
Semanti
s of Well-Moded Input-Consuming Logi
ProgramsAnnalisa Bossi1, Sandro Etalle2 and Sabina Rossi11Dipartimento di Informati
a, Universit�a Ca' Fos
ari di Veneziavia Torino 155, 30172 Venezia, Italyfbossi,srossig�dsi.unive.it2Department of Computer S
ien
e, University of Maastri
htandCWI, AmsterdamP.O. Box 616, 6200 MD Maastri
ht, The Netherlandsetalle�
s.unimaas.nlAbstra
tRe
ent logi
 programming languages employ dynami
 s
heduling of
alls to improve eÆ
ien
y of programs. Dynami
 s
heduling is realized byallowing some
alls to be dynami
ally \delayed" until their arguments aresuÆ
iently instantiated. To this end, logi
 languages are extended with
onstru
ts su
h as delay de
larations.However, many de
larative properties that hold for logi
 and pureProlog programs do not apply any longer in this extended setting. Inparti
ular, the equivalen
e between the model-theoreti
 and operationalsemanti
s does not hold.In this paper, we study the
lass of input-
onsuming programs. Firstly,we argue that input-
onsuming logi
 programs are suitable for modelingprograms employing delay de
larations. Se
ondly, we show that { undersome synta
ti
 restri
tions { the S-semanti
s of a program is
orre
t andfully abstra
t also for input-
onsuming programs. This allows us to
on-
lude that for a large
lass of programs employing delay de
larations thereexists a model-theoreti
 semanti
s whi
h is equivalent to the operationalone. Thus, input-
onsuming programs are shown to be the right answerfor
onjugate eÆ
ien
y and de
larativeness.Keywords: Logi
 programming, dynami
 s
heduling, semanti
s1 Introdu
tionControl in Logi
 Programming A

ording to the widely-known and a
-
epted slogan Algorithm = Logi
 + Control [1℄, a program
an be regarded as1

a logi
 spe
i�
ation together with a
ontrol me
hanism for exe
uting it. In thislight, one of the inspiring ideas of the logi
 programming paradigm is to askthe programmer only for the logi
 spe
i�
ation and leave the
ontrol part to theinterpreter.As an example of this de
larative style, in Prolog, queries (
alls)
an of-ten be used in di�erent manners. The well-known predi
ate append reportedbelow, for example,
an be used either to
on
atenate two lists or to split alist into two parts in a nondeterministi
 way: the
all append([a,b℄,[
,d℄,X)will su

eed by unifying the variable X to the list [a,b,
,d℄, while the
allappend(X1,X2,[a,b,
,d℄) will split the list [a,b,
,d℄ into X1 and X2.Nevertheless, as one
an expe
t, if in a logi
 program the
ontrol
omponentwas totally absent, programs would be hopelessly ineÆ
ient, if not divergent. Tosee how the
ontrol
omponent
omes ba
k in the pi
ture one has to look into theunderneath resolution pro
ess. The exe
ution of a logi
 program with respe
tto a given query
onsists in building and exploring a proof tree to validate thequery. The
ontrol lies thus in the way the proof tree is built (for a query theremay exist di�erent proof trees) and is traversed. Prolog employs for instan
ea left-to-right sele
tion rule together with a top-down
lause sele
tion method.These two
omponents determine the shape of the proof tree, whi
h is thentraversed depth-�rst.A programmer is always aware of this methodology, and writes her programsa

ording to it. We are
onvin
ed that most pra
ti
al Prolog programs woulddiverge if used in
ombination with another sele
tion rule.Dynami
 Sele
tion Rules While Prolog's rule has proven to be extremelyeÆ
ient and e�e
tive, for many appli
ation a �xed sele
tion rule is too limitedto be pra
ti
al. As an example,
onsider the program APPEND and the programIN ORDER whi
h
onstru
ts the list of the nodes of a binary tree by means of anin-order transversal% append(Xs,Ys,Zs) Zs is the result of
on
atenating the lists Xs and Ysappend([H|Xs℄,Ys,[H|Zs℄) append(Xs,Ys,Zs).append([℄,Ys,Ys).% in order(Tree,List) List is an ordered list of the nodes of Treein order(tree(Label,Left,Right),Xs) in order(Left,Ls),in order(Right,Rs), append(Ls,[Label|Rs℄,Xs).in order(void,[℄).together with the queryQ:= read tree(Tree), in order(Tree,List), write list(List).(we assume that the predi
ates read tree and write list are de�ned elsewherein the program). If read tree
annot read the whole tree at on
e { say, itre
eives the input from a stream { it would be ni
e to be able to run in orderand write list on the available input. This
an only be a
hieved if we depart2

from Prolog's left-to-right sele
tion rule, whi
h would
all in order only whenread tree had �nished reading the input.However, dropping Prolog's sele
tion rules poses the problem of nontermi-nation and of eÆ
ien
y. In the above program, the
omputation of the queryQ would immediately diverge when adopting any �xed sele
tion rule di�erentfrom Prolog's. The
omputation would instead result in an enormous waste ofresour
es when using fair or random sele
tion rules. What we would need here isto interleave the exe
ution of the three \pro
esses" in the query, in a
ontrolledmanner. This
an be a
hieved using a dynami
 sele
tion rule, i.e., a sele
tionrule whi
h employs a runtime me
hanism whi
h determines whi
h atoms mightbe sele
ted. For instan
e, in the
ase of the above example, a
orre
t
omputa-tion
an be a
hieved by means of the following delay de
larations:delay in order(T,) until nonvar(T).delay append(Ls, ,) until nonvar(Ls).delay write list(Ls,) until nonvar(Ls).The semanti
s of these delay de
larations is rather straightforward: they for-bid the sele
tion of an atom of the form in order(s,t) (resp. append(s,t,u) orwrite list(s,t)) unless s is a non-variable term. We
an say that these state-ments avoid that predi
ates in order, append and write list be sele
ted \tooearly". Noti
e that with these de
larations IN ORDER enjoys a parallel exe
utionby means of interleaving.The use of a non-�xed sele
tion rule in
ombination with the above delayde
larations is thus an example of a dynami
 sele
tion rule. Dynami
 sele
tionrules have proven to be useful in a number of appli
ations; among other things,they allow one to model
o-routining [2, 3℄ and parallel exe
utions [4℄. A dy-nami
 sele
tion rule provides the programmer with a
exible
ontrol over the
omputation whi
h
an be used to improve the eÆ
ien
y of programs, preventrun-time errors and enfor
e termination [5, 3℄.Dynami
 sele
tion rules are usually implemented by means of a me
hanismpreventing the sele
tion of those atoms whi
h are not suÆ
iently instantiated.To this end, di�erent languages use di�erent
onstru
ts. In GHC [6℄ programsare augmented with guards in order to
ontrol the sele
tion of atoms dynami-
ally. Moded
at GHC [7℄ uses an extra
ondition on the input positions, whi
his extremely similar to the
on
ept of input-
onsuming derivation step we referto in the sequel: The resolution of an atom with a de�nition might not instanti-ate the input arguments of the resolved atom. On the other hand, G�odel [2℄ andE
lipse [8℄ use delay de
larations like the above ones, and SICStus Prolog [9℄employs blo
k de
larations (whi
h are stri
tly less expressive than delay de
la-rations). Both delay and blo
k de
larations
he
k the partial instantiation ofsome arguments of
alls.Limitations of the Approa
h The adoption of a
ontrol me
hanism su
h asdelay de
larations
omes at a pri
e: Many de
larative properties that have beenproven for logi
 and pure Prolog programs do not apply any longer. In parti
-ular, the well-known equivalen
e between the model-theoreti
 and operational3

semanti
s (see [10, 11℄) does not hold. For example, the query append(X,Y,Z)with the above delay de
laration does not su

