-join queues and the analytical
model gives the closed form expression of the performance indices in saturation.

1. Introduction

The problem of parallel job scheduling has been widely studied in the litera-
ture with the aim of improving some performance indices, such as the through-
put, the response time, the fairness or a combination of these indices. One
can distinguish two basic approaches to the problem depending on the phase
at which the dispatcher is placed. In the model depicted in Figure 1-(A), the
dispatcher decides how to assign a job to a server according to some scheduling
discipline which takes into account the queueing state and other information
about the servers. In contrast, the model depicted in Figure 1-(B) stores the
jobs in a shared queue and these are assigned by the dispatcher to a server as
soon as it becomes available. The scheduling policy can rely on a pushing strat-
egy, i.e., the dispatcher takes the initiative to send a job to a specific server or
on a pulling strategy, i.e., the servers decide autonomously to fetch a job from
the shared queue. In queueing theory, these models have been widely investi-
gated and the impact of the scheduling discipline on the performance indices is
well-known.
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Figure 1: (A)-Dispatching before the queues. (B)-Dispatching after the queue.

In this paper we study the model depicted in Figure 1-(B) relying on a pulling
strategy. In contrast to prior works, we focus on the balance of the total number
of jobs served by a set of K identical servers. Informally, we propose a stateless
scheduling discipline implemented by the servers so that the difference between
the number of jobs served by each unity is finite in steady-state. We stress on
the fact that we aim at maintaining finite the absolute difference among the
jobs served by each server and not the difference of proportions of the total
number of served jobs (which would be easily achieved by simple strategies like
the random one). The proposed rate adaptation policy may find application in
the regulation of the join-queue length in fork-join systems as discussed later on.

The contributions of the paper can be summarised as follows: (a) We pro-
pose a scheduling discipline based on a server rate-adaptation algorithm. In-
formally, each server maintains a variable to store the difference between the
total number of jobs served by itself and a neighbour. Given just this piece of
information, the server may decide to slow down its maximum service speed in
order to reduce this difference. As soon as the server finishes the service of its
job, it fetches a new one from the queue. (b) We study two rate-adaptation
strategies. The first one, named bimodal strategy, uses only two distinct service
rates: the highest is used when a server has served less jobs than its neighbour,
while the slowest is used otherwise. The second rate-adaptation policy, named
proportional strategy, requires a server to reduce a fixed maximum service rate
in proportion to the number of extra jobs it has served with respect to its neigh-
bour. (c) We propose a Markovian model for such a scheduling discipline and
for both the rate-adaptation strategies described above. We show that, despite
the little knowledge that each server has about the state of the system, we can
derive a necessary and sufficient condition for the job balance index to have
finite expectation in the bimodal strategy whereas in the proportional strategy
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the job balance is unconditionally finite. Finally, we compare the performance
indices obtained by the application of the two rate-adaptation policies. (d) We
derive the exact expressions for two relevant performance indices: the system’s
throughput and the balance index. The latter measures the differences among
the total number of jobs processed by each server, hence low values imply a
well balanced system. Although the Markov process underlying the models has
an infinite state space, these expressions involve finite sums derived from the
evaluation of hypergeometric functions.

Our findings show that maintaining reasonable low values for the balance
index reduces the throughput at around 70% of the maximum. More interest-
ingly, numerical evidences show that this value scales slowly with the number
of servers, which means that the rate adaptation policy scales well with the sys-
tem’s size. From a theoretical point of view, to analyse our model we resort to
the notion of ρ-reversibility. Indeed, we show that although the model is in gen-
eral not reversible, it satisfies the Kolmogorov’s criteria for the ρ-reversibility
[1] (and also the dynamic reversibility [2]) allowing us to derive an analyti-
cal product-form expression for the invariant measure. This expression differs
from the common product-form since the associated process is not obtained by
composition of simpler components as, e.g., in [3, 4, 5].

Related work. There are several recent papers addressing the problem of
parallel job scheduling which can be classified according to the system structure
that they consider and the performance indices that they aim to optimise. In
many cases, the scheduling problem aims at minimising the response or queue-
ing time such as in [6, 7, 8] or optimising more complicated indices which may
involve the notion of job-value as in [9]. In contrast, we propose a solution which
aims at minimising the difference between the total number of jobs served by
each server in steady-state. This result can be used to regulate the join-queue
length in fork-join queues. Fork-join queueing systems have been widely stud-
ied for the performance evaluation of distributed systems and operating systems
[10, 11, 12, 13, 14]. Models with numerically tractable stationary distributions
are mostly based on product-form stochastic Petri nets (see, e.g., [15, 16, 17])
while several other works have addressed the problem of providing approxi-
mations or bounds for these queueing models (see, e.g., [11, 17]). In fork-join
stations a job is split into several tasks which are served by independent servers.
The job is considered served once all the parallel servers have completed their
tasks and their resulting computations are joined. Examples of such a computa-
tional approach include the parallel processing of Big Data within the MapRe-
duce framework [18], RAID disks, parallel processing systems with horizontal
decomposition [19]. Moreover, differently from [20, 8], our results are not based
on an asymptotic analysis of the model but they are exact for any finite number
K ≥ 2 of servers. In [21] we proposed a rate adaptation policy for fork-join
queues that corresponds to the proportional strategy illustrated here. For the
sake of comparing the bimodal and the proportional models in Section 5 we just
state the performance indices of the proportional strategy. Notice that we also
give an expression for the invariant measure of the underlying Markov process
for any rate adaptation policy, which is a novel contribution.
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Structure of the paper. In Section 2 we describe the scheduling algorithm and
in Section 3 we propose a Markovian model for its analysis. In Sections 4 and 5
we study two possible implementations of the proposed scheduling strategy and
derive their performance indices. In Section 6 we compare the performance
indices obtained from the analytical models with the simulation outcomes ob-
tained by relaxing some of the hypothesis. Section 7 concludes the paper.

