
Model Checking Adaptive Multilevel Service
Compositions?

Sabina Rossi

Dipartimento di Informatica, Università Ca’ Foscari, Venezia (Italy)
srossi@dsi.unive.it

Abstract. In this paper we present a logic-based technique for verifying both
security and correctness properties of multilevel service compositions. We define
modal µ-calculus formulae interpreted over service configurations. Our formulae
characterize those compositions which satisfy a non-interference property and
are compliant, i.e., are both deadlock and livelock free. Moreover, we use fil-
ters as prescriptions of behavior (coercions to prevent service misbehavior) and
we devise a model checking algorithm for adaptive service compositions which
automatically synthesizes an adapting filter.

1 Introduction

A Service Oriented Architecture (SOA) provides a software architectural style to inte-
grate loosely specified and coupled services that communicate with each other. Simple
Object Access Protocol (SOAP)-based Web services are becoming the most common
implementation of SOA. They are designed to support interoperable service-to-service
interactions over a network. In such a context of heterogeneous systems where each
application is leveraging the services of other applications, a service-oriented analysis
and design process plays a significant role.

In this paper we develop a method for verifying both security and correctness pro-
perties of multilevel service compositions based on the use of model-checking tech-
niques [9]. We specify service compositions in terms of behavioral contracts [5, 6, 8,
16] which provide abstract descriptions of system behaviors by means of terms of a
process algebra. Multi-party service compositions are modeled as the parallel compo-
sition of contracts. We define modal µ-calculus [15] formulae, interpreted over ser-
vice configurations, characterizing those compositions which satisfy a non-interference
property and are compliant, i.e., are both deadlock and livelock free. A model checker
(like, e.g., NCSU Concurrency Workbench) can then be used to simultaneously check
non-interference and compliance.

The notion of non-interference [12, 14, 22] we consider here is based on an informa-
tion flow security model with dynamic policies. It demands that public synchronizati-
ons are unchanged as confidential communications are varied. Security policies are
used to specify the security requirements of service components. In order to capture
the dynamic nature, heterogeneity and lack of knowledge which are intrinsic features
? Work partially supported by the MIUR Project IPODS “Interacting Processes in Open-ended

Distributed Systems”.

Type environments Γ ::= ∅ | Γ, p : ς p ∈ P, ς ∈ Σ
Actions ϕ ::= ā@u | a@u a ∈ A, u ∈ P ∪ V
Contracts σ ::= 1 | x | ϕ.σ | σ + σ | σbΓ⊕ Γ cσ | rec(x)σ
Compositions C ::= p[σ] | C ‖ C

Table 1. Syntax

of modern web services, we allow policies to be dynamically specified by the service
participants. In our model, for example, customers may formulate their security require-
ments by dynamically assign types (that are security annotations) to individual service
components. We also consider the property of compliance which is widely used in the
context of SOA as a formal device to identify well-formed service compositions, those
whose interactions are free of synchronization errors.

Finally, we develop an algorithm for verifying adaptive service compositions. This
is based on the use of filters, introduced in [7], as prescriptions of behaviour (coercions
to prevent service misbehaviour). Security and correctness properties for adaptive mul-
tilevel service compositions are ensured by the automatic synthesis of an adapting filter.

Plan of the paper. Section 2 introduces the calculus for multilevel service composi-
tions. Section 3 formalizes the notion of non-interference. Section 4 presents character-
istic modal µ-calculus formulae for non-interference. Section 5 introduces the notion of
compliance and defines a modal µ-calculus formula characterizing it. Section 6 presents
an algorithm for adaptive service compositions. Finally, Section 7 concludes the paper.

2 The Calculus

We represent service contracts as terms of a value-passing CCS-like [18] process cal-
culus that includes recursion and operators for external and internal choice. Parallel
composition arises in contract compositions that we define as the parallel composition
of a set of principals executing contracts. We presuppose a denumerable set of action
names A, ranged over by a, b, c, a denumerable set of principal identities P , ranged
over by p, q, r, and a denumerable set of variables V , ranged over by x, y. The actions
represent the basic units of observable behavior of the underlying services, while the
principal names specify the peers providing the services.

In order to specify multilevel service compositions, we assign security levels to
principal identities and express both contracts and compositions as typed terms of our
calculus. Formally, we assume a complete lattice 〈Σ,�〉 of security annotations, ranged
over by ς, %, where > and ⊥ represent the top and the bottom elements of the lattice.
We denote by t and u, respectively, the join and meet operators over Σ. Type environ-
ments are used to assign security levels to principals. A type environments Γ is a finite
mapping from principals and variables to security annotations. We define Γ1tΓ2 (resp.,
Γ1 u Γ2) the type environment Γ such that Γ (p) = Γi(p) if p 6∈ dom(Γ1) ∩ dom(Γ2)
and p ∈ dom(Γi), and Γ (p) = Γ1(p) t Γ2(p) (resp., Γ1(p) u Γ2(p)) otherwise.

S = C[σC] ‖ T [σT] ‖ A1[σA] ‖ A2[σA]

σC = Req@T.Lst@T.(Close@T.1b∅⊕ T :Hc(Buy1@T.Pay@T.

Get@A1.1bA1:H⊕ A2:HcBuy2@T.Pay@T.Get@A2.1))

σT = Req@x.Inq@A1.Inq@A2.Price@A1.Price@A2.Lst@x.(Close@x.1 +
Buy1@x.Ord@A1.Pay@x.Conf@A1.1 + Buy2@x.Ord@A2.Pay@x.Conf@A2.1)

σA = Inq@x.Price@x.(Ord@x.Conf@x.Get@y.1 + 1)

