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Abstract. Cognitive Networks are a class of communication networks,
in which nodes can learn how to adjust their behaviour according to
the present and past network conditions. In this paper we introduce
a formal probabilistic model for the analysis of wireless networks in which
nodes are seen as processes capable of adapting their course of action
to the environmental conditions. In particular, we model a network made
of mobile nodes using the gossip protocol, and we study how the energy
performance of the network varies, according to the topology changes and
the transmission power. The stochastic process underlying the model is
a discrete time Markov chain. We use the PRISM model checker to obta-
in, through Monte-Carlo simulation, numerical results for our analysis,
which show how the learning-driven dynamic adjustment of transmission
power can improve the energy performance while preserving connectivity.

1 Introduction

Cognitive networks [4] are communication networks in which nodes can alter
their behaviour according to changes of the environmental conditions. What
differentiate this approach from the one of cognitive radio [8] networks are that,
while in the latter the choices that nodes can take are restricted to radio channel
selection, in the former nodes can take complex decisions, taking into account
the global goals of the network. Cognitive processes are particularly useful when
we have to deal with ad hoc networks, where the absence of a fixed infrastructure
and the dynamic nature of the network topology, as well as the limited power
capacities of nodes, make the network prone to problems such as link breakages,
energy waste and interferences.

Topology Control is a technique aimed at guaranteeing network connectivity,
while optimising network performance with respect to several metrics, depending
on the specific objective of each single network.

Although several formal models for the analysis of wireless ad hoc and sensor
networks and for cognitive radio networks were proposed in the literature (see,
e.g., [13, 5]), to the best of our knowledge formal models for the analysis of
cognitive networks are rare. In [9] the authors discuss the issues concerning the
definition of a PEPA model for cognitive networks, although they do not propose
any actual model, and thus they do not perform any quantitative or qualitative
analysis.



PRISM [10] is a tool for modelling and analysing systems that exhibit a prob-
abilistic behaviour. It supports, among others, the modelling of Markov Decision
Processes (MDPs), where nondeterministic and probabilistic aspects coexist. In
addition to the traditional model checking, PRISM provides statistical model
checking, allowing one to compute probabilities of properties’ satisfaction. In
particular, PRISM also offers a discrete-event simulator, allowing one to gener-
ate approximate results for the verification of properties. This approach is par-
ticularly useful for very large models, when other approaches to model checking
are not feasible, due to the well known problem of state space explosion.

This paper presents a probabilistic model for the analysis of networks ex-
hibiting cognitive behaviours. The model is written in the PRISM language, and
supports broadcast communications, node mobility, and the ability of nodes to
dynamically adjust the transmission power during their operations.

Paper structure. The paper is organised as follows. In Section 2 we give
an introduction to the use of cognitive networks for topology control, Section
3 reviews the basic features of PRISM that we use in the rest of the paper. In
Section 4 we introduce a novel model for cognitive networks, and in Section 5 we
use the PRISM tool to analyse its behaviour, giving numerical examples. Finally,
in Section 6 we give some final remarks, concluding the paper.

2 Topology Control with Cognitive Networks

Topology Control [14] is a technique aimed at guaranteeing the connectivity
of a communication network, while limiting other cost factors, such as the level
of interference and the energy consumption, thus extending the network lifetime.
In the presence of mobility this problem is not trivial, since the network topol-
ogy continuously changes, causing frequent link breakages and variations in the
interference levels. In wireless networks, this can be considered as the problem of
finding a trade-off between power saving and network connectivity through the
choice of the appropriate transmission power for each node. It is evident that if
each node transmits at a low power, then its connectivity level, and potentially
the one of the whole network, will be reduced, while if we assign high transmis-
sion power to the nodes, we generally enhance the connectivity of the network,
but we consume far more energy. This relation is, indeed, not a trivial one, since
increasing transmission power, and thus the coverage area of a radio station, can
increase the chances of collisions and interferences, decreasing the whole network
connectivity. For omni-directional antennas we can reasonably model the cover-
age radius as a function of the power used by the transmitter, and vice-versa.
The function can be arbitrary, but usually the coverage radius is proportional
to the square root of the transmission power [12]. Of course connectivity is also
influenced by factors independent from the transmission power, such as routing
and link-level protocols. However in this paper we focus on energy consump-
tion, leaving all the other factors unchanged. In particular, we assume that the
network uses the well-known gossip protocol to propagate messages.
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In this article we also assume that every node in the network is somewhat
smart, and capable of applying some strategies to decide its transmission power,
based on the conditions in which it operates. In particular, we assume that,
observing the past behaviour of the network, or using some link-level techniques
usually employed for interference, collision and congestion detection [17], each
node is able to guess how many other stations are present in a given radius.
Given that information, the node can perform a very simple decision, i.e.,

– If there is a radius r < rmax for which there are at least n other nodes, use
the minimum transmission power capable of transmitting with radius r.