eed: the atom append(X,Y,Z)does not satisfy its delay de
laration (sin
e the �rst argument is a variable) andthen it
annot be sele
ted (and resolved). In this
ase we say that the queryappend(X,Y,Z) deadlo
ks1 and this is in
ontrast with the fa
t that (in�nitelymany) instan
es of append(X,Y,Z) are
ontained in the least Herbrand modelof APPEND. This is
learly a heavy loss, sin
e the equivalen
e between de
larativeand operational semanti
s is one of the strong points of the logi
 programmingparadigm.Contributions of the Paper In this paper we address the problem of pro-viding a model-theoreti
 semanti
s for programs using a dynami
 sele
tion rule.In order to do so, we need a \de
larative" way of modeling them, and for this werestri
t our attention to input-
onsuming programs [12℄. The de�nition of input-
onsuming program employs the
on
ept of mode: We assume that programsare moded, that is, that the positions of ea
h atom are partitioned into inputand output ones. Then, input-
onsuming derivation steps are pre
isely those inwhi
h the input arguments of the sele
ted atom will not be instantiated by theuni�
ation with the
lause's head.For example, when the program APPEND reported above is used for
on
ate-nating two lists, we assume that the �rst two arguments �ll in input positionswhile the third argument �lls in an output position.In [13℄ we showed that, assuming the above moding, for queries of the formappend(s; t;X) (with X being a variable disjoint from s and t), the delay de
la-ration delay append(Ls, ,) until nonvar(Ls). guarantees pre
isely that ifan atom is sele
table and resolvable, then it is so via an input-
onsuming deriva-tion step;
onversely, in every input-
onsuming derivation step the resolved atomalways satis�es the given delay de
laration, thus it would have been sele
tableby any me
hanism implementing delay de
larations. This reasoning applies fora large
lass of queries and is a
tually not a
oin
iden
e: As shown by Smausin [14℄ for blo
k de
larations and further dis
ussed by the authors in [13℄, one
an argue that in most situations delay de
larations are employed pre
isely forensuring that the derivation is input-
onsuming. Thus, we are interested inproviding a model-theoreti
 semanti
s for input-
onsuming programs. Clearly,many of the diÆ
ulties one has in doing this for programs with delay de
la-rations apply to input-
onsuming programs as well. Intuitively speaking, the
ru
ial problem originates in the fa
t that input-
onsuming derivations maydeadlo
k2, i.e., rea
h a stadium in whi
h no atom is resolvable (e.g., the queryappend(X,Y,Z)). Be
ause of this, a de
larative semanti
s for logi
 programs isgenerally not
orre
t for input-
onsuming programs.In this paper we show that, if a program is well- and ni
ely-moded, then, forni
ely-moded queries the operational semanti
s provided by the input-
onsuming1A deadlo
k o

urs when the
urrent query
ontains no atom whi
h
an be sele
ted forresolution.2As we will dis
uss later, this notion of deadlo
k di�ers, in some way, from the usual one,whi
h is given in the
ase of programs employing delay de
larations.4

resolution rule is
orre
t and
omplete wrt. the S-semanti
s [15℄ for logi
 pro-grams. The S-semanti
s is a denotational semanti
s whi
h { for programs with-out delay de
larations {
orre
tly denotes the set of the
omputed answer substi-tutions asso
iated with the most general atomi
 queries, i.e., queries of the formp(x1; : : : ; xn) where x1; : : : ; xn are distin
t variables. Moreover, the S-semanti
sis
ompositional and
an be also viewed as a model-theoreti
 semanti
s, and it
orresponds to the least �xpoint of a
ontinuous operator. Summarizing, weshow that the S-semanti
s of a program is
ompositional,
orre
t and fullyabstra
t also for input-
onsuming programs, provided that the programs
on-sidered are well- and ni
ely-moded, and that the queries are ni
ely-moded.This paper is organized as follows. The next se
tion
ontains the prelim-inary notations and de�nitions. In Se
tion 3 we dis
uss the relation betweeninput-
onsuming derivations and programs using delay de
larations. Se
tion 4
ontains the main results and some examples. In Se
tion 5 we show how thesemanti
s for input-
onsuming derivations we present
an be used for reasoningabout deadlo
k of programs using delay de
larations. Finally, Se
tion 6
on-
ludes the paper. Some proofs are reported in the Appendix.A preliminary, shorter version of this paper has appeared in [16℄.2 PreliminariesIn this paper we
onsider de�nite logi
 programs and assume the reader is famil-iar with the terminology and the basi
 results of the semanti
s of de�nite logi
programs (see, for instan
e, [17, 11, 18℄). Here we adopt the notation of [11℄ inthe fa
t that we use boldfa
e
hara
ters to denote sequen
es of obje
ts; thereforet denotes a sequen
e of terms while B is a query (noti
e that { following [11℄ {queries are simply
onjun
tions of atoms, possibly empty). We denote atoms byA;B;H; : : : ; queries by Q;A;B;C; : : : ;
lauses by
; d; : : : ; and programs by P .The empty query is denoted by �.2.1 Substitutions and DerivationsFor any synta
ti
 obje
t o, we denote by Var(o) the set of variables o

urring ino. We also say that o is linear if every variable o

urs in it at most on
e. Givena substitution � and a synta
ti
 obje
t E, we denote by �jE the restri
tion of� to the variables in Var(E), i.e., �jE(X) = �(X) if X 2 Var(E), otherwise�jE(X) = X . If � = fx1=t1; : : : ; xn=tng we say that fx1; : : : ; xng is its do-main (denoted by Dom(�)) and that Var(ft1; : : : ; tng) is its range (denotedby Ran(�)) Noti
e that Var(�) = Dom(�) [Ran(�). If ft1; : : : ; tng
onsists ofvariables then � is
alled a pure variable substitution. If, in addition, t1; : : : ; tn isa permutation of x1; : : : ; xn then we say that � is a renaming. The
ompositionof substitutions is denoted by juxtaposition (x�� = (x�)�). We say that a termt is an instan
e of t0 i� for some �, t = t0�, further t is
alled a variant of t0,written t � t0, i� t and t0 are instan
es of ea
h other. A substitution � is a5

uni�er of terms t and t0 i� t� = t0�. A most general uni�er (mgu, in short) of tand t0 is unique, up to renaming; we denote it by mgu(t; t0). An mgu � of termst and t0 is
alled relevant i� Var(�) � Var(t) [Var(t0). The de�nitions aboveare extended to other synta
ti
 obje
ts in the obvious way.Computations are sequen
es of derivation steps. The non-empty query Q :=A; B;C and a
lause
 := H B (renamed apart wrt. Q) yield the resolvent(A;B;C)�, provided that � = mgu(B;H). A derivation step is denoted byA; B;C �=)P;
 (A;B;C)�:
 is
alled its input
lause, and B is
alled the sele
ted atom of q. A derivationis obtained by iterating derivation steps. A maximal sequen
eÆ := Q0 �1=)P;
1 Q1 �2=)P;
2 � � �Qn �n+1=)P;
n+1 Qn+1 � � �of derivation steps is
alled a SLD-derivation of P [fQ0g provided that for eve-ry step an appropriate renaming of the input
lause is used, so that to satisfythe standardization apart
ondition: The input
lause employed at ea
h step isvariable disjoint from the initial query Q0 and from the substitutions and theinput
lauses used at earlier steps. If the program P is
lear from the
ontext orwe are not interested in the spe
i�
 input
lauses or mgu's used, then we dropthe referen
e to them. A SLD-derivation in whi
h at ea
h step the leftmostatom is resolved is
alled a LD-derivation.Derivations
an be �nite or in�nite. If Æ := Q0 �1=)P;
1 � � � �n=)P;
n Qn is a�nite pre�x of a derivation, also denoted Æ := Q0 ��! Qn with � = �1 � � � �n, wesay that Æ is a partial derivation of P [fQ0g. If Æ is maximal and ends with theempty query then the restri
tion of � to the variables of Q is
alled its
omputedanswer substitution (
.a.s., for short). The length of a (partial) derivation Æ,denoted by len(Æ), is the number of derivation steps in Æ.We re
all the notion of similar SLD-derivations.De�nition 2.1 (Similar Derivations) We say that two SLD-derivations Æand Æ0 are
alled similar (Æ � Æ0) if (i) their initial queries are variants of ea
hother; (ii) they have the same length; (iii) for every derivation step, atoms inthe same positions are sele
ted and the input
lauses employed are variants ofea
h other.The following results hold.Lemma 2.2 Let Æ := Q1 ��!Q2 be a partial SLD-derivation of P[fQ1g and Q01be a variant of Q1. Then, there exists a partial SLD-derivation Æ0 := Q01 �0�!Q02of P [fQ01g su
h that Æ and Æ0 are similar.Lemma 2.3 Consider two similar partial SLD-derivationsQ ��!Q0 andQ �0�!Q00.Then Q� and Q�0 are variants of ea
h other.6

