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tWe study bisimulation-based information 
ow se
urity properties whi
h are per-sistent, in the sense that if a system is se
ure then all of its rea
hable states are se
uretoo. We show that su
h properties 
an be 
hara
terized in terms of bisimulation-like equivalen
e relations, between the full system and the system prevented fromperforming 
on�dential a
tions. Moreover, we provide a 
hara
terization of su
hproperties in terms of unwinding 
onditions whi
h demand properties of individuala
tions. These two di�erent 
hara
terizations naturally lead to eÆ
ient methods forthe veri�
ation and 
onstru
tion of se
ure systems. We also prove several 
omposi-tionality results, that allow us to 
he
k the se
urity of a system by only verifyingthe se
urity of its sub
omponents.

1 Introdu
tionThe prote
tion of 
on�dential data from undesired a

esses is a typi
al se
urityissue 
on
erning both systems and networks. Inside a system, information istypi
ally prote
ted via some a

ess 
ontrol poli
y, limiting a

esses of entities(su
h as users or pro
esses) to data. There are di�erent levels of 
exibility ofa

ess 
ontrol poli
ies depending on the possibility for one entity to 
hangethe a

ess rights of its own data. As an example, UNIX gives users 
omplete
ontrol on the poli
y, i.e., every user may de
ide to make her own informationeither se
ret or publi
. On the other hand, there are mandatory poli
ies inwhi
h entities have no 
ontrol on the a
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Se
urity [2℄ imposes that entities and data are asso
iated to (ordered) se
uritylevels and no a

ess to data at higher levels is ever possible, even if the ownerof the data is willing to reveal them. These strong mandatory se
urity poli
ieshave been designed to avoid internal atta
ks performed by the so 
alled TrojanHorse programs, i.e., mali
ious software that, on
e exe
uted by a user, modi�esthe a

ess rights of the data belonging to su
h a user. Unfortunately, even whendire
t a

ess to data is forbidden by (strong) se
urity poli
ies, it might be the
ase that data are indire
tly leaked by Trojan Horses whi
h might exploit someobservable system side-e�e
ts like, e.g., the CPU load or, more in general, thespa
e/time availability of shared resour
es. (see, e.g., [3,4℄).The ne
essity of 
ontrolling information 
ow as a whole (both dire
t andindire
t) motivated Goguen and Meseguer in introdu
ing the notion of Non-interferen
e [5,6℄. Non-Interferen
e formalizes the absen
e of information 
owwithin deterministi
 systems. Given a system in whi
h 
on�dential (i.e., highlevel) and publi
 (i.e., low level) information may 
oexist, non-interferen
e re-quires that 
on�dential inputs never a�e
t the outputs on the publi
 interfa
eof the system, i.e., never interfere with the low level users. If su
h a propertyholds, one 
an 
on
lude that no information 
ow is ever possible from high tolow level.A possibilisti
 se
urity property 
an be regarded as an extension of non-interferen
e to non-deterministi
 systems. Starting from Sutherland [7℄, vari-ous su
h extensions have been proposed, e.g., [8{18℄. Most of these propertiesare based on tra
es, i.e., the behavior of systems is modelled through the set oftheir exe
ution sequen
es. Examples are non-inferen
e [15℄, generalized non-interferen
e [11℄, restri
tiveness [11℄, and the perfe
t se
urity property [18℄.In [8℄, Fo
ardi and Gorrieri express the 
on
ept of non-interferen
e in theSe
urity Pro
ess Algebra (SPA) language, in terms of bisimulation semanti
s.In parti
ular, inspired by [17℄, they introdu
e the notion of Bisimulation-basednon Dedu
ibility on Compositions (BNDC ): a system E is BNDC if what a lowlevel user sees of the system is not modi�ed (in the sense of the bisimulationsemanti
s) by 
omposing any high level pro
ess � with E. The main advantageof BNDC with respe
t to tra
e-based properties is that it is powerful enoughto dete
t information 
ows due to the possibility, for a high level mali
iouspro
ess, to blo
k or unblo
k a system. In parti
ular, in [8,19℄, it is shownthat a mali
ious pro
ess may build a 
hannel from high to low, by suitablyblo
king and unblo
king some system servi
es a

essible by low level users.The system used to build this 
overt 
hannel turns out to be se
ure for tra
e-based properties. This motivates the use of more dis
riminating equivalen
essu
h as bisimulation.Non-interferen
e properties, like BNDC, provide formal de�nitions of informa-tion 
ow se
urity and, as a 
onsequen
e, are useful in order to well understand2



and reason about system and network se
urity. In this paper we also approa
hthe problem of automati
ally 
he
king BNDC -like properties, whi
h is use-ful in many respe
ts. First, as dis
ussed in [20℄, having eÆ
ient automated
he
kers is useful to test a property against non-trivial system spe
i�
ations.It is important to 
he
k on many examples that what is intuitively 
onsid-ered inse
ure is 
orre
tly reje
ted by the property. It is also 
ru
ial to verifythat the property is not stronger than expe
ted, and a

epts as se
ure whatis intuitively so. An automated tool is a good way for observing properties atwork.Moreover, there are some 
ases in whi
h it is possible to analyze spe
i�
a-tions that are stri
tly related to the \real world". An interesting example isthe analysis of se
urity proto
ols, i.e., simple distributed algorithms basedon 
ryptography. They are simple to spe
ify using pro
ess 
al
uli like SPA,sin
e they are 
hara
terized by little lo
al 
omputation and some message ex-
hanges. In [21℄ it is shown how to use BNDC -like properties to 
he
k manydi�erent network se
urity properties like, e.g., se
re
y and authenti
ation. Themain idea is that BNDC allows us to 
he
k whether or not a mali
ious enemyis able to interfere on the 
orre
t (expe
ted) proto
ol exe
ution. In this set-ting, the automated veri�
ation of BNDC allows to either dis
over 
aws onproto
ol or validate (�nite instan
es of) them.Although Martinelli [22℄ has shown that a 
lass of BNDC -like properties isde
idable over �nite state pro
esses, the problem of eÆ
iently verifying BNDCis still open. Indeed, de
idability of BNDC is still an open problem. The maindiÆ
ulty 
onsists of getting rid of the universal quanti�
ation on high levelpro
esses �. A way to over
ome this problems is to adopt suÆ
ient 
onditionsfor BNDC. We re
all from [19,23℄ two of them, named Strong BNDC (SBNDC,for short) and Persistent BNDC (P BNDC, for short) 1 . Indeed, P BNDC isinteresting per se, sin
e it has been proposed for analysing systems in dynami

ontexts. Intuitively, P BNDC is a persistent version of BNDC in whi
h everyrea
hable state is (BNDC ) se
ure. In [23℄ it is shown that this property issuitable when some abstra
t form of mobility is 
onsidered. If a pro
ess movesto a di�erent exe
ution environment (e.g., a di�erent host) in the middle ofits 
omputation, then we have to be guaranteed that su
h an intermediatestate is still se
ure. Requiring, from the beginning, that every rea
hable stateis se
ure trivially guarantees that every possible migration will be done in ase
ure state.In the literature there are two di�erent 
hara
terizations of se
urity propertiesthat do not require the universal quanti�
ation over high level pro
esses �.They allow us to exploit two di�erent veri�
ation te
hniques:1 In [23℄, P BNDC is shown to be equivalent to the SBSNNI property of [19℄.3



(i) Bisimulation-based 
hara
terizations are based on a bisimulation-like equiv-alen
e relation between the system E to be analysed and the low level viewof the system itself, denoted by EnH, i.e., the system E prevented from per-forming 
on�dential a
tions. These 
hara
terizations allow us to exploit veryeÆ
ient te
hniques for verifying the properties over �nite-state pro
esses,by using existing algorithms for the veri�
ation of strong bisimulation.(ii) Unwinding 
onditions demand properties of individual a
tions. They aimat \distilling" the lo
al e�e
t of performing high level a
tions and are use-ful to de�ne both proof systems (see, e.g., [24℄) and re�nement operatorsthat preserve se
urity properties, as done in [25℄. Proof systems allow toin
rementally build systems whi
h are se
ure by 
onstru
tion. Similarly,re�nement operators are useful in a stepwise development pro
ess, sin
eproperties whi
h have been already investigated in some phase need not tobe re-investigated in later phases.In this paper, we start by 
onsidering the two 
hara
terizations above forP BNDC, given in [24℄. By studying the relation between su
h two 
hara
teri-zations, we generalize them to a parametri
 se
urity property 
alled s BNDC,where parameter s spe
i�es the way high level a
tions and internal a
tionsare treated in the underlying bisimulation relation. We show that the SBNDCproperty, whi
h was originally de�ned through unwinding 
onditions, is aninstan
e of s BNDC. This dire
tly gives a new bisimulation-based 
hara
teri-zation for SBNDC property. As a next step, we investigate the 
ompositional-ity of P BNDC and SBNDC. Compositionality is useful for both veri�
ationand synthesis: if a property is preserved when systems are 
omposed, then theanalysis may be performed on subsystems and, in 
ase of su

