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Abstract

We study bisimulation-based information flow security properties which are per-
sistent, in the sense that if a system is secure then all of its reachable states are secure
too. We show that such properties can be characterized in terms of bisimulation-
like equivalence relations, between the full system and the system prevented from
performing confidential actions. Moreover, we provide a characterization of such
properties in terms of unwinding conditions which demand properties of individual
actions. These two different characterizations naturally lead to efficient methods for
the verification and construction of secure systems. We also prove several composi-
tionality results, that allow us to check the security of a system by only verifying
the security of its subcomponents.

1 Introduction

The protection of confidential data from undesired accesses is a typical security
issue concerning both systems and networks. Inside a system, information is
typically protected via some access control policy, limiting accesses of entities
(such as users or processes) to data. There are different levels of flexibility of
access control policies depending on the possibility for one entity to change
the access rights of its own data. As an example, UNIX gives users complete
control on the policy, i.e., every user may decide to make her own information
either secret or public. On the other hand, there are mandatory policies in
which entities have no control on the access rights. For example, Multilevel
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Security [2] imposes that entities and data are associated to (ordered) security
levels and no access to data at higher levels is ever possible, even if the owner
of the data is willing to reveal them. These strong mandatory security policies
have been designed to avoid internal attacks performed by the so called Trojan
Horse programs, i.e., malicious software that, once executed by a user, modifies
the access rights of the data belonging to such a user. Unfortunately, even when
direct access to data is forbidden by (strong) security policies, it might be the
case that data are indirectly leaked by Trojan Horses which might exploit some
observable system side-effects like, e.g., the CPU load or, more in general, the
space/time availability of shared resources. (see, e.g., [3,4]).

The necessity of controlling information flow as a whole (both direct and
indirect) motivated Goguen and Meseguer in introducing the notion of Non-
interference [5,6]. Non-Interference formalizes the absence of information flow
within deterministic systems. Given a system in which confidential (i.e., high
level) and public (i.e., low level) information may coexist, non-interference re-
quires that confidential inputs never affect the outputs on the public interface
of the system, i.e., never interfere with the low level users. If such a property
holds, one can conclude that no information flow is ever possible from high to
low level.

A possibilistic security property can be regarded as an extension of non-
interference to non-deterministic systems. Starting from Sutherland [7], vari-
ous such extensions have been proposed, e.g., [8-18]. Most of these properties
are based on traces, i.e., the behavior of systems is modelled through the set of
their execution sequences. Examples are non-inference [15], generalized non-
interference [11], restrictiveness [11], and the perfect security property [18].

In [8], Focardi and Gorrieri express the concept of non-interference in the
Security Process Algebra (SPA) language, in terms of bisimulation semantics.
In particular, inspired by [17], they introduce the notion of Bisimulation-based
non Deducibility on Compositions (BNDC'): asystem E is BNDC' if what a low
level user sees of the system is not modified (in the sense of the bisimulation
semantics) by composing any high level process I with £. The main advantage
of BNDC' with respect to trace-based properties is that it is powerful enough
to detect information flows due to the possibility, for a high level malicious
process, to block or unblock a system. In particular, in [8,19], it is shown
that a malicious process may build a channel from high to low, by suitably
blocking and unblocking some system services accessible by low level users.
The system used to build this covert channel turns out to be secure for trace-
based properties. This motivates the use of more discriminating equivalences
such as bisimulation.

Non-interference properties, like BNDC, provide formal definitions of informa-
tion flow security and, as a consequence, are useful in order to well understand



and reason about system and network security. In this paper we also approach
the problem of automatically checking BNDC-like properties, which is use-
ful in many respects. First, as discussed in [20], having efficient automated
checkers is useful to test a property against non-trivial system specifications.
It is important to check on many examples that what is intuitively consid-
ered insecure is correctly rejected by the property. It is also crucial to verify
that the property is not stronger than expected, and accepts as secure what
is intuitively so. An automated tool is a good way for observing properties at
work.

Moreover, there are some cases in which it is possible to analyze specifica-
tions that are strictly related to the “real world”. An interesting example is
the analysis of security protocols, i.e., simple distributed algorithms based
on cryptography. They are simple to specify using process calculi like SPA,
since they are characterized by little local computation and some message ex-
changes. In [21] it is shown how to use BNDC-like properties to check many
different network security properties like, e.g., secrecy and authentication. The
main idea is that BNDC' allows us to check whether or not a malicious enemy
is able to interfere on the correct (expected) protocol execution. In this set-
ting, the automated verification of BNDC' allows to either discover flaws on
protocol or validate (finite instances of) them.

Although Martinelli [22] has shown that a class of BNDC-like properties is
decidable over finite state processes, the problem of efficiently verifying BNDC
is still open. Indeed, decidability of BNDC' is still an open problem. The main
difficulty consists of getting rid of the universal quantification on high level
processes II. A way to overcome this problems is to adopt sufficient conditions
for BNDC. We recall from [19,23] two of them, named Strong BNDC (SBNDC,
for short) and Persistent BNDC (P_BNDC, for short) !. Indeed, P.BNDC is
interesting per se, since it has been proposed for analysing systems in dynamic
contexts. Intuitively, P.BNDC'is a persistent version of BNDC' in which every
reachable state is (BNDC') secure. In [23] it is shown that this property is
suitable when some abstract form of mobility is considered. If a process moves
to a different execution environment (e.g., a different host) in the middle of
its computation, then we have to be guaranteed that such an intermediate
state is still secure. Requiring, from the beginning, that every reachable state
is secure trivially guarantees that every possible migration will be done in a
secure state.

In the literature there are two different characterizations of security properties
that do not require the universal quantification over high level processes II.
They allow us to exploit two different verification techniques:

! In [23], P.BNDC is shown to be equivalent to the SBSNNI property of [19].



(1) Bisimulation-based characterizations are based on a bisimulation-like equiv-
alence relation between the system E to be analysed and the low level view
of the system itself, denoted by E'\ H, i.e., the system E prevented from per-
forming confidential actions. These characterizations allow us to exploit very
efficient techniques for verifying the properties over finite-state processes,
by using existing algorithms for the verification of strong bisimulation.

(it) Unwinding conditions demand properties of individual actions. They aim
at “distilling” the local effect of performing high level actions and are use-
ful to define both proof systems (see, e.g., [24]) and refinement operators
that preserve security properties, as done in [25]. Proof systems allow to
incrementally build systems which are secure by construction. Similarly,
refinement operators are useful in a stepwise development process, since
properties which have been already investigated in some phase need not to
be re-investigated in later phases.

In this paper, we start by considering the two characterizations above for
P_BNDC, given in [24]. By studying the relation between such two characteri-
zations, we generalize them to a parametric security property called s.BNDC,
where parameter s specifies the way high level actions and internal actions
are treated in the underlying bisimulation relation. We show that the SBNDC
property, which was originally defined through unwinding conditions, is an
instance of s_.BNDC. This directly gives a new bisimulation-based characteri-
zation for SBNDC property. As a next step, we investigate the compositional-
ity of P.BNDC and SBNDC. Compositionality is useful for both verification
and synthesis: if a property is preserved when systems are composed, then the
analysis may be performed on subsystems and, in case of success, the system
as a whole can be proved to satisfy the desired property. We notice that both
P_BNDC' and SBNDC' are compositional with respect to the parallel oper-
ator, but they are not fully compositional, since they are not preserved by
the non-deterministic choice operator. In particular, when we build a system
that may (non-deterministically) choose to behave as one of two secure sub-
systems, we could obtain an insecure system. As also observed in [26], this
seems to be counterintuitive. We approach this issue by introducing a new se-
curity property, named Progressing P.BNDC (PP_-BNDC'), strictly stronger
than P_BNDC, which is fully compositional, i.e., it is compositional also with
respect to the non-deterministic choice. We show that PP_BNDC is an in-
stance of the parametric property s_BNDC and can be thus expressed both
in terms of a bisimulation-like equivalence and through unwinding conditions.