– Use the maximum allowed power, corresponding to radius rmax, otherwise.

It is clear that, due to mobility and interferences, the guess of the aforemen-
tioned node can be wrong, however this mistake will have an effect on the next
retransmissions of the node itself. In this way, we have just defined a cognitive
network in which nodes are able to learn, from the observed environment, an
appropriate behaviour for the net itself.

3 The PRISM Model Checker

PRISM [10] is a probabilistic model checker which supports several types of
models, such as discrete-time Markov chains (DTMCs), continuous-time Markov
chains (CTMCs), Markov decision processes (MDPs), and Probabilistic Timed
Automata (PTA). Models are expressed using PRISM’s own language.

This paper deals with models that can be represented by Discrete Time
Markov Chains [15], and studies their qualitative and quantitative properties
using model checking techniques. In the following we briefly introduce the main
aspects of the PRISM language.

3.1 Modules.

PRISM models consist of modules, expressed through a simple state-based
language. A module is specified as:

module name

...

endmodule

and it is composed of variables and commands. Variables are names associated
to values. The syntax for variables is:

name : [ range ] init initial_value;

Commands describe all the possible behaviours of the modules, i.e. all the pos-
sible transitions from one state to another. They include guards, which indicate
the states where the transitions can occur, and the updates, which modify the
variables in order to reach the arrival states. The syntax for a command is:
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[action] guards -> p1:update1 + p2:update2 .. pn:updaten;

where p1, ..., pn express the probability of each possible update (
∑n

i=1pi = 1),
guards is the list of conditions associated to that transitions, and action is the
label of the transitions, which is used to synchronise different modules, since two
modules can synchronise if they can execute an action with the same label.

3.2 The Property Specification Language

PRISM provides a specification language to express rewards and quantita-
tive properties and it supports the automated analysis of these properties with
respect to the probabilistic models. It supports several temporal logics, such
as PCTL (Probabilistic Computation Tree Logic) and LTL (Linear Temporal
Logic) [7]. In particular, when dealing with DTMCs, the PRISM property spec-
ification language enables us to study many important properties, such as the
probability to reach a particular state under some conditions.

The P operator is used to reason about the probability of the occurrence of
an event. Formally, we write:

P bound [ pathprop ]

which is true if the probability that the path property pathprop is satisfied by
the paths reachable from the initial states respects the bound bound.

We can also adopt a quantitative approach, by computing the actual proba-
bility that a path property is satisfied. An example is:

P =? [pathprop]

which computes the probability of satisfying pathprop.
The PRISM property specification language introduces a set of temporal op-

erators in order to express the PCTL path formulas or the LTL formulas which
can be verified for a single path of a model. Among these operators, the most
used are F, which expresses the property that the condition will be eventually
satisfied by the path, and G which expresses the property that the condition is
always true (i.e., it expresses the invariancy property).

3.3 Costs and Rewards.

Reward properties are based on the possibility of defining rewards associated
with a given PRISM model. Rewards can assign values, or costs, either to states
or transitions. We are interested in transitions rewards, whose syntax is:

rewards ‘‘name’’

[action_1] constraint_1 : cost_1

[action_2] constraint_2 : cost_2

...

[action_n]constraint_n : cost_n

endrewards
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where, for each i ∈ [1 − n] assigns the cost cost i to the transitions labelled
with [action i] satisfying the constraint constraint i.

With the PRISM property specification language we can use the R operator
to compute the expected value of the rewards associated with the model. As for
the reachability properties (the P operator), we can verify if the cost of reaching
the states satisfying some particular property respects a certain bound:

R bound [ rewardprop ]

We can also compute the expected cost of reaching states satisfying a given
property:

R = ? [F rewardprop]

3.4 Statistical Model Checking

Due to the well-known problem of state space explosion, in addition to the
standard model checking techniques, which need to build the entire model for the
verification of properties, PRISM also provides a discrete-event simulator, which
can be used to perform approximate (or statistical) model checking. Approximate
results can be obtained by generating a large number of paths through the model,
without building the entire state space, evaluating the properties on each run,
and using the information to generate approximate results. This technique can
be used to analyse both reachability and reward properties, and it is particularly
useful to study models with a large number of modules and interactions (see [11]).