2. Algorithm description

We consider the system depicted in Figure 1-(B) consisting of K identical
servers fetching jobs from a shared unbounded queue. Our goal is to define an
algorithm to dynamically regulate the service rate of each server in order to
balance the total number of jobs served by each unit.

The algorithm we propose is stateless, in the sense that each node has a very
limited information about the global system. Let us label each of the K servers
by a positive natural number k ∈ [1,K] and define the successor k+ and the
predecessor k− of a server k as:

k+ =

{
k + 1 if k < K

1 if k = K
k− =

{
k − 1 if k > 1

K if k = 1
.

Each server k maintains a state variable nk which is incremented by one when
it fetches a job and decremented by one when its successor k+ fetches a job.
Hence, each server takes into account only the jobs performed by itself and its
successor and nk denotes the difference between these two values. In practice,
in implementing this algorithm by means of message passing, each server only
informs its predecessor of its activity thus containing the traffic overhead. We
assume that each server can regulate its own service rate depending on the local
state nk. In Sections 4 and 5 we give two possible implementations of this
rate-adaptation algorithm.

3. Markovian model

In this section we propose a Markovian model for the algorithm described in
Section 2 which is based on two assumptions: (1) The system has always waiting
jobs, i.e., the throughput depends only on the service rates of the servers; (2) The
job sizes are modelled by independent and identically distributed exponential
random variables. As a consequence, since each server can dynamically adjust
its own service rate depending on its state nk, the service times at each server
k are independent and exponentially distributed random variables with a state-
dependent parameter λ(nk). Let K ≥ 2 denote the number of servers of the
analyzed system. For any k ∈ {1 . . . ,K}, let Nk(t) be the stochastic process
denoting the number of jobs which are fetched by the server k in the time
interval [0, t] and let nk(t) be defined as Nk(t)−Nk+(t). Clearly, we have that
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nk(t) ∈ Z and
∑K
k=1 nk(t) = 0 for all t ≥ 0. We are interested in studying the

stochastic process XK(t) = (n1(t), . . . , nK(t)) on the state space

S = {n = (n1, . . . , nK) : ni ∈ Z ∧
K∑
k=1

nk = 0} .

XK(t) is a continuous time Markov chain (CTMC) defined as follows: for h→
0+ and t > 0,

Pr{XK(t+ h) = n− ek− + ek | XK(t) = n}
= λ(nk)h+ o(h) (1)

Pr{XK(t+ h) = n | XK(t) = n}

= 1−

(
K∑
k=1

λ(nk)

)
h+ o(h) (2)

where ek is a K-dimensional vector with all zeros with the exception of compo-
nent k which is 1. Equation (1) holds for all k ∈ {1 . . . ,K} and describes the
fetching of a job from server k: this occurs according to an exponentially dis-
tributed time with state-dependent rate λ(nk). Equation (2) models the state
residence time. We will refer to such a Markov chain as XK(t). It is easy to
notice that XK(t) is reversible if and only if K = 2 and that if we do not apply
any rate adaptation policy the process is not ergodic [21].

3.1. ρ-reversibility

A stationary CTMC Y (t) is said to be reversible if it is stochastically indis-
tinguishable from Y (τ − t) for all τ, t ∈ R. In [2] the theory of time reversibility
is presented and some important applications in the context of loss networks and
classical exponential queueing systems are described. ρ-reversibility [1, 2, 22]
extends the notion of reversibility by requiring that the time-reversed process
Y (τ−t) is stochastically indistinguishable from Y (t) when we apply a renaming
ρ to its states. Clearly, when ρ is the identity the two definitions coincide.

Definition 1 (ρ-reversibility [23, 1]). Let Y (t) be a stationary CTMC with
state space S, and ρ : S → S be a bijection. Then, Y (t) is ρ-reversible if it is
stochastically indistinguishable from Y (τ − t) for all t, τ ∈ R modulo the state
renaming ρ.

When the renaming function ρ is an involution, i.e., ρ(ρ(s)) = s for all s ∈ S,
then the definition of ρ-reversibility is equivalent to that of dynamic reversibility
[2, 22]. Given the renaming function ρ, proving that Y (t) is ρ-reversible can be
structurally done by means of the Kolmogorov’s criteria or by showing that the
system of detailed balance equations admits a non-trivial solution [22]. However,
despite the analogies between the notions of reversibility and ρ-reversibility, we
stress the fact that the main difficulty in proving that a chain is ρ-reversible
consists in finding a suitable definition for the renaming ρ.
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For s, s′ ∈ S, we denote by q(s, s′) the transition rate from s to s′. The
proofs of Lemmas 1 and 2 can be found in [1] and in [23].

