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Annalisa Bossi a Riardo Foardi a Carla Piazza aSabina Rossi aaDipartimento di Informatia, Universit�a Ca' Fosari di Veneziafbossi,foardi,piazza,srossig�dsi.unive.itAbstratWe study bisimulation-based information ow seurity properties whih are per-sistent, in the sense that if a system is seure then all of its reahable states are seuretoo. We show that suh properties an be haraterized in terms of bisimulation-like equivalene relations, between the full system and the system prevented fromperforming on�dential ations. Moreover, we provide a haraterization of suhproperties in terms of unwinding onditions whih demand properties of individualations. These two di�erent haraterizations naturally lead to eÆient methods forthe veri�ation and onstrution of seure systems. We also prove several omposi-tionality results, that allow us to hek the seurity of a system by only verifyingthe seurity of its subomponents.

1 IntrodutionThe protetion of on�dential data from undesired aesses is a typial seurityissue onerning both systems and networks. Inside a system, information istypially proteted via some aess ontrol poliy, limiting aesses of entities(suh as users or proesses) to data. There are di�erent levels of exibility ofaess ontrol poliies depending on the possibility for one entity to hangethe aess rights of its own data. As an example, UNIX gives users ompleteontrol on the poliy, i.e., every user may deide to make her own informationeither seret or publi. On the other hand, there are mandatory poliies inwhih entities have no ontrol on the aess rights. For example, Multilevel? This work is a revised and extended version of [1℄, and has been partially sup-ported by MIUR projet \Modelli formali per la siurezza", the EU projet MyThS(IST-2001-32617) and the FIRB projet (RBAU018RCZ) \Interpretazione astrattae model heking per la veri�a di sistemi embedded".Preprint submitted to Elsevier Siene



Seurity [2℄ imposes that entities and data are assoiated to (ordered) seuritylevels and no aess to data at higher levels is ever possible, even if the ownerof the data is willing to reveal them. These strong mandatory seurity poliieshave been designed to avoid internal attaks performed by the so alled TrojanHorse programs, i.e., maliious software that, one exeuted by a user, modi�esthe aess rights of the data belonging to suh a user. Unfortunately, even whendiret aess to data is forbidden by (strong) seurity poliies, it might be thease that data are indiretly leaked by Trojan Horses whih might exploit someobservable system side-e�ets like, e.g., the CPU load or, more in general, thespae/time availability of shared resoures. (see, e.g., [3,4℄).The neessity of ontrolling information ow as a whole (both diret andindiret) motivated Goguen and Meseguer in introduing the notion of Non-interferene [5,6℄. Non-Interferene formalizes the absene of information owwithin deterministi systems. Given a system in whih on�dential (i.e., highlevel) and publi (i.e., low level) information may oexist, non-interferene re-quires that on�dential inputs never a�et the outputs on the publi interfaeof the system, i.e., never interfere with the low level users. If suh a propertyholds, one an onlude that no information ow is ever possible from high tolow level.A possibilisti seurity property an be regarded as an extension of non-interferene to non-deterministi systems. Starting from Sutherland [7℄, vari-ous suh extensions have been proposed, e.g., [8{18℄. Most of these propertiesare based on traes, i.e., the behavior of systems is modelled through the set oftheir exeution sequenes. Examples are non-inferene [15℄, generalized non-interferene [11℄, restritiveness [11℄, and the perfet seurity property [18℄.In [8℄, Foardi and Gorrieri express the onept of non-interferene in theSeurity Proess Algebra (SPA) language, in terms of bisimulation semantis.In partiular, inspired by