We also consider the specific problem of automatically checking our persistent
security properties. In particular, we describe two methods for determining
whether a system is P_.BNDC, SBNDC or PP_BNDC. The first method is
based on the derivation of Characteristic Formulae [27,28] in the language
of modal p-calculus [29] (see Section 6.1). The characteristic formulae can
be automatically verified using model checkers for p-calculus, such as NCSU



Concurrency Workbench [30]. Even if in the worst case this method has an
exponential time complexity in the number of states of the process, it is still
usable in many cases, and has the advantage of reducing the check of secu-
rity properties to the standard problem of verifying a p-calculus formula. The
second method (see Section 6.2) is in the spirit of [28]: it is based on the
computation of a sort of transitive closure (Closure up to high level actions)
of the system and on the verification of a Strong Bisimulation. This allows us
to use existing verification tools, since many different algorithms for comput-
ing the largest strong bisimulation between two processes (e.g, [31-34]) have
been integrated in model checkers, such as NCSU Concurrency Workbench,
XEVE [35], FDR2 [36]. In particular, this second approach improves on the
polynomial time complexity of the Compositional Security Checker (CoSeC)
presented in [20], since only one bisimulation test is necessary.

The paper is organized as follows. In Section 2, we introduce some basic notions
on the SPA language and the security properties BNDC and P_.BNDC. We
recall the two characterizations of P_.BNDC' in terms of a bisimulation-like
equivalence relation and an unwinding condition. In Section 3 we introduce
a parametric security property named s_.BNDC' in terms of bisimulation and
we prove that it can be equivalently characterized in terms of a parametric
unwinding condition. P_.BNDC' is just an instance of s_ BNDC. In Section
4, we show that property SBNDC' is an instance of s_.BNDC and provide a
bisimulation-based characterization of it. In Section 5, we introduce the class
of PP_.BNDC processes, which is again an instance of s_:BNDC, and prove that
it is fully compositional. In Section 6, we propose two methods to prove our
persistent security properties and we demonstrate some complexity results.
Finally, in Section 7 we discuss related works and draw some conclusions.

2 Basic Notions

In this section we report the syntax and semantics of the Security Process
Algebra (SPA, for short) [19] and the definition of the security properties
BNDC' [8] and P.BNDC' [23] together with some main results [24].

2.1 The SPA Language

The Security Process Algebra [19] is a variation of Milner’s CCS [37], where
the set of visible actions is partitioned into high level actions and low level
ones in order to specify multilevel systems. SPA syntax is based on the same
elements as CCS that is: a set £ of wisible actions such that £ = 1 U O where
I ={a,b,...} is a set of input actions and O = {a,b,...} is a set of output



actions; a special action 7 which models internal computations, i.e., not visible
outside the system; a complementation function ~: £ — L, such that a = «,
foralla € L. Act = LU{7} is the set of all actions. The set of visible actions is
partitioned into two sets, H and L, of high and low actions such that H = H
and L = L.

The syntax of SPA terms (or processes) is defined as follows:
E:=0|a.E|E+E|EE|E\v|E[f]|Z

where a € Act, v C L, f: Act — Act is such that f(a) = f(«), f(r) = T,
f(H) C HU{7}, and f(L) € LU {7}, and Z is a constant that must be

associated with a definition 7 ' p

Intuitively, 0 is the empty process that does nothing; a.E is a process that can
perform an action a and then behaves as E; E; + F, represents the nonde-
terministic choice between the two processes E; and Es; E;|E> is the parallel
composition of F; and E5, where executions are interleaved, possibly synchro-
nized on complementary input/output actions, producing an internal action
7; E'\ v is a process F prevented from performing actions in v; ?; E[f] is the
process E whose actions are renamed via the relabelling function f.

We denote by £ the set of all SPA processes and by £g the set of all high level
processes, i.e., those constructed only using actions in H U {7}.

The operational semantics of SPA agents is given in terms of Labelled Transi-
tion Systems (LTS, for short). A LTS is a triple (S, A, —) where S is a set of
states, A is a set of labels (actions), -=C S x A x S is a set of labelled transi-
tions. The notation (S, a, Sy) €— (or equivalently S; - S,) means that the
system can move from the state S; to the state Sy through the action a. The
operational semantics of SPA is the LTS (€, Act, —), where the states are the
terms of the algebra and the transition relation —C £ x Act x £ is defined
by structural induction as the least relation generated by the inference rules
depicted in Figure 1. In Section 6.2 we use also the notion of rooted labelled
transition system which is a LTS augmented with a distinguish node, the root.

The concept of observation equivalence is used to establish equalities among
processes and it is based on the idea that two systems have the same seman-
tics if and only if they cannot be distinguished by an external observer. This
is obtained by defining an equivalence relation over £. The weak bisimula-
tion relation [37] equates two processes if they are able to mutually simulate
their behavior step by step. Weak bisimulation does not care about internal 7
actions.

2 In CCS the operator \ requires that the actions of £\ v do not belong to v U v.



We will use the following auxiliary notations. If ¢ = a;---a, € Act" and
E% ... %% E' then we write E % E'. We also write £ == E' if B(5)* %
(D) - (5) 2 (5)*E" where (5)* denotes a (possibly empty) sequence
of 7 labelled transitions. If t € Act*, then £ € L£* is the sequence gained by
deleting all occurrences of 7 from t. As a consequence, E =% E' stands for

E =% E'ifa € L, and for E(-5)*E’ if a = 7 (note that == requires at least

one 7 labelled transition while == means zero or more 7 labelled transitions).
We say that E’ is reachable from F when there exists ¢ such that E 4 E.

The notion of weak bisimulation is defined as follows.

Definition 2.1 (Weak Bisimulation) A binary relation R C € x &€ over
agents is a weak bisimulation if (E, F') € R implies, for all a € Act,

o if E-% E', then there exists F' such that F =% F' and (E',F') € R;
o if F% F', then there exists E' such that E =% E' and (E',F') € R.

Two agents E, F € £ are weakly bisimilar, denoted by E ~ F', if there exists
a weak bisimulation R containing the pair (E, F).

The relation ~ is the largest weak bisimulation and it is an equivalence rela-
tion [37].

A Rooted Labelled Transition System is a LTS augmented with a distinguished
node, the root. Given a process E we denote by LTS(FE) = (Sg, F, Act, —)
the rooted LTS constituted of the subpart of the SPA LTS reachable from E.
E is a finite-state process if LT'S(F) has a finite number of nodes, that is Sg
is finite.

2.2 Security Properties

The BNDC' [8] security property aims at guaranteeing that no information
flow from the high to the low level is possible, even in the presence of mali-
cious processes. The main motivation is to protect a system also from internal
attacks, which could be performed by the so called Trojan Horse programs,
i.e., programs that are apparently honest but hide inside some malicious code.
Property BNDC' is based on the idea of checking the system against all high
level potential interactions, representing every possible high level malicious
program. In particular, a system £ is BNDC' if for every high level process 11
a low level user cannot distinguish E from (E|II), i.e., if IT cannot interfere



with the low level execution of the system E. In other words, a system FE is
BNDC' if what a low level user sees of the system is not modified by composing
any high level process II to E.

Definition 2.2 (BNDC) Let E € £.

E e BNDC iff VIl €&y, E\H ~ (E|Il)\ H.