Lemma 1 (Kolmogorov’s criteria). Let Y (t) be a stationary CTMC with
state space S and ρ be a bijection on S. Then, Y (t) is ρ-reversible with respect
to ρ if and only if: (K1) for each s ∈ S,

∑
s′∈S q(s, s

′) =
∑
s′∈S q(ρ(s), s′), and

(K2) for any finite sequence of states s1, . . . , sn with si ∈ S, we have:

q(s1, s2)q(s2, s3) · · · q(sn−1, sn)q(sn, s1) =

q(ρ(s1), ρ(sn))q(ρ(sn), ρ(sn−1)) · · · q(ρ(s2), ρ(s1)) .

Informally, (K1) requires that the residence time in a state and in its renaming
are stochastically identical, while (K2) requires that given any cycle of transi-
tions in the CTMC, the product of its rates equals the product of the rates of
the inverse cycle in the renamed CTMC. Analogously to standard reversibil-
ity, there exists an efficient way for computing the stationary distribution of
ρ-reversible chains.

Lemma 2 (Stationary distribution). Let Y (t) be a ρ-reversible CTMC with
state space S, π its stationary distribution and let r, s ∈ S. Then, for each
sequence of transitions taking the chain from state r to s

r ≡ s1
q(s1,s2)−−−−−→ s2

q(s2,s3)−−−−−→ · · · q(sn−1,sn)−−−−−−−→ sn ≡ s ,

we have:

π(s) = π(r)

∏n−1
i=1 q(ρ(si+1), ρ(si))∏n−1

i=1 q(si, si+1)
.

3.2. Stationary analysis of XK(t)

In order to derive the stationary performance indices for the process XK(t)
when K > 2 we resort to the notion of ρ-reversibility (recall that for K = 2
the process is reversible and the analysis is trivial). We adopt a constructive
proof technique by deriving the expression for the stationary distribution from
the properties of ρ-reversible CTMCs.

Theorem 1. Let K > 2. If XK(t) is ergodic then it is ρ-reversible with respect
to the renaming:

ρ(n) = nR (3)

where nR = (nK , nK−1, . . . , n1) .

Notice that since ρ is an involution, XK(t) is also dynamically reversible. Before
proving Theorem 1 we study some properties of the random walks in XK(t).
Let u be a path starting from n and characterised by the arrivals of jobs at
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servers (c1, c2, . . . , cT ) with ci ∈ {1 . . .K} and T ∈ N+:

u : n
c1−→ n + ec1 − ec−1

c2−→ · · · ct−→ n +

t∑
w=1

ecw −
t∑

w=1

ec−w · · ·

cT−→ n +

T∑
w=1

ecw −
T∑
w=1

ec−w . (4)

The following proposition allows us to state that for each path u we can
define a reversed path uR according to the renaming specified in Theorem 1.

Proposition 1. For each transition n
c−→ n + ec − ec− in the transition graph

of XK(t) there exists an inverse transition (n + ec − ec−)R
d−→ nR where d =

K − c− + 1.

Proof. The proof is trivial, indeed it is sufficient to observe that the inverse
transition adds one unit in position K − c− + 1 and removes one from position
K − c+ 1. �

We denote by uR the inverse path of u from state (n+
∑T
w=1 ecw−

∑T
w=1 ec−w )R

to state nR with the arrivals of jobs at servers (K−c−T +1,K−c−T−1+1, . . . ,K−
c−1 +1). We define ψ(u) as the product of the transition rates which appear in u.
Lemma 3 plays an important role in proving Theorem 1.

Lemma 3. Let u and v be two paths from the same state n such that the arrival
sequence in v is a permutation of that of u. Then:

ψ(u)

ψ(uR)
=

ψ(v)

ψ(vR)
.

Proof. Let (c1, c2, . . . , cT ) be the sequence of servers fetching the jobs in an
arbitrary path u. We proceed by induction on T . If T = 1 then u = v and
the proof is trivial. Let us now consider the case T = 2 and let (c1, c2) be the
arrival order in u. If the permutation is the identity then u = v and the result
is trivial, hence we assume the arrivals in v to be (c2, c1). Hence:

u : n
c1−→ n + ec1 − ec1−

c2−→ n + ec1 − ec1− + ec2 − ec2−

where the first transition occurs with rate λ(nc1) and the second one with rate
λ(nc2 − δc2=c−1 ). The inverse of u is:

uR : nR + eK−c1+1 − eK−c−1 +1 + eK−c2+1 − eK−c−2 +1

K−c−2 +1
−−−−−−→ nR + eK−c1+1 − eK−c−1 +1

K−c−1 +1
−−−−−−→ nR (5)

where the first transition occurs with rate λ(nc−2
+ δc−2 =c1

− 1) and the second

one with rate λ(nc−1
−1). Analogously, we derive the transition rates in v where
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the indices c1 and c2 are swapped with respect to those derived for u. Hence,
we have to prove that:

λ(nc1)λ(nc2 − δc2=c−1 )

λ(nc−2
+ δc−2 =c1

− 1)λ(nc−1
− 1)

=
λ(nc2)λ(nc1 − δc1=c−2 )

λ(nc−1
+ δc−1 =c2

− 1)λ(nc−2
− 1)

.