ess, the systemas a whole 
an be proved to satisfy the desired property. We noti
e that bothP BNDC and SBNDC are 
ompositional with respe
t to the parallel oper-ator, but they are not fully 
ompositional, sin
e they are not preserved bythe non-deterministi
 
hoi
e operator. In parti
ular, when we build a systemthat may (non-deterministi
ally) 
hoose to behave as one of two se
ure sub-systems, we 
ould obtain an inse
ure system. As also observed in [26℄, thisseems to be 
ounterintuitive. We approa
h this issue by introdu
ing a new se-
urity property, named Progressing P BNDC (PP BNDC ), stri
tly strongerthan P BNDC, whi
h is fully 
ompositional, i.e., it is 
ompositional also withrespe
t to the non-deterministi
 
hoi
e. We show that PP BNDC is an in-stan
e of the parametri
 property s BNDC and 
an be thus expressed bothin terms of a bisimulation-like equivalen
e and through unwinding 
onditions.We also 
onsider the spe
i�
 problem of automati
ally 
he
king our persistentse
urity properties. In parti
ular, we des
ribe two methods for determiningwhether a system is P BNDC, SBNDC or PP BNDC. The �rst method isbased on the derivation of Chara
teristi
 Formulae [27,28℄ in the languageof modal �-
al
ulus [29℄ (see Se
tion 6.1). The 
hara
teristi
 formulae 
anbe automati
ally veri�ed using model 
he
kers for �-
al
ulus, su
h as NCSU4



Con
urren
y Workben
h [30℄. Even if in the worst 
ase this method has anexponential time 
omplexity in the number of states of the pro
ess, it is stillusable in many 
ases, and has the advantage of redu
ing the 
he
k of se
u-rity properties to the standard problem of verifying a �-
al
ulus formula. These
ond method (see Se
tion 6.2) is in the spirit of [28℄: it is based on the
omputation of a sort of transitive 
losure (Closure up to high level a
tions)of the system and on the veri�
ation of a Strong Bisimulation. This allows usto use existing veri�
ation tools, sin
e many di�erent algorithms for 
omput-ing the largest strong bisimulation between two pro
esses (e.g, [31{34℄) havebeen integrated in model 
he
kers, su
h as NCSU Con
urren
y Workben
h,XEVE [35℄, FDR2 [36℄. In parti
ular, this se
ond approa
h improves on thepolynomial time 
omplexity of the Compositional Se
urity Che
ker (CoSeC)presented in [20℄, sin
e only one bisimulation test is ne
essary.The paper is organized as follows. In Se
tion 2, we introdu
e some basi
 notionson the SPA language and the se
urity properties BNDC and P BNDC. Were
all the two 
hara
terizations of P BNDC in terms of a bisimulation-likeequivalen
e relation and an unwinding 
ondition. In Se
tion 3 we introdu
ea parametri
 se
urity property named s BNDC in terms of bisimulation andwe prove that it 
an be equivalently 
hara
terized in terms of a parametri
unwinding 
ondition. P BNDC is just an instan
e of s BNDC. In Se
tion4, we show that property SBNDC is an instan
e of s BNDC and provide abisimulation-based 
hara
terization of it. In Se
tion 5, we introdu
e the 
lassof PP BNDC pro
esses, whi
h is again an instan
e of s BNDC, and prove thatit is fully 
ompositional. In Se
tion 6, we propose two methods to prove ourpersistent se
urity properties and we demonstrate some 
omplexity results.Finally, in Se
tion 7 we dis
uss related works and draw some 
on
lusions.2 Basi
 NotionsIn this se
tion we report the syntax and semanti
s of the Se
urity Pro
essAlgebra (SPA, for short) [19℄ and the de�nition of the se
urity propertiesBNDC [8℄ and P BNDC [23℄ together with some main results [24℄.2.1 The SPA LanguageThe Se
urity Pro
ess Algebra [19℄ is a variation of Milner's CCS [37℄, wherethe set of visible a
tions is partitioned into high level a
tions and low levelones in order to spe
ify multilevel systems. SPA syntax is based on the sameelements as CCS that is: a set L of visible a
tions su
h that L = I [O whereI = fa; b; : : :g is a set of input a
tions and O = f�a;�b; : : :g is a set of output5



a
tions; a spe
ial a
tion � whi
h models internal 
omputations, i.e., not visibleoutside the system; a 
omplementation fun
tion �� : L ! L, su
h that ��a = a,for all a 2 L. A
t = L[f�g is the set of all a
tions. The set of visible a
tions ispartitioned into two sets, H and L, of high and low a
tions su
h that H = Hand L = L.The syntax of SPA terms (or pro
esses) is de�ned as follows:E ::= 0 j a:E j E + E j EjE j E n v j E[f ℄ j Zwhere a 2 A
t , v � L, f : A
t ! A
t is su
h that f(��) = f(�), f(�) = � ,f(H) � H [ f�g, and f(L) � L [ f�g, and Z is a 
onstant that must beasso
iated with a de�nition Z def= E.Intuitively, 0 is the empty pro
ess that does nothing; a:E is a pro
ess that 
anperform an a
tion a and then behaves as E; E1 + E2 represents the nonde-terministi
 
hoi
e between the two pro
esses E1 and E2; E1jE2 is the parallel
omposition of E1 and E2, where exe
utions are interleaved, possibly syn
hro-nized on 
omplementary input/output a
tions, produ
ing an internal a
tion� ; E n v is a pro
ess E prevented from performing a
tions in v; 2 ; E[f ℄ is thepro
ess E whose a
tions are renamed via the relabelling fun
tion f .We denote by E the set of all SPA pro
esses and by EH the set of all high levelpro
esses, i.e., those 
onstru
ted only using a
tions in H [ f�g.The operational semanti
s of SPA agents is given in terms of Labelled Transi-tion Systems (LTS, for short). A LTS is a triple (S;A;!) where S is a set ofstates, A is a set of labels (a
tions), !� S �A� S is a set of labelled transi-tions. The notation (S1; a; S2) 2! (or equivalently S1 a! S2) means that thesystem 
an move from the state S1 to the state S2 through the a
tion a. Theoperational semanti
s of SPA is the LTS (E ;A
t ;!), where the states are theterms of the algebra and the transition relation !� E � A
t � E is de�nedby stru
tural indu
tion as the least relation generated by the inferen
e rulesdepi
ted in Figure 1. In Se
tion 6.2 we use also the notion of rooted labelledtransition system whi
h is a LTS augmented with a distinguish node, the root.The 
on
ept of observation equivalen
e is used to establish equalities amongpro
esses and it is based on the idea that two systems have the same seman-ti
s if and only if they 
annot be distinguished by an external observer. Thisis obtained by de�ning an equivalen
e relation over E . The weak bisimula-tion relation [37℄ equates two pro
esses if they are able to mutually simulatetheir behavior step by step. Weak bisimulation does not 
are about internal �a
tions.2 In CCS the operator n requires that the a
tions of E n v do not belong to v [ �v.6



We will use the following auxiliary notations. If t = a1 � � �an 2 A
t� andE a1! � � � an! E 0, then we write E t! E 0. We also write E t=) E 0 if E( �!)� a1!( �!)� � � � ( �!)� an! ( �!)�E 0 where ( �!)� denotes a (possibly empty) sequen
eof � labelled transitions. If t 2 A
t�, then t̂ 2 L� is the sequen
e gained bydeleting all o

urren
es of � from t. As a 
onsequen
e, E â=) E 0 stands forE a=) E 0 if a 2 L, and for E( �!)�E 0 if a = � (note that �=) requires at leastone � labelled transition while �̂=) means zero or more � labelled transitions).We say that E 0 is rea
hable from E when there exists t su
h that E t! E 0.The notion of weak bisimulation is de�ned as follows.De�nition 2.1 (Weak Bisimulation) A binary relation R � E � E overagents is a weak bisimulation if (E; F ) 2 R implies, for all a 2 A
t,� if E a! E 0, then there exists F 0 su
h that F â=) F 0 and (E 0; F 0) 2 R;� if F a! F 0, then there exists E 0 su
h that E â=) E 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are weakly bisimilar, denoted by E � F , if there existsa weak bisimulation R 
ontaining the pair (E; F ).The relation � is the largest weak bisimulation and it is an equivalen
e rela-tion [37℄.A Rooted Labelled Transition System is a LTS augmented with a distinguishednode, the root. Given a pro
ess E we denote by LTS(E) = (SE; E;A
t ;!)the rooted LTS 
onstituted of the subpart of the SPA LTS rea
hable from E.E is a �nite-state pro
ess if LTS(E) has a �nite number of nodes, that is SEis �nite.2.2 Se
urity PropertiesThe BNDC [8℄ se
urity property aims at guaranteeing that no information
ow from the high to the low level is possible, even in the presen
e of mali-
ious pro
esses. The main motivation is to prote
t a system also from internalatta
ks, whi
h 
ould be performed by the so 
alled Trojan Horse programs,i.e., programs that are apparently honest but hide inside some mali
ious 
ode.Property BNDC is based on the idea of 
he
king the system against all highlevel potential intera
tions, representing every possible high level mali
iousprogram. In parti
ular, a system E is BNDC if for every high level pro
ess �a low level user 
annot distinguish E from (Ej�), i.e., if � 
annot interfere7