Table 2. Example of a travel agency

Syntax. The syntax of our calculus is presented in Table 1. Term 1 indicates a con-
tract that has reached a successful state. The contract ā@p.σ describes a service that
sends a message on a to principal p and then behaves as σ; syntactically, the principal
identity p may be a variable, but it must be a name when the prefix is ready to fire.
Dually, the input prefix a@u.σ waits for an input on a from a particular/any princi-
pal and then continues as σ. If u is a variable x, then the input form is a binder for
x with scope σ: upon synchronization with a principal p, x gets uniformly substituted
by p in σ. The contract σ + σ′ denotes an external choice, guided by the environment.
The contract σbΓ⊕ Γ ′cσ′ represents the internal choice between σ in the type envi-
ronment Γ and σ′ in the type environment Γ ′ made irrespective of the structure of the
interacting components; the internal choice operator we adopt in this paper allows us
to model the fact that a principal may dynamically change (upgrade) the security level
of his interactions with other service components through the specific type environ-
ment associated to each choice. Finally, rec(x)σ makes it possible to express iteration
in the contract language. As usual, we assume a standard contractivity condition for
recursion, requiring that recursive variables be guarded by a prefix. Given a principal
p ∈ P , we say that a contract σ is p-compatible if for all ā@q and a@q occurring in
σ, q is different from p. A composition p1[σ1] ‖ · · · ‖ pn[σn] of principals must be
well-formed [4] to constitute a legal composition, namely: (i) the principal identities
pi’s must all be pairwise different, and (ii) each contract σi, executed by principal pi,
is pi-compatible. If C = p1[σ1] ‖ · · · ‖ pn[σn] is a legal composition, we say that C is
a {p1, . . . , pn}-composition (dually, that {p1, . . . , pn} are the underlying principals for
C). Throughout, we assume that contracts are closed (they have no free variables) and
that compositions are well formed. Also, we often omit trailing 1’s.
A service component may modify the security level of its interactions with other com-
ponents by assigning different security levels to the principals with which it is going
to interact. However, it is reasonable to assume that a service component cannot down-
grade the security level of other principals; moreover it cannot upgrade the level of its
interactions with other components above its own level. These are the only typing con-
straints we assume. Such a typing discipline ensures that information does not explicitly
flow from high to low, but it does not deal with implicit flows. Instead, we characterize
non-interference in terms of the actions that typed service compositions may perform.

∐
(1) = ∅

∐
(x) = ∅

∐
(ϕ.σ) =

∐
(σ)

∐
(σ1 + σ2) =

∐
(σ1) t

∐
(σ2)∐

(σ1bΓ1⊕ Γ2cσ2) = Γ1 t Γ2 t
∐

(σ1) t
∐

(σ2)
∐

(rec(x)σ) =
∐

(σ)

Γ, p : ς ` p[σ]
ς ∈ Σ,

⊔
q∈dom(

‘
(σ))

∐
(σ)(q) � ς Γ ` C1 Γ ` C2

Γ ` C1 ‖ C2

Table 3. Type system

Example 1. Table 2 shows an example of a service contract composition. Four services
are involved: C[σC], T [σT] and Ai[σA] representing a customer, a travel agency, and
two airline companies, respectively. The elementary actions represent business activ-
ities that result in messages being sent or received. For example, the action Req@T
undertaken by the customer results in a message being sent to the travel agency. The
customer sends a request to the travel agency which then inquires the airlines to get the
prices for the selected route. Each airline responds and the travel agency sends to the
customer the list of the best prices. The customer decides whether to close the commu-
nication with the travel agency or to buy from one of the airlines. In the latter case the
customer decides to assign a high security level (H) to both the travel agency and the
chosen airline company in order to safeguard the confidentiality of the purchasing data.
The travel agency orders the ticket from the selected airline and takes a deposit (or a
full payment) from the customer. As soon as the airline receives the confirmation of the
payment, the ticket is issued to the customer. 2

Type System. The typing rules reported in Table 3 ensure that, given a service composi-
tion with an underling set π of principals, every p ∈ π cannot upgrade the security level
of the principals in π (including p) above the level of p itself. The judgments take the
form Γ ` C, where Γ is a type environment and C is a service composition. We denote
by
∐

the function that associates to each contract σ the join of all the Γi occurring as a
parameter of an internal choice in σ. We say that a service component p[σ] is well-typed
in Γ if p will never upgrade the security level of other principals over its own level; this
is obtained by requiring that for all q ∈ dom(

∐
(σ)), it holds that

∐
(σ)(q) � ς where

ς is the security level of p.

Semantics. We define the dynamics of typed service compositions in terms of labelled
transition systems (and a success predicate), with rules reported in Table 4. In the table,
and in the whole paper, λ ranges over visible contract typed actions ā@p, a@p and silent
actions τ ; δ ranges over service composition actions ap→q , āp→q and τ . We say that
Γ B C is a configuration if Γ is a type environment and C is a {p1, . . . , pn}-service
composition such that {p1, . . . , pn} ⊆ dom(Γ).

The first block of rules defines the successful states of a contract and a composition,
which are those that expose the successful term 1 at top level, or immediately under
an external choice (up-to recursive unfoldings). Notice that a composition is success-
ful only when all its components are successful. The second block of rules defines the
typed transitions for contracts. The rule for the internal choice ensures that a service

Contract and composition satisfaction: σX

1X
σi X

σ1 + σ2 X

σ{x := rec(x)σ}X

rec(x)σX

σX

p[σ] X

C1 X C2 X

C1 ‖ C2 X

Typed contract transitions: Γ B σ
λ−→ Γ ′ B σ′

Γ B a@p.σ
a@p
−−→ Γ B σ Γ B a@x.σ

a@p
−−→ Γ B σ{x := p}

Γ B ā@p.σ
ā@p
−−→ Γ B σ Γ B σ1bΓ1⊕ Γ2cσ2

τ−→ Γ t Γi B σi (i = 1, 2)

Γ B σi
λ−→ Γ ′ B σ

(i = 1, 2)
Γ B σ1 + σ2

λ−→ Γ ′ B σ

Γ B σ{x := rec(x)σ} λ−→ Γ ′ B σ′

Γ B rec(x)σ λ−→ Γ ′ B σ′

Typed composition transitions: Γ B C
δ−→ Γ ′ B C ′

Γ B σ
a@p−→ Γ B σ′

p ∈ dom(Γ), p 6= q
Γ B q[σ]

ap→q−→ Γ B q[σ′]

Γ B σ
ā@p−→ Γ B σ′

p 6= q

Γ B q[σ]
āq→p−→ Γ B q[σ′]

Γ B C1
ap→q−→ Γ B C ′1 Γ B C2

āp→q−→ Γ B C ′2

Γ B C1 ‖ C2
τ−→ Γ B C ′1 ‖ C ′2

Γ B σ
τ−→ Γ ′ B σ′

Γ B p[σ] τ−→ Γ ′ B p[σ′]

Γ B C1
δ−→ Γ ′ B C ′1

Γ B C1 ‖ C2
δ−→ Γ ′ B C ′1 ‖ C2

Table 4. Typed contract and composition transitions

component cannot downgrade the security level of other principals. Each typed con-
tract transition yields a corresponding transition for the principal hosting the contract.
Transitions for configurations are relative to the underlying set dom(Γ) of principals
and are entirely standard.

We use the following shorthands. We write =⇒ for the reflexive and transitive clo-
sure of τ−→, and δ=⇒ for =⇒ δ−→=⇒. For a sequence of actions w = δ1 . . . δn, we
write w=⇒ to note δ1=⇒ · · · δn=⇒. A computation for a configuration Γ B C, is a se-
quence Γ B C = Γ0 B C0

τ−→ Γ1 B C1
τ−→ . . . of internal actions.