If c−2 6= c1 and c−1 6= c2, the proof is trivial. If we assume c−2 = c1 (and hence
c−1 6= c2 since K > 2) we obtain:

λ(nc1)λ(nc2)

λ(nc−2
)λ(nc−1

− 1)
=

λ(nc2)λ(nc1 − 1)

λ(nc−1
− 1)λ(nc−2

− 1)

which is an identity since λ(nc1)/λ(nc−2
) = λ(nc1 − 1)/λ(nc−2

− 1) = 1.

The case c−1 = c2 is symmetric.
Now consider the case T > 2 and let c, d be the last servers fetching a job

in u and v, respectively. We can decompose u and v as follows:

u : n
u1=⇒ n1

c−→ nF , and v : n
v1=⇒ n2

d−→ nF ,

where nF denotes the final state of the paths u and v. By inductive hypothesis,
if we reorder the arrivals in u and v so that the last servers are d and c (resp.,
c and d), we obtain

u : n
u2=⇒ n3

d−→ n1
c−→ nF

and
v : n

v2=⇒ n4
c−→ n2

d−→ nF .

Clearly, n3 = n4 because they see the same servers fetching jobs. Hence, we
can apply the inductive hypothesis to the paths u2 and v2 since they start from
and arrive at the same states obtaining ψ(u2)/ψ(uR2 ) = ψ(v2)/ψ(vR2 ) and to the
remaining two transitions labelled (c, d) and (d, c):

ψ(u)

ψ(uR)
=

ψ(u2)ψ((d, c))

ψ(uR2 )ψ((d, c)R)
=

ψ(v2)ψ((c, d))

ψ(vR2 )ψ((c, d)R)
=

ψ(v)

ψ(vR)

where with an abuse of notation we write ψ(c, d) (ψ(d, c)) to denote the product
of the rates in the last two transitions of the paths. �

We are now in position to prove Theorem 1.

Proof of Theorem 1. In order to prove that XK(t) is ρ-reversible with respect
to the renaming given by Equation (3) we have to prove that the conditions
(K1) and (K2) of Lemma 1 are satisfied.

Condition (K1) is easy to verify. Indeed the residence time in n ∈ S is

exponentially distributed with rate
∑K
k=1 λ(nk). Since ρ(n) has the same com-

ponents of n but with a different order, then the condition is trivially satisfied.
Let us now verify Condition (K2). First, we notice that every cycle consists
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of the arrivals of the same amount V of jobs for each server, therefore a cycle
has length V K. Assume V = 1 (simple cycle) and let us compute ψ(u)/ψ(uR)
where u is a cycle in which we have the arrival of jobs at servers (K,K−1, . . . 1)
from an arbitrary state n. Then we have:

ψ(u) = λ(nK)

K−1∏
k=1

λ(nk − 1) .

Let us consider uR. By Proposition 1, the servers fetching a job are (1,K,K −
1,K − 2, . . . , 2), therefore we obtain:

ψ(uR) = λ(nR1 )

K∏
k=2

λ(nRk − 1) = λ(nK)

K−1∏
k=1

λ(nk − 1) = ψ(u) .

By Lemma 3, ψ(u) = ψ(uR) for any simple cycle. Assume now, V > 1. In this
case, again by Lemma 3 we can rearrange the order of servers fetching a job so
that we decompose the cycle u into V simple cycles without changing the ratio
ψ(u)/ψ(uR) = 1, hence proving the theorem. �

As a consequence of Theorem 1 we can easily derive the expressions of the
invariant measures of XK(t). The irreducibility of XK(t) implies the fact that
all the invariant measures differ by a positive constant and that if all the states
are positive recurrent then we can derive the stationary distribution by normal-
isation.

Corollary 1. XK(t) has a product-form invariant measure given by:

π(n) =
1

GK

K∏
i=1

∏ni−1
n=0 λ(n)∏−1
n=ni

λ(n)
(6)

which can be normalised on GK to give the stationary distribution whenever
XK(t) is ergodic.

Proof. Since XK(t) is ρ-reversible, we derive the expression of the invariant
measure associated with state n with respect to a reference state 0 as given by
Lemma 2. Let u be an arbitrary path from state 0 to state n, and let uR its
reversed according to Proposition 1. Then we have:

π(n)

π(0)
=
ψ(uR)

ψ(u)
.