4 The Model

We consider a wireless network with both static and mobile devices, where
communications are carried on using a basic gossip protocol. Nodes can, through
radio-frequency channels, broadcast messages, which are receivable by all the
nodes which are inside the sender node’s transmission area and are listening to
the same channel. We analyse the energy costs of a multi-hop communication
between two random network nodes, and we study how the ability of learning
and reasoning in the processes behaviour can improve the performance of the
network.

In particular, we model 15 mobile nodes, and 10 static nodes, evenly dis-
tributed in a network area of 50×100 square meters, as depicted in Figure 1.
The static nodes are located at positions {7, 9, 17, 19, 27, 29, 37, 39, 47, 49}, while
the movements for all the other nodes are described by the bidirectional arrows
in Figure 1. We model the network area as a grid of 5×10 cells. The distances
between cells are determined by considering the centre of each cell and calcu-
lating the euclidean distance between each pair of centres (each cell is 10 × 10
square metres). Moreover, we consider each node as a cognitive process, that can
dynamically change the transmission power for its communications, depending
on the position of its active neighbours, with the global aim of an efficient topol-
ogy control. Usually, modern technologies allow the devices to choose among a
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Fig. 1: Topology of the Network

discrete set of possible power levels. In what follows we will use the transmission
radius to represent the transmission power, since those quantities are strictly re-
lated. As we mentioned in Section 2, usually the power spent for a transmission is
proportional to the squared radius. The processes that model nodes listen to the
channel and, when they receive a message, they forward it, according to the gos-
sip strategy, i.e., they will forward the message with a certain probability psend,
and discard it with probability 1 − psend. We will study the performance of
the network, for different gossip strategies, i.e., with the value of the forwarding
probability ranging in the set {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}.

Several papers, such as [6, 1–3], already present analysis of gossip-based pro-
tocols, comparing modifications which are particularly appropriate for ad hoc
and wireless networks. In this paper we analyse how the presence of cognitive
processes in the network can strongly improve the performance of these kinds of
communication protocols. In our model, each node can choose its transmission
radius in the set {10m, 15m, 20m}. Specifically, it will choose the minimum ra-
dius which ensure the possibility to receive the message for at least two receivers
or, if there are not enough available neighbours in the transmission area, it will
transmit with its maximum power ( radius = 20m).

As introduced in Section 3, the PRISM model checker supports different
model types. Here we model the network as a DTMC, where probabilities are
used to model both the possible topology changes, and the behaviour of the
processes. In what follows we will give the essential elements of the mapping of
the aforementioned model in PRISM’s own language. Table 1 shows the repre-
sentation of a single network node.

Variables. The most important variables of our model mapping are the following:

– stepsi controls the sequentiality of the process executed by the sensor node
i. In particular, stepsi = 2 means that the node is ready to receive, stepsi =
1 means that the node is ready to transmit, and stepsi = 0 means that the
node has completed a transmission.

– li: is the variable containing the actual location of the sensor node i.
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Table 1: The PRISM module for a node

module P8
steps8 : [0 .. 2] init 2;
l8 : [15 .. 20] init 15;

[move] (l8 = 15) → 0.8 : (l8′ = 20) + 0.8 : (l8′ = 15);
[movee] (l8 = 20) → 0.8 : (l8′ = 15) + 0.8 : (l8′ = 20);

//beginning of a new round
[round] no one sending → (steps8′ = 2);

//transmission
//[c8] (steps8 = 1)→ (steps8′ = 0);

//reception
[c3] (steps8 = 2)& s1p3 & s1p38→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c3] (steps8 = 2)& s2p3 & s2p38→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c3] (steps8 = 2)& s3p3 & s3p38→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c3] (steps8! = 2) |!((s1p3 & s1p38) | (s2p3 & s2p38) | (s3p3 & s3p38))→ (steps8′ = steps8)

[c5] (steps8 = 2)& s2p5 & s2p58→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c5] (steps8 = 2)& s3p5 & s3p58→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c5] (steps8! = 2) |!((s2p5 & s2p58) | (s3p5 & s3p58))→ (steps8′ = steps8)

[c7] (steps8 = 2) & s1p7 & s1p78→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c7] (steps8 = 2) & s2p7 & s2p78→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c7] (steps8 = 2) & s3p7 & s3p78→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c7] (steps8! = 2) |!((s1p7 & s1p78) | (s2p7 & s2p78) | (s3p7 & s3p78))→ (steps8′ = steps8)