2.2 Input-Consuming DerivationsAmode is a fun
tion that labels as input or output the positions of ea
h predi
atein order to indi
ate how the arguments of a predi
ate should be used.De�nition 2.4 (Mode) Consider an n-ary predi
ate symbol p. By a mode forp we mean a fun
tion mp from f1; : : : ; ng to fIn;Outg.If mp(i) = In (resp. Out), we say that i is an input (resp. output) positionof p (with respe
t to mp). We assume that ea
h predi
ate symbol has a uniquemode asso
iated to it; multiple modes may be obtained by simply renaming thepredi
ates. If Q is a query, we denote by In(Q) (resp. Out(Q)) the sequen
e ofterms �lling in the input (resp. output) positions of predi
ates in Q. Moreover,when writing an atom as p(s; t), we are indi
ating with s the sequen
e of terms�lling in the input positions of p and with t the sequen
e of terms �lling in theoutput positions of p.The notion of input-
onsuming derivation was introdu
ed by Smaus in [12℄and is de�ned as follows.De�nition 2.5 (Input-Consuming)� A derivation step A; B;C �=)
 (A;B;C)� is
alled input-
onsuming i�In(B)� = In(B).� A derivation is
alled input-
onsuming i� all its derivation steps are input-
onsuming.Thus, a derivation step is input-
onsuming if the
orresponding mgu doesnot a�e
t the input positions of the sele
ted atom.Example 2.6 Consider the following program REVERSE using an a

umulator.reverse(Xs,Ys) reverse a

(Xs,Ys,[℄).reverse a

([℄,Ys,Ys).reverse a

([X|Xs℄,Ys,Zs) reverse a

(Xs,Ys,[X|Zs℄).When used for reversing a list, the natural mode for this relation symbol ismode reverse(In,Out).mode reverse a

(In,Out,In).Consider now the query reverse([X1,X2℄,Zs). The following derivation start-ing in reverse([X1,X2℄,Zs) is input-
onsuming (as usual, � denotes the emptyquery).reverse([X1,X2℄,Zs) =) reverse a

([X1,X2℄,Zs,[℄) =)=) reverse a

([X2℄,Zs,[X1℄) =)=) reverse a

([℄,Zs,[X2,X1℄) =) �7

The following result states that also when
onsidering input-
onsuming deriva-tions, it is not restri
tive to assume that all mgu's used in a derivation arerelevant.Lemma 2.7 Let p(s; t) and p(u;v) be two atoms. If there exists an mgu � ofp(s; t) and p(u;v) su
h that s� = s then there exists a relevant mgu # of p(s; t)and p(u;v) su
h that s# = s.Proof. Sin
e p(s; t) and p(u;v) are uni�able, there exists a relevant mgu �relof them (see [11℄, Theorem 2.16). Now, �rel is a renaming of �. Thus s�rel is avariant of s. Then there exists a renaming � su
h that Dom(�) � Var(s; t;u;v)and s�rel� = s. Now, take # = �rel�.From now on, we assume that all mgu's used in the input-
onsuming deriva-tion steps are relevant.2.3 The S-semanti
sThe aim of the S-semanti
s approa
h (see [19℄) is modeling the observable beha-viors for a variety of logi
 languages. The observable we
onsider here is the
omputed answer substitutions. The semanti
s is de�ned as follows:S(P) = f p(x1; : : : ; xn)� j x1; : : : ; xn are distin
t variables andp(x1; : : : ; xn) ��!P � is a SLD-derivationg:This semanti
s enjoys all the valuable properties of the least Herbrand model.Te
hni
ally, the
ru
ial di�eren
e is that in this setting an interpretation might
ontain non-ground atoms. To present the main results on the S-semanti
s weneed to introdu
e two further
on
epts: Let P be a program, and I be a set ofatoms.� The immediate
onsequen
e operator for the S-semanti
s is de�ned as:TSP (I) = f H� j 9 H B 2 P9 C 2 I; renamed apart3 wrt. H;B� = mgu(B;C) g:� I is
alled an S-model of P if TSP (I) � I .Falas
hi et al. [15℄ showed that TSP is
ontinuous on the latti
e of term inter-pretations, that is sets of possibly non-ground atoms, with the subset-ordering.They proved the following:� S(P) = least S-model of P = TSP " !.3Here and in the sequel, when we write \C 2 I, renamed apart wrt. some expression e",we naturally mean that I
ontains a set of atoms C01; : : : ; C0n, and that C is a renaming ofC01; : : : ; C0n su
h that C shares no variable with e and that two distin
t atoms of C share novariables with ea
h other. 8

Therefore, the S-semanti
s enjoys a de
larative interpretation and a bottom-up
onstru
tion, just like the Herbrand one. In addition, we have that theS-semanti
s re
e
ts the observable behavior in terms of
omputed answer sub-stitutions, as shown by the following well-known result.Theorem 2.8 [15℄ Let P be a program, A be a query, and � be a substitution.The following statements are equivalent.� There exists a SLD-derivation A #�!P�, where A# � A�.� There existsA0 2 S(P) (renamed apart wrt. A), su
h that � = mgu(A;A0)and A� � A�.Example 2.9 Let us see this semanti
s applied to the programs APPEND andREVERSE so far en
ountered.� S(APPEND) = f append([℄,X,X),append([X1℄,X,[X1|X℄),append([X1,X2℄,X,[X1,X2|X℄), : : : g.� S(REVERSE) = f reverse([℄,[℄),reverse([X1℄,[X1℄),reverse([X1,X2℄,[X2,X1℄), : : :reverse a

([℄,X,X),reverse a

([X1℄,X,[X1|X℄),reverse a

([X1,X2℄,X,[X2,X1|X℄), : : : g.2.4 Well- and Ni
ely-Moded ProgramsClearly, also in presen
e of modes, the S-semanti
s does not re
e
t the opera-tional behavior of input-
onsuming programs (and thus of programs employingdelay de
larations). In fa
t, if we
onsider the extension of APPEND obtained byadding the following
lause to itq append(X,Y,Z).we have that q belongs to the semanti
s but the query q will not su

eed (sin
ethe atom append(X,Y,Z) is not resolvable via an input-
onsuming derivationstep). In order to guarantee that the semanti
s is fully abstra
t (wrt. the
om-puted answer substitutions) we need to restri
t the
lass of allowed programsand queries. To this end we introdu
e the
on
epts of well-moded and of ni
ely-moded programs.The
on
ept of well-moded program is due to Dembinski and Maluszyn-ski [20℄.
9

De�nition 2.10 (Well-Moded)� A query p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for all i 2 [1; n℄Var(si) � i�1[j=1Var(tj):� A
lause p(t0; sn+1) p1(s1; t1); : : : ; pn(sn; tn) is well-moded if for alli 2 [1; n+ 1℄ Var(si) � i�1[j=0Var(tj):� A program is well-moded if all of its
lauses are well-moded.Thus a query is well-moded if every variable o

urring in an input positionof an atom o

urs in an output position of an earlier atom in the query. A
lauseis well-moded if (1) every variable o

urring in an input position of a body atomo

urs either in an input position of the head, or in an output position of anearlier body atom; (2) every variable o

urring in an output position of the heado

urs in an input position of the head, or in an output position of a body atom.The
on
ept of ni
ely-moded programs was �rst introdu
ed by Chadha andPlaisted [21℄.De�nition 2.11 (Ni
ely-Moded)� A query p1(s1; t1); : : : ; pn(sn; tn) is
alled ni
ely-moded if t1; : : : ; tn is alinear sequen
e of terms and for all i 2 [1; n℄Var(si) \ n[j=iVar(tj) = ;:� A
lause p(s0; t0) p1(s1; t1); : : : ; pn(sn; tn) is ni
ely-moded if its bodyis ni
ely-moded and Var(s0) \ n[j=1Var(tj) = ;:� A program P is ni
ely-moded if all of its
lauses are ni
ely-moded.Note that an atomi
 query p(s; t) is ni
ely-moded if and only if t is linear andVar(s) \ Var(t) = ;.Example 2.12 Programs APPEND and REVERSE are both well- and ni
ely-moded.Furthermore,
onsider the following program PALINDROMEpalindrome(Xs) reverse(Xs,Xs).mode palindrome(In). 10

together with the program REVERSE with the modes reverse(In,Out) of Exam-ple 2.6. This program is well-moded but not ni
ely-moded (sin
e Xs o

urs bothin an input and in an output position of the same body atom). However, sin
ethe program REVERSE is used here for
he
king whether a list is a palindrome, itsnatural modes are reverse(In,In) and reverse a