Consider an arbitrary state n and let T be the minimum number of arrivals
that takes the model from state n to state 0. Notice that T is well-defined. In
fact, since XK(t) represents the “profile” of N(t) at time epoch t, T is the sum
of all the arrivals that take each Ni(t) to the same value of the maximum (see
Figure 2). We proceed by induction on T . If T = 1 then n = 0 − ec + ec− for
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Server1

Server2

Server3

Server4

N(t0) = (4, 1, 5, 3) X(t0) = (1,−3, 4,−2) T = 7

Figure 2: The example shows the minimum number of arrivals in case of K = 4 servers from
state (1,−3, 4,−2) to state (0, 0, 0, 0).

some 1 ≤ c ≤ K, and hence we have:

u : n
λ(−1)−−−−→ 0 uR : 0

λ(0)−−−→ nR (7)

which verifies Equation (6). If T > 1, then by Lemma 3 we can allow any arrival
to get one step closer to the reference state 0. We choose c such that nc < 0
and nc− ≥ 0. In this case, we have:

u : n
λ(nc)−−−→ n + ec − ec− (8)

uR : (n + ec − ec−)R
λ(nc−−1)−−−−−−→ nR . (9)

Hence, by inductive hypothesis, we have:

π(n + ec − ec−) =
1

GK

K∏
i=1

(∏ni−1
n=0 λ(n)∏−1
n=ni

λ(n)

)
λ(nc)

λ(nc− − 1)
. (10)

By Lemma 2 we have that:

π(n)

π(0)
=
λ(nc− − 1)

λ(nc)

π(n + ec − ec−)

π(0)

from which, by simplifying π(0) on both sides and by using Equation (10), we
finally obtain Equation (6). �

3.3. Performance indices.

We are interested in the evaluation of two stationary performance indices.
The first is the system throughput, i.e, the expected number of jobs that are
fetched per unit of time. The second index measures how well-balanced is the
model. For a state n, we sum the positive components of n to measure the
balancing of the model. Therefore, higher values for the expectation of this
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index denote a badly balanced system. Assume that XK(t) is stationary, the
system’s throughput TK is defined as:

TK =
∑
n∈S

π(n)

K∑
j=1

λ(nj)

 (11)

while the system’s balance index BK is:

BK =
∑
n∈S

π(n)

K∑
j=1

njδnj>0

 . (12)

Ideally, one would like to design a system in which TK is large and BK is small
by choosing an appropriate rate transition function λ(nk).

4. The bimodal model

In this section we study the model whose underlying CTMC is XK(t) and
the transition rates are defined as:

λ(nk) =

{
η if nk ≥ 0

µ if nk < 0
(13)

where k ∈ {1, . . . ,K}. Intuitively, each server k can work at two different rates
corresponding to the cases in which it has served less or more jobs than the
server k+. We prove that for all finite K a necessary and sufficient condition
for the ergodicity of XK(t) is that η < µ, i.e., any server k has to work faster if
it has processed less jobs than k+.

4.1. Ergodicity and stationary analysis

The main result for the bimodal model is given by Theorem 2. The proof is
in the Appendix.

Theorem 2. Let XK(t) be the CTMC defined according to Equations (1)-(2)
with λ(nk) defined in Equation (13). Then, the following properties hold:

• XK(t) is ergodic for all finite K ≥ 2 if and only if x = η/µ < 1;

• If x < 1, the normalising constant of Equation (6) that gives the unique
stationary distribution is:

GbK(x) = 1 +

K−1∑
j=1

(
K

j

)(
K − 1

j − 1

)
(K − j)β(x,K − j, 1−K) , (14)

where β denotes the incomplete Euler’s Beta-function:

β(z, a, b) =

∫ z

0

ua−1(1− u)b−1du .
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The evaluation of the incomplete β function is efficient and for small values of
K it can be performed symbolically. The following corollary gives the expression
for the normalising constant in terms of finite sums. The proof is given in
appendix.

Corollary 2. Given a finite K ∈ N, K ≥ 2, the expression of GbK(x) is a
rational function in x which can be computed as:

GbK(x) = 1 +

K−1∑
j=1

(
K

j

)
·
(
K − 1

j − 1

)
(K − j)

(
x

1− x

)k−j

·
j−1∑
v=0

(−1)v
(
j − 1

v

)
1

K − j + v

(
x

x− 1

)v
The throughput of the model in steady-state is defined as follows.

Lemma 4. Let XK(t) be the CTMC defined according to Equations (1)-(2) with
λ(nk) defined in Equation (13) and η < µ. Then, the throughput of the model
in steady-state is:

T bK(η, µ) =
1

GbK(x)

(
Kη +

K−1∑
j=1

(jη + (K − j)µ)

(
K

j

)

·
(
K − 1

j − 1

)
(K − j)β(x,K − j, 1−K)

)
. (15)

Proof. Note that for a state n the throughput depends only on the number of
non-negative components j. Therefore, the proof follows the same lines of that
proposed for Theorem 2. �

The evaluation of T bK(η, µ) requires only the computation of finite sums as
stated by the following corollary whose proof is analogue of that of Corollary 2.

Corollary 3. Given a finite K ∈ N, K ≥ 2, the expression of T bK(η, µ) is a
rational function in x = η/µ which can be computed as:

T bK(η, µ) =
1

GbK(x)

(
Kη +

K−1∑
j=1

(jη + (K − j)µ)

(
K

j

)(
K − 1

j − 1

)
(K − j)

·
(

x

1− x

)k−j
·
j−1∑
v=0

(−1)v
(
j − 1

v

)
1

K − j + v

(
x

x− 1

)v )
.