[c10] (steps8 = 2) & s1p10 & s1p108→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c10] (steps8 = 2) & s2p10 & s2p108→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c10] (steps8 = 2) & s3p10 & s3p108→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c10] (steps8! = 2) |!((s1p10 & s1p108) | (s2p10 & s2p108) | (s3p10 & s3p108))→ (steps8′ = steps8)

[c12] (steps8 = 2)& s2p12 & s2p128→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c12] (steps8 = 2)& s3p12 & s3p128→ psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c12] (steps8! = 2) |!((s2p12 & s2p128) | (s3p12 & s3p128))→ (steps8′ = steps8)

[c13] (steps8 = 2)& s1p13 & s1p138 → psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c13] (steps8 = 2)& s2p13 & s2p138 → psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c13] (steps8 = 2)& s3p13 & s3p138 → psend : (steps8′ = 1) + (1− psend) : (steps8′ = 0);
[c13] (steps8! = 2) |!((s1p13 & s1p138) | (s2p13 & s2p138) | (s3p13 & s3p138)) → (steps8′ = steps8)

endmodule
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Table 2: Connectivity formulas

//P1 strategies
formula s1p12 = ((steps2 = 2) & (l2− l1 = 1));
formula s1p14 = ((steps4 = 2) & (l4 = l1− 5));

formula s2p12 = s1p12;
formula s2p14 = (steps4 = 2);
formula s2p15 = ((steps5 = 2) & (l5− l1 = 6));

formula s3p12 = ((steps2 = 2) & (l2− l1 < 3));
formula s3p14 = (steps4 = 2);
formula s3p15 = s2p15;
formula s3p16 = ((steps6 = 2) & (l6− l1 = 10));

formula s1p1 = (s1p12 & s1p14);
formula s2p1 =!s1p1 & ((s2p12 & s2p14) | (s2p12 & s2p15) | (s2p14 & s2p15));
formula s3p1 =!s1p1 & !s2p1;

Modelling the Network Topology. In order to model the level of connectivity of
the network, which dynamically changes depending on the positions of the nodes
inside the network area, and before defining the modules for the network nodes,
we introduce a list of formulas, which allow us to verify the distance between
each pair of possible neighbours. In particular, for each pair i, j ∈ {1, ..., 25} and
for each h ∈ {2, 3, 4}, if the formula shpij is true, it means that the node Pj

is actually able to listen to a Pi’s transmission with radius 5× h. Moreover, for
each i ∈ {1, ..., 25} and for h ∈ {2, 3, 4}, if the formula shpi is true, then there
exists at least two possible receiver nodes inside the transmission area of the
sender, when transmitting with radius 5× h. Table 2 shows the set of formulas
modelling the connectivity of P1. As an example,

formula s1p12 = ((steps2 = 2) & (l2− l1 = 1));

is true when node P2 is ready to receive (steps2 = 1), and the distance between
P1 and P2 is 1, i.e., looking at Figure 1, is true only when l1 = 2 and l2 = 3,
which, since we consider the nodes lying in the centre of each cell, means that
radius 10m guarantees their connection.

Transitions.

– [move]: is the transition modelling the periodic topology changes. Node mo-
bility is expressed in terms of the transition matrix of a discrete time markov
chain: each entry of the matrix denotes the probability that a sensor node
moves from a location to another. In particular, static nodes are associated
with the identity m atrix. When the transition move is performed, a node
will change location with probability ε, and will remain in the same location
with probability 1− ε. Here we choose 0.8 as the value for ε.
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– [round]: is the transition occurring when no more transmissions are possible.
At the end all the nodes will be in the reception state (stepsi = 2), except
for the sender node, whose steps variable will be set to 1.

– [ci]: is the transition modelling a broadcast trasmission. In particular, if
a node is in the state ready to transmit (stepsi = 1), it will execute the
following transition:

[ci] (stepsi = 1)→ (stepsi′ = 0);

meaning that the node i transmits the message and then transits in a sleeping
phase. If another node Pj is in the state ready to transmit (stepsj = 2), and
it is inside the transmission area of the sender node (s1pij, s2pij, s3pij), it
will synchronize with the sender node and receive the message. Transition [ci]
(stepsj = 2)&s1pi&s1pij→ psend : (stepsj′ = 1) + (1− psend) : (stepsj′ = 0);

models the basic gossip strategy: the node receiving the message will forward it
with probability psend, and discard it with probability 1− psend.