with the low level exe
ution of the system E. In other words, a system E isBNDC if what a low level user sees of the system is not modi�ed by 
omposingany high level pro
ess � to E.De�nition 2.2 (BNDC) Let E 2 E.E 2 BNDC i� 8 � 2 EH ; E nH � (Ej�) nH:Example 2.3 The BNDC property is powerful enough to dete
t information
ows due to the possibility for a high level mali
ious pro
ess to blo
k or unblo
ka system. Let H = fhg, L = fl; jg and E1 = l:h:j:0 + l:j:0. Consider thepro
ess � = �h:0. We have that (E1j�) nH � l:j:0, while E1 nH � l:0+ l:j:0.Note that the latter may (nondeterministi
ally) blo
k after the l input. Havingmany instan
es of this pro
ess, a low level user 
ould dedu
e if �h is exe
utedby observing whether the system always performs j or not. Pro
ess E1 may be\repaired", by in
luding the possibility of 
hoosing to exe
ute j or not insidethe pro
ess. Indeed, pro
ess E2 = l:h:j:0 + l:(�:j:0 + �:0) is BNDC. 2In [23℄, it is introdu
ed a se
urity property 
alled Persistent BNDC (P BNDC,for short), whi
h is suitable for analysing systems in dynami
 exe
ution en-vironments. Intuitively, a system E is P BNDC if it never rea
hes inse
urestates.De�nition 2.4 (P BNDC) Let E 2 E.E 2 P BNDC i� 8 E 0 rea
hable from E; E 0 2 BNDC :We show the idea of P BNDC through a simple example.Example 2.5 Consider the pro
ess E2 of Example 2.3, i.e., E2 = l:h:j:0 +l:(�:j:0 + �:0) where l; j 2 L and h 2 H. Suppose now that E2 is moved inthe middle of a 
omputation. This might happen when it �nd itself in the stateh:j:0 (after the �rst l is exe
uted). Now it is 
lear that this pro
ess is notse
ure, as a dire
t 
ausality between h and j is present. In parti
ular h:j:0 isnot BNDC and this gives eviden
e that E2 is not P BNDC. The pro
ess maybe \repaired" as follows: E3 = l:(h:j:0 + �:j:0 + �:0) + l:(�:j:0 + �:0). It maybe proved that E3 is P BNDC. Note that, from this example it follows thatP BNDC � BNDC. 2In [23℄ it has been shown that even if the de�nition of P BNDC introdu
esan universal quanti�
ation over all the possible rea
hable states, this 
an beavoided by in
luding the idea of \being se
ure in every state" inside the bisimu-lation equivalen
e notion. This is done by de�ning an equivalen
e notion whi
hjust fo
us on observable a
tions whi
h do not belong to H. More in details, itis de�ned an observation equivalen
e, named weak bisimulation up to H where8



a
tions from H are allowed to be ignored, i.e., they are allowed to be mat
hedby zero or more � a
tions. To this aim, the following transition relation isused.De�nition 2.6 Let a 2 A
t. We de�ne the transition relation â=)nH as fol-lows: â=)nH = 8><>: â=) if a 62 Ha=) or �̂=) if a 2 HNote that the relation â=)nH is a generalization of the relation â=) used inthe de�nition of weak bisimulation [37℄. In fa
t, if H = ;, then for all a 2 A
t ,E â=)nH E 0 
oin
ides with E â=) E 0.The 
on
ept of weak bisimulation up to H is de�ned as follows.De�nition 2.7 (Weak Bisimulation up to H) A binary relationR � E�E over agents is a weak bisimulation up to H if (E; F ) 2 R implies, for alla 2 A
t,� if E a! E 0, then there exists F 0 su
h that F â=)nH F 0 and (E 0; F 0) 2 R;� if F a! F 0, then there exists E 0 su
h that E â=)nH E 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are weakly bisimilar up to H, written E �nH F , if(E; F ) 2 R for some weak bisimulation R up to H.The relation �nH is the largest weak bisimulation up to H and it is an equiv-alen
e relation. In [23℄ P BNDC has been 
hara
terized in terms of �nH asstated below.Theorem 2.8 (P BNDC - Bisimulation [23℄) Let E 2 E. E 2 P BNDCif and only if E �nH E nH:In [24℄ we give a further 
hara
terization of P BNDC pro
esses in terms of un-winding 
onditions. This new 
hara
terization provides a better understandingof the operational semanti
s of P BNDC pro
esses. In pra
ti
e, whenever astate E 0 of a P BNDC pro
ess may exe
ute a high level a
tion moving to astate E 00, then E 0 should be also able to simulate su
h high move through a �sequen
e moving to a state E 000 whi
h is equivalent to E 00 for a low level user.Theorem 2.9 (P BNDC - Unwinding [24℄) Let E 2 E be a pro
ess. E 2P BNDC i� for all E 0 rea
hable from E, if E 0 h! E 00, then E 0 �̂=) E 000 andE 00 nH � E 000 nH. 9



Here we observe that there is a stri
t relation between the bisimulation-based
hara
terization of P BNDC given in Theorem 2.8 and the unwinding 
ondi-tion of Theorem 2.9: the equivalen
e �nH between E and E nH in Theorem2.8 states that high level a
tions of E are simulated by zero or more � a
tionsof E n H, while the unwinding 
ondition in Theorem 2.9 says that for everyhigh level a
tion there must exists a path of zero or more � a
tions leadingto equivalent states from the low level view. This suggests us that 
onsistent
hanges in the way of dealing with high level a
tions in �nH and in the 
or-responding unwinding 
ondition, may lead to di�erent bisimulation-like andunwinding 
hara
terizations of novel information 
ow se
urity properties.This idea will be exploited in the next se
tions when we study the propertiesSBNDC and PP BNDC.In [23℄ it is also proved that P BNDC is 
ompositional with respe
t to theparallel 
omposition, restri
tion and low level pre�x operators.Proposition 2.10 ([23℄) Let E; F 2 E. If E; F 2 P BNDC, then� a:E 2 P BNDC, for all a 2 L [ f�g;� (EjF ) 2 P BNDC;� E n v 2 P BNDC, for all v � L;� E[f ℄ 2 P BNDC 3 .Unfortunately, P BNDC is not 
ompositional with respe
t to the nondeter-ministi
 
hoi
e operator as illustrated below.Example 2.11 Let E4 = h:0 with h 2 H and E5 = l:0 with l 2 L. It is easyto see that both E4 and E5 are P BNDC but E4 + E5 is not P BNDC. Thisexample will be further illustrated in the next se
tion. 23 A GeneralizationIn this se
tion we generalize both the notion of weak bisimulation up to highlevel a
tions of De�nition 2.7 and the unwinding 
ondition expressed by Theo-rem 2.9, by making them parametri
 with respe
t to a parameter s 2 f�; 0;+g.Then, we introdu
e a parametri
 se
urity property, named s BNDC , by gen-eralizing the quanti�
ation-free 
hara
terization given by Theorem 2.8 forP BNDC pro
esses. Finally, we prove that s BNDC pro
esses 
an be equiva-lently de�ned by means of the generalized unwinding 
ondition. This result isused in the next se
tions to provide a quanti�
ation-free 
hara
terization of3 This last item is not in [23℄, but it is immediate to prove it.10



SBNDC [8℄ and of a novel, fully 
ompositional property, named ProgressingP BNDC.We introdu
e the following binary relations on pro
esses whi
h are parametri
with respe
t to a parameter s 2 f�; 0;+g.De�nition 3.1 Let s 2 f�; 0;+g. The transition relations a=)s and a,!s arede�ned as follows:a=)s = 8><>: â=) if either s = � or s = 0a=) if s = +a,!s = 8><>: a=)s if a 62 Ha=) or ( ��!)s if a 2 Hwhere ( ��!)s stands for �̂=) if s = �, for �=) if s = +, and for a sequen
e ofzero a
tions 4 , if s = 0.Sin
e â=) and a=) 
oin
ide for a 2 L, the various instan
es of a=)s are di�erentonly when a = � . In this 
ase both �=)� and �=)0 represent a sequen
e of 0 ormore � a
tions while �=)+ represents a sequen
e with at least one � .Fa
t. The relation a,!� 
oin
ides with â=)nH of De�nition 2.6.Example 3.2 Let E � �:h:�:l:0 with h 2 H and l 2 L. We have E h=)s l:0for all s 2 f�; 0;+g, E �=)s h:�:l:0 for all s 2 f�; 0;+g, E �=)s �:h:�:l:0for s = � and s = 0, but E 6 �=)+ �:h:�:l:0. Moreover, E h,! s l:0 for alls 2 f�; 0;+g, E h,!s �:h:�:l:0 for s = � and s = 0 but E 6 h,!s �:h:�:l:0 fors = +, E h,!s h:�:l:0 for s = � and s = + but E 6 h,!s h:�:l:0 for s = 0. 2The following de�nition generalizes the notion of weak bisimulation up to H.De�nition 3.3 (s-Weak Bisimulation up to H) A binary relation R �E �E over agents is a s-weak bisimulation up to H if (E; F ) 2 R implies, forall a 2 A
t,� if E a! E 0, then there exists F 0 su
h that F a,!sF 0 and (E 0; F 0) 2 R;� if F a! F 0, then there exists E 0 su
h that E a,!sE 0 and (E 0; F 0) 2 R.4 If E( a�!)0E0 then E 
oin
ides with E0.11