Lemma 1 (Subject reduction). Let Γ be a type environment and C be a service com-
position such that Γ B C is a configuration. If Γ B C is well-formed and Γ B C

τ−→
Γ ′ B C ′, then Γ ′ B C ′ is well formed. 2

Typed internal composition transitions: Γ B C
α
↪−→ Γ ′ B C ′

Γ B σ
τ−→ Γ ′ B σ′

Γ B p[σ]
τ
↪−→ Γ ′ B p[σ′]

Γ B C1
α
↪−→ Γ ′ B C ′1

Γ B C1 ‖ C2
α
↪−→ Γ ′ B C ′1 ‖ C2

Γ B C1
ap→q−→ Γ B C ′1 Γ B C2

āp→q−→ Γ B C ′2

Γ B C1 ‖ C2

{a}p→q
↪−→ Γ B C ′1 ‖ C ′2

Table 5. Typed internal composition transitions

Example 2. Consider again the service composition S of Example 1. LetΣ contain two
security annotations, L (public) and H (confidential), with L � H. Let Γ be the type
environment C : H, T : L, A1 : L, A2 : L. The service composition S is well-typed in
Γ , i.e., Γ ` S. 2

3 Non-Interference

The concept of noninterference [14] has been introduced to formalize the absence of in-
formation flow in multilevel systems. In the context of service compositions it demands
that public interactions between service components are unchanged as secret commu-
nications are varied or, more generally, that the low level behaviour of the service com-
position is independent from the behaviour of its high components. In this way clients
are assured that the data transmitted over the air to a web server remains confidential;
in other words, sensitive data cannot be intercepted and understood by eavesdroppers.

The notion of non-interference we are going to introduce is relative to the internal
behaviour of service compositions, i.e., we are interested in observing the synchro-
nizations between service components. We thus refine the semantics of compositions in
order to help (i) to distinguish a local contract move from a synchronization, and (ii) to
identify the principals involved in every synchronization. This is captured by the rules
collected in Table 5, where we use the relation ↪−→ to represent typed synchronizations
between service components. The τ label now indicates an internal action to a service
component, while synchronizations between different peers in a composition are repre-
sented through a label of the form {a}p→q meaning that principals p and q synchronize
on action a. We let α range over the labels {a}p→q and τ . We denote by

τ
↪−→→ a possible

empty sequence of
τ
↪−→ and define

{a}p→q
↪−→→ def=

τ
↪−→→

{a}p→q
↪−→ τ

↪−→→.
The two semantics for service compositions, one expressed in terms of −→ and the

other one expressed in terms of ↪−→, are related as follows.

Lemma 2. Let Γ B C be a service configuration.

– Γ B C
τ
↪−→ Γ ′ B C ′ if and only if C = C1 ‖p[σ]‖C2, C ′ = C1 ‖ p[σ′] ‖ C2 and

σ
τ−→ σ′;

– Γ B C
{a}p→q
↪−→ Γ B C ′ if and only if C = C1 ‖ p[σ] ‖ C2 ‖ q[ρ] ‖ C3,

C ′ = C1 ‖ p[σ′] ‖ C2 ‖ q[ρ′] ‖ C3, σ
ā@q−→ σ′ and ρ

a@p−→ ρ′. 2

In order to define our notion of non-interference, we need to be able to distinguish
the component interactions at a given security clearance. As transitions are typed, we
can assign a security level to them as follows: the level of a synchronization depends on
the level of the principals performing it. More precisely, the level of the synchronization
{a}p→q in the type environment Γ is defined as as:

Γ ({a}p→q) = Γ (p) u Γ (q).

Thus a ς-level synchronization is performed by principals whose security clearance is
higher or equal to ς .

Behavioural Observations. We define behavioural observations in terms of equivalences
that are parametric with respect to the security level ς ∈ Σ of the behaviour we want to
observe. Such equivalences are relations over configurations that equate service compo-
sitions exhibiting the same ς-level component interactions. They are defined as a variant
of the notion of weak bisimulation [18], an observation equivalence which allows one to
observe the nondeterministic structure of the LTSs and focuses only on the observable
actions.

In the following, we write Γ1 =ς Γ2 whenever {p ∈ dom(Γ1)| Γ1(p) � ς} = {p ∈
dom(Γ2)| Γ2(p) � ς}.

Definition 1 (Weak bisimulation on ς-low actions). Let ς ∈ Σ. A weak bisimulation
on ς-low actions is the largest symmetric relation ≈ς over configurations such that
whenever Γ1 B C1 ≈ς Γ2 B C2 with Γ1 =ς Γ2

– if Γ1 B C1
α
↪−→ Γ ′1 B C ′1 with α = τ or Γ1(α) � ς , then there exist Γ ′2 and C ′2

such that Γ2 B C2
α
↪−→→ Γ ′2 B C ′2 with Γ ′1 B C ′1 ≈ς Γ ′2 B C ′2 and Γ ′1 =ς Γ

′
2;

– if Γ1 B C1
α
↪−→ Γ ′1 B C ′1 with α 6= τ and Γ (α) 6� ς , then there exist Γ ′2 and

C ′2 such that either Γ2 B C2
α
↪−→→ Γ ′2 B C ′2 or Γ2 B C2

τ
↪−→→ Γ ′2 B C ′2 with

Γ ′1 B C ′1 ≈ς Γ ′2 B C ′2 and Γ ′1 =ς Γ
′
2.

We write Γ |= C1 ≈ς C2 when Γ B C1 ≈ς Γ B C2. 2

The notion of non-interference is inspired by [13] and is expressed in terms of a
restriction operator ·|ς which allows one to represent a service composition prevented
from performing internal synchronizations of a level higher than ς . The semantics of
C|ς is described by the following rule:

Γ B C
α
↪−→ Γ ′ B C ′

Γ (α) � ς
Γ B C|ς

α
↪−→ Γ ′ B C ′|ς

Definition 2 (Non-interference). Let ς ∈ Σ and Γ B C be a configuration. We say
that the service composition C satisfies the non-interference property with respect to
the level ς in the type environment Γ , denoted C ∈ NIΓ,ς , if

Γ |= C ≈ς C|ς . 2

M = C[σC] ‖ F1[σF] ‖ F2[σF] ‖ S[σS]

σC = Inq@F1.Inq@F2.Plan@F1.Plan@F2.

(Agree@F1.Close@F2.1bF1:H⊕ F2:HcAgree@F2.Close@F1.1))

σF = Inq@x.LookUp@S.Quote@x.Plan@C.(Agree@x.1 + Close@x.1)

σS = LookUp@x.Quote@x.1

M ′ = C[σ′C] ‖ F1[σF] ‖ F2[σF] ‖ S[σS]

σ′C = Inq@F1.Inq@F2.Plan@F1.Plan@F2.