(In,In,In). With thesemodes, the program PALINDROME is both well-moded and ni
ely-moded.3 Input-Consuming vs. Delay De
larationsThere is a main di�eren
e between the
on
ept of delay de
laration and the oneof input-
onsuming derivation: While in the �rst
ase only the atom sele
tabilityis
ontrolled, in the se
ond one both the atom and the
lause sele
tability area�e
ted. In fa
t, in presen
e of delay de
larations, if an atom is sele
tablethen it
an be resolved with respe
t to any program
lause (provided it uni�eswith its head); on the
ontrary, in an input-
onsuming derivation, if an atom issele
table then it is input-
onsuming resolvable with respe
t to some, but notne
essarily all, program
lauses, i.e, only a restri
ted
lass of
lauses
an be usedfor resolution.Example 3.1 Consider the following pie
e of program where the predi
ategenerate generates a list formed by the
onstant a and variables, arbitrarilymixed.generate-sele
t generate(Xs), sele
t(Xs).generate([a|Xs℄) generate(Xs).generate([|Xs℄) generate(Xs).generate([℄).mode generate(Out).mode sele
t(In).Then, suppose we would like to de�ne the predi
ate sele
t, used in thebody of generate-sele
t, with the following behavior: It non-deterministi
ally
hooses to
all the program first-
hoi
e or the program se
ond-
hoi
e, if thegenerated list starts with the
onstant a; it deterministi
ally
alls the programse
ond-
hoi
e, if the �rst element of the list is a variable, and fails on theempty list.We
an obtain this behavior with an input-
onsuming program, de�ned asfollows.sele
t([a|Xs℄) first-
hoi
e.sele
t([X|Xs℄) se
ond-
hoi
e.In fa
t, for input-
onsuming derivations the �rst
lause is sele
ted only if the�rst element of the list is not a variable. Note that we
annot obtain su
h abehavior by means of delay de
larations.11

Also the
on
ept of deadlo
k has to be understood in two di�erent ways. Forprograms using delay de
larations a deadlo
k situation o

urs when no atom ina query satis�es the delay de
larations (i.e., no atom is sele
table), while forinput-
onsuming derivations a deadlo
k o

urs when no atom in a query isresolvable via an input-
onsuming derivation step and the derivation does notfail, i.e., there is some atom in the query whi
h uni�es with a
lause head butthe uni�
ation is not input-
onsuming.Example 3.2 Consider again the predi
ate sele
t de�ned above.� The query sele
t(X) uni�es with both
lause heads but it is not resolv-able via an input-
onsuming derivation step. This is a deadlo
k situationfor input-
onsuming programs.� Consider now the delay de
larationdelay sele
t([X| ℄) until nonvar(X).With this delay de
laration the query sele
t([X jXs℄) is not sele
tableand so it immediately deadlo
ks. However, there is an input-
onsumingderivation obtained by unifying the query with the head of the se
ond
lause.In spite of these di�eren
es, we believe that in the majority of pra
ti
alsituations there is a stri
t relation between programs using delay de
larationsand input-
onsuming derivations.Example 3.3 Consider again the program REVERSE of Example 2.6 for revers-ing a listreverse(Xs,Ys) reverse a

(Xs,Ys,[℄).reverse a

([℄,Ys,Ys).reverse a

([X|Xs℄,Ys,Zs) reverse a

(Xs,Ys,[X|Zs℄).with modesmode reverse(In,Out).mode reverse a

(In,Out,In).A natural delay de
laration for this program isdelay reverse(X,) until nonvar(X).delay reverse a

(X, ,) until nonvar(X).One
an easily get
onvin
ed that, for queries of the form reverse(t;X), wheret is any term and X any variable disjoint from t, the above delay de
larationsguarantee pre
isely that the resulting derivations are input-
onsuming. Fur-thermore, for the same
lass of queries it holds that in any input-
onsumingderivation the sele
ted atom satis�es the above delay de
larations.12

The relation between programs using delay de
larations and input-
onsumingderivations is studied by Smaus in his PhD thesis [14℄. More pre
isely, Smausproves a result that relates blo
k de
larations and input-
onsuming derivations.A blo
k de
laration is a spe
ial
ase of delay de
laration and it is used to de
larethat
ertain arguments of an atom must be non-variable when the atom is se-le
ted for resolution. In Chapter 7 of [14℄, Smaus shows that blo
k de
larations
an be used to ensure that derivations are input-
onsuming.In for
e of this result and of pra
ti
al experien
e, in the introdu
tion wehave stated the
laim that in most \usual" moded programs using them, delayde
larations are employed pre
isely for ensuring the input-
onsumedness of thederivations. As we have already mentioned, this thesis is also substantiated bythe fa
t that the
on
ept of input-
onsuming resolution is very similar to thesele
tion me
hanism employed in moded
at GHC [7℄, and by the arguments in[14℄. Nevertheless, sin
e this
laim is of
ru
ial importan
e for the relevan
e ofour results, now that we have formalized the notion of input-
onsuming deriva-tion we
an add another argument sustaining it.Generally, delay de
larations are employed to guarantee that the interpreterwill not use an \inappropriate"
lause for resolving an atom (the other, perhapsless prominent, use of delay de
larations is to ensure absen
e of runtime errors,but we do not address this issue in this paper). In pra
ti
e, delay de
larationsprevent the sele
tion of an atom until a
ertain degree of instantiation is rea
hed.This degree of instantiation ensures that the atom is uni�able only with theheads of the \appropriate"
lauses. In presen
e of modes, we
an reasonablyassume that this degree of instantiation is the one of the input positions, whi
hare the ones
arrying the information.Now, take an atom p(s; t) that it is resolvable with a
lause
 by means ofan input-
onsuming derivation step. Then, for every instan
e s0 of s, we havethat the atom p(s0; t) is also resolvable with
 by means of an input-
onsumingderivation step. In other words, no further instantiation of the input positionsof p(s; t)
an rule out
 as a possible
lause for resolving it. Thus
 must be oneof the \appropriate"
lauses for resolving p(s; t) and we
an say that p(s; t) is\suÆ
iently instantiated' in its input positions to be resolved with
. On theother hand, following the same reasoning, if p(s; t) is resolvable with
 but notvia an input-
onsuming derivation step, then there exists an instan
e s0 of s,su
h that p(s0; t) is not resolvable with
. In this
ase we
an say that p(s; t) isnot instantiated enough to know whether
 is one of the \appropriate"
lausesfor resolving it.4 Semanti
s of Input-Consuming ProgramsIn this se
tion we are going to make the link between input-
onsuming programs,well- and ni
ely-moded programs and the S-semanti
s: We show that the S-semanti
s of a program is
ompositional,
orre
t and fully abstra
t also forinput-
onsuming programs, provided that the programs are well- and ni
ely-moded and that only ni
ely-moded queries are
onsidered.13

We start by demonstrating some important features of well-moded programs.For this, we need additional notations: First, the following notion of renamingfor a term t from [11℄ will be used.De�nition 4.1 A substitution � := fx1=y1; : : : ; xn=yng is
alled a renamingfor a term t if Dom(�) � Var(t), y1; : : : ; yn are distin
t variables, and (Var(t)�fx1; : : : ; xng) \ fy1; : : : ; yng = ;. (Note that fx1; : : : ; xn; y1; : : : ; yng is a set ofdistin
t variables and � does not introdu
e variables whi
h o

ur in t but arenot in the domain of �).Observe that terms s and t are variants i� there exists a renaming � for ssu
h that t = s�. Then, we need the following.Notation 4.2 Let Q := p1(s1; t1); : : : ; pn(sn; tn). We de�neVIn�(Q) := n[i=1fxj x 2 Var(si) and x 62 i�1[j=1Var(tj)g:Thus, VIn�(Q) denotes the set of variables o

urring in an input position of anatom of Q but not o

urring in an output position of an earlier atom. Note alsothat if Q is well-moded then VIn�(Q) = ;.Now we
an state the following te
hni
al result
on
erning well-moded pro-grams. The proof is in the Appendix.Lemma 4.3 Let P be a well-moded program, Q be a query and Æ := Q ��! Q0be a partial LD-derivation of P [fQg. If �jVIn�(Q) is a renaming for Q then Æis similar to an input-
onsuming partial (LD-) derivation.We
an now prove our �rst result
on
erning well-moded programs. Basi-
ally, it states the
orre
tness of the S-semanti
s for well-moded, input-
onsumingprograms. It
an be regarded as \one half" of the main result we are going topropose.Proposition 4.4 Let P be a well-moded program, A be an atomi
 query and� be a substitution.� If there exists A0 2 S(P) (renamed apart wrt. A), and � = mgu(A;A0)su
h that(i) In(A)� � In(A),(ii) A� � A�,� then there exists an input-
onsuming (LD-) derivation Æ := A #�!P�, su
hthat A# � A�.
14