Two agents E; F 2 E are s-weakly bisimilar up to H, written E �snH F , if(E; F ) 2 R for some s-weak bisimulation R up to H.It is easy to see that all the three instan
es of �snH are equivalen
e relationsand that �snH is the largest s-weak bisimulation.The notion of s-weak bisimulation up to H 
an be used to de�ne a parametri

lass of se
urity properties as follows.De�nition 3.4 (s BNDC) Let E 2 E. E 2 s BNDC if and only if E �snHE nH:Fa
t. The relation ��nH 
oin
ides with �nH of De�nition 2.7, hen
e � BNDCis exa
tly P BNDC.In order to generalize also the unwinding 
ondition we �rst introdu
e thefollowing generalized notion of weak bisimulation.De�nition 3.5 (s-Weak Bisimulation) A binary relation R � E � E overagents is a s-weak bisimulation if (E; F ) 2 R implies, for all a 2 A
t,� if E a! E 0, then there exists F 0 su
h that F a=)sF 0 and (E 0; F 0) 2 R,� if F a! F 0, then there exists E 0 su
h that E a=)sE 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are s-weakly bisimilar, denoted by E �s F , if thereexists a s-weak bisimulation R 
ontaining the pair (E; F ).Fa
t. The relations �� and �0 
oin
ide with the weak bisimulation relation�, while the relation �+ 
oin
ides with the progressing bisimulation relation�p de�ned in [38℄.De�nition 3.6 (s-Unwinding Condition) Let E 2 E be a pro
ess. E sat-is�es the s-unwinding 
ondition if for all E 0 rea
hable from E, if E 0 h! E 00,then E 0( ��!)sE 000 and E 00 nH �s E 000 nH.Also in this 
ase, for s = � we get ba
k the unwinding 
ondition of Theorem 2.9whi
h 
hara
terizes P BNDC pro
esses.The following relationships between �, �s, and �snH hold.Proposition 3.7 Let E; F 2 E.(1) If E �s F then E � F ;(2) If E �snH F then E nH �s F nH;12



(3) E nH �s F nH is equivalent to E nH �snH F nH;(4) If s 2 f�; 0g then E � F is equivalent to E �s F .Proof. Immediate by De�nitions 3.5, 3.1 and 3.3. 2The next proposition shows that the following relationships between s BNDCpro
esses hold.Proposition 3.8 0 BNDC � � BNDC and + BNDC � � BNDC.Proof. Immediate by De�nitions 3.1, 3.3 and 3.4. 2A relevant property of P BNDC pro
esses is persisten
y. We show that itholds also for s BDNC pro
esses.Proposition 3.9 Let E 2 E. If E 2 s BNDC then for all E 0 rea
hable fromE; E 0 2 s BNDC :Proof. Let E 2 s BNDC , i.e., E �snH E nH, and E 0 be a pro
ess rea
hablefrom E. First, we prove that there exists E 00 nH rea
hable from E nH su
hthat E 0 �snH E 00 nH. This part of the proof follows by indu
tion on the lengthl of the path whi
h leads from E to E 0.� Base l = 0. We 
an 
hoose E 00 equal to E; then E � E 0 � E 00 and we knowthat E �snH E nH.� Indu
tive step l > 0. Let F be rea
hable from E with a path of length l� 1and F a! E 0. By indu
tive hypothesis, there exists F 0 su
h that F 0 nH isrea
hable from E nH and F �snH F 0 nH. From the fa
t that F �snH F 0 nH,there exists E 00 nH su
h that F 0 nH a,!sE 00 nH and E 0 �snH E 00 nH. Sin
eE 00 nH is rea
hable from E nH we have the thesis.By Proposition 3.7 (2), we have that E 0 nH �s E 00nH and, by Proposition 3.7(3), E 0 nH �snH E 00 nH. Thus, E 0 �snH E 00 nH �snH E 0 nH, i.e., by transitivityof �snH , E 0 �snH E 0 nH. 2Finally, the following theorem shows the 
orresponden
e between s BDNCand s-unwinding 
ondition, thus generalizing the one obtained by Theorems2.8 and 2.9 for P BDNC. This result is used in the next se
tions to 
hara
-terize di�erent se
urity properties.Theorem 3.10 Let E 2 E be a pro
ess. E 2 s BNDC if and only if Esatis�es the s-unwinding 
ondition.Proof. ()) Let E 2 s BNDC . By De�nition 3.4 and persisten
e of s BNDC,for all E 0 rea
hable from E, E 0 �snH E 0 n H. Let E 0 be a pro
ess rea
hablefrom E. Suppose that E 0 h! E 00. By the fa
t that E 0 �snH E 0 n H, it follows13



that E 0 nH h,!sE 000 nH and E 00 �snH E 000 nH. Sin
e, by persisten
e of s BNDC,E 00 �snH E 00 n H, we have by transitivity that E 00 n H �snH E 000 n H, i.e., byProposition 3.7 (2), E 00nH �s E 000nH. Sin
e E 0nH does not perform any highlevel a
tion, by De�nition 3.1, E 0 n H ( ��!)sE 000 n H and thus E 0( ��!)sE 000,hen
e the thesis.(() Let E be a pro
ess satisfying the s-unwinding 
ondition, i.e.,(1) 8 E 0 rea
hable from E, if E 0 h! E 00 then E 0( ��!)sE 000 and E 00 n H �sE 000 nH.It is suÆ
ient to prove thatS = f(E nH;F ) j F satisfy (1) and E nH �s F nHgis a s-bisimulation up toH. It follows from the following 
ases. Let (EnH;F ) 2S. Then,� E nH a! E 0 nH with a 62 H. From the hypothesis that E nH �s F nH, itfollows that F nH a=)sF 0 nH and E 0 nH �s F 0 nH. Hen
e, sin
e a 62 H,F a=)sF 0, i.e., by De�nition 3.1, F a,!sF 0. Moreover, sin
e property (1) ispersistent, F 0 satisfy (1) and thus, by de�nition of S, (E 0 nH;F 0) 2 S.� F a! F 0 with a 62 H. Hen
e, F n H a! F 0 n H. From the hypothesis thatE nH �s F nH, it follows that E nH a=)sE 0 nH, i.e., by De�nition 3.1,E n H a,!sE 0 n H, and E 0 n H �s F 0 n H. Moreover, sin
e property (1) ispersistent, F 0 satisfy (1) and thus, by de�nition of S, (E 0 nH;F 0) 2 S.� F a! F 0 with a 2 H. Sin
e F satis�es property (1), there exists F 00 su
h thatF ( ��!)sF 00 and F 0 nH �s F 00 nH. We distinguish three 
ases 
orrespondingto s = �, s = 0 and s = +.� Let s = �. From the hypothesis that E n H �� F n H, it follows thatE n H �̂=) E 0 nH, i.e., E nH a,!�E 0 nH and E 0 nH �� F 00 nH. Hen
e,by transitivity of ��, E 0 n H �� F 0 n H. Moreover, sin
e property (1) ispersistent, F 0 satis�es (1) and thus, by de�nition of S, (E 0 nH;F 0) 2 S.� Let s = 0. Sin
e F ( ��!)0F 00, we have that F � F 00 and thus F n H �0F 0 nH. From the hypothesis that E nH �0 F nH and transitivity of �0,it holds that E n H �0 F 0 n H. By de�nition of a,!s, E n H h,!0E n H.Moreover, sin
e property (1) is persistent, F 0 satis�es (1) and thus, byde�nition of S, (E nH;F 0) 2 S.� Let s = +. From the hypothesis that E n H �+ F n H, it follows thatE nH �=) E 0 nH, i.e., E nH h,!+E 0 nH and E 0 nH �+ F 00 nH. Hen
e,by transitivity of �+, E 0 nH �+ F 0 nH. Moreover, sin
e property (1) ispersistent, F 0 satis�es (1) and thus, by de�nition of S, (E 0 nH;F 0) 2 S.2 14