Finally, we give the expression for the balance index. The proof is given in
the Appendix.
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Lemma 5. Let XK(t) be the CTMC defined according to Equations (1)-(2) with
λ(nk) defined in Equation (13) and η < µ. The balance index of the model in
steady-state is:

BbK(x) =
1

GbK(x)

(
x

1− x

)K
·
K−1∑
j=1

(
K

j

)(
K − 1

j − 1

)
(K − j) 1

xj
. (16)

4.2. Numerical evaluation.

We study the bimodal model for different values of K and by varying x =
η/µ. We are interested in studying the throughput and the balance index
normalised by the number of servers. Figures 3 and 4 show the normalised
throughput and balance index, respectively, for K = 2, 4, 6, 10, 20. Notice that
the balance index of the model grows quickly for values of x greater than 0.7 as
it clearly appears from the plot in Figure 5.

Example 1. Let us consider a system with K = 5 servers and without loss of
generality let us assume µ = 1. We aim at finding η∗ which satisfies:

η∗ = argmaxη(T b5 (η, 1)2/Bb5(η)) .

Informally, η∗ represents the optimal operating point when the requirement for
high throughput is considered more important than the balance index. Notice that
since both T b5 (η, 1) and Bb5(η) are rational functions we can compute d(η) =
∂(T b5 (η, 1)2/Bb5(η))/∂η analytically. Now, finding the zero of d(η) requires to
find the roots of a polynomial in η which can be numerically performed by several
computationally efficient approaches. In our case the plot of T b5 (η, 1)2/Bb5(η) is
shown in Figure 6 and we have η∗ ' 0.3513 and

λ(nk) =

{
η∗ if nk ≥ 0

1 if nk < 0

with T b5 (η∗, 1) ' 2.903 and Bb5(η∗) = 3.5798.

5. The proportional model

We consider the case in which each server k ∈ {1, . . . ,K} can fetch a job
from the queue with a maximum rate ζ but it may decide to slow down its
service rate according to its internal state, i.e, the value of nk. We study the
case in which function λ(nk) is defined as:

λ(nk) =

{
ζ

(nk+1) if nk ≥ 0

ζ if nk < 0
. (17)

The Markov chain underlying this model has been previously considered in
[21], hence we omit the proofs and just state the main results for the sake of
comparing the performance indices of the bimodal and the proportional models
in the following section.
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Figure 3: Throughput for each server in the bimodal model as a function of η assuming µ = 1.
The line K = 20 is graphically overlapped to the one for K = 10 and is omitted.
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5.1. Ergodicity and stationary analysis.

In this case we can express both the normalising constant and the through-
put in terms of the regularized Kummer’s confluent hypergeometric function
M(a, b, z) defined as follows (the first equality shows an alternative common
notation):

M(a, b, z) = 1F̃1(a; b; z) =
1

Γ(b)
M(a, b, z) b ∈ N+ (18)

where M(a, b, z) is the Kummer’s confluent hypergeometric function defined by
the series

M(a, b, z) = 1F1(a; b; z) =

∞∑
k=0

(a)k
(b)k

xk

k!
b ∈ N+. (19)

In [21] we proved that, when the transition rates are defined according to Defi-
nition (17), the performance indices are expressed as rational functions of K as
stated below.

Theorem 3. Let XK(t) be the CTMC defined according to Equations (1)-(2)
with λ(nk) defined in Equation (17). Then, the following properties hold:

1. XK(t) is ergodic and hence admits a unique stationary distribution.

2. The normalising constant GpK of Equation (6) that gives the unique sta-
tionary distribution is:

GpK = 1 +

K−1∑
j=1

(
K

j

)
jK−jM(K − j,K − j + 1, j) . (20)

3. The throughput T pK of the model in steady-state is:

T pK =
ζ

GpK

(
K +

K−1∑
j=1

(
K

j

)
j
(
jK−j+1 M(K − j,K − j + 2, j)

− (j − 1)K−j+1 M(K − j,K − j + 2, j − 1)

+ (K − j)jK−j−1M(K − j,K − j + 1, j
))

. (21)

4. The balance index of the model in steady-state is:

BpK =
1

GpK

K−1∑
j=1

(
K

j

)
jK−j

Γ(K − j)
ej (22)

The numerical evaluations of GbK and T pK are based on the computation
of the confluent hypergeometric function M(a, b, z) with parameters a ∈ N+,
b ∈ N+ and b > a. Indeed, if a and b are non-negative integers, then the series
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Figure 7: Throughput for each server in the proportional model as a function of K.

Table 1: Comparison between the two models.