Proof. Let A0 2 S(P) (renamed apart wrt. A) and � be a substitution su
hthat the hypotheses are satis�ed. By Theorem 2.8, there exists a su

essfulSLD-derivation of P [fAg with
.a.s. #0 su
h that A#0 � A�. By the Swit
hingLemma [11℄, there exists a su

essful LD-derivation Æ0 of P [fAg with
.a.s. #0.From the hypotheses, it follows that #0jIn(A) is a renaming for A. By Lemma 4.3,there exists an input-
onsuming su

essful derivation Æ := A #�!P� of P [fAgsu
h that Æ and Æ0 are similar. The assertion follows from Lemma 2.3.Unfortunately, the reverse impli
ation of Proposition 4.4 does not hold ingeneral. However, it holds for a parti
ular
lass of programs and queries: theni
ely-moded ones. To prove that, we need to re
all some properties of ni
ely-moded programs from [13℄.Lemma 4.5 Let the program P and the query Q be ni
ely moded. Let Æ :=Q ��! Q0 be a partial input-
onsuming derivation of P [fQg. Then, for allx 2 Var(Q) and x 62 Var(Out(Q)), x� = x.Note that if Q is ni
ely-moded then x 2 Var(Q) and x 62 Var(Out(Q)) i�x 2 VIn�(Q). Now, we
an prove that the S-semanti
s is fully abstra
t forinput-
onsuming, ni
ely-moded programs and queries. This
an be regarded asthe
ounterpart of Proposition 4.4.Proposition 4.6 Let P be a ni
ely-moded program, A be a ni
ely-modedatomi
 query and � be a substitution.� If there exists an input-
onsuming SLD-derivation Æ := A #�!P�, su
hthat A# � A�,� then there exists A0 2 S(P) (renamed apart wrt. A), and � = mgu(A;A0)su
h that(i) In(A)� � In(A),(ii) A� � A�.Proof. By Theorem 2.8, there exist A0 2 S(P) (renamed apart wrt. A) anda substitution � su
h that � = mgu(A;A0) and (ii) holds. Sin
e Æ is an input-
onsuming derivation, it follows by Lemma 4.5 that #jIn(A) is a renaming for A.Hen
e (i) follows by the hypotheses and (ii).We now put together the pie
es provided in the previous se
tions and extendthe results to arbitrary (non-atomi
) queries. The following simple result allowsus to generalize results
on
erning atomi
 queries.Lemma 4.7 Let the program P be well- and ni
ely-moded and the query Q beni
ely-moded. Then, there exists a well- and ni
ely-moded program P 0 and ani
ely-moded atomi
 query A su
h that the following statements are equivalent.15

� There exists an input-
onsuming su

essful derivation Æ of P [fQg with
.a.s. �.� There exists an input-
onsuming su

essful derivation Æ0 of P 0 [fAg with
.a.s. �.Proof. Let new be a predi
ate symbol not o

urring in P . Let x be a se-quen
e of distin
t variables
ontaining pre
isely VIn�(Q) and y be a sequen
eof distin
t variables
ontaining pre
isely Var(Out(Q)). Consider now the atomA := new(x;y), the
lause
 := A Q, and the programP 0 = P [f
g:By
onstru
tion, In(A) = VIn�(Q) and Var(Out(A)) = Var(Out(Q)). It isstraightforward to
he
k that, by the ni
ely-modedness of Q, both A and
 areni
ely-moded.Moreover, by
onstru
tion, ea
h variable of
 o

urring in an input positionof a body atom but not o

urring in an output position of an earlier atom be-longs to VIn�(Q), i.e., o

urs in an input position of the head, and ea
h variableo

urring in an output position of a body atom also o

urs in an output positionof the head. Thus,
 is well-moded. The thesis follows easily.We are now ready for the main result of this paper, whi
h asserts thatthe de
larative semanti
s S(P) is
ompositional and fully abstra
t for input-
onsuming programs, provided that programs are well- and ni
ely-moded andthat queries are ni
ely-moded.Theorem 4.8 Let P be a well- and ni
ely-moded program, A be a ni
ely-moded query and � be a substitution. The following statements are equivalent.(i) There exists an input-
onsuming derivationA #�!P�, su
h thatA# � A�.(ii) There exists A0 2 S(P) (renamed apart wrt. A), and � = mgu(A;A0)su
h that(a) �jVIn�(A) is a renaming for A,(b) A� � A�.Proof. It follows immediately from Propositions 4.4, 4.6 and Lemma 4.7.Note that in
ase of an atomi
 query A := A, we might substitute
ondition(a) above with the somewhat more attra
tive
ondition(a0) In(A)� � In(A).Note also that, given a well- and ni
ely-moded program P , the above The-orem 4.8 allows us to identify the subset Si
(P) of S(P), de�ned bySi
(P) = f A0 2 S(P) j 9A ni
ely-moded an renamed apart wrt. A09� = mgu(A;A0)In(A)� � In(A)g;16

whi
h fully
hara
terizes the behavior of P on ni
ely-moded queries. Therefore,given two well- and ni
ely-moded programs P1 and P2, they
ompute the sameanswer substitutions for any ni
ely-moded query i� Si
(P1) = Si
(P2).Let us immediately see some examples. The �rst example demonstrates thatthe synta
ti
 restri
tions used in Theorem 4.8 are ne
essary.Example 4.9 Consider the following program.p(X,Y) equal lists(X,Y), list of zeroes(Y).equal lists([℄,[℄).equal lists([H|T℄,[H|T'℄) equal lists(T,T').list of zeroes([℄).list of zeroes([0|T℄) list of zeroes(T).mode p(In,Out).mode equal lists(In,Out).mode list of zeroes(Out).Note that the �rst
lause is not ni
ely-moded sin
e the sequen
e of terms �llingin the output positions of the body atoms is not linear. The S-semanti
s ofthis program restri
ted to the predi
ate p
ontains all and only all the atomsof the form p(list ; list) where list is a list
ontaining only zeroes. Consider nowthe atomi
 query A := p([X1℄; Y). There exists an input-
onsuming derivationstarting in it, namely,p([X1℄; Y) �1=) equal lists([X1℄; Y); list of zeroes(Y) �2=)�2=) equal lists([℄; T0); list of zeroes([X1jT0℄) �3=)�3=) list of zeroes([X1℄) �4=) list of zeroes([℄) �5=) �with �1=fX=[X1℄g, �2=fH=X1; T=[℄; Y=[X1jT0℄g, �3=fT0=[℄g, �4=fX1=0; T1=[℄g,�5 = �. The
omputed answer substitution is � = fX1=0; Y=[0℄g. Nevertheless,there does not exist any atom A0 2 S(P) (renamed apart wrt. A) su
h that Aand A0 unify with a most general uni�er � su
h that �jIn(A) is a renaming forA. This is
lear from the fa
t that the atoms belonging to S(P) are all ground.This shows that if the program is well-moded but not ni
ely-moded then theimpli
ation (i)) (ii) in Theorem 4.8 does not hold.Consider now the following program.p(X) list(Y), equal lists(X,Y).equal lists([℄, [℄).equal lists([H|T℄,[H|T'℄) equal lists(T,T').list([℄).list([H|T℄) list(T).mode p(In). 17

mode equal lists(In, In).mode list(Out)This program is ni
ely-moded, but not well-moded: In the last
lause the vari-able H o