4 Strong BNDCThe property Strong BNDC (SBNDC, for short) has been introdu
ed in [8℄ asa suÆ
ient 
ondition for verifying BNDC. It just requires that before and afterevery high step, the system appears to be the same, from a low level perspe
-tive. It has been proved to be stronger than SBSNNI (and thus P BNDC )and it has been de�ned as follows.De�nition 4.1 (SBNDC [8℄) Let E 2 E. E 2 SBNDC i� for all E 0 rea
h-able from E, if E 0 h! E 00, then E 0 nH � E 00 nH.As a 
onsequen
e of Proposition 3.7 item (4), we 
an immediately re
ognizethat SBNDC is de�ned as the 
lass of pro
esses satisfying the 0-unwinding
ondition, whi
h is obtained by instantiating s to 0 in De�nition 3.6. Thus, byProposition 3.8 we immediately obtain the relation among SBNDC, P BNDCand BNDC .Corollary 4.2 SBNDC � P BNDC � BNDC :By exploiting Theorem 3.10 we 
an provide a quanti�
ation-free 
hara
teriza-tion of SBNDC as follows.Theorem 4.3 (SBNDC - Bisimulation) Let E 2 E be a pro
ess. E 2SBNDC if and only if E �0nH E nH:Proof. Immediate by Proposition 3.7 item (4) and Theorem 3.10. 2This theorem shows that we 
an avoid the universal quanti�
ation over all thepossible rea
hable states in the de�nition of SBNDC by de�ning a suitablebisimulation equivalen
e notion. This property is parti
ularly appealing sin
eit suggests the e�e
tive 
omputability of SBNDC.Example 4.4 Let us 
onsider the pro
ess depi
ted below, modelling the useof a shared resour
e by a low level produ
er and an high level 
onsumer, i.e.,produ
e 2 L and 
onsume 2 H.R0 = produ
e:R1Ri = produ
e:Ri+1 + 
onsume:Ri�1 for i 2 [1; n� 1℄Rn = produ
e:Rn + 
onsume:Rn�1Note that the resour
e has a maximum 
apa
ity of n and the low level produ
ea
tion is ignored when su
h a limit is rea
hed. This non-intuitive behavior isneeded in order to avoid a potential 
ow from high to low level. In parti
ular,15



if the low level produ
er 
ould observe when the resour
e is full, this will beexploited to dedu
e how many high level 
onsume a
tions have been performed.It is easy to see that this pro
ess is SBNDC by dire
tly applying De�nition 4.1.It is suÆ
ient to observe that all the Rj states are equivalent when restri
tedon high level a
tions, as they may only perform a produ
e a
tion moving toanother restri
ted Rj0 . 2In [19℄ (see Theorem 4) it is proved that SBNDC is 
ompositional with respe
tto the parallel and restri
tion operators. It is easy to extend the 
omposition-ality result by showing that SBNDC is also 
ompositional with respe
t to lowlevel pre�x and relabelling.Proposition 4.5 Let E; F 2 E. If E; F 2 SBNDC, then� a:E 2 SBNDC, for all a 2 L [ f�g;� (EjF ) 2 SBNDC;� E n v 2 SBNDC, for all v � L;� E[f ℄ 2 SBNDC.Similarly to P BNDC also SBNDC is not 
ompositional with respe
t to thenondeterministi
 
hoi
e operator. Let us re
onsider Example 2.11: the samereasoning holds both for P BNDC and for SBNDC.Example 4.6 Consider the pro
esses E4 = h:0 with h 2 H and E5 = l:0with l 2 L. It is easy to see that both E4 and E5 are SBNDC but E4 + E5 isnot SBNDC. In fa
t E4 + E5 h! 0 while E4 + E5 ( �!)0 E4 + E5 = h:0 + l:0,but (h:0 + l:0) nH 6� 0. The problem lies in the fa
t that while the high levela
tion in E4 is safely simulated by a sequen
e of zero � in E4 nH, the samehigh level a
tion in E4 + E5 is not safely simulated by a sequen
e of zero �in (E4 + E5) n H due to the presen
e of the additional 
omponent E5. Thisproblem would not arise if h were be simulated by at least one � a
tion. Thisobservation will be exploited in the next se
tion to de�ne a fully 
ompositionalse
urity property. 25 Progressing P BNDCIt is well-known that se
urity properties are, in general, not preserved un-der 
omposition [11℄. We have seen in the previous se
tions that P BNDCand SBNDC are both non-
ompositional with respe
t to the nondeterministi

hoi
e operator. However, 
ompositionality results are 
ru
ial for making thedevelopment of large and 
omplex systems feasible [13,39,40℄. In this se
tionwe show that by instantiating s to + in De�nition 3.4 one obtains a prop-16



erty whi
h is fully 
ompositional (i.e., it is 
ompositional also with respe
tto the nondeterministi
 
hoi
e). We 
all su
h a 
lass Progressing P BNDC(PP BNDC, for short). We de�ne it in terms of the bisimulation-like relation�+nH .De�nition 5.1 (PP BNDC - Bisimulation) Let E 2 E.E 2 PP BNDC i� E �+nH E nH:By exploiting Theorem 3.10, PP BNDC 
an be 
hara
terized also by an un-winding 
ondition.Theorem 5.2 (PP BNDC - Unwinding) Let E 2 E. E 2 PP BNDC i�for all E 0 rea
hable from E, if E 0 h! E 00 then E 0 �=) E 000 and E 00nH �+ E 000nH.Proof. Immediate by Theorem 3.10 and the fa
t that ( �!)+ and �=) 
oin-
ide. 2In [1℄ and [41℄ a similar unwinding 
ondition is introdu
ed where weak bisim-ulation is used instead of �+. The se
urity property so de�ned is 
alled5 CP BNDC . Sin
e E �+ F implies E � F , PP BNDC � CP BNDC .By Proposition 3.8 we immediately obtain the relation between PP BNDC,P BNDC and BNDC .Corollary 5.3 PP BNDC � CP BNDC � P BNDC � BNDC:Noti
e that neither SBNDC implies PP BNDC nor PP BNDC implies SB-NDC. For example, pro
ess h:0 is SBNDC but it is not PP BNDC, as no �transitions simulate the high level h. On the other hand, the pro
ess E �h:0 + l:0 + �:0 is PP BNDC but not SBNDC. In fa
t E 6�0nH E n H sin
eE h! 0 but E n H is not weak bisimilar to 0. However, there are pro
esseswhi
h are both SBNDC and PP BNDC, e.g., pro
esses whi
h perform onlylow level a
tions. To be more pre
ise, by putting together the two unwinding
hara
terizations, we 
an say that a pro
ess E is both SBNDC and PP BNDCif and only if for all E 0 rea
hable from E, if E 0 h! E 00, then E 0 �=) E 000 andE 0 n H � E 00 n H �+ E 000 n H. Consider for instan
e E � h:0 + �:0. Thesituation is summarized in Fig. 2. Noti
e that all the in
lusions are stri
t.Example 5.4 Consider the pro
ess C (
hannel) des
ribed through a value-passing extension of SPA by:5 Note that in [1℄ the name CP BNDC has been erroneously introdu
ed by usinga bisimulation-like relation 17



C = in(x):(out(x):C + �:C):C may a

ept a value x at the left-hand port, labelled in. When it holds avalue, it either delivers it at the right-hand port, labelled out, or resets itselfperforming an internal transition.If the domain of x is f0; 1g, then the 
hannel C 
an be translated into SPA ina standard way by following [37℄ as:C = in0:(out0:C + �:C) + in1:(out1:C + �:C):Let us assume that C is used as 
ommuni
ation 
hannel from low to high level.This 
an be expressed as in0; in1 2 L and out0; out1 2 H. Sin
e, in 
orrespon-den
e of ea
h high level a
tion (out0; out1) there is a � transition leading to thesame state, by Theorem 5.2 we 
an 
on
lude that C is PP BNDC. The � tran-sitions basi
ally makes the 
hannel a lossy one, as high level outputs may benon-deterministi
ally lost. However, note that non-determinism is used to ab-stra
t away implementation details. For example, su
h � 's 
ould 
orrespond,at implementation time, to time-outs for the high level output a
tions, i.e.,events that empty the 
hannel and allow a new low level input, whenever highoutputs are not a

epted within a 
ertain amount of time. Analogously, it ispossible to see that C is also SBNDC. Note that pro
ess C 0 = in(x):out(x):C 0with no � 's is neither PP BNDC nor SBNDC. Indeed, a high level user mayblo
k and unblo
k C 0 in order to transmit information to low level user. 2Exploiting the unwinding 
hara
terization we are now ready to prove thatPP BNDC is 
ompositional with respe
t to the nondeterministi
 
hoi
e oper-ator. This is a 
onsequen
e of the fa
t that �+ 
oin
ides with the notion ofprogressing bisimulation introdu
ed by Montanari and Sassone in [38℄ whi
h isfully 
ompositional. Noti
e that an analogous result holds also for CP BNDCas proved in [1℄.Proposition 5.5 Let E; F 2 E. If E; F 2 PP BNDC, then� a:E 2 PP BNDC, for all a 2 L [ f�g;� (E + F ) 2 PP BNDC;� (EjF ) 2 PP BNDC;� E n v 2 PP BNDC, for all v � L;� E[f ℄ 2 PP BNDC.Proof. We show only the 
ase (E + F ), sin
e the other 
ases are similar tothe ones of Theorem 4 in [19℄. Let E; F 2 PP BNDC . By Theorem 5.2, it issuÆ
ient to show that 18