K T ∗
K/K x Bb

K(x)/K Bp
K/K

2 0.774 0.632 1.052 0.613
4 0.718 0.526 1.135 0.822
6 0.702 0.500 1.170 0.883
8 0.696 0.489 1.191 0.913
10 0.692 0.482 1.201 0.930
12 0.689 0.478 1.210 0.943
14 0.687 0.475 1.216 0.951
16 0.685 0.472 1.217 0.957
18 0.685 0.471 1.222 0.962
20 0.684 0.470 1.226 0.966

converges for all finite x to values that are computable by means of finite sums
(see [24]). In particular, for b > a, M(a, b, z) converges to [24]:

M(a, b, z) =

(
ez

a−1∑
k=0

(1− a)k (−z)k

k! (2− b)k

−
b−a−1∑
k=0

(1− b+ a)k z
k

k! (2− b)k

)
(2− b)a−1 z1−b

(a− 1)!
. (23)

5.2. Numerical evaluation

In Figure 7 and 8 we show the throughput and the balance index per server
in the proportional model. We observe that for 20 < K < 40 the normalised
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Figure 8: Balance index for each server in the proportional model as a function of K.

Table 2: Service time distribution used for the sensitivity analysis. The last column shows
the coefficient of variation.

Scenario Distribution Parameters CV
S1 Lognormal(µ, σ2) µ = −0.1, σ2 = 0.2 0.471
S2 Erlang(2, λ) λ = 2 0.705
S3 Exponential(µ) µ = 1 1
S4 HyperExponential(p,λ) p = (0.2, 0.8), λ = (1.5, 0.875) 1.22
S5 Lognormal(µ, σ2) µ = −2, σ2 = 4 7.321

throughput tends to assume a value of approximately 0.68, while the normalised
balance index is kept below 1. In Table 1 we compare the two rate adaptation
strategies, for the bimodal one we choose the ratio x = η/µ which reproduces
the same throughput of the proportional. We assume µ = ζ = 1. Observe that
although the proportional model outperforms the bimodal, its throughput is
around 70% of the maximum achievable and is not adjustable as is the case for
the bimodal.

6. Sensitivity analysis

In this section we compare the performance measures obtained from the an-
alytical models based on the Flatto-Hahn-Wright assumptions (i.e., the arrivals
follow a Poisson distribution and the service times are i.i.d. exponential ran-
dom variable) with the simulation outcomes obtained by relaxing some of the
hypothesis. Specifically, we are interested in studying the impact of the service
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time distribution on the performance indices. All the simulations consist of 15
independent runs and the warm up period is removed according to the Welch’s
method. We have built confidence intervals of 98% which are shown in the plots
only when their sizes are compatible with the scale of the graph. We simulate
the bimodal model with the service time distributions shown in Table 2 and
η = 0.8. Notice that the expected service time is 1 for all the scenarios. The
plots showing the normalised throughput and the balance index as functions of
the number of servers are shown in Figure 9 and 10. As expected, the distribu-
tion of the service time affects the performance indices since these depend on
its variance. Nevertheless, we see that the analytical bimodal model is a lower
bound for the throughput and the balance index when the service time CV is
greater than 1 whereas it is an upper bound in the opposite case. It is worth
of notice that when the coefficient of variation is much larger than 1 (S5), the
bimodal rate control algorithm maintains a finite balance index but very high,
i.e., the system is not well-balanced.

In Figures 11 and 12 we show the simulation outcomes for the same scenarios
of Table 2 for the proportional rate control algorithm. Also for these simulations
the performance measures depend on the service time distribution but in this
case the analytical proportional model is an upper bound for the throughput
when the coefficient of variation is greater than 1 and a lower bound otherwise.
Moreover, the balance index for the scenario S5 is much lower than that observed
for the bimodal rate control algorithm.

In conclusion, we can say that both the performance measures of the rate
adaptation algorithms are sensitive to the service time distributions but the an-
alytical models studied in Section 4 and 5 can be used for giving upper/lower
bounds. Moreover, the simulations have shown that the proportional rate con-
trol algorithm is more effective in maintaining a low balance index for large
coefficient of variations at the cost of a high reduction in the system’s through-
put.

7. Conclusion

In this paper we have proposed an algorithm for balancing the total number
of jobs performed by each of a set of K identical servers. The servers use a
small amount of information to adapt their service rates in order to maintain
the difference between the total number of served jobs small. We have defined
a ρ-reversible CTMC to study the stationary distribution and the performance
indices for two rate-adaptation policies, named bimodal and proportional. For
both these strategies we have derived finite expressions for the performance
indices which in the case of the bimodal model are, for a fixed number of servers,
rational functions of the system’s parameters. As a consequence, the problem of
optimising the system can be tackled efficiently. In comparing the performance
of the two rate-adaptation strategies, we make some important observations.
For given throughput and number of servers, the proportional strategy gives
always a lower balance index, i.e., the system is better balanced than in the
bimodal strategy. However, we must consider that the bimodal strategy gives
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Figure 9: Normalised throughput of the bimodal model.

the possibility to control the model behaviour through an additional parameter
x = η/µ which allows us to control the throughput and the balance index.
In practice, when high throughput is required, we should adopt the bimodal
strategy with 0.7 < x < 1 and bear with a badly balanced system. Instead,
when the system’s balance is pivotal, the proportional strategy achieves high
levels of system balancing while maintaining a higher throughput than that
of the bimodal approach. We finally remark that, according to the numerical
evidences of the proposed experiments (see Figures 3, 4, 7 and 8), the throughput
and the balance index normalised by the number of servers K worsen slowly with
the growth of K and hence both the strategies can be used to tackle systems with
large number of servers. Future works include the application of the approach
proposed here to balance the energy consumptions in wireless sensor networks
(see e.g., [25, 26, 27]) with the aim of augmenting the network life expectation.
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Appendix

Proof of Theorem 2. Let us recall the Taylor’s expansion of the incomplete
Beta-function:

β(x, a, b) = xa
∞∑
n=0

(1− b)n
n!(a+ n)

xn ,

where (y)n is the Pochhammer’s symbol:

(y)n = y(y + 1) · · · (y + n− 1) .