Rewards. As introduced in Section 3, PRISM allows us to specify rewards (or
costs), associated to both states and transitions. In order to study the energy
performance of the networks, we associate a cost to each transition. In particular,
for each transition [ci] (meaning that Pi is sending a message) we verify which
transmission power has been used for the transmission (s1p1, s2p1 or s3p1),
and we use the values 1 for radius 10 m, 1.5 for radius 15m and 2 for radius
20m.

We are interested also in studying how many retransmissions the sender must
perform before the communication is successfully completed. In order to do so,
we introduce another reward, simply assigning 1 to each transition tagged with
[round].

Formally, rewards are written as follows:

rewards "rounds"

[round] true : 1;

endrewards

rewards "costs"

[c1] s1p1 : 1;

[c1] s2p1 : 1.5;

[c1] s3p1 : 2;

[c2] s1p2 : 1;

[c2] s2p2 : 1.5;

[c2] s3p2 : 2;}

[c3] s1p3 : 1;

[c3] s2p3 : 1.5;

[c3] s3p3 : 2;}

. . .

endrewards
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5 Simulations and Results

In this section we show some numerical results obtained using our model for
the analysis of connectivity and performance properties of wireless networks. As
usual for large models, we use statistical model checking, using the discrete-event
simulator of PRISM.

We show how, using a cognitive process, which is able to dynamically adjust
the transmission power of a node depending on the relative positions of the
surrounding ones, it is possible to improve the performance of the network,
guaranteeing a high level of connectivity, while limiting the energy consumption.

In the following examples, we use the same network that we have seen in
Section 4, and we set the node P23, i.e., the red node in Figure 1, as the final
destination for the communications, while we change the sender node, in order
to study how the performance of the network depend on the relative distance
between sender and receiver. In particular we will show numerical results using
as sender either the node P17 or the node P6, i.e., the blue and yellow nodes in
Figure 1, respectively.

We compare the connectivity and the power consumption of the cognitive
network with other networks having exactly the same topology and using the
same gossip strategy, but with a fixed transmission power.

5.1 Reachability Property

We first study the reachability properties of the system, i.e., the probability to
reach a successful state of the model, which corresponds to the correct reception
of a message by the final destination of the network.

In our PRISM representation of the model, since steps23 = 1 means that
the node P23 has correctly received the message, the formula which represents
the success of the communication is

formula goal = (steps23 = 1);

and the property that we are interested in verifying is

P=?[F goal]

which gives us the probability that the sender and the receiver nodes will even-
tually complete their communication successfully.

As stated before, in order to perform statistical model checking, i.e., to get
approximate results for the verification of properties, we use the PRISM simu-
lator, that relies on Monte Carlo simulations. As we expected, since we assume
that the sender node may retransmit a possibly infinite number of times, the
probability to reach the goal state was correctly computed as 1.0 for all the
network configurations, where the confidence interval was +/ − 0, based on a
confidence level 95%. This result ensures us that, in our setting , using a fixed
transmission power or dynamically changing the transmission power, depend-
ing on the surrounding environment, does not affect the network connectivity.
Moreover, this result ensures that a message will always reach the destination
in a finite number of steps.
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Table 3: Results for Energy Costs, Distance = 28,3 m

VariableRadius

psend cost
0.65 26.15733
0.7 23.741
0.75 22.5360
0.8 20.7675
0.85 18.2167
0.9 15.7207
0.95 13.3402
1.0 11.21633

FixedRadius = 15

psend cost
0.65 25.5838
0.7 24.2405
0.75 22.5333
0.8 20.2982
0.85 17.8995
0.9 15.8523
0.95 13.3570
1.0 10.8015

5.2 Energy Cost Properties

As stated before, it is possible to analyse the performance of the network,
in terms of energy consumption. As already introduced in Section 4, the trans-
mission radius of a node in a wireless network is usually strictly related to its
transmission power. In the literature we can find several formulas to estimate
both reception and transmission energy costs (see, e.g., [12], [16]).

Here we abstract from those possible formulas, and we simply assign to each
transmission the correspondent transmission radius as a reward. Notice that
this is a choice that doesn’t affect the complexity of the model or of its analysis.
Moreover, we do not consider the energy spent for receiving data or to move,
since the former is usually a fixed quantity, which does not depend on the actual
activity of the node, and the latter usually come from a different power source,
e.g., the legs of the mobile device user.