(1) 8G rea
hable fromE+F , ifG h! G0 then G �=) G00 andG0nH �+ G00nH.A

ording to the operational semanti
s of the nondeterministi
 
hoi
e op-erator, G 
an be either a pro
ess rea
hable from E or a pro
ess rea
hablefrom F or the pro
ess E + F itself. In the �rst two 
ases, the fa
t G sat-isfy (1) follows from the hypothesis that both E and F 2 PP BNDC . Sup-pose that E + F h! G0. Then E h! G0 or F h! G0. Again, sin
e bothE and F 2 PP BNDC , we have that E �=) G00 (resp. F �=) G00) andG0 n H �+ G00 n H. Hen
e E + F �=) G00 and G0 n H �+ G0 n H satisfy-ing (1). 26 Automati
 Veri�
ation and its ComplexityIn this se
tion we present two methods to determine whether E �snH E nH, inthe 
ase that E is a �nite-state pro
ess. Spe
i�
ally, we ta
kle the problem ofproving E �snH F , when E and F are �nite-state pro
esses. The �rst method
onsists of asso
iating to any pro
ess E a modal �-
al
ulus formula ��snHEsu
h that F satis�es ��snHE if and only if E �snH F . This method is obtainedby applying the te
hnique presented in [27℄. The se
ond method 
onsists oftransforming the LTS's of E and F into two LTS's that are strongly bisimilarif and only if E �snH F . The �rst method has the advantage that it dire
tlyexploits already existing model 
he
kers for the �-
al
ulus. Unfortunately, ithas an exponential time 
omplexity with respe
t to the size of the LTS's of Eand F . On the other hand, the se
ond method requires the implementationof some ad-ho
 transformations of the LTS's, but it has a polynomial time
omplexity.6.1 Chara
teristi
 FormulaeThe modal �-
al
ulus [29℄ is a small, yet expressive pro
ess logi
. We 
on-sider modal positive �-
al
ulus formulae 
onstru
ted a

ording to the follow-ing grammar:� ::= true j false j �1 ^ �2 j �1 _ �2 j hai� j [a℄� j X j �X:� j �X:�where X ranges over an in�nite set of variables and a over a set of a
tionsA
t . The �xpoint operators �X and �X bind the respe
tive variable X andwe adopt the usual notion of 
losed formula. Noti
e that we give a syntaxwithout using the negation operator : or impli
ation, i.e., we 
onsider onlyformulae in positive normal form (see [29℄).19



Modal �-
al
ulus positive formulae are interpreted over pro
esses, whi
h aremodelled by LTS's. Let E be a pro
ess and LTS(E) = (SE; E;A
t ;!). Anenvironment is a partial mapping � : Var ! 2SE whi
h interprets variables bysubsets of SE. Given a formula � and an environment � de�ned on all the freevariables of �, the set of pro
esses that satisfy � with respe
t to �, denotedby ME(�)(�), is de�ned 6 in Fig. 3.Intuitively, true (false) holds for all (no) states; ^ and _ are interpreted by
onjun
tion and disjun
tion; hai� holds in a state E 0 2 SE if there is a state E 00rea
hable from E 0 with an a
tion a whi
h satis�es �; and [a℄� holds for E 0 if allstates E 00 rea
hable from E 0 with an a
tion a satisfy �. The interpretation of avariableX is as pres
ribed by the environment. The formula �X:�, 
alled least�xpoint formula, is interpreted by the smallest subset x of SE whi
h interprets�X:� when the environment asso
iates x to X. Similarly, �X:�, 
alled greatest�xpoint formula, is interpreted by the largest su
h set.The set of pro
esses satisfying a 
losed formula � is Pro
(�) = fF j F 2MF (�)g.We 
onsider also equation systems of modal �-
al
ulus formulae in the formEqn : X1 = �1; : : : ; Xn = �nwhere X1; : : : ; Xn are mutually distin
t variables and �1; : : : ; �n are modal�-
al
ulus formulae having at most X1; : : : ; Xn as free variables.An environment � : fX1; : : : ; Xng ! 2SE is a solution of an equation systemEqn, if �(Xi) = ME(�i)(�), for all i = 1; : : : ; n. By ordering environments de-�ned on the same set fX1; : : : ; Xng of variables with respe
t to 
omponentwisein
lusion: �1 � �2 () �1(Xi) � �2(Xi); i = 1; : : : ; n;we 
an determine the greatest of su
h solutions, whi
h we denote byME(Eqn).It interprets an equation system on the pro
esses rea
hable from a given pro-
ess E.We 
an asso
iate a set of pro
esses to an equation system by saying that apro
ess satis�es an equation system Eqn if it belongs to the greatest solutionof the �rst equation. Thus the set of pro
esses satisfying the system Eqn isPro
(Eqn) = fF j F 2MF (Eqn)(X1)g.In order do derive a 
hara
teristi
 formula for a pro
ess E and a given property,we follow the approa
h des
ribed by M�uller-Olm in [27℄ where he shows how to6 Given a set x � SE and a variable X, we write �[x=X℄ for the environment thatmaps X to x and any other variable Y 6= X into �(Y ).20



derive �-
al
ulus formulae 
hara
terizing �nite state pro
esses up to strong orweak bisimulation dire
tly from the greatest �x-point 
hara
terization of thebisimulation relation. As pointed out in [27℄ it is easy to extend the method todi�erent bisimulation-like relations. The method 
onsists in 
onstru
ting �rstan appropriate system of equations of �-
al
ulus formulae and then a single
hara
teristi
 formula by applying semanti
 preserving transformation ruleson equation systems.Before introdu
ing our systems of equations, for any formula �, any a
tion aand s 2 f�; 0;+g we de�ne the formulas hhaiis� and hhaiisnH� as follows:hhaiis� = 8><>: hhâii� if s = � or s = 0hhaii� if s = +where hh�̂ii� = �X:� _ h�iX , with X not in �, hhaii� = hh�̂iihaihh�̂ii� , and ifa 6= � , hhâii� = hhaii� .
hhaiisnH� = 8>>>>>>>><>>>>>>>>:

hhaiis� if a 62 Hhhaii� _ hh�̂ii� if s = � and a 2 Hhhaii� _ � if s = 0 and a 2 Hhhaii� _ hh�ii� if s = + and a 2 HThe operators hhaiisnH , hh�̂ii and hhaii model a,!s, �̂) and a), respe
tively, sin
etheir semanti
s is given byME(hhaiisnH�)(�) = fE 0 j 9E 00 : E 0 a,!sE 00 ^ E 00 2ME(�)(�)g;ME(hh�̂ii�)(�) = fE 0 j 9E 00 : E 0 �̂=) E 00 ^ E 00 2ME(�)(�)g;ME(hhaii�)(�) = fE 0 j 9E 00 : E 0 a=) E 00 ^ E 00 2ME(�)(�)g:We 
onstru
t a 
hara
teristi
 equation system as follows.De�nition 6.1 Let E be a �nite-state pro
ess, SE = fE1; : : : ; Eng and E1 =E. For every Ei 2 SE we de�ne��snHEi = Va2A
t VEi a!EjhhaiisnHXEj^Va2A
t [a℄WEi a,!sEj XEj : 21



The 
hara
teristi
 equation system of the pro
ess E is:Eqn�snHE : XE1 = ��snHE1 ; : : : ; XEn = ��snHEn :The formulae ��snHEi have been de�ned in su
h a way that the largest solutionMF (Eqn�snHE ) of Eqn�snHE on an arbitrary pro
ess F asso
iates to the variablesXEi exa
tly the states Fj of F whi
h are s-weakly bisimilar up to H to Ei.This is formalized by the following theorem whose proof is omitted sin
e it isjust an instan
e of the analogous result in [27℄.Theorem 6.2 Let E; F be a �nite-state pro
ess, Ei be rea
hable from E, Fj berea
hable from F , and Eqn�snHE the 
hara
teristi
 equation system of De�nition6.1. Then Fj 2MF (Eqn�snHE )(XEi) i� Ei �snH Fj.Example 6.3 Consider the pro
ess E2 of Example 2.3. The 
hara
teristi
equation system of E2 is de�ned as follows:XE2 = hhliisnHXh:j:0 ^ hhliisnHX�:j:0+�:0^[l℄(Xh:j:0 _X�:j:0+�:0 _Xj:0 _X0) ^ [� ℄XE2 ^ [h℄XE2X�:j:0+�:0 = hh�iisnHXj:0 ^ hh�iisnHX0^[� ℄(X�:j:0+�:0 _X�:j:0 _Xj:0 _X�:0 _X0)^[h℄(X�:j:0+�:0 _X�:j:0 _Xj:0 _X�:0 _X0)X�:j:0 = hh�iisnHXj:0 ^ [� ℄(X�:j:0 _Xj:0) ^ [h℄(X�:j:0 _Xj:0)Xh:j:0 = hhhiisnHXj:0 ^ [� ℄Xh:j:0 ^ [h℄(Xh:j:0 _Xj:0)Xj:0 = hhjiisnHX0 ^ [h℄Xj:0 ^ [� ℄Xj:0 ^ [j℄X0X�:0 = hh�iisnHX0 ^ [� ℄(X�:0 _X0) ^ [h℄(X�:0 _X0)X0 = [h℄X0 ^ [� ℄X02Corollary 6.4 Pro
(Eqn�snHE ) = fF j E �snH Fg:This result holds for all pro
esses F as Eqn�snHE does not depend on F .Chara
teristi
 formulae, i.e., single positive formulae 
hara
terizing pro
esses
an be 
onstru
ted by applying simple semanti
s-preserving transformationrules on equation systems as des
ribed in [27℄. We urge the reader to [27℄ for22