Example 2.3 The BNDC property is powerful enough to detect information
flows due to the possibility for a high level malicious process to block or unblock
a system. Let H = {h}, L = {l,j} and E; = [.h.j.0 + [.j.0. Consider the
process I1 = h.0. We have that (E\|I1) \ H ~ 1.5.0, while E; \ H ~ 1.0 +1.5.0.
Note that the latter may (nondeterministically) block after the | input. Having
many instances of this process, a low level user could deduce if h is executed
by observing whether the system always performs j or not. Process E1 may be
“repaired”, by including the possibility of choosing to execute j or not inside
the process. Indeed, process Ey = 1.h.j.0 +1.(1.7.0 + 7.0) is BNDC. O

In [23], it is introduced a security property called Persistent_. BNDC (P_BNDC,
for short), which is suitable for analysing systems in dynamic execution en-
vironments. Intuitively, a system E is P_.BNDC(C' if it never reaches insecure
states.

Definition 2.4 (P_.BNDC) Let E € €.

E € P_.BNDC iff ¥ E' reachable from E, E' € BNDC.

We show the idea of P_.BNDC through a simple example.

Example 2.5 Consider the process Ey of Example 2.3, i.e., E5 = [.h.7.0 +
[.(1.j.0 + 7.0) where l,j € L and h € H. Suppose now that Ey is moved in
the middle of a computation. This might happen when it find itself in the state
h.j.0 (after the first | is executed). Now it is clear that this process is not
secure, as a direct causality between h and j is present. In particular h.j.0 is
not BNDC and this gives evidence that Ey is not P_.BNDC. The process may
be “repaired” as follows: E3 = 1.(h.j.0 + 7.5.0 + 7.0) + [.(7.5.0 + 7.0). It may
be proved that E3 is P_.BNDC. Note that, from this example it follows that
P_BNDC c BNDC. 0O

In [23] it has been shown that even if the definition of P_.BNDC introduces
an universal quantification over all the possible reachable states, this can be
avoided by including the idea of “being secure in every state” inside the bisimu-
lation equivalence notion. This is done by defining an equivalence notion which
just focus on observable actions which do not belong to H. More in details, it
is defined an observation equivalence, named weak bistmulation up to H where



actions from H are allowed to be ignored, i.e., they are allowed to be matched
by zero or more 7 actions. To this aim, the following transition relation is
used.

Definition 2.6 Let a € Act. We define the transition relation :d>\H as fol-
lows:

a =& ifa & H
:>\H - a 7
= or = ifa€H

Note that the relation :d>\H is a generalization of the relation =% used in
the definition of weak bisimulation [37]. In fact, if H = (), then for all a € Act,

E =%\, E' coincides with £ =% £,
The concept of weak bistmulation up to H is defined as follows.

Definition 2.7 (Weak Bisimulation up to H) A binary relation R C €%
E over agents is a weak bisimulation up to H if (E,F) € R implies, for all
a € Act,

o if E-% E', then there exists F' such that F :d>\H F" and (E',F') € R;
o if I % F' then there exists E' such that E :d>\H E' and (E',F') € R.

Two agents E,F € £ are weakly bisimilar up to H, written E ~\y F, if
(E,F) € R for some weak bisimulation R up to H.

The relation =~y is the largest weak bisimulation up to H and it is an equiv-
alence relation. In [23] P_LBNDC has been characterized in terms of ~\y as
stated below.

Theorem 2.8 (P_.BNDC - Bisimulation [23]) Let E € £. E € P.BNDC
if and only if E ~\y E'\ H.

In [24] we give a further characterization of P_.BNDC processes in terms of un-
winding conditions. This new characterization provides a better understanding
of the operational semantics of P_.BNDC' processes. In practice, whenever a
state B’ of a P_.BNDC' process may execute a high level action moving to a
state E”, then E’ should be also able to simulate such high move through a 7
sequence moving to a state E” which is equivalent to E” for a low level user.

Theorem 2.9 (P_BNDC - Unwinding [24]) Let E € £ be a process. E €

P_BNDC iff for all E' reachable from E, if E' LN E", then E' == E" and
E"\H=~E"\H.



Here we observe that there is a strict relation between the bisimulation-based
characterization of P_.BNDC' given in Theorem 2.8 and the unwinding condi-
tion of Theorem 2.9: the equivalence ~\x between E and E \ H in Theorem
2.8 states that high level actions of E are simulated by zero or more 7 actions
of E'\ H, while the unwinding condition in Theorem 2.9 says that for every
high level action there must exists a path of zero or more 7 actions leading
to equivalent states from the low level view. This suggests us that consistent
changes in the way of dealing with high level actions in ~\ g and in the cor-
responding unwinding condition, may lead to different bisimulation-like and
unwinding characterizations of novel information flow security properties.

This idea will be exploited in the next sections when we study the properties
SBNDC and PP_BNDC.

In [23] it is also proved that P_.BNDC is compositional with respect to the
parallel composition, restriction and low level prefix operators.

Proposition 2.10 ([23]) Let E,F € £. If E,F € P_.BNDC, then

a.E € P_BNDC, for alla € LU{1};
(E|F) € P_BNDC;

E\ve P_.BNDC, for allv C L;
E[f] € P.BNDC? .

Unfortunately, P_.BNDC is not compositional with respect to the nondeter-
ministic choice operator as illustrated below.

Example 2.11 Let E, = h.0 with h € H and E5 = 1.0 with | € L. It is easy
to see that both E4 and E5 are P_BNDC but E4 + Es is not P_LBNDC. This
example will be further illustrated in the next section. O

3 A Generalization

In this section we generalize both the notion of weak bisimulation up to high
level actions of Definition 2.7 and the unwinding condition expressed by Theo-
rem 2.9, by making them parametric with respect to a parameter s € {x,0,+}.
Then, we introduce a parametric security property, named s_BNDC, by gen-
eralizing the quantification-free characterization given by Theorem 2.8 for
P_BNDC processes. Finally, we prove that s_BNDC processes can be equiva-
lently defined by means of the generalized unwinding condition. This result is
used in the next sections to provide a quantification-free characterization of

3 This last item is not in [23], but it is immediate to prove it.

10



SBNDC' [8] and of a novel, fully compositional property, named Progressing
P_BNDC.

We introduce the following binary relations on processes which are parametric
with respect to a parameter s € {*,0,+}.

Definition 3.1 Let s € {*,0,4}. The transition relations ==° and <>° are
defined as follows:

a

= if eithers=xors=>0

:>S:

== ifs=+
o, = ifa g H
— =

= or (—)° ifa€H

where (—)* stands for L if s =%, for == if s = +, and for a sequence of
zero actions *, if s = 0.

Since == and == coincide for a € £, the various instances of ==* are different
only when a = 7. In this case both ==* and == represent a sequence of 0 or
more 7 actions while == represents a sequence with at least one 7.

Fact. The relation <»* coincides with :d>\ u of Definition 2.6.

Example 3.2 Let E = 7.h.7.1.0 with h € H and | € L. We have E s 1.0
for all s € {,0,+}, E ==* h.7.1.0 for all s € {,0,+}, E =° 7.h.7.1.0

for s = x and s = 0, but E #% 7.h.7.1.0. Moreover, E Ly 10 for all
s € {%,0,+}, F Los r b0 for s = x and s = 0 but E 7Z>5 T.h.1.1.0 for
s=+, F Lo b0 fors=x and s =+ but B %5 h.t.l.0 for s=0. O

The following definition generalizes the notion of weak bisimulation up to H.
Definition 3.3 (s-Weak Bisimulation up to H) A binary relation R C

E x & over agents is a s-weak bisimulation up to H if (E, F) € R implies, for
all a € Act,

o if E-% E', then there exists F' such that F < F' and (E',F') € R;

o if % ', then there exists E' such that E <%*E' and (E', F') € R.

4 If E(—)°E' then E coincides with E'.
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Two agents E, F € £ are s-weakly bisimilar up to H, written E A F,f
(E,F) € R for some s-weak bisimulation R up to H.

It is easy to see that all the three instances of ~{, are equivalence relations
and that ~{p is the largest s-weak bisimulation.

The notion of s-weak bisimulation up to H can be used to define a parametric
class of security properties as follows.