urring in the output position of the head does o

ur neither in an out-put position of the body nor in an input position of the head. The S-semanti
sof this program restri
ted to the predi
ate p
ontains all and only all the atomsof the form p(list) where list is any list
ontaining only distin
t variables. It iseasy to see that there does not exist any input-
onsuming derivation for a queryp(list) with list being a ground list. Indeed,
onsider the exe
ution of the atomA = p([0℄). A
all equal lists([0℄,[H℄) is rea
hed. However, it does not ex-ist any input-
onsuming derivation for the atomi
 query equal lists([0℄,[H℄)with its arguments �lling in both the input positions. Nevertheless, there existsan atom A0 2 S(P) (renamed apart wrt. A), e.g., A0 = p([X1℄), su
h that Aand A0 unify with a most general uni�er � su
h that �jIn(A) is a renaming forA (obvious, sin
e A is ground).This shows that if the program is ni
ely-moded but not well-moded then theimpli
ation (ii)) (i) in Theorem 4.8 does not hold.The next example reports two appli
ations of Theorem 4.8.Example 4.10 Consider the program APPEND of the introdu
tion with themoding append(In,In,Out).� append([X,b℄,Y,Z) has an input-
onsuming su

essful derivation.In parti
ular, it has an input-
onsuming derivation with
.a.s. fZ=[X; bjY℄g.This
an be
on
luded by just looking at S(APPEND), from the fa
t thatA = append([X1,X2℄,X3,[X1,X2|X3℄)2 S(P).Note that append([X,b℄,Y,Z) is - in its input position - an instan
e of A.� append(Y,[X,b℄,Z) has no input-
onsuming su

essful derivations.This is be
ause there is no A 2 S(P) su
h that append(Y; [X; b℄; Z) is aninstan
e of A in the input position. This a
tually implies that { in presen
eof delay de
larations { append(Y,[X,b℄,Z)will eventually either deadlo
kor run into an in�nite derivation; we are going to talk more about this inthe next Se
tion.Note that the results we have provided hold also in the
ase that programs arepermutation well- and ni
ely-moded and queries are permutation ni
ely-moded[22℄, that is programs whi
h would be well- and ni
ely-moded after a permu-tation of the atoms in the bodies and queries whi
h would be ni
ely-modedthrough a permutation of their atoms.5 An Appli
ation: Reasoning about Deadlo
kIn this se
tion we
onsider again programs employing delay de
larations.18

An important
onsequen
e of Theorem 4.8 is that when the delay de
la-rations imply that the derivations are input-
onsuming (modulo �), then one
an determine from the model-theoreti
 semanti
s whether a query is bound todeadlo
k or not.Let us �rst establish some simple notation. In this se
tion we assume thatprograms are augmented with delay de
larations, and we say that a derivationrespe
ts the delay de
larations if and only if every sele
ted atom satis�es the
orresponding delay de
laration. As we have already stated in the introdu
tion,we say that a derivation deadlo
ks if its last query
ontains no sele
table atom,i.e., no atom whi
h satis�es the
orresponding delay de
larations.Notation 5.1 Let P be a program and A be a query.� We say that P [fAg is input-
onsuming
orre
t i� every SLD-derivationof P [fAg whi
h respe
ts the delay de
larations is similar to an input-
onsuming derivation.� We say that P [fAg is input-
onsuming
omplete i� every input-
onsumingderivation of P [fAg respe
ts the delay de
larations.� We say that P [fAg is bound to deadlo
k if(i) every SLD-derivation of P [fAg whi
h respe
ts the delay de
lara-tions either fails or deadlo
ks, and(ii) there exists at least one non-failing SLD-derivation of P [fAg.Example 5.2 Consider the program REVERSE of Example 3.3reverse(Xs,Ys) reverse a

(Xs,Ys,[℄).reverse a

([℄,Ys,Ys).reverse a

([X|Xs℄,Ys,Zs) reverse a

(Xs,Ys,[X|Zs℄).with modesmode reverse(In,Out).mode reverse a

(In,Out,In).and delay de
larationsdelay reverse(X,) until nonvar(X).delay reverse a

(X, ,) until nonvar(X).REVERSE[freverse(s,Z)g is input-
onsuming
orre
t and
omplete pro-vided that Z is a variable disjoint from term s.Example 5.3 Consider now the program APPEND augmented with its delayde
laration of the introdu
tion.� APPEND[fappend(s,t,Z)g is input-
onsuming
orre
t and
omplete pro-vided that Z is a variable disjoint from the possibly non-ground terms sand t. 19

� APPEND[fappend([X,b℄,Y,Z)g has an input-
onsuming su

essful deriva-tion (see Example 4.10) and is input-
onsuming
omplete. Then, we
anstate that APPEND[fappend([X,b℄,Y,Z)g is not bound to deadlo
k.Consider now the ni
ely-moded query append(X,Y,Z). Sin
e S(APPEND)
on-tains instan
es of it, by Theorem 2.8, append(X,Y,Z) has at least one su

ess-ful SLD-derivation. Thus, it does not fail. On the other hand, every atom inS(APPEND) is { in its input positions { a proper instan
e of append(X,Y,Z). Thusby Theorem 4.8, append(X,Y,Z) has no input-
onsuming su

essful derivations.Therefore, sin
e APPEND[fappend(Y,X,Z)g is input-
onsuming
orre
t, we
anstate that append(X,Y,Z) either has an in�nite input-
onsuming derivation orit is bound to deadlo
k. This fa
t
an be ni
ely
ombined with the fa
t thatAPPEND is input terminating [13℄, i.e., all its input-
onsuming derivations start-ing in a ni
ely-moded query are �nite. In [13℄ we provided
onditions whi
hguaranteed that a program is input terminating; these
onditions easily allowone to show that APPEND is input-terminating. Be
ause of this, we
an
on
ludethat� APPEND[fappend(Y,X,Z)g is bound to deadlo
k.By simply formalizing this reasoning, we obtain the following result.Theorem 5.4 Let P be a well- and ni
ely-moded program, and A be ni
ely-moded query. If1. 9 B 2 S(P), su
h that A uni�es with B,2. 8 B 2 S(P), if � = mgu(A;B) then �jVIn�(A) is not a renaming for A,3. P [fAg is input-
onsuming-
orre
t,then A either has an in�nite SLD-derivation respe
ting the delay de
larationsor it is bound to deadlo
k.If in addition P is input-terminating then A is bound to deadlo
k.Proof. By 1. and Theorem 2.8, there exists at least one su

essful SLD-derivation of P [fAg. By 2. and Theorem 4.8 there is no su

essful input-
onsuming derivation of P [fAg. Thus, by 3., there is no su

essful SLD-derivation of P [fAg whi
h respe
ts the delay de
larations. Hen
e, A eitherhas an in�nite SLD-derivation respe
ting the delay de
larations or it is boundto deadlo
k.Moreover, if P is input-terminating then there
annot exist an in�nite SLD-derivation respe
ting the delay de
larations for P [fAg; hen
e A must bebound to deadlo
k.Let us see more examples.Example 5.5 Let us
ontinue to dis
uss the program APPEND above. UsingTheorem 5.4, we
an state that 20

� APPEND[fappend(Y,[X,b℄,Z)g either has an in�nite derivation or it isbound to deadlo
k.Sin
e APPEND is input terminating [13℄, we
an also say that� APPEND[fappend(Y,[X,b℄,Z)g is bound to deadlo
k.Example 5.6 Let us now
onsider program 15.3 from [23℄: QUICKSORT using aform of di�eren
e-lists.% qui
ksort(Xs,Ys) Ys is an ordered permutation of Xs.qui
ksort(Xs,Ys) qui
ksort dl(Xs,Ys,[℄).qui
ksort dl([X|Xs℄,Ys,Zs) partition(Xs,X,Littles,Bigs),qui
ksort dl(Littles,Ys,[X|Ys1℄), % atom a1qui
ksort dl(Bigs,Ys1,Zs). % atom a2qui
ksort dl([℄,Xs,Xs).partition([X|Xs℄,Y,[X|Ls℄,Bs) X =< Y,partition(Xs,Y,Ls,Bs).partition([X|Xs℄,Y,Ls,[X|Bs℄) X > Y,partition(Xs,Y,Ls,Bs).partition([℄,Y,[℄,[℄).with the modesmode qui
ksort(In, Out).mode qui
ksort dl(In, Out, In).mode partition(In, In, Out, Out).mode =<(In, In).mode >(In, In).This program is permutation well- and ni
ely-moded (it be
omes well-modedby permuting atoms a1 and a2 in the body of the se
ond
lause). When usedin
ombination with dynami
 s
heduling, the standard delay de
larations for itare the following ones:delay qui
ksort(Xs,) until nonvar(Xs)delay qui
ksort dl(Xs, ,) until nonvar(Xs)delay partition(Xs, , ,) until nonvar(Xs)delay =<(X,Y) until ground(X) and ground(Y)delay >(X,Y) until ground(X) and ground(Y)While the �rst three de
larations are meant to avoid nontermination and toin
rease eÆ
ien
y, the last two are needed to avoid runtime errors: in fa
t
om-parison predi
ates have to be
alled with both arguments ground, otherwise anex
eption o