a detailed des
ription of su
h rules whi
h re
all Gaussian elimination pro
ess.Let � be su
h that Pro
(Eqn) = Pro
(�) (see [27℄), we obtain that:Theorem 6.5 For all �nite-state pro
esses E and s 2 f�; 0;+g there is amodal �-
al
ulus formulae ��snHE su
h that Pro
(��snHE ) = fF j E �snH Fg:Using this method we 
an for instan
e exploit the model 
he
ker NCSU Con-
urren
y Workben
h ([30℄) to 
he
k whether E �snH F . Unfortunately, in the�-
al
ulus formula we obtain for a pro
ess E there are both � and � op-erators (see [27℄). In the worst 
ase the number of � and � alternations in��snHE is 2jSEj + 1 (when LTS(E) has a unique strongly 
onne
ted 
ompo-nent) and in that 
ase the 
omplexity of model 
he
king ��snHE on LTS(F ) isO(jSF j(2jSEj+1)=2) (see [42,43℄).This de
idability result for s BNDC properties di�ers from the one provedby Martinelli in [22℄, even if the underline approa
h is very similar. Both ap-proa
hed 
onsider only �nite-state systems and are based on the 
onstru
tionof 
hara
teristi
 formulae in modal �-
al
ulus. But we 
onsider suÆ
ient 
on-ditions for BNDC while Martinelli 
onsiders a ne
essary 
ondition for BNDC.In fa
t he restri
ts also the 
lass of atta
hers to �nite-state pro
esses.6.2 Strong BisimulationWe show now how to redu
e the problem of testing whether two pro
esses ares-weakly bisimilar up to H to a strong bisimulation problem.The next property follows from the de�nition of a,!s.Proposition 6.6 Let s 2 f�; 0;+g. A binary relation R � E � E over agentsis a s-weak bisimulation up to H if and only if (E; F ) 2 R implies, for alla 2 A
t1. if E a,!sE 0, there is F 0 2 E su
h that F a,!sF 0 and (E 0; F 0) 2 R;2. if F a,!sF 0, there is E 0 2 E su
h that E a,!sE 0 and (E 0; F 0) 2 R.Proof. ()). We prove that if R � E � E is a s-weak bisimulation up to H,and (E; F ) 2 R, then 1 . and 2 . hold for all a 2 A
t. We distinguish three
ases.Case 1. a = � . In this 
ase E a,!sE 0 
oin
ides with E �=) sE 0. The prooffollows by indu
tion on the number m of � a
tions in E �=)sE 0. There aretwo di�erent base 
ases: m = 0 if s 6= +, and m = 1 if s = +. In the �rst 
aseE 0 = E and we 
an 
hoose F 0 = F . The se
ond 
ase is immediate by de�nition23



of s-weak bisimulation up to H. For the indu
tive step, let E �! E 00 �=)sE 0.Sin
e, (E; F ) 2 R, there exists F 00 2 E su
h that F �=)sF 00 and (E 00; F 00) 2 R.By the indu
tive hypothesis, there exists F 0 2 E su
h that F 00 �=)sF 0 and(E 0; F 0) 2 R. This proves the thesis sin
e F �=)sF 00 and F 00 �=)sF 0 impliesF �=)sF 0.Case 2. a 6= � and a 62 H. In this 
ase E a,!sE 0 
oin
ides with E a=)sE 0 andthere exist E 00 su
h that E �=)�E 00 a! E 000 �=)�E 0. By Case 1.1 above, thereexist �F 00 2 E su
h that F �=)� �F 00 and (E 00; �F 00) 2 R. By De�nition 3.3 thereexists �F 000 2 E su
h that �F 00 a,!s �F 000, i.e. �F 00 a=)sF 000, and (E 000; �F 000) 2 R. Againby Case 1.1 above, there exists F 0 2 E su
h that �F 000 �=)�F 0 and (E 0; F 0) 2 R.This proves the thesis sin
e F �=)� �F 00 a=)s �F 000 �=)�F 0 implies F a=)sF 0.Case 3. a 2 H. In this 
ase E a,!sE 0 
oin
ides either with E a=)sE 0 or withE( �!)sE 0. If E a=)sE 0 we pro
eed as for Case 2 above. If E( �!)sE 0 and s = �or s = + then ( �!)s 
oin
ides with �=)s and we pro
eed as for Case 1 above.Finally, if E �=)0E 0 then E 0 = E and we 
an 
hoose F 0 = F .
((). It is suÆ
ient to observe that, by De�nition 3.1, E a! E 0 implies E a,!sE 0for ea
h E;E 0 2 E and a 2 A
t. 2A dire
t 
onsequen
e of this theorem is that two systems are s-weakly bisimilarup toH if and only if they are strongly bisimilar when in pla
e of the transitionrelations a! we 
onsider the transition relations a,!s.We 
an exploit this fa
t to determine whether E �snH E nH by: (i) translatingthe two labelled transition systems LTS(E) and LTS(E nH), into LTSsH(E)and LTSsH(E nH); (ii) 
omputing the largest strong bisimulation � betweenLTSsH(E) and LTSsH(E nH). More formally LTSsH(E) is:De�nition 6.7 (s-Closure up to H) Let E 2 E be a pro
ess su
h thatLTS(E) = (SE; E;A
t ;! ). The s-
losure up to H of E is the rooted labelledtransition system LTSsH(E) = (SE; E;A
t ; ,!s).The notion of bisimulation on rooted labelled transition systems has been�rst introdu
ed in the areas of modal logi
s (see [44℄) and non-well-foundedset theories (see [45℄). Two rooted labelled transition systems are stronglybisimilar when, starting from the two roots, ea
h step on the �rst transitionsystem 
an be simulated on the se
ond one and vi
e-versa.De�nition 6.8 (Strong Bisimulation on Rooted Labelled TransitionSystems) Let G1 = (S1; n1;A
t ; ,!1) and G2 = (S2; n2;A
t ; ,!2) be tworooted labelled transition systems. G1 and G2 are strong bisimilar, denoted byG1 � G2, if there exists a binary relation R � S1 � S1 su
h that (n1; n2) 2 R24



Let E 2 E with LTS(E) = (SE; E;A
t ;!). The s-
losure up to H of E,LTSsH(E) = (SE; E;A
t ; ,!s), is 
omputed as follows:(1) 
al
ulate ( �!)+ (transitive 
losure of �!) and ( �!)� (transitive and re
ex-ive 
losure of �!);(2) 
al
ulate part of a,!s as:(1) ( �!)�Æ a! Æ( �!)�, if a 6= � ;(2) ( �!)�, if a = � and s 6= +;(3) ( �!)+, if a = � and s = +;(3) 
al
ulate ( �!)s as(1) ( �!)�, if s = �;(2) ( �!)+, if s = +;(3) E 0 �!0 E 0, for ea
h E 0 2 SE, if s = 0;(4) for ea
h a 2 H and E 0; E 00 2 SE add E 0 a,!sE 00, every time E 0( �!)sE 00.and (n01; n02) 2 R implies, for all a 2 A
t� if n01 a,!1 n001, there is n002 2 S2 su
h that n02 a,!2 n002 and (n001; n002) 2 R;� if n02 a,!2 n002, there is n001 2 S1 su
h that n01 a,!1 n001 and (n001; n002) 2 R.The next result is an immediate 
onsequen
e of Proposition 6.6.Corollary 6.9 Let E; F 2 E. Then, E �snH F i� LTSsH(E) � LTSsH(F ):Now, our �rst problem is to 
ompute LTSsH(E) from LTS(E), using De�ni-tion 6.7. This 
an be immediately obtained with the following algorithm:Corre
tness of algorithm above is trivially obtained by observing that: if a 62 Hand a 6= � , then a,! s 
oin
ides with â=), step 2(1); if a 2 H, then a,! sis the union of â=) (whi
h 
oin
ides with a=) and with a=)s), step 2(1),and of ( �!)s, step 4; if a = � and s 6= +, then a,!s is ( �!)�, step 2(2); ifa = � and s = +, then a,!s is ( �!)+, step 2(3). As far as time and spa
e
omplexities are 
on
erned, we noti
e that they depend on the algorithmsused for 
omputing the re
exive and transitive 
losure and the 
ompositionof relations. We start by �xing some notations. Let n = jSEj be the numberof states in LTS(E), for ea
h a 2 A
t, let ma be the number of a! transitionsin LTS(E), and m = Pa2A
tma. Similarly, let m̂a be the number of a,! stransitions in LTSsH(E), and m̂ = Pa2A
t m̂a.The next lemma shows that LTSsH(E) 
an be 
omputed in polynomial timewith respe
t to the number of nodes and edges in LTS(E).Lemma 6.10 Let s 2 f�; 0;+g. Algorithm 6.2 
an be exe
uted in timeO(nm̂� + nw) and spa
e O(n2), where w denotes the exponent in the run-ning time of the matrix multipli
ation algorithm used. If m̂ � n, then it is25