Definition 3.4 (s-BNDC) Let E € £. E € s.BNDC if and only if E My
B\ H.

Fact. The relation ~{; coincides with ~\y of Definition 2.7, hence *. BNDC
is exactly P_.BNDC.

In order to generalize also the unwinding condition we first introduce the
following generalized notion of weak bisimulation.

Definition 3.5 (s-Weak Bisimulation) A binary relation R C € x & over
agents is a s-weak bisimulation if (E, F') € R implies, for all a € Act,

o if E-% E', then there exists F' such that F ==°F' and (E',F') € R,
o if % F', then there exists E' such that E ==°E' and (E',F') € R.

Two agents E,F € £ are s-weakly bisimilar, denoted by E ~° F, if there
erists a s-weak bisimulation R containing the pair (E, F).

Fact. The relations ~* and ~° coincide with the weak bisimulation relation
~, while the relation ~* coincides with the progressing bisimulation relation
AP defined in [38].

Definition 3.6 (s-Unwinding Condition) Let E € £ be a process. E sat-

isfies the s-unwinding condition if for all E' reachable from E, if E' KN E",
then E'(—)*E" and E" \ H ~* E" \ H.

Also in this case, for s = * we get back the unwinding condition of Theorem 2.9
which characterizes P_BN DC' processes.

The following relationships between =, ~°, and i hold.
Proposition 3.7 Let E,F € £.

(1) If E ~*° F then E =~ F;

(2) If E ~p F then E\ H~* F\ H;

12



(3) E\H ~* F'\ H is equivalent to E\ H ~=,; F'\ H;
(4) If s € {*,0} then E = F is equivalent to E ~* F.

Proof. Immediate by Definitions 3.5, 3.1 and 3.3. O

The next proposition shows that the following relationships between s_BNDC
processes hold.

Proposition 3.8 0_BNDC C x_BNDC and +_BNDC C «_BNDC'.
Proof. Immediate by Definitions 3.1, 3.3 and 3.4. O

A relevant property of P_.BNDC' processes is persistency. We show that it
holds also for s_BDNC' processes.

Proposition 3.9 Let E € £. If E € s_.BNDC then for all E' reachable from
E, E' € s_.BNDC.

Proof. Let E € s.BNDC,ie., E A E\ H, and E’ be a process reachable
from E. First, we prove that there exists E” \ H reachable from E \ H such
that £’ A E"\ H. This part of the proof follows by induction on the length
[ of the path which leads from E to E'.

e Base [ = 0. We can choose E” equal to E; then £ = E' = E” and we know
that £~ '\ H.

e Inductive step [ > 0. Let F' be reachable from E with a path of length [ —1
and F = E’. By inductive hypothesis, there exists F’ such that F'\ H is
reachable from E'\ H and F ~{; F'\ H. From the fact that F' ~{y F'\ H,

there exists E” \ H such that F'\ H <%*E"\ H and E' ~y "\ H. Since
E"\ H is reachable from E \ H we have the thesis.

By Proposition 3.7 (2), we have that E'\ H ~° E"\ H and, by Proposition 3.7
(3), E'\H ~y E"\ H. Thus, £’ ~,; E"\ H ~},; E'\ H, i.e., by transitivity
of My, B' =iy E'\ H. O

Finally, the following theorem shows the correspondence between s_BDNC
and s-unwinding condition, thus generalizing the one obtained by Theorems
2.8 and 2.9 for P_.BDNC'. This result is used in the next sections to charac-
terize different security properties.

Theorem 3.10 Let E € &£ be a process. E € s_.BNDC if and only if E
satisfies the s-unwinding condition.

Proof. (=) Let £ € s:BNDC'. By Definition 3.4 and persistence of s-BNDC,
for all E' reachable from E, E' ~{y; E'\ H. Let E' be a process reachable

from E. Suppose that E’ N By the fact that £’ M E'\ H, it follows
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that E'\ H ci>SE’”\H and E" ~ 4 E"'\ H. Since, by persistence of s:BNDC,
E" ~3y E"\ H, we have by transitivity that £” \ H ~{, E" \ H, i.e., by
Proposition 3.7 (2), E"\ H ~* E"\ H. Since E'\ H does not perform any high
level action, by Definition 3.1, E'\ H (—)*E" \ H and thus E'(—/)*E",
hence the thesis.

(<) Let E be a process satisfying the s-unwinding condition, i.e.,

(1) V E' reachable from E, if E' % E" then E'(-)*E" and E" \ H ~*
EIII \ H

It is sufficient to prove that
S={(E\H,F) | F satisty (1) and E\ H~* F\ H}

is a s-bisimulation up to H. It follows from the following cases. Let (E\H, F) €
S. Then,

e E\H % E'\ H with a ¢ H. From the hypothesis that £\ H ~° F'\ H, it
follows that F\ H ==*F'\ H and E'\ H ~* F'\ H. Hence, since a ¢ H,
F =%5F' ie., by Definition 3.1, F <%*F’. Moreover, since property (1) is
persistent, F” satisfy (1) and thus, by definition of S, (E'\ H, F') € S.

e % F'" with a ¢ H. Hence, F\ H = F'\ H. From the hypothesis that
E\ H ~* F\ H, it follows that E\ H ==*E' \ H, i.e., by Definition 3.1,
E\H <°E'\ H, and E'\ H ~* F'\ H. Moreover, since property (1) is
persistent, F” satisfy (1) and thus, by definition of S, (E'\ H, F') € S.

o % F'witha € H. Since F satisfies property (1), there exists F” such that
F(—)SF" and F'\ H ~° F"\ H. We distinguish three cases corresponding
tos=x*,s=0and s = +.

- Let s = %. From the hypothesis that £\ H ~* F'\ H, it follows that
E\H == E'\H,ie, E\H <*E'\ H and E'\ H ~* F"\ H. Hence,
by transitivity of ~*, E'\ H ~* F'\ H. Moreover, since property (1) is
persistent, F’ satisfies (1) and thus, by definition of S, (E'\ H, F') € S.

- Let s = 0. Since F(—)°F", we have that F' = F" and thus F \ H ~°
F'\ H. From the hypothesis that £\ H =~° F'\ H and transitivity of ~°,
it holds that £\ H ~° F'\ H. By definition of <%°, E\ H <5°F \ H.
Moreover, since property (1) is persistent, F" satisfies (1) and thus, by
definition of S, (E'\ H,F') € S.

- Let s = +. From the hypothesis that £\ H ~* F \ H, it follows that
E\H = E'\ H, ie, E\HiﬁE’\H and E'\ H ~* F"\ H. Hence,
by transitivity of ~*, E'\ H ~* F'\ H. Moreover, since property (1) is
persistent, F’ satisfies (1) and thus, by definition of S, (E'\ H, F') € S.
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4 Strong BNDC

The property Strong BNDC (SBNDC, for short) has been introduced in [8] as
a sufficient condition for verifying BNDC. It just requires that before and after
every high step, the system appears to be the same, from a low level perspec-
tive. It has been proved to be stronger than SBSNNI (and thus P_.BNDC)
and it has been defined as follows.

Definition 4.1 (SBNDC [8]) Let E € £. E € SBNDC iff for all E' reach-
able from E, if E' % E", then '\ H ~ E" \ H.

As a consequence of Proposition 3.7 item (4), we can immediately recognize
that SBNDC' is defined as the class of processes satisfying the 0-unwinding
condition, which is obtained by instantiating s to 0 in Definition 3.6. Thus, by
Proposition 3.8 we immediately obtain the relation among SBNDC, P_BNDC
and BNDC'.

Corollary 4.2 SBNDC C P_.BNDC C BNDC'.

By exploiting Theorem 3.10 we can provide a quantification-free characteriza-
tion of SBNDC' as follows.