(Close@F2.Agree@F1.1bF1:H⊕ F2:HcClose@F1.Agree@F2.1))

Table 6. Example of a financial consulting platform

Example 3. Consider again the service composition S of Example 1 in the type envi-
ronment Γ of Example 2. The property S ∈ NIΓ,L holds. 2

Example 4. Consider the service composition depicted in Table 6: it consists of a client
C, two financial consulting services F1 and F2 and a stock quote service provider S.
The client inquires the financial services to get investment advices. The financial ser-
vices consult the stock quote service provider in order to look up information on the
financial quotes. Then the financial services send their investment recommendations to
the client which may decide whether or not adhere to the investment plan proposed by
one of the financial services and close the connection with the other one.

Let Σ = {L,H} with L � H and Γ be the type environment C : H, F1 : L, F2 :
L, S : L. In this case we have that M 6∈ NIΓ,L. Indeed, there is a direct causality
between the high level actions {Agree}C→Fi and the low level action {Close}C→Fj
with i 6= j, performed after the clients makes the choice. As a consequence, if the
client decides to accept the proposal of F1 then F2 knows that the customer has agreed
to proceed with investment recommendation of F1 by just observing that the action
{Close}C→F2 has been performed. The service composition can be made secure by
letting {Close}C→Fj be executed independently from {Agree}C→Fi as in the compo-
sition M ′ which is obtained from M by replacing the contract σC with σ′C . 2

4 Modal Formulae for Non-Interference

In this section we present a method for verifying whether Γ |= C ≈ς C|ς which
consists in defining a modal µ-calculus formula φ≈ς (Γ B C) such that Γ ′ B C ′

satisfies φ≈ς (Γ B C) iff Γ B C ≈ς Γ ′ B C ′. The proofs are in the spirit of [19].
The modal µ-calculus [15] is a small, yet expressive process logic. We consider

modal µ-calculus formulae constructed according to the following grammar:

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈α〉φ | [α]φ | X | µX.φ | νX.φ

MΓBC(true)(ρ) = SΓBC

MΓBC(false)(ρ) = ∅
MΓBC(φ1 ∧ φ2)(ρ) = MΓBC(φ1)(ρ) ∩MΓBC(φ2)(ρ)
MΓBC(φ1 ∨ φ2)(ρ) = MΓBC(φ1)(ρ) ∪MΓBC(φ2)(ρ)
MΓBC(〈α〉φ)(ρ) = {Γ ′ B C ′ | ∃ Γ ′′ B C ′′ : Γ ′ B C ′

α
↪−→ Γ ′′ B C ′′

∧ Γ ′′ B C ′′ ∈MΓBC(φ)(ρ)}
MΓBC([α]φ)(ρ) = {Γ ′ B C ′ | ∀ Γ ′′ B C ′′ : Γ ′ B C ′

α
↪−→ Γ ′′ B C ′′

⇒ Γ ′′ B C ′′ ∈MΓBC(φ)(ρ)}
MΓBC(X)(ρ) = ρ(X)
MΓBC(µX.φ)(ρ) =

⋂
{x ⊆ SΓBC |MΓBC(φ)(ρ[X 7→ x]) ⊆ x}

MΓBC(νX.φ)(ρ) =
⋃
{x ⊆ SΓBC |MΓBC(φ)(ρ[X 7→ x]) ⊇ x}

Table 7. Semantics of modal mu-calculus

where X ranges over an infinite set of variables and α over the labels {a}p→q and τ .
The fixpoint operators µX and νX bind the variable X and we adopt the usual notion
of closed formula. For a finite set M of formulae, we write

∧
M and

∨
M for the

conjunction and disjunction of the formulae inM , where
∧
∅ = true and

∨
∅ = false.

Modal µ-calculus formulae are interpreted over service configurations modelled by
LTS’s. Let Γ B C be a configuration and LTS (Γ B C) = (SΓBC , Act, ↪−→) where
SΓBC is the set of states reachable from Γ B C through

α
↪−→ and α ∈ Act denotes

the action {a}p→q or τ . The subset of configurations in SΓBC that satisfy a formula φ,
noted by MΓBC(φ)(ρ), is inductively defined in Table 7. ρ is an environment, i.e., it is
a partial mapping ρ : Var 6→ 2SΓBC that interprets at least the free variables of φ by
subsets of SΓBC . For a set x ⊆ SΓBC and a variable X , we write ρ[X 7→ x] for the
environment that maps X to x and Y 6= X to ρ(Y) if ρ is defined on Y .

Intuitively, true and false hold for all resp. no states and ∧ and ∨ are interpreted
by conjunction and disjunction, 〈α〉φ holds for a configuration Γ ′ B C ′ ∈ SΓBC if
there exists Γ ′′ B C ′′ reachable from Γ ′ B C ′ with action α and satisfing φ, and
[α]φ holds for Γ ′ B C ′ if all configurations Γ ′′ B C ′′ reachable from Γ ′ B C ′ with
action α satisfy φ. The interpretation of a variable X is as prescribed by the environ-
ment. The formula µX.φ, called least fixpoint formula, is interpreted by the smallest
subset x of SΓBC that recurs when φ is interpreted with the substitution of x for X .
Similarly, νX.φ, called greatest fixpoint formula, is interpreted by the largest such set.
Existence of such sets follows from the well-known Knaster-Tarski fixpoint theorem.
As the meaning of a closed formula φ does not depend on the environment, we some-
times write MΓBC(φ) for MΓBC(φ)(ρ) where ρ is an arbitrary environment.

The set of configurations satisfying a closed formula φ is defined as Conf (φ) =
{Γ B C | Γ B C ∈MΓBC(φ)}. We also refer to (closed) equation systems:

Eqn : X1 = φ1 . . . Xn = φn

where X1, . . . , Xn are distinct variables and φ1, . . . , φn are formulae having at most
X1, . . . , Xn as free variables.