urs. One
an naturally assume that the semanti
s of the built-ins > and =< is given by the set of ground atoms f>(a,b) j a larger than bgtogether with f=<(a,b) j a smaller or equal than bg. The fa
t that this seman-ti
s is ground and that both arguments of both predi
ates are input re
e
ts that21

these predi
ates have to be
alled with ground arguments. Under these assump-tions, the S-semanti
s of the program restri
ted to the predi
ates qui
ksortand qui
ksort dl,
ontains all and only all the atoms of the form� qui
ksort(s,t), where s is a ground list and t is an ordered permutationof s;� qui
ksort dl(s,t,u), where s is a ground list and t is an ordered per-mutation of s with u appended to t.Observe that, if the terms �lling in the input positions of an atom are variabledisjoint from those �lling in the output positions of the same atom, then theinput
annot be
ome instantiated as a \side e�e
t" of the instantiation of theoutput. Hen
e, we
an prove that� if s and t are variable disjoint terms then QUICKSORT[fqui
ksort(s; t)gis input-
onsuming
orre
t;� if t is variable disjoint from s and u then QUICKSORT[fqui
ksort dl(s; t; u)gis input-
onsuming
orre
t.By applying Theorem 4.8 it follows that� the query qui
ksort(s,t) is not bound to deadlo
k provided that s is alist of ground terms;� qui
ksort dl(s,X,t) is not bound to deadlo
k provided that s is a listof ground terms and X is a variable disjoint from t.One might wonder why in order to talk about deadlo
k we went ba
k toprograms using delay de
larations. The
ru
ial point here lies in the di�er-en
e between resolvability - via an input-
onsuming derivation step - (used ininput-
onsuming programs) and sele
tability (used in programs using delay de
-larations). When resolvability does not redu
e to sele
tability, we
annot talkabout (the usual de�nition of) deadlo
king derivation.Consider the following program, where all atom positions are moded as input.p(X) q(a).p(a).q(b).There are no delay de
larations with respe
t to whi
h this program is input-
onsuming
omplete. In fa
t, there are two input-
onsuming derivations startingin p(X): one fails while the other one deadlo
ks. This does not
orrespond tothe usual notion of deadlo
k: an atom
annot simultaneously be sele
table anddeadlo
ked. 22

6 Con
luding RemarksWe have shown that { under some synta
ti
 restri
tions { the S-semanti
s re-
e
ts the operational semanti
s also when programs are input-
onsuming. TheS-semanti
s is a denotational semanti
s whi
h enjoys a model-theoreti
al read-ing.The relevan
e of the results is due to the fa
t that input-
onsuming programsoften allow to model the behavior of programs employing delay de
larations;hen
e for a large number of programs employing dynami
 s
heduling there existsa de
larative semanti
s whi
h is equivalent to the operational one.A related work is the one of Apt and Luitjes [5℄. The
ru
ial di�eren
ebetween this approa
h and our is that in [5℄
onditions whi
h ensure that thequeries are deadlo
k-free are employed. Under these
ir
umstan
es the equiv-alen
e between the operational and the Herbrand semanti
s follows. On theother hand, the
lass of queries we
onsider here (the ni
ely-moded ones) in-
ludes many whi
h would \deadlo
k" (e.g., append(X,Y,Z)). In many
aseswe
apture this behavior by using Theorem 4.8 whi
h
an tell us if a query is\suÆ
iently instantiated" to yield a su

ess or if it is bound to deadlo
k.Con
erning the restri
tiveness of the synta
ti

on
epts we use here (well-and ni
ely-moded programs and queries) we want to mention that [24, 13℄ both
ontain mini-surveys of programs indi
ating whether they are well- and ni
ely-moded or not. From them, it appears that most \usual" programs satisfy bothde�nitions.

23

A AppendixIn this appendix we report the proof of Lemma 4.3. Let us �rst introdu
e somepreliminaries.De�nition A.1 Let � = fx1=y1; : : : ; xn=yng be a renaming for a term t. Wede�ne � as the pure variable 1-1 substitution fy1=x1; : : : ; yn=xng.Observe that:� The substitution fx1=y1; : : : ; xn=yn; y1=x1; : : : ; yn=xng is a renaming.� If � is a renaming for a term t then � is a renaming for the term t�.� (� �)jDom(�) = �.The following properties hold.Lemma A.2 Let Q be a query.(i) If Q is an atomi
 query then VIn�(Q) = Var(In(Q)).(ii) For any pre�x Q0 of Q, VIn�(Q0) � VIn�(Q).(iii) For any substitution �, VIn�(Q�) � Var(VIn�(Q)�).(iv) For any substitution �, Var(Out(Q�)) = Var(Out(Q)�).We
an now prove Lemma 4.3.Lemma 4.3 Let P be a well-moded program, Q be a query and Æ := Q ��! Q0be a partial LD-derivation of P [fQg. If �jVIn�(Q) is a renaming for Q then Æis similar to an input-
onsuming partial (LD-) derivation.Proof. We �rst state the following fa
ts.Claim 1 Let � be a substitution, S be a set of variables and t be a term su
hthat �jS is a renaming for t. Suppose that � := �1�2. Then, �1jS is a renamingfor t.Claim 2 Let � be a substitution, S be a set of variables and t be a term su
hthat �jS is a renaming for t. Suppose that � := �1�2. Let S0 = fx 2 Sj x 62Dom(�1)g. Then, �2jRan(�1jS)[S0 is a renaming for t�1.The proof pro
eeds by indu
tion on len(Æ).Base Case. Let len(Æ) = 0. In this
ase Q = Q0 and the result followstrivially.Indu
tion step. Let len(Æ) > 0. Suppose that Q := p(s; t);C andÆ := p(s; t);C �1=) (B;C)�1 �2�! Q024

where p(s; t) is the sele
ted atom of Q,
 := p(u;v) B is the input
lauseused in the �rst derivation step, �1 is a relevant mgu of p(s; t) and p(u;v) and� = �1�2.By the Lemma's hypotheses and Claim 1, it follows that �1jVIn�(Q) is a re-naming for Q. Observe thatVar(s) = Var(In(p(s; t)))= VIn�(p(s; t)) by Lemma A.2 (i)� VIn�(Q) by Lemma A.2 (ii):By relevan
e of �1, �1jVIn�(Q) = �1js. Let �1js = fx1=y1; : : : ; xn=yng. Notethat fx1; : : : ; xn; y1; : : : ; yng is a set of distin
t variables. Consider the renaming� = fx1=y1; : : : ; xn=yn; y1=x1; : : : ; yn=xng. Sin
e Var(�) � Var(�1), the substi-tution �1� is a relevant mgu of p(s; t) and p(u;v) (see [11℄, Lemma 2.23).It is easy to see that �1� = �1(��1js). Let �01 = �1(��1js). We have that s�01 =s�1(��1js) = s. Therefore,(1) p(s; t);C �01=) (B;C)�01is an input-
onsuming LD-derivation step.Sin
e �1js is a renaming for Q and, by standardization apart, Var(B) \Var(Q) = ;, we have that �1js is a renaming for (B;C). Hen
e, (�1)jS where Sis the set of variables fxj x 2 Var((B;C)�1) and x 2 Ran(�1js)g, is a renamingfor (B;C)�1. Now observe that (B;C)�01 = (B;C)�1(��1js) = (B;C)�1(�1)jS .Therefore, (B;C)�01 is a variant of (B;C)�1. By Lemma 2.2, there exists apartial LD-derivation (B;C)�01 �02�! Q00 similar to (B;C)�1 �2�! Q0. It followsthat(2) p(s; t);C �01=) (B;C)�01 �02�! Q00is an LD-derivation of P [fQg that is similar to Æ.Let �0 = �01�02. By Lemma 2.3, Q� and Q�0 are variants of ea
h other.Consider now the set S0 = VIn�((B;C)�01). We prove that �02jS0 is a renam-ing for (B;C)�01. Let x 2 S0. There are two
ases.(a) x 2 VIn�(B�01). By Lemma A.2 (iii), VIn�(B�01) � Var(VIn�(B)�01).Then, there exists z 2 VIn�(B) su
h that x 2 Var(z�01). By well-modednessof
 := p(u;v) B, z 2 Var(u). Sin
e u�01 = s�01, we have that there existsy 2 Var(s), i.e., y 2 VIn�(Q), su
h that x 2 Var(y�01).(b) x 2 VIn�(C�01) and x 62 Var(Out(B�01)). We distinguish two
ases.(b1) x 2 Var(t�01). From the fa
t that t�01 = v�01, we have that x 2 Var(v�01),i.e., there exists z 2 Var(v) su
h that x 2 Var(z�01). Sin
e z o