Theorem 4.3 (SBNDC - Bisimulation) Let E € & be a process. E €
SBNDC if and only if E %SH E\ H.

Proof. Immediate by Proposition 3.7 item (4) and Theorem 3.10. O

This theorem shows that we can avoid the universal quantification over all the
possible reachable states in the definition of SBNDC by defining a suitable
bisimulation equivalence notion. This property is particularly appealing since
it suggests the effective computability of SBNDC.

Example 4.4 Let us consider the process depicted below, modelling the use
of a shared resource by a low level producer and an high level consumer, i.e.,
produce € L and consume € H.

Ry = produce. R,
R; = produce.R; | + consume.R; forie[l,n—1]

R, = produce.R,, 4+ consume.R,_,

Note that the resource has a maximum capacity of n and the low level produce
action is ignored when such a limit 1s reached. This non-intuitive behavior is
needed in order to avoid a potential flow from high to low level. In particular,
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iof the low level producer could observe when the resource is full, this will be
exploited to deduce how many high level consume actions have been performed.

It is easy to see that this process is SBNDC by directly applying Definition 4.1.
It is sufficient to observe that all the R; states are equivalent when restricted
on high level actions, as they may only perform a produce action mowving to
another restricted Ry. O

In [19] (see Theorem 4) it is proved that SBNDC' is compositional with respect
to the parallel and restriction operators. It is easy to extend the composition-
ality result by showing that SBNDC' is also compositional with respect to low
level prefix and relabelling.

Proposition 4.5 Let E,F € £. If E, F € SBNDC, then

a.E € SBNDC, for alla € LU{7};
(E|F) € SBNDC;

E\v e SBNDC, for allv C L;
Elf] € SBNDC.

Similarly to P.BNDC' also SBNDC' is not compositional with respect to the
nondeterministic choice operator. Let us reconsider Example 2.11: the same
reasoning holds both for P.BNDC' and for SBNDC.

Example 4.6 Consider the processes By, = h.0 with h € H and Es = (.0
with | € L. It is easy to see that both E4 and Es are SBNDC but E, + Ej5 is
not SBNDC. In fact E; + Es 25 0 while E; + E5 ()" E; + E5 = h.0 + 1.0,
but (h.0+1.0) \ H % 0. The problem lies in the fact that while the high level
action in Ey is safely simulated by a sequence of zero T in Ey \ H, the same
high level action in E, + Es is not safely simulated by a sequence of zero T
in (Ey+ E5) \ H due to the presence of the additional component Es. This
problem would not arise if h were be simulated by at least one T action. This
observation will be exploited in the next section to define a fully compositional
security property. O

5 Progressing P BNDC

It is well-known that security properties are, in general, not preserved un-
der composition [11]. We have seen in the previous sections that P_.BNDC
and SBNDC' are both non-compositional with respect to the nondeterministic
choice operator. However, compositionality results are crucial for making the
development of large and complex systems feasible [13,39,40]. In this section
we show that by instantiating s to + in Definition 3.4 one obtains a prop-
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erty which is fully compositional (i.e., it is compositional also with respect
to the nondeterministic choice). We call such a class Progressing P.BNDC

(PP_BNDC, for short). We define it in terms of the bisimulation-like relation
ot
N\H-

Definition 5.1 (PP_BNDC - Bisimulation) Let E € €.

E € PP_.BNDC iff E %TH E\ H.

By exploiting Theorem 3.10, PP_BNDC' can be characterized also by an un-
winding condition.

Theorem 5.2 (PP_BNDC - Unwinding) Let E € £. E € PP_BNDC iff
for all E' reachable from E, if E' b B then E' == E" and E"\H ~* E"\H.

Proof. Immediate by Theorem 3.10 and the fact that ()" and == coin-
cide. O

In [1] and [41] a similar unwinding condition is introduced where weak bisim-
ulation is used instead of ~*. The security property so defined is called
> CP_BNDC. Since E ~* F implies E ~ F, PP_.BNDC C CP_BNDC.
By Proposition 3.8 we immediately obtain the relation between PP_BNDC,
P_BNDC and BNDC.

Corollary 5.3 PP_.BNDC C CP_.BNDC C P_BNDC C BNDC.

Notice that neither SBNDC implies PP_BNDC nor PP_BNDC implies SB-
NDC. For example, process h.0 is SBNDC' but it is not PP_.BNDC, as no 7
transitions simulate the high level A. On the other hand, the process £ =
h.0 + 1.0 + 7.0 is PP_BNDC' but not SBNDC. In fact E :;é(\’H E \ H since

E % 0but E \ H is not weak bisimilar to 0. However, there are processes
which are both SBNDC and PP_BNDC, e.g., processes which perform only
low level actions. To be more precise, by putting together the two unwinding
characterizations, we can say that a process E is both SBNDC and PP_BNDC
if and only if for all E' reachable from E, if E' LN E", then E' == E" and
E'\H =~ E"\ H ~" E"\ H. Consider for instance £ = h.0 + 7.0. The
situation is summarized in Fig. 2. Notice that all the inclusions are strict.

Example 5.4 Consider the process C' (channel) described through a value-
passing extension of SPA by:

® Note that in [1] the name CP_BNDC has been erroneously introduced by using
a bisimulation-like relation
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C = in(z).(out(x).C + 1.C).

C may accept a value x at the left-hand port, labelled in. When it holds a
value, it either delivers it at the right-hand port, labelled out, or resets itself
performing an internal transition.

If the domain of x is {0,1}, then the channel C' can be translated into SPA in
a standard way by following [37] as:

Let us assume that C' is used as communication channel from low to high level.
This can be expressed as ing,iny € L and outy, out; € H. Since, in correspon-
dence of each high level action (outy, outy ) there is a T transition leading to the
same state, by Theorem 5.2 we can conclude that C is PP_BNDC. The T tran-
sittons basically makes the channel a lossy one, as high level outputs may be
non-deterministically lost. However, note that non-determinism is used to ab-
stract away implementation details. For example, such 7’s could correspond,
at tmplementation time, to time-outs for the high level output actions, i.e.,
events that empty the channel and allow a new low level input, whenever high
outputs are not accepted within a certain amount of time. Analogously, it is
possible to see that C' is also SBNDC. Note that process C' = in(x).out(x).C’
with no 7’s is neither PP_BNDC nor SBNDC'. Indeed, a high level user may
block and unblock C' in order to transmit information to low level user. O

Exploiting the unwinding characterization we are now ready to prove that
PP_BNDC('is compositional with respect to the nondeterministic choice oper-
ator. This is a consequence of the fact that ~* coincides with the notion of
progressing bisimulation introduced by Montanari and Sassone in [38] which is
fully compositional. Notice that an analogous result holds also for CP_.BNDC
as proved in [1].

Proposition 5.5 Let E,F € £. If E,F € PP_.BNDC, then

a.E € PP_BNDC, for alla € LU{1};
(E + F) € PP_BNDC;

(E|F) € PP_BNDC;

E\v e PP_BNDC, for allv C L;
E[f] € PP_BNDC.

Proof. We show only the case (£ + F), since the other cases are similar to
the ones of Theorem 4 in [19]. Let E, F' € PP_BNDC. By Theorem 5.2, it is
sufficient to show that
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(1) ¥ G reachable from E+F, if G % G’ then G == G” and G'\H ~* G"\H.