By replacing the definition of λ(nk) of Equation (13) in Equation (6), we have:

GbK(x) =
∑
n∈S

x
∑K

i=1 niδni>0 for x =
η

µ
.

This expression can be rewritten as:

GbK(x) = 1 +

K−1∑
j=1

∞∑
n=K−j

(
n+ j − 1

j − 1

)(
n− 1

K − j − 1

)(
K

j

)
xn .

We can interpret the equation as follows:

• j is the number of non-negative components in a state. j ranges from 1
to K − 1 since there must be at least one non negative component. The
case j = K identifies only state 0 which is considered by adding the unity
before the sums.

• n is the sum of the positive components of the state. Since there are K−j
negative components, the starting value for n is K − j.

• The first binomial coefficient counts the number of non-negative solutions
of the equation: y1 + . . .+ yj = n, i.e., the number of possible values that
can be assumed by the non-negative state components conditioned on the
fact that their sum is n.

• The second binomial coefficient counts the number of strictly positive
solutions of the equation y1+. . .+yK−j = n since all the positive recurrent
states of XK(t) have components that sum to 0.

• The third binomial coefficient counts the way of assigning the j non-
negative components to the K state components.

Henceforth, the proof is purely algebraic:

GbK(x) = 1 +

K−1∑
j=1

∞∑
w=0

(
w +K − 1

j − 1

)(
w +K − j − 1

K − j − 1

)(
K

j

)
xw+K−j

= 1 +

K−1∑
j=1

(
K

j

) ∞∑
w=0

(w +K − 1)!

(j − 1)!(w +K − j)
1

(K − j − 1)!w!
xw+K−j

= 1 +

K−1∑
j=1

(
K

j

)(
K − 1

j − 1

)
(K − j)xK−j

∞∑
w=0

xw

w!

(K)w
w +K − j
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from which we derive the desired Taylor’s expansion of the incomplete Beta-
function, i.e., we obtain Equation (14). Notice that since 1−K < 0 the integral
defining the incomplete Beta-function is finite if and only if x < 1, i.e., η < µ. �

Proof of Corollary 2. We can express the incomplete-Beta function in terms
of the hyper-geometric function 2F1 as follows:

β(x,K − j, 1−K) =
xK−j

K − j 2F1(K − j,K,K − j + 1, x) ,

and then by using the transformation rule [24]:

2F1(a, b, b− n, z) = (1− z)−a 2F1

(
−n, a, b− n, z

z − 1

)
,

for n ∈ N, we obtain:

β(x,K − j, 1−K) =

(
x

1− x

)K−j
1

K − j

2F1

(
−j + 1,K − j,K − j + 1,

x

x− 1

)
.

Since −j + 1 ≤ 0 the hyper-geometric function can be reduced to a polynomial
according to the following transformation rule [24] for the function 2F1

2F1(−m, b, c, z) =

m∑
n=0

(−1)m
(
m

n

)
(b)n
(c)n

zn , m ∈ N

and the corollary follows after few algebraic steps. �

Proof of Lemma 5. Let j and n be the number of non-negative components
in a state and the sum of the positive components, respectively. Then we can
write:

BbK(x) =
1

GbK(x)

(
K−1∑
j=1

∞∑
n=K−j

nxn
(
K

j

)(
n+ j − 1

j − 1

)(
n− 1

K − j − 1

))
,
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where the interpretation of the formula follows the line of that given in the proof
of Theorem 2. The right-hand side can be rewritten as:

1

GbK(x)

K−1∑
j=1

(
K

j

) ∞∑
n=K−j

nxn
(n+ j − 1)!

(j − 1)!n!

(n− 1)!

(K − j − 1)!

1

(n−K + j)!

=
1

GbK(x)

K−1∑
j=1

(
K

j

) ∞∑
w=0

xw+K−j (w +K − 1)!

(j − 1)!

1

(K − j − 1)!w!

=
1

GbK(x)

K−1∑
j=1

(
K

j

)
xK−j

1

(j − 1)!

1

(K − j − 1)!

∞∑
w=0

xw

w!
(w +K − 1)!

=
1

GbK(x)

K−1∑
j=1

(
K

j

)
xK−j

1

(j − 1)!

(K − 1)!

(K − j − 1)!

∞∑
w=0

xw
(
w +K − 1

w

)

=
1

GbK(x)

K−1∑
j=1

(
K

j

)
xK−j

1

(j − 1)!

(K − 1)!

(K − j − 1)!

1

(1− x)K
.

Now, Lemma 5 follows straightforwardly. �
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