urs in an output25

position of the head of
 := p(u;v) B and
 is well-moded, we have thateither z 2 Var(Out(B)) or z 2 Var(u). Let us distinguish these two
ases.(b11) z 2 Var(Out(B)). In this
ase x 2 Var(z�01) � Var(Out(B�01)). How-ever, this
ontradi
ts the hypothesis that x 62 Var(Out(B�01)).(b12) z 2 Var(u). In this
ase, sin
e u�01 = s�01, we have that x 2 Var(s�01).Hen
e, there exists y 2 Var(s), i.e., y 2 VIn�(Q), su
h that x 2 Var(y�01).(b2) x 62 Var(t�01). By Lemma A.2 (iii), VIn�(C�01) � Var(VIn�(C)�01).Thus, there exists y 2 VIn�(C) su
h that x 2 Var(y�01). Note that y 62 Var(t),otherwise we would have x 2 Var(t�01)
ontradi
ting the hypothesis. Hen
e,y 2 VIn�(Q).We have proved that(3) for all x 2 S0, there exists y 2 VIn�(Q) su
h that x 2 Var(y�01).From the fa
t that Q� and Q�0 are variants of ea
h other and �jVIn�(Q) is arenaming for Q, it follows that also �0jVIn�(Q) is a renaming for Q.Let S00 = fx 2 VIn�(Q)j x 62 Dom(�01)g. By Claim 2, �02jRan(�01jVIn�(Q))[S00 is arenaming for Q�01. By (3), S0 � Ran(�01jVIn�(Q))[S00. Hen
e, by standardizationapart, �02jS0 is a renaming for (B;C)�01. By the indu
tion hypothesis, there existsa partial LD-derivation(4) (B;C)�01 �002�! Q000whi
h is similar to (B;C)�01 �02�! Q00 and it is input-
onsuming.Hen
e, by (1), (2) and (4),Æ0 := p(s; t);C �01=) (B;C)�01 �002�! Q000is an input-
onsuming partial LD-derivation of P [fQg su
h that Æ and Æ0 aresimilar.

26

Referen
es[1℄ R. A. Kowalski. Algorithm = Logi
 + Control. Communi
ations of theACM, 22(7):424{436, 1979.[2℄ P. M. Hill and J. W. Lloyd. The G�odel programming language. The MITPress, 1994.[3℄ L. Naish. Coroutining and the
onstru
tion of terminating logi
 programs.Te
hni
al Report 92/5, Department of Computer S
ien
e, University ofMelbourne, 1992.[4℄ L. Naish. Parallelizing NU-Prolog. In K. A. Bowen and R. A. Kowalski,editors, Pro
eedings of the Fifth International Conferen
e/Symposium onLogi
 Programming, pages 1546{1564, Seattle, Washington, August 1988.[5℄ K. R. Apt and I. Luitjes. Veri�
ation of logi
 programs with delay de
-larations. In A. Borzyszkowski and S. Sokolowski, editors, Pro
eedings ofthe Fourth International Conferen
e on Algebrai
 Methodology and Soft-ware Te
hnology, (AMAST'95), Le
ture Notes in Computer S
ien
e 936,Springer-Verlag, Berlin, pages 66{90, 1995.[6℄ K. Ueda. Guarded Horn Clauses, a parallel logi
 programming languagewith the
on
ept of a guard. In M. Nivat and K. Fu
hi, editors, Pro-gramming of Future Generation Computers, pages 441{456. North Holland,Amsterdam, 1988.[7℄ K. Ueda and M. Morita. Moded
at GHC and its message-oriented imple-mentation te
hnique. New Generation Computing, 13(1):3{43, 1994.[8℄ M. G. Walla
e, S. Novello and J. S
himpf. ECLiPSe : A platform for
onstraint logi
 programming. ICL Systems Journal, 12 (1), 1997.[9℄ Intelligent Systems Laboratory, Swedish Institute of Computer S
ien
e, POBox 1263, S-164 29 Kista, Sweden. SICStus Prolog User's Manual, 1997.http://www.si
s.se/isl/si
stus/si
stus to
.html.[10℄ K. R. Apt and M. H. van Emden. Contributions to the theory of logi
programming. Journal of the ACM, 29(3):841{862, 1982.[11℄ K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.[12℄ J. G. Smaus. Proving termination of input-
onsuming logi
 programs. InD. De S
hreye, editor, 16th International Conferen
e on Logi
 Program-ming, Las Cru
es, New Mexi
o, USA, The MIT Press, pages 335{349,1999.[13℄ A. Bossi, S. Etalle, and S. Rossi. Properties of input-
onsumingderivations. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 30(1),1999. http://www.elsevier.nl/lo
ate/ent
s. Also available on CoRR:http://arXiv.org/abs/
s/0101022.27

[14℄ J.-G. Smaus. Modes and Types in Logi
 Programming. PhD thesis,University of Kent at Canterbury, O
tober 1999. Draft available fromwww.
s.uk
.a
.uk/people/staff/jgs5/thesis.ps.[15℄ M. Falas
hi, G. Levi, M. Martelli, and C. Palamidessi. De
larative mod-eling of the operational behavior of logi
 languages. Theoreti
al ComputerS
ien
e, 69(3):289{318, 1989.[16℄ A. Bossi, S. Etalle, and S. Rossi. Semanti
s of input-
onsuming programs.In J. Lloyd et. al., editor, First International Conf. on Computational Logi
(CL2000), Le
ture Notes in Arti�
ial Intelligen
e 1861, pages 194{208,Springer-Verlag, Berlin, 2000.[17℄ K. R. Apt. Introdu
tion to Logi
 Programming. In J. van Leeuwen, edi-tor, Handbook of Theoreti
al Computer S
ien
e, volume B: Formal Modelsand Semanti
s, pages 495{574. Elsevier, Amsterdam and The MIT Press,Cambridge, 1990.[18℄ J. W. Lloyd. Foundations of Logi
 Programming. Symboli
 Computation{ Arti�
ial Intelligen
e. Springer-Verlag, Berlin, 1987. Se
ond edition.[19℄ Annalisa Bossi, Maurizio Gabrielli, Giorgio Levi, and Maurizio Martelli.The S-semanti
s approa
h: Theory and appli
ations. The Journal of Logi
Programming, 19 & 20:149{198, May 1994.[20℄ P. Dembinski and J. Maluszynski. AND-parallelism with intelligent ba
k-tra
king for annotated logi
 programs. In Pro
eedings of the InternationalSymposium on Logi
 Programming, pages 29{38, IEEE-CS, Boston, 1985.[21℄ R. Chadha and D.A. Plaisted. Corre
tness of uni�
ation without o

ur
he
k in Prolog. Te
hni
al report, Department of Computer S
ien
e, Uni-versity of North Carolina, Chapel Hill, N.C., 1991.[22℄ J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logi
 programswith blo
k de
larations running in several modes. In C. Palamidessi, editor,Pro
eedings of the 10th Symposium on Programming Language Implemen-tations and Logi
 Programming, Le
ture Notes in Computer S
ien
e 1490.Springer-Verlag, Berlin, pages 73{88, 1998.[23℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.[24℄ K. R. Apt and A. Pellegrini. On the o

ur-
he
k free Prolog programs.ACM Toplas, 16(3):687{726, 1994.
28