According to the operational semantics of the nondeterministic choice op-
erator, G can be either a process reachable from F or a process reachable
from F' or the process E + F' itself. In the first two cases, the fact G sat-
isfy (1) follows from the hypothesis that both E and F' € PP_BNDC'. Sup-

pose that E+ F 2 G'. Then E % G' or F % G'. Again, since both
F and F € PP_BNDC, we have that E == G" (resp. F = G") and
G'\H ~* G"\ H. Hence E+ F == G" and G’ \ H ~" G'\ H satisfy-
ing (1). O

6 Automatic Verification and its Complexity

In this section we present two methods to determine whether £ M E\H,in
the case that F is a finite-state process. Specifically, we tackle the problem of
proving £ ~{y F, when E and F are finite-state processes. The first method

consists of associating to any process E a modal p-calculus formula ¢z

such that F' satisfies gb;\H if and only if F M F'. This method is obtained
by applying the technique presented in [27]. The second method consists of
transforming the L'TS’s of E' and F' into two LTS’s that are strongly bisimilar
if and only if £ Ay L The first method has the advantage that it directly
exploits already existing model checkers for the p-calculus. Unfortunately, it
has an exponential time complexity with respect to the size of the LTS’s of F
and F'. On the other hand, the second method requires the implementation
of some ad-hoc transformations of the LTS’s, but it has a polynomial time
complexity.

6.1 Characteristic Formulae

The modal p-calculus [29] is a small, yet expressive process logic. We con-
sider modal positive p-calculus formulae constructed according to the follow-
ing grammar:

¢ :=true | false | g1 A ¢y [ 1 V o | (a)¢ | [a]op | X | n X6 [ v X0

where X ranges over an infinite set of variables and a over a set of actions
Act. The fixpoint operators pX and vX bind the respective variable X and
we adopt the usual notion of closed formula. Notice that we give a syntax
without using the negation operator — or implication, i.e., we consider only
formulae in positive normal form (see [29]).
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Modal p-calculus positive formulae are interpreted over processes, which are
modelled by LTS’s. Let E be a process and LTS(E) = (Sg, E, Act,—). An
environment is a partial mapping p : Var — 2°¢ which interprets variables by
subsets of Sg. Given a formula ¢ and an environment p defined on all the free
variables of ¢, the set of processes that satisfy ¢ with respect to p, denoted
by Mg(¢)(p), is defined® in Fig. 3.

Intuitively, true (false) holds for all (no) states; A and V are interpreted by
conjunction and disjunction; (a)¢ holds in a state E' € Sy if there is a state E”
reachable from E’ with an action a which satisfies ¢; and [a]¢ holds for E’ if all
states B reachable from E’ with an action a satisfy ¢. The interpretation of a
variable X is as prescribed by the environment. The formula pX.¢, called least
fixpoint formula, is interpreted by the smallest subset = of Si which interprets
1X.¢ when the environment associates x to X. Similarly, v X.¢, called greatest
fixpoint formula, is interpreted by the largest such set.

The set of processes satisfying a closed formula ¢ is Proc(¢) = {F | F €
Mp(¢)}.

We consider also equation systems of modal p-calculus formulae in the form

Eqn:X1:¢1,...,Xn:¢n

where Xi,..., X, are mutually distinct variables and ¢y, ..., ¢, are modal
p-calculus formulae having at most X,..., X,, as free variables.

An environment p : {X;,..., X, } — 2% is a solution of an equation system
Eqn, if p(X;) = Mg(¢:)(p), for all i = 1,... n. By ordering environments de-
fined on the same set { X7, ..., X} of variables with respect to componentwise
inclusion:
pL< pp = pi(X;) Cp(Xy), i=1,...,n,

we can determine the greatest of such solutions, which we denote by Mg (Eqn).
It interprets an equation system on the processes reachable from a given pro-
cess E.

We can associate a set of processes to an equation system by saying that a
process satisfies an equation system FEgn if it belongs to the greatest solution
of the first equation. Thus the set of processes satisfying the system Fqn is
Proc(Eqn) ={F | F € Mp(Eqn)(X1)}.

In order do derive a characteristic formula for a process E and a given property,
we follow the approach described by Miiller-Olm in [27] where he shows how to

6 Given a set * C Sp and a variable X, we write p[z/X] for the environment that
maps X to z and any other variable Y # X into p(Y').
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derive p-calculus formulae characterizing finite state processes up to strong or
weak bisimulation directly from the greatest fix-point characterization of the
bisimulation relation. As pointed out in [27] it is easy to extend the method to
different bisimulation-like relations. The method consists in constructing first
an appropriate system of equations of p-calculus formulae and then a single
characteristic formula by applying semantic preserving transformation rules
on equation systems.

Before introducing our systems of equations, for any formula ¢, any action a
and s € {x,0,+} we define the formulas ((a))°*¢ and (a)){¢ as follows:

@y - { (&) o ?f s=%ors=0
(ahe ifs =+
where ()¢ = uX.6 v (7)X , with X not in 9, ((ah = (#)(a)(F)e, and if

N0) ifag H
oV (7)o if s=xanda € H
aNoV ¢ ifs=0andaec H
oV ()¢ ifs=+anda€ H

The operators ((a)){y, (7)) and {(a)) model < & and 5, respectively, since
their semantics is given by

Mp({a)iy9)(p) = {E' | 3E" : E' <¥E" NE" € Mg(¢)(p)},
(Fho)(p) = {E" | 3E" : E' =5 E" AE" € Mu(8)(p)},
(a)g)(p) = {E" | FE" : E'== E" NE" € Mg(9)(p)}-

(9)(p)
() (p)

p

We construct a characteristic equation system as follows.

Definition 6.1 Let E be a finite-state process, Sg = {F1,...,E,} and E; =
E. For every E; € Sp we define

¢;>H = /\aEAct /\EiiEj <<a>><HXEJ A

/\aEACt [CL] VEiLaﬁEj XEj .
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The characteristic equation system of the process E is:

M _
Ean " XEI ¢E1 y Tt XEn - ¢En "

The formulae qﬁzi\H have been defined in such a way that the largest solution

Mp(Eqn\") of Eqn\" on an arbitrary process F associates to the variables
Xpg, exactly the states Fj of I’ which are s-weakly bisimilar up to H to E;.
This is formalized by the following theorem whose proof is omitted since it is
just an instance of the analogous result in [27].

Theorem 6.2 Let E, F be aﬁmte—state process, E; be reachable from E, Fj be

reachable from F, and Ean the characteristic equation system of Definition
6.1. Then F; € MF(Ean N Xg,) iff E; =~ ~y Fy.

Example 6.3 Consider the process Fy of Example 2.3. The characteristic
equation system of Ey is defined as follows:

N Xnjo A AN X rj047.0N
(XhjoV XrjosroV XjoV Xo) A7) XE, AR XE,
Xrjo+ro = (T uXj0 A (T pXoA
[T (X7 0470V XrjoV XjoV XroV Xo)A
[h(X7j04r0V XrjoV XjoV X0V Xo)
™ [7](Xrj0 V Xjo) A [M](X7j0 V Xjo)
P aXj0 A [T]Xnj0 A [R](Xhj0 V Xjo)
I Xo A[h]Xj0 A [T]Xj0 A [1]Xo0
(TN Xo A [T](Xro V Xo) A [h](Xro V Xo)
[h]Xo A [7]Xo0

( H JO/\
XhJ <
{

RN =

-

O

Corollary 6.4 Proc(Eqny") = {F | E ~y F

This result holds for all processes F' as Ean does not depend on F'.
Characteristic formulae, i.e., single positive formulae characterizing processes

can be constructed by applying simple semantics-preserving transformation
rules on equation systems as described in [27]. We urge the reader to [27] for
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a detailed description of such rules which recall Gaussian elimination process.
Let ¢ be such that Proc(Eqn) = Proc(¢) (see [27]), we obtain that:

Theorem 6.5 For all finite-state processes E and s € {x,0,+} there is a
modal p-calculus formulae ¢p\" such that Proc(¢pz'") = {F | E ~r F}

Using this method we can for instance exploit the model checker NCSU Con-
currency Workbench ([30]) to check whether E' ~{; F'. Unfortunately, in the
p-calculus formula we obtain for a process E there are both p and v op-
erators (see [27]). In the worst case the number of p and v alternations in

qﬁz\H is 2|Sg| + 1 (when LTS(E) has a unique strongly connected compo-

nent) and in that case the complexity of model checking qﬁ:iH on LTS(F) is
O(|Sp|@I9E+1/2) (see [42,43]).