An environment ρ : {X1, . . . , Xn} → 2SΓBC is a solution of an equation system
Eqn , if ρ(Xi) = MΓBC(φi)(ρ). The fact that solutions always exist, is again a conse-
quence of the Knaster-Tarski fixpoint theorem. In fact the set of environments that are
candidates for solutions, EnvΓBC = {ρ | ρ : {X1, . . . , Xn} → 2SΓBC}, together with
the lifting v of the inclusion order on 2SΓBC , defined by

ρ v ρ′ iff ρ(Xi) ⊆ ρ′(Xi) for i ∈ [1..n]

forms a complete lattice. Now, we can define the equation functional FuncEqn
ΓBC :

EnvΓBC → EnvΓBC by FuncEqn
ΓBC(ρ)(Xi) = MΓBC(φi)(ρ) for i ∈ [1..n], the

fixpoints of which are just the solutions of Eqn . FuncEqn
ΓBC is monotonic and there

is the largest solution νFuncEqn
ΓBC of Eqn (with respect to v), which we denote by

MΓBC(Eqn). This definition interprets equation systems on the configurations reach-
able by a given initial configuration Γ B C. We lift this to configurations by agreeing
that a configuration satisfies an equation system Eqn , if its initial state is in the largest
solution of the first equation. Thus the set of configurations satisfying the equation sys-
tem Eqn is Conf (Eqn) = {Γ B C | Γ B C ∈MΓBC(Eqn)(X1)}.

The relation≈ς can be characterized as the greatest fixpoint νFunc≈ς of the mono-
tonic functional Func≈ς on the complete lattice of relations R over configurations or-
dered by set inclusion, where (Γ1 B C1, Γ2 B C2) ∈ Func≈ς (R) if and only if
points (1) and (2) of Definition 1 hold. Thus a relation R is a weak bisimulation on
ς-low actions if and only if R ⊆ Func≈ς (R), i.e., R is a post-fixpoint of Func≈ς . By
the Knaster-Tarski fixpoint theorem, νFunc≈ς is the union of all the post-fixpoints of
Func≈ς , i.e., it is the largest weak bisimulation on ς-low actions. If we restrict to the
complete lattice of relationsR ⊆ SΓ1BC1 × SΓ2BC2 we obtain a monotonic functional
Func(Γ1BC1,Γ2BC2)

≈ς whose greatest fixpoint is exactly νFunc≈ς ∩ (SΓ1BC1×SΓ2BC2),
and this is enough to determine if Γ1 B C1 ≈ς Γ2 B C2.

Let Γ B C be finite-state, Γ1 B C1, . . . , Γn B Cn its |SΓBC | = n states, and
Γ1 B C1 = Γ B C its initial state. To derive a formula characterizing Γ B C up to ≈ς
we construct a characteristic equation system [19]:

Eqn≈ς : XΓ1BC1 = φ≈ςΓ1BC1
, . . . , XΓnBCn = φ≈ςΓnBCn

consisting of one equation for each service configuration Γ1 B C1, . . . , Γn B Cn ∈
SΓBC . We define the formulae φ≈ςΓiBCi such that the largest solutionMΓBC(Eqn≈ς) of
Eqn≈ς associates the variablesXΓiBCi just with the states Γ ′i B C ′i of SΓBC which are
weakly bisimilar on ς-low actions to Γi B Ci, i.e., such thatMΓBC(Eqn≈ς)(XΓiBCi) =
{Γ ′i B C ′i ∈ SΓBC | Γi B Ci≈ςΓ ′i B C ′i}. Theorem 1 shows the exact form of such
formulae. First we define:

〈〈α〉〉Γ,ςφ
def=
{
〈〈α〉〉φ if Γ (α) � ς or α = τ
〈〈α〉〉φ ∨ 〈〈τ〉〉φ if Γ (α) 6� ς and α 6= τ

where 〈〈τ〉〉φ def= µX.φ ∨ 〈τ〉X and 〈〈α〉〉φ def= 〈〈τ〉〉〈α〉〈〈τ〉〉φ. Let
α
↪−→→ Γ,ς note either

α
↪−→→ or

τ
↪−→→ . Then 〈〈α〉〉Γ,ς , 〈〈τ〉〉 and 〈〈α〉〉 correspond to

α
↪−→→ Γ,ς ,

τ
↪−→→ and

α
↪−→→ , since

– MΓBC(〈〈α〉〉Γ,ςφ)(ρ) = {Γ ′ B C ′ | ∃ Γ ′′ B C ′′ : Γ ′ B C ′
α
↪−→→ Γ,ςΓ

′′ B
C ′′ ∧ Γ ′′ B C ′′ ∈MΓBC(φ)(ρ)}

– MΓBC(〈〈τ〉〉φ)(ρ) = {Γ ′ B C ′ | ∃ Γ ′′ B C ′′ : Γ ′ B C ′
τ
↪−→→ Γ ′′ B C ′′ ∧ Γ ′′ B

C ′′ ∈MΓBC(φ)(ρ)}
– MΓBC(〈〈α〉〉φ)(ρ) = {Γ ′ B C ′ | ∃Γ ′′ B C ′′ : Γ ′ B C ′

α
↪−→→ Γ ′′ B C ′′ ∧ Γ ′′ B

C ′′ ∈MΓBC(φ)(ρ)}.

Theorem 1. Let φ≈ςΓiBCi be the formula

∧
{
∧
{〈〈α〉〉Γ,ςXΓ ′iBC

′
i
| Γi B Ci

α
↪−→ Γ ′i B C ′i}}

∧
∧
{[α]

∨
{XΓ ′iBC

′
i
| Γi B Ci

α
↪−→→ Γ,ς Γ

′
i B C ′i}}.

Then MΓBC(Eqn≈ς)(XΓiBCi) = {Γ ′i B C ′i ∈ SΓBC | Γi B Ci ≈ς Γ ′i B C ′i}. 2

Characteristic formulae, i.e., single formulae characterizing configurations can be
constructed by applying simple semantics-preserving transformation rules on equation
systems as described in [19]. These rules are similar to the ones used by A. Mader
in [17] as a mean of solving Boolean equation systems (with alternation) by Gauss
elimination. Hence, since for any equation system Eqn there is a formula φ such that
Conf (Eqn) = Conf (φ), we obtain that:

Theorem 2. For any finite-state configuration Γ B C there is a modal µ-calculus for-
mula φ≈ς (Γ B C) such that Conf (φ≈ς (Γ B C)) = {Γ ′ B C ′ ∈ SΓBC | Γ ′ B C ′ ≈ς
(Γ ′ B C ′)|ς}, that is the set of all the states reachable from Γ B C and satisfying
NIΓ,ς 2

5 A Modal Formula for Compliance

In this paper we refer to the notion of compliance for contract service compositions
studied in [3]. Intuitively, a composition of services is compliant if it is deadlock and
livelock free, i.e., it does not get stuck nor does it get trapped into infinite loops with no
exit states. This notion is independent from the security levels of the principals involved
in the component synchronizations. Therefore we omit trailing type environments in
the definitions below, and write, e.g., C =⇒ C ′ to denote a transition of the form
Γ B C =⇒ Γ ′ B C ′ for some type environments Γ and Γ ′.