Again, we analyse the costs using statistical model checking. The reward
property that has been studied is:

R{‘‘costs’’}=?[F goal]

As in the previous case, we used a Monte Carlo simulation, and we obtained a
maximum confidence interval of 2 − 3% with respect to the averages, based on
a confidence level of 95%.

The results for a distance of 28.3m are shown in Figure 2.(a).
We notice that, while with a fixed radius of 10 or 20m, the energy costs of

the communications critically increase, especially for small value of the gossip
probability psend, using cognitive processes, or a fixed radius of 15m, the per-
formance is consistently improved. Since the curves for the variable radius and
the fixed radius 15m almost overlap, Table 3 reports the results in detail.

We analyse the average number of retransmissions, after the first one, that
the sender node must perform to complete the communication with the receiver
node, since it is useful to better understand the results of the previous reward
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(a) Energy Costs

(b) Expected Number of Sender’s Retransmissions

Fig. 2: Distance between sender and receiver: 28,3 m

property verification. Figure 2.(b) shows some results for this kind of analysis.
Notice that, by fixing the radius to the maximum value, on average the com-
munication reaches the successful state after less than 1 retransmissions. As an
instance, the result for psend = 0.65 is 0.67567. Here the energy waste is given
by the high power employed for each forwarding, rather than by the number
of transmissions to reach the success. Again the curves for the Variable Ra-
dius, and the Fixed Radius 15m are almost overlapping. This result lead us to
the conclusion that, with this particular network configuration, if the processes
can dynamically choose their transmission radius, depending on the neighbours’
positions, the average radius will be 15m.

We now perform the same kind of analysis changing the sender. In this case
the distance between sender and receiver is 72, 1m. Figure 3 shows the results
for energy consumption: in this case, with a fixed radius of 15m ,the energy
performance of the network critically deteriorates. However, the results for a
fixed radius 20m and a variable radius are similar. Table 4 gives the precise
values for each psend. Notice that results for a fixed Radius of 10m are not
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(a) Energy Costs

(b) Expected Number of Sender’s Retransmissions

Fig. 3: Distance between sender and receiver: 72,1 m

reported: this is due to the fact taht the power needed for small values of psend
is very high and this would have led to an unreadable graph.

Again the analysis of the number of retransmissions by the sender nodes
is helpful to understand the behaviour of the network: the curves for a fixed
radius and a variable radius are similar. For psend = 0.65 we have, on average,
1.6834 retransmissions for the fixed radius network, and 2.519 for the cognitive
networks, while for psend = 1.0 we have 0 on average for both the network
configurations), meaning that, for a larger distance a fixed radius 20m is close to
the ideal value of the transmission radius to guarantee the energy performance
optimisation.

The results prove that, using a fixed radius, the performance of the network
strictly depends on the relative positions of the sender and the receiver, while
using a variable radius, we always get a power consumption that is closed to the
minimum (that is closed to the fixed radius 15m in the first case, and to the
fixed radius 20m in the second case).
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Table 4: Results for Energy Costs, Distance = 71,2 m

VariableRadius

psend cost
0.65 60.9090
0.7 50.61383
0.75 44.64067
0.8 40.1177
0.85 34.9950
0.9 32.8725
0.95 30.8292
1.0 28.6423

FixedRadius = 20

psend cost
0.65 54.7933
0.7 48.95267
0.75 42.7287
0.8 38.3973
0.85 34.2673
0.9 32.1087
0.95 30.2807
1.0 28.1893

6 Conclusion

In this paper we have presented a probabilistic model for a class of cognitive
networks in a wireless setting, in which nodes dynamically choose their trans-
mission power, using data collected from the network itself. We have shown how
this model can be encoded in the PRISM language, allowing for the analysis of
its performances and for the verification of properties of its behaviour. Moreover,
we have used that kind of analysis to compare the energy efficiency of those net-
works with others based on different strategies, namely ones in which a static
transmission power is set. We have given some numerical results about this com-
parison, and we have concluded that cognitive-networks-based strategies could
be effective in the analysed setting.

Future works. As a further enhancement of our model, we plan to consider
more sophisticated routing protocols, and different decision strategies as well.
On the other hand, further simplifications of the model could lead to a faster
solution, even for models with a greater number of nodes. Moreover, the analysis
of different kinds of rewards, such as latencies or throughputs, could, and should,
be performed in order to better understand any possible advantage or drawback
of a power allocation strategy in wireless settings.
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