This decidability result for s_.BNDC' properties differs from the one proved
by Martinelli in [22], even if the underline approach is very similar. Both ap-
proached consider only finite-state systems and are based on the construction
of characteristic formulae in modal p-calculus. But we consider sufficient con-
ditions for BNDC while Martinelli considers a necessary condition for BNDC.
In fact he restricts also the class of attachers to finite-state processes.

6.2 Strong Bistmulation

We show now how to reduce the problem of testing whether two processes are
s-weakly bisimilar up to H to a strong bisimulation problem.

The next property follows from the definition of <.

Proposition 6.6 Let s € {x,0,+}. A binary relation R C € X € over agents
is a s-weak bisimulation up to H if and only if (E,F) € R implies, for all
a € Act

1. if E<FE', there is F' € £ such that F <*F' and (E',F') € R;
2. if F <% F', there is E' € € such that E < E' and (E',F') € R.

Proof. (=). We prove that if R C £ x £ is a s-weak bisimulation up to H,
and (E,F) € R, then 1. and 2. hold for all a € Act. We distinguish three
cases.

Case 1. a = 7. In this case E <35E' coincides with E ==*E’. The proof
follows by induction on the number m of 7 actions in £ ==*E’'. There are
two different base cases: m = 0 if s # +, and m =1 if s = +. In the first case
E’" = E and we can choose F' = F. The second case is immediate by definition
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of s-weak bisimulation up to H. For the inductive step, let £ = E" ==°F".
Since, (E, F) € R, there exists F" € £ such that F ==*F" and (E", F") € R.
By the inductive hypothesis, there exists F’ € £ such that [ ==°*F’ and
(E',F') € R. This proves the thesis since F' ==*F" and F" ==*F" implies
F ==5F".

Case 2. a# 7 and a ¢ H. In this case E <3*E' coincides with E ==F" and
there exist E” such that £ ==*E" % E" ==*E'. By Case 1.1 above, there
exist F" € &€ such that F ==*F" and (E", F") € R. By Definition 3.3 there
exists F”" € € such that F” < F™ je. F" =%5F" and (E",F") € R. Again
by Case 1.1 above, there exists F' € € such that F" =*F’ and (E', F') € R.
This proves the thesis since F ==*F" =% """ ==*F" implies F ==°F".
Case 3. a € H. In this case E <3*E' coincides either with E =%5E’ or with
E(5)*E'. If E ==°E' we proceed as for Case 2 above. If F(5)°E’" and s = *
or s = + then (-3)° coincides with ==* and we proceed as for Case 1 above.

Finally, if E ==°F’ then £’ = E and we can choose F' = F.

(«<=). It is sufficient to observe that, by Definition 3.1, E % E’ implies E < E"
for each F,E' € £ and a € Act. O

A direct consequence of this theorem is that two systems are s-weakly bisimilar
up to H if and only if they are strongly bisimilar when in place of the transition
relations % we consider the transition relations <°.

We can exploit this fact to determine whether '~ , E'\ H by: (i) translating
the two labelled transition systems LT'S(E) and LT S(E \ H), into LTS}, (E)
and LTS5 (E \ H); (i1) computing the largest strong bisimulation ~ between
LTS5 (F) and LTS3 (E \ H). More formally LT S5 (E) is:

Definition 6.7 (s-Closure up to H) Let E € £ be a process such that
LTS(E) = (Sg, E, Act,— ). The s-closure up to H of E is the rooted labelled
transition system LTS3 (E) = (Sg, B, Act,—*).

The notion of bisimulation on rooted labelled transition systems has been
first introduced in the areas of modal logics (see [44]) and non-well-founded
set theories (see [45]). Two rooted labelled transition systems are strongly
bisimilar when, starting from the two roots, each step on the first transition
system can be simulated on the second one and vice-versa.

Definition 6.8 (Strong Bisimulation on Rooted Labelled Transition
Systems) Let Gy = (Si,n1, Act, 1) and Gy = (Sa,na, Act,—3) be two
rooted labelled transition systems. G, and Gy are strong bisimilar, denoted by
G ~ G, if there exists a binary relation R C Sy x Sy such that (n1,ne) € R
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Let E € & with LTS(E) = (Sg, E, Act,—). The s-closure up to H of E,
LTS5 (E) = (Sg, E, Act,—*), is computed as follows:
(1) calculate ()" (transitive closure of —) and (-»)* (transitive and reflex-
ive closure of =);
(2) calculate part of <% as:
(1) ()0 5 o( D), if a 75
(2) (=), ifa=7and s # +;
3) (=) 1fa—7'ands—+,
(3)

(1
(2
(

)calculate (5)* as

) ()7, if s = x;

) (2)F, if s = +;

3) E ° E', for each E' € Sg, if s = 0;

(4) for each a € H and E',E" € Sy add E' < E", every time E'(5)*E".

and (n',nl,) € R implies, for all a € Act

o if nl <5 !, there is nl) € Sy such that nly <5, 0l and (n!,nl) € R;
o if nl, <3, nll, there is n'! € Sy such that n} <%, n¥ and (n”,n}) € R.
The next result is an immediate consequence of Proposition 6.6.

Corollary 6.9 Let E,F € £. Then, E ~{y F iff LTS} (E) ~ LTSy(F).

Now, our first problem is to compute LT'S%,(FE) from LTS(FE), using Defini-
tion 6.7. This can be immediately obtained with the following algorithm:

Correctness of algorlthm above is trivially obtained by observing that: ifa € H
and a # 7, then <%¢ coincides with =%, step 2(1); if a E H, then <%*

is the union of =% (which coincides with =% and with = %), step 2(1),
and of (5)*, step 4; if a = 7 and s # +, then <* is (5)*, step 2(2); if
a = 7 and 5 = +, then <5* is (5)*, step 2(3). As far as time and space
complexities are concerned, we notice that they depend on the algorithms
used for computing the reflexive and transitive closure and the composition
of relations. We start by fixing some notations. Let n = |Sg| be the number
of states in LTS(FE), for each a € Act, let m, be the number of = transitions
in LTS(E), and m = Y ,cauMa. Similarly, let 7, be the number of <%*
transitions in LTS5 (E), and m = > ,c 4t Ma-

The next lemma shows that LTS3 (E) can be computed in polynomial time
with respect to the number of nodes and edges in LTS (E).

Lemma 6.10 Let s € {x,0,+}. Algorithm 6.2 can be executed in time
O(ni, + n") and space O(n?), where w denotes the exponent in the run-
ning time of the matrix multiplication algorithm used. If m < n, then it is
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possible to work in time O(nm) and space O(n).

Proof. First of all we have to determine the transitive closure of — (step
1). The algorithm proposed in [46] computes the transitive closure of a graph
represented with adjacency-lists in time O(m, + ne), where e is the number
of edges in the transitive closure of the graph of the strongly connected com-

ponents. Since m..,e < m.,, an upper bound to the cost of the computation of
(5)T and (5)* is O(nm,).