Definition 3 (Compliance). Let C be a contract service composition. We say that C
is compliant, noted C ↓, if for every C ′ such that C =⇒ C ′ there exists C ′′ such that
C ′ =⇒ C ′′ and C ′′X. 2

In other words, the notion of compliance ensures that at each intermediate step
of the computation in a service composition, each component has a way to reach a
successful state (either autonomously, or via synchronizations). This is enough to avoid
both deadlocks and livelocks.

Example 5. Consider the service composition S of Example 1. It holds that Γ B S is
both compliant, i.e., S ↓, and non interfering, i.e., S ∈ NIΓ,L. 2

The notion of compliance can be equivalently expressed in terms of
α
↪−→ where

α denotes a synchronization {a}p→q or τ . More precisely, let γ = α1, . . . , αn. We
denote by

γ
↪−→→ the sequence of transitions

α1
↪−→→ α2

↪−→→ . . .
αn
↪−→→. Again we write C

γ
↪−→→ C ′

to denote a derivation Γ B C
γ
↪−→→ Γ ′ B C ′ for some type environments Γ and Γ ′.

Proposition 1. Let C be a contract service composition. It holds that C is compliant,

C ↓, if and only if every C ′ such that C
γ′

↪−→→ C ′ for some γ′ ∈ Act∗ there exist C ′′ and

γ′′ ∈ Act∗ such that C ′
γ′′

↪−→→ C ′′ and C ′′X. 2

The modal µ-calculus formula that characterizes compliance is defined as follows:

φ
def= µX.

(
(X) ∨

∨
α∈Act

(〈α〉X)

)
∧ ¬µX.

(∨
α∈Act

(〈α〉X)

)

where

φc
def= µX.

(∧
α∈Act

([α]X) ∧ φ

)
The sub-formula ¬µX.

(∨
α∈Act(〈α〉X)

)
will ensure that any configuration satis-

fying φc doesn’t get trapped into infinite loops without chances to reach a successful
state. The next theorem characterizes the set of service configurations satisfying φc. The
proof is given in [2].

Theorem 3. Consider the modal µ-calculus formula φc defined above. It holds that
Conf (φc) = {Γ B C | C ↓ and Γ is a type environment}. 2

Corollary 1. A composition C is compliant if and only if Γ B C ∈ Conf (φc) for some
type environment Γ . 2

As a consequence of Theorems 2 and 3 we have:

Corollary 2. Let ς ∈ Σ, Γ B C be a configuration and

ΦςΓBC
def= φ≈ς (Γ B C) ∧ φc.

It holds that Γ B C ∈ Conf (ΦςΓBC) if and only if both C ∈ NIΓ,ς and C ↓. 2

Using this method we can for instance exploit the model checker NCSU Concur-
rency Workbench (see [10]) to check whether both C ∈ NIΓ,ς and C ↓.

6 An Adaptive Algorithm

The model checking technique is based on the idea that the state transition graph of
a finite-state system defines a Kripke structure, and efficient algorithms can be given
for checking if the state graph defines a model of a given specification expressed in
an appropriate temporal logic. In the explicit state approach the Kripke structure is

Transitions for filters

δ.f
δ7−→ f

f{X := rec(X) f} δ7−→ f ′

rec(X) f δ7−→ f ′

f
δ7−→ fδ g

δ7−→ gδ

f ⊗ g δ7−→ fδ ⊗ gδ

f
δ7−→ fδ g

δ7−→ gδ

f × g δ7−→ fδ × gδ

f
δ7−→ fδ g 6 δ7−→

f × g δ7−→ fδ

f 6 δ7−→ g
δ7−→ gδ

f × g δ7−→ gδ

Transitions for filtered peers

Γ B p[σ] δ−→ Γ B p[σ′] f
δ7−→ f ′

Γ B f(p[σ]) δ−→ Γ B f ′(p[σ′])

Γ B p[σ] τ−→ Γ ′ B p[σ′]

Γ B f(p[σ])) τ−→ Γ ′ B f(p[σ′])

Γ B p[σ] X

Γ B f(p[σ]) X

Table 8. Dynamics of Filtered contract service compositions

represented extensionally, using conventional data structures such as adjacency matrices
and linked lists so that each state and transition is enumerated explicitly. Moreover, in
the global calculation approach, given a structureM and formula φ, the model checking
algorithms calculate φM = {s : M, s |= φ} that is the set of all states inM satisfying φ.
We show how such algorithms can be exploited to develop an adaptive model checking
technique for service compositions which adapts, when it is possible, the composition
under investigation in such a way that it satisfies both non-interference and compliance.
We use the filters, introduced in [7] and revised in [3], as prescriptions of behaviour.

Filters. A filter is the specification of the legal flow of actions for an individual contract.
The syntax is as follows, while the semantics is defined in Table 8.

f ∈ F := 0 | δ.f | f × f | f ⊗ f | X | rec(X) f

Definition 4 (Filter pre-order). The filter pre-order f ≤ g is the largest relation such
that if f δ7−→ fδ then g δ7−→ gδ and fδ ≤ gδ . 2

We note (F ,v) the partial order induced by ≤: by abuse of notation, we iden-
tify a filter f with its equivalence class [f]∼, where ∼ is the symmetric closure of ≤.
The union and intersection of filters represent the glb and lub operators for (F ,v).
Furthermore, if we assume a finite alphabet A of actions, the set of filters FA in-
sisting on A forms a complete lattice with 0 as bottom and the identity filter IA def=
rec(X)

∏
δ∈A δ.X as top element.

The application Γ B f(p[σ]) blocks any action from Γ B p[σ] that is not explicitly
enabled by f . Filters may be composed to help shape a service composition. Given a set

π of principals, a composite π-filter F is a finite map from the principals in π to filters:
{p→ f [p] | p ∈ π}. A π-filter may be applied to a π-composition:

Γ B F (p1[σ1] ‖ · · · ‖ pn[σn]) ::= Γ B F [p1](p1[σ1]) ‖ · · · ‖ Γ B F [pn](pn[σn])

When we write Γ B F (C) we tacitly assume that the underlying set of principals
for both F andC is π. The operators of union and intersection, as well as the ordering on
filters extends directly to composite filters, as expected. Namely, for F and G π-filters
and for • ∈ {×,⊗}:

F ≤π G iff F [p] ≤ G[p] for all p ∈ π
(F •π G)[p] def= F [p] •G[p] for all p ∈ π

We generalize the syntax of service compositions by allowing the term Γ B F (C)
to account for the application of filters on the components ofC. The dynamics of filtered
service compositions derives directly by combining the transitions in Tables 4 and 8.