possible to work in time O(nm̂) and spa
e O(n).Proof. First of all we have to determine the transitive 
losure of �! (step1). The algorithm proposed in [46℄ 
omputes the transitive 
losure of a graphrepresented with adja
en
y-lists in time O(m� + ne), where e is the numberof edges in the transitive 
losure of the graph of the strongly 
onne
ted 
om-ponents. Sin
e m� ; e � m̂� , an upper bound to the 
ost of the 
omputation of( �!)+ and ( �!)� is O(nm̂� ).Let us 
onsider the 
omputation of the 
omposition ( �!)�Æ a! Æ( �!)� for a 6= �(step 2(1)). Given two transition relations!1 and!2 on a set of n nodes, theproblem of determining the 
omposition!1 Æ !2 is known to be equivalent tothe n�n Boolean matrix multipli
ation problem (see [47℄). In parti
ular, if Aiis the adja
en
y-matrix de�ned by!i, for i = 1; 2, then the adja
en
y-matrixof!1 Æ !2 is the matrix A1 �A2. Hen
e, in our 
ase, we have to: (i) determinethe adja
en
y-matrixes A�� and Aa asso
iated to ( �!)� and a! respe
tively;(ii) 
ompute the produ
t (A�� � Aa) �A��; (iii) rebuild the adja
en
y-list rep-resentation (in the 
omputation of the strong bisimulation it is important touse the adja
en
y-list representation). Starting from the adja
en
y-list rep-resentations of ( �!)� and a! in time O(n2) we obtain their adja
en
y-matrixrepresentations A�� and Aa. The matrix produ
t (A�� �Aa) �A�� 
an be deter-mined in time O(n2:376) using twi
e the algorithm in [48℄. Then, again in timeO(n2), we rebuild the adja
en
y-list representation. So, the global 
ost of the
omputation of ( �!)�Æ a! Æ( �!)� is O(n2:376). We have to perform this stepon
e for ea
h a 2 L, assuming that jLj is a 
onstant with respe
t to n. Noti
ethat we 
ould work using only 2 matrix multipli
ations, instead of 2jLj matrixmultipli
ations, but in this 
ase we would have to use matrixes in whi
h ea
helement is an array of length L of bits, hen
e also in this way it is not possibleto drop the assumption that jLj is a 
onstant with respe
t to n.The 
omplexity of the 
omputation of a,!s for a = � (steps 2(2) and 2(3)) hasalready been 
onsidered above (see step 1).Consider now the 
omputation of ( �!)s (step 3) and the addition of the edgesa,!s with a 2 H of step 4:� if s = 0, then the 
omputation 
onsists in the addition of all the 
aps withlabel a 2 H, hen
e it 
osts O(n) (we are assuming that jLj is a 
onstant);� if s 6= 0, then see the �rst part of this proof (step 1);Hen
e, we have des
ribed a pro
edure whi
h maps E into LTSsH(E) in timeO(nm̂� + nw) and spa
e O(n2), where w is the exponent in the running timeof the matrix multipli
ation algorithm used (w = 2:376 using [48℄).In the pro
edure just des
ribed we use the adja
en
y-matrix representationto 
ompute the relation a! Æ( �!)�. If we know that m̂ � n, then using the26



adja
en
y-list representation and a na��ve algorithm (two iterations of the na��vealgorithm for the transitive 
losure [47℄) we 
an perform this step in timeO(nm̂). Thus, when m̂ � n, we determine LTSsH(E) in time O(nm̂) andspa
e O(n+ m̂) = O(n). 2From the above lemma, sin
e LTS(E n H) and LTSsH(E n H) have at mostthe same size of LTS(E) and LTSsH(E), respe
tively, we obtain the following
omplexity result.Theorem 6.11 Let s 2 f0; �;+g. The test E �snH E nH 
an be performed intime O(nm̂� + nw + m̂ logn) and spa
e O(n2), where w denotes the exponentin the running time of the matrix multipli
ation algorithm used. 7 If m̂ � n,then it is possible to work in time O(nm̂) and spa
e O(n).Noti
e that in the 
omplexity result m̂ logn 
omes from the fa
t that we usethe algorithm by Paige and Tarjan ([31℄) to 
ompute the maximum bisimula-tion.Example 6.12 Consider again pro
ess E2 = l:h:j:0 + l:(�:j:0 + �:0) of Ex-ample 2.3. In Fig. 4 we show LTS(E2) and LTS(E2 nH). By performing the
losure up to H (Algorithm 6.2) we obtain the transformed labelled transi-tion systems LTS�H(E2) and LTS�H(E2 nH) reported in Fig. 5. In parti
ular,the �rst step just adds the � -loops in every state; the se
ond one, adds twotransitions labelled with l 
orresponding to l:� and one transition labelled withj 
orresponding to �:j; �nally, step 4 adds a h-labelled transition every timethere is a � transition. The two transformed transition systems are not stronglybisimilar: the leftmost node after l in LTS�H(E2) is not bisimilar to any nodein LTS�H(E2nH), sin
e in LTS�H(E2nH) all the nodes are either \sink-nodes"(whi
h only exe
utes � and h loops) or they have at least one outgoing edgewith label j or l. Indeed, that node in LTS�H(E2) may exe
ute only h and� a
tions and 
ould thus be simulated only by sink-nodes in LTS�H(E2 n H).However, di�erently from sink-nodes, after one h, it is also able to exe
utea j. This proves that LTS�H(E2) 6� LTS�H((E2 n H)), thus, by Corollary 6.9,E2 62 P BNDC. 27 Related Works and Con
lusionsIn this paper we study three persistent information 
ow se
urity propertiesbased on the bisimulation semanti
s model. For these properties we providetwo 
hara
terizations: one in terms of a bisimulation-like equivalen
e relation7 In the algorithm in [48℄, whi
h is at the moment the fastest in literature, we havethat w = 2:376. 27



and another one in terms of unwinding 
onditions.The �rst 
hara
terization allows us to perform the veri�
ation of the proper-ties for �nite state pro
esses in polynomial time with respe
t to the numberof states of the system, also improving on the polynomial time 
omplexityrequired by the Compositional Se
urity Che
ker (CoSeC) presented in [20℄.The se
ond 
hara
terization is based on unwinding 
onditions. This kind of
onditions for possibilisti
 se
urity properties have been already explored inmany works like, e.g., [49{51,25℄. However, su
h unwinding 
onditions, havebeen all proposed for tra
es-based models and represent, in most of the 
ases,only suÆ
ient 
onditions for their respe
tive se
urity properties. Our work
ontributes signi�
antly in this resear
h �eld, by proposing new unwinding
onditions for bisimulation-based se
urity properties, whi
h are both ne
essaryand suÆ
ient.Moreover, unwinding gives new interesting perspe
tives on the 
hara
terizedproperties, and is also useful for veri�
ation. In [24℄ we show how unwinding
onditions 
an be exploited for de�ning a proof system whi
h provides a veryeÆ
ient te
hnique for the veri�
ation and the development of P BNDC se
urepro
esses. Indeed, the proof system allows us to verify whether a pro
ess isse
ure just by inspe
ting its syntax, and thus avoiding the state-explosionproblem. In parti
ular, it allows us to deal with re
ursive pro
esses whi
hmay perform unbounded sequen
es of a
tions, possibly rea
hing an in�nitenumber of states. Moreover, the system allows us to build pro
esses whi
h areP BNDC by 
onstru
tion in an in
remental way. Su
h a proof system 
ouldbe easily adapted to deal with the PP BNDC and SBNDC properties studiedin this paper. In [52℄, Mantel shows how one 
an easily de�ne re�nementoperators whi
h preserve se
urity, starting from unwinding 
onditions. In [1℄,we give some preliminary results about re�nement operators whi
h preservesour persistent se
urity properties. This is the topi
 of our 
urrent resear
h.Finally, in this paper we also deal with 
ompositionality issues. The develop-ment of large and 
omplex systems strongly depends on the ability of dividingthe task of the system into subtasks that are solved by system 
omponents.Thus, it is essential to know how properties of the 
omponents behave under
omposition. We show that P BNDC and SBNDC are 
ompositional withrespe
t to all the operators of SPA language, ex
ept the non-deterministi

hoi
e. Moreover, we prove that the new property named PP BNDC is fully
ompositional. Compositionality of possibilisti
 se
urity properties has beenwidely studied in the literature. There are several information 
ow properties,based on the tra
es model, whi
h have been proved to be fully 
ompositionallike, e.g., restri
tiveness [11℄, forward 
orre
tability [53℄ or separability [13℄.In [13,39℄ it has been studied how to restri
t 
omposition in order to preserve
ertain se
urity properties whi
h are not preserved by (more general) 
om-28



position. In [54℄, it has been studied how restri
ting the 
lass of the runningenvironments makes se
urity properties 
ompositional.Referen
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