Let us consider the computation of the composition (-)*o % o(-)* for a # 7
(step 2(1)). Given two transition relations —; and — on a set of n nodes, the
problem of determining the composition —; o — is known to be equivalent to
the n x n Boolean matrix multiplication problem (see [47]). In particular, if A;
is the adjacency-matrix defined by —;, for + = 1, 2, then the adjacency-matrix
of —1 o =, is the matrix A; - Ay. Hence, in our case, we have to: (i) determine
the adjacency-matrixes A,, and A, associated to (—)* and % respectively;
(77) compute the product (A, - Ag) - Ary; (i40) rebuild the adjacency-list rep-
resentation (in the computation of the strong bisimulation it is important to
use the adjacency-list representation). Starting from the adjacency-list rep-
resentations of (-3)* and - in time O(n?) we obtain their adjacency-matrix
representations A,, and A,. The matrix product (A,. - A,) - A can be deter-
mined in time O(n?37) using twice the algorithm in [48]. Then, again in time
O(n?), we rebuild the adjacency-list representation. So, the global cost of the
computation of (<)*o <% o(-)* is O(n?3™). We have to perform this step
once for each a € £, assuming that |£] is a constant with respect to n. Notice
that we could work using only 2 matrix multiplications, instead of 2|£| matrix
multiplications, but in this case we would have to use matrixes in which each
element is an array of length £ of bits, hence also in this way it is not possible
to drop the assumption that |£]| is a constant with respect to n.

The complexity of the computation of <* for a = 7 (steps 2(2) and 2(3)) has
already been considered above (see step 1).

Consider now the computation of (-3)* (step 3) and the addition of the edges
<y with a € H of step 4:

e if s =0, then the computation consists in the addition of all the caps with
label @ € H, hence it costs O(n) (we are assuming that |£| is a constant);
e if 5 # 0, then see the first part of this proof (step 1);

Hence, we have described a procedure which maps E into LTS5 (E) in time
O(ni, +n®) and space O(n?), where w is the exponent in the running time
of the matrix multiplication algorithm used (w = 2.376 using [48]).

In the procedure just described we use the adjacency-matrix representation
to compute the relation < o(-)*. If we know that /m < n, then using the
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adjacency-list representation and a naive algorithm (two iterations of the naive
algorithm for the transitive closure [47]) we can perform this step in time
O(nm). Thus, when m < n, we determine LTS} (E) in time O(nm) and
space O(n+m)=0(n). O

From the above lemma, since LT'S(E \ H) and LTS} (F \ H) have at most
the same size of LT'S(FE) and LT S%(E), respectively, we obtain the following
complexity result.

Theorem 6.11 Let s € {0, *,+}. The test E M E\ H can be performed in
time O(nin, +n" +mlogn) and space O(n?), where w denotes the exponent
in the running time of the matriz multiplication algorithm used.” If m < n,
then it is possible to work in time O(nm) and space O(n).

Notice that in the complexity result m logn comes from the fact that we use
the algorithm by Paige and Tarjan ([31]) to compute the maximum bisimula-
tion.

Example 6.12 Consider again process Es = 1.h.j.0 + [.(1.7.0 + 7.0) of Ez-
ample 2.3. In Fig. 4 we show LTS(E2) and LTS(Ey \ H). By performing the
closure up to H (Algorithm 6.2) we obtain the transformed labelled transi-
tion systems LTS} (Fy) and LTS} (Ey \ H) reported in Fig. 5. In particular,
the first step just adds the T-loops in every state; the second one, adds two
transitions labelled with [ corresponding to .7 and one transition labelled with
j corresponding to T.5; finally, step 4 adds a h-labelled transition every time
there is a T transition. The two transformed transition systems are not strongly
bisimilar: the leftmost node after | in LTS5 (FEs) is not bisimilar to any node
in LTS} (E2\H), since in LTS} (Ey\ H) all the nodes are either “sink-nodes”
(which only executes T and h loops) or they have at least one outgoing edge
with label j or l. Indeed, that node in LTS} (E,) may execute only h and
T actions and could thus be simulated only by sink-nodes in LTS} (E2 \ H).
However, differently from sink-nodes, after one h, it is also able to execute
a j. This proves that LTS} (Es) + LTSy ((Es \ H)), thus, by Corollary 6.9,
E, ¢ P.BNDC. O

7 Related Works and Conclusions

In this paper we study three persistent information flow security properties
based on the bisimulation semantics model. For these properties we provide
two characterizations: one in terms of a bisimulation-like equivalence relation

" In the algorithm in [48], which is at the moment the fastest in literature, we have
that w = 2.376.
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and another one in terms of unwinding conditions.

The first characterization allows us to perform the verification of the proper-
ties for finite state processes in polynomial time with respect to the number
of states of the system, also improving on the polynomial time complexity
required by the Compositional Security Checker (CoSeC) presented in [20].

The second characterization is based on unwinding conditions. This kind of
conditions for possibilistic security properties have been already explored in
many works like, e.g., [49-51,25]. However, such unwinding conditions, have
been all proposed for traces-based models and represent, in most of the cases,
only sufficient conditions for their respective security properties. Our work
contributes significantly in this research field, by proposing new unwinding
conditions for bisimulation-based security properties, which are both necessary
and sufficient.

Moreover, unwinding gives new interesting perspectives on the characterized
properties, and is also useful for verification. In [24] we show how unwinding
conditions can be exploited for defining a proof system which provides a very
efficient technique for the verification and the development of P_.BNDC' secure
processes. Indeed, the proof system allows us to verify whether a process is
secure just by inspecting its syntax, and thus avoiding the state-explosion
problem. In particular, it allows us to deal with recursive processes which
may perform unbounded sequences of actions, possibly reaching an infinite
number of states. Moreover, the system allows us to build processes which are
P_BNDC' by construction in an incremental way. Such a proof system could
be easily adapted to deal with the PP_BNDC' and SBNDC' properties studied
in this paper. In [52], Mantel shows how one can easily define refinement
operators which preserve security, starting from unwinding conditions. In [1],
we give some preliminary results about refinement operators which preserves
our persistent security properties. This is the topic of our current research.

Finally, in this paper we also deal with compositionality issues. The develop-
ment of large and complex systems strongly depends on the ability of dividing
the task of the system into subtasks that are solved by system components.
Thus, it is essential to know how properties of the components behave under
composition. We show that P_.BNDC and SBNDC' are compositional with
respect to all the operators of SPA language, except the non-deterministic
choice. Moreover, we prove that the new property named PP_BNDC' is fully
compositional. Compositionality of possibilistic security properties has been
widely studied in the literature. There are several information flow properties,
based on the traces model, which have been proved to be fully compositional
like, e.g., restrictiveness [11], forward correctability [53] or separability [13].
In [13,39] it has been studied how to restrict composition in order to preserve
certain security properties which are not preserved by (more general) com-
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position. In [54], it has been studied how restricting the class of the running
environments makes security properties compositional.
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Prefix

aE S E
E, % E; Ey, % E}
Sum
E,+Ey, % E; E,+ E, > E),
E, % E; Ey, % EY
E\|E, % E||E,  Ei|Ey = E\|E}
Parallel B
E, % E| E, % E}
a €L
E\|Ey = Ei|E,
ES% FE
Restriction ifa &wv
E\v-% E'\v
ES% E
Relabelling @
E[f] = E'[f]
ES% E def
Constant — fZ=FK
Z35E

Fig. 1. The operational rules for SPA

BNDC

CP_BNDC

Fig. 2. Security Properties.
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Mp(true)(p
My (false)(p
Mpg(¢1 A d2)(p
Mg (1 V ¢2)(p

()
()
(r)
Mg ((a)0)(p)
()
(p)
()
(p) =

0
Mpg(é1)(p) N Mg(92)(p)

MEg(é1)(p) U ME(92)(p)
|3E": E' S E" A E" € Mg(6)(p)}
)

{£'
Mg ([a]¢)(p) = {E" |VE": E' % E" = E" € Mp(¢)(p)}
Mp(X)(p) = p(X)
Mp(pX.0)(p) = Nz C Si | Me(¢)(plz/X]) C x}
Mp(vX.9)(p) = U{r C Si | Me()(plr/X]) 2

Fig. 3. Semantics of modal p-calculus

NN
7NN

Fig. 4. The labelled transition systems of Fy and Ey \ H.

Fig. 5. The labelled transition systems LTS}, (E2) and LTS}, (E2 \ H).

34