Relevance. Below we present an algorithm that given a configuration Γ B C infers
a composite filter F that fixes Γ B C, whenever such F exists. The algorithm is so
structured as to guarantee two important properties on the inferred filter. On the one
hand, the filter is as permissive as possible, in that it is the greatest (with respect to
the pre-order ≤) among the filters that fix Γ B C. On the other side, the inferred
filter is relevant, i.e., minimal in size: for any computation state reached by the service
configuration via a series of τ transitions (local moves or synchronizations), the filter
only enables actions that may be attempted at that state (either directly, or via a local
choice), by one of the components of the service configuration.

Definition 5 (Relevance). Let π be a set of principals and C be a non-empty set of
π-configurations. A filter f is p-relevant in C, written f ∝p C, if whenever f δ7−→ f̂

one has δ ∈ {a →p, āp→ } and there exists Γ B C ∈ C such that Γ B C
α
↪−→→ with

α ∈ {{a} →p, {a}p→ } and f̂ ∝p {Γ ′ B C ′ | Γ B C
α
↪−→→ Γ ′ B C ′}.

A composite π-filter F is relevant for C, written F ∝ C, if F (p) ∝p C for all p ∈ π.
A composite π-filter is relevant for a π-configuration Γ B C if F ∝ {Γ B C}. 2

The Algorithm. We describe an algorithm that synthesizes the v-greatest relevant filter
that fixes Γ B C, if it exists, when Γ B C does not satisfy ΦςΓBC .

As discussed above, a global model checking algorithm applied to a configuration
Γ B C and the modal formula ΦςΓBC calculates the set of states in the reduction graph
(tracing the states reached by means of synchronizations or internal moves) of Γ B C
satisfying ΦςΓBC . This is the input of our algorithm. The reduction graph can be repre-
sented as a directed graph G = (V,E) with labelled edges and vertices. The vertices in
V represent the reachable states of Γ B C. With each v ∈ V we associate two fields:
state[v] gives the computation state (i.e., the derivative Γ ′ B C ′ of the initial state
Γ B C) associated with v; result [v] is a tag SUCC or FAIL depending on whether the
corresponding configuration satisfies ΦςΓBC or not as calculated by the model checker.

An edge in E is a triple (u,v)α representing the transition state[u]
α
↪−→ state[v].

Reduction graphs may be stored in a adjacency list representation, so that the set of

Procedure PushLabels(G)

Input: A reduction graph G = (V,E)
Output: The graph G updated

done := false;
while ¬ done do

done := true;
foreach u ∈ V do

succ := false; fail := false;
if Adj[u, τ] 6= ∅ then

if ∃v ∈ Adj[u, τ] : result [v] = FAIL then
fail := true;

else if ∃v∈Adj[u, τ] : result [v] = SUCC then
succ := true;

else if ∃(α,v) ∈ Adj[u] ∧ result [v] = SUCC ∧ ¬Conflict(α,u) then
succ := true;

if succ ∧ result [u] 6= SUCC then
result [u] := SUCC; done := false;

else if fail ∧ result [u] 6= FAIL then
result [u] := FAIL; done := false

outgoing edges for each u ∈ V can be retrieved as Adj[u]: thus (u,v)α ∈ E iff
(α,v) ∈ Adj[u]. We also write Adj[u, α] for the set {v ∈ V | (u,v)α ∈ E}. Vertices
with no outgoing edges are called leaves. We denote by root[G] the vertex representing
the initial state Γ B C.

The first step consists in re-labelling the graph G calculated by the model-checker
in such a way that the result label at each vertex u is set to FAIL if there exists at least
one silent transition from u to a FAIL vertex; it is set to SUCC if either there are no silent
transitions from u to a FAIL vertex and there exists a silent transition from u to a SUCC
vertex or there exists one non-silent and non-conflicting transition from u to a SUCC
vertex. The procedure iteratively examines all the vertices in the graph until it reaches
a fixed point. This computation is accomplished by the PushLabels procedure and
uses the following auxiliary definitions. Let locs(α) be {p, q} in case α = {ap→q}, and
∅ in case α = τ . Let G = (V,E) be a reduction graph, and α = {ap→q}.
- A path $ = (u,u1)α1 , . . . , (un−1,v)αn from u to v in G is α-free if locs(α) ∩
locs(αi) = ∅ for all i’s.
- A vertex v is a α-free descendant of u in G (dually, u is a α-free ancestor of v) if
there is a α-free path fromu tov.
- A vertex u yields a conflict on α if u has two distinct α-free descendants v1 and v2

such that (v1,w1)α and (v2,w2)α ∈ E and result [w1] 6= result [w2].
- A vertex v has a conflict on α in G, noted ConflictG(α,v) if v has a α-free ancestor
yielding a conflict on α.

Intuitively, our algorithm will prune G by banning all the ‘bad’ synchronizations,
and by preserving all the ‘good’ synchronizations that lead to nodes satisfying both
non-interference and compliance. Due to the presence of internal choices, the same

Function SuccessGraph(G)

Input: A reduction graph G = (V,E)
Output: G′ = (V ′, E′) the success sub-graph of G

V ′ := (result [root[G]] = SUCC) ? {root[G]} : ∅; E′ := ∅; done := false;
while ¬ done do

done := true;
foreach (u,v)α ∈ E \ E′ do

if u ∈ V ′ ∧ result [v] = SUCC ∧ ¬Conflict(α,u) then
V ′ := V ′ ∪ {v}; E′ := E′ ∪ {(u,v)α};
done := false

return G′ = (V ′, E′);

synchronization can look good at one point, but actually be bad. The definition of con-
flict formally captures this notion of ambiguous synchronizations.

Lemma 3. After the call to PushLabels(G), the following conditions hold for ev-
ery node u in G: (i) result [u] = FAIL iff either there exists no (u,v)α ∈ E such
that result [v] = SUCC and ¬ConflictG(α,u) or there exists (u,v)τ ∈ E such that
result [v] = FAIL; (ii) result [u] = SUCC iff there exists no (u,v)τ ∈ E such that
result [v] = FAIL and there exists either (u,v)τ ∈ E such that result [v] = SUCC or
(u,v)α ∈ E with α 6= τ , ¬ConflictG(α,u) and result [v] = SUCC. 2

We say that a path $ in G is successful if result [u] = SUCC for every node u
in $, otherwise $ is unsuccessful. A node u is root-successful if it is reachable from
root[G] via a successful path, otherwise it is root-unsuccessful. The next step of the
algorithm computes the sub-graph of G that only includes the root-successful vertices.
This computation is accomplished by the SuccessGraph function.

Lemma 4. Let G′ = (E′, V ′) be the graph generated by SuccessGraph(G). Then
u ∈ V ′ if and only if u is root-successful in G. 2

The final step of the algorithm synthesizes the filter out of the success graph, in
case this is not empty. Let G′ = SuccessGraph(G), π be the underlying set of
principals, and FAlg [ΦςΓBC] = ExtractFilterπ(root [G], ∅, G′).

Theorem 4 (Soundness and maximality). Let Γ B C be a π-composition. Then Γ B
FAlg [ΦςΓBC](C) is such that both FAlg [ΦςΓBC](C) ∈ NIΓ,ς and FAlg [ΦςΓBC](C) ↓.
Also, if a filter F fixes Γ B C and is relevant for Γ B C, then F ≤ FAlg [ΦςΓBC]. 2

7 Conclusion

Some research efforts on model checking web services have already been proposed [1,
11, 21, 23]. The most related paper that we are aware of is by Nakajima [20] who intro-
duces a lattice-based security labelling into BPEL in order to detect potential insecure

Function ExtractFilterπ(u, U,G)

Input: G = (V,E) a success graph. u ∈ V,U ⊆ V
Output: F , an π-composite filter

F [p] := 0 for all p ∈ π;
if state[u] X then

return F ;
if u ∈ U then

rec[u] := true; return (Xu, . . . , Xu);

foreach (α,v) ∈ Adj[u] do
Fv := ExtractFilterπ(v, U ∪ {u}, G);
foreach p ∈ π do

if α = {ap→ } then
F [p] := F [p]× āp→ .Fv[p];

else if α = {a→p} then
F [p] := F [p]× a→p.Fv[p];

else
F [p] := F [p]× Fv[p];

if rec[u] = true then
foreach p ∈ π : Xu ∈ fv(F [p]) do

F [p] := rec(Xu)F [p];

return F ;

information leakage. The paper discusses how both the safety and security aspects can
be analyzed in a single framework using the model-checking verification techniques.
The main difference with our approach is that the notion of security considered in [20]
is built upon a simple lattice-based model for security labels. Instead, our approach
deals with more flexible security policies which can be dynamically specified by the
service participants. As far as correctness is concerned, [20] considers safety properties
such as deadlock freedom and specific progress properties. Our model instead deals
also with the property of livelock freedom.

In conclusion, we have developed a formal method for the analysis of both informa-
tion flow security and compliance of contract service compositions. This is based on the
characterization of such properties in terms of modal µ-calculus formulae. This allows
us to use a model checker, like the NCSU Concurrency Workbench, in order to simul-
taneously check non-interference and compliance. An algorithm for adaptable service
compositions is also proposed. It computes the greatest relevant filter fixing them.

References

1. F. Abouzaid and J. Mullins. Model-checking Web Services Orchestrations using BP-
calculus. Electronic Notes in Theoretical Computer Science, 255:3–21, 2009.

2. T. Basciutti. Model-Checking Web Services. Master’s thesis, Department of Computer
Science, University Ca’ Foscari of Venice, 2010.

3. G. Bernardi, M. Bugliesi, D. Macedonio, and S. Rossi. A Theory of Adaptable Contract-
Based Service Composition. In Proc. of International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, Workshop on Global Computing Models and Technolo-
gies (GlobalComp’08), pages 327–334. IEEE Computer Society, 2008.

4. M. Bravetti and G. Zavattaro. Contract Compliance and Choreography Conformance in the
Presence of Message Queues. In Proc. of the International Workshop on Web Services and
Formal Methods (WS-FM’08), volume 5387 of LNCS, pages 37–54. Springer, 2008.

5. M. Bravetti and G. Zavattaro. A Foundational Theory of Contracts for Multi-party Service
Composition. Fundamenta Informaticae, 89(4):451–478, 2009.

6. S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A Formal Account of Contracts for
Web Services. In Proc. of the International Workshop on Web Services and Formal Methods
(WS-FM’06), volume 4184 of LNCS, page 148162. Springer, 2006.

7. G. Castagna, N. Gesbert, and L. Padovani. A Theory of Contracts for Web Services. In
Proc. of the annual Symposium on Principles of Programming Languages (POPL’08), pages
261–272. ACM press, 2008.

8. G. Castagna, N. Gesbert, and L. Padovani. A Theory of Contracts for Web Services. ACM
Transactions on Programming Languages and Systems (TOPLAS), 31:53–61, 2009.

9. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press, 1999.
10. R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In Proc. of International

Conference on Computer Aided Verification (CAV’96), volume 1102 of LNCS, pages 394–
397. Springer, 1996.

11. G. Dai, X. Bai, and C. Zhao. A Framework for Model Checking Web Service Composi-
tions Based on BPEL4WS. In Proc. of the IEEE International Conference on e-Business
Engineering (ICEBE’07), pages 165–172. IEEE Computer Society, 2007.

12. R. Focardi and R. Gorrieri. A Classification of Security Properties for Process Algebras.
Journal of Computer Security, 3(1):5–33, 1994/1995.

13. R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. Journal of Com-
puter Security, 14(1):65–110, 2006.

14. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc. of the IEEE
Symposium on Security and Privacy (SSP’82), pages 11–20. IEEE Computer Society, 1982.

15. D. Kozen. Results on the Propositional µ-calculus. Theoretical Computer Science, 27:333–
354, 1983.

16. C. Laneve and L. Padovani. The must Preorder Revisited. In Proc. of the International
Conference on Concurrency Theory (CONCUR’07), volume 4703 of LNCS, pages 212–225.
Springer, 2007.

17. A. Mader. Modal µ-calculus, Model Checking, and Gauss Elimination. In Proc. of In-
ternational Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’95), volume 1019 of LNCS, pages 72–88. Springer, 1995.

18. R. Milner. Communication and Concurrency, volume 92 of Prentice Hall International
Series in Computer Science. Prentice Hall, 1989.

19. M. Müller-Olm. Derivation of Characteristic Formulae. Electronic Notes in Theoretical
Computer Science, 18, 1998.

20. S. Nakajima. Model-Checking of Safety and Security Aspects in Web Service Flows.
In Proc. of the International Conference of Web Engineering (ICWE’04), volume 3140 of
LNCS, pages 488–501. Springer, 2004.

21. S. Nakajima. Model-Checking Behavioral Specification of BPEL Applications. Electronic
Notes in Theoretical Computer Science, 151:89–105, 2006.

22. P. Ryan and S. Schneider. Process Algebra and Non-Interference. Journal of Computer
Security, 9(1/2):75–103, 2001.

23. H. Schlingloff, A. Martens, and K. Schmidt. Modeling and Model Checking Web Services.
Electronic Notes in Theoretical Computer Science, 126:3–26, 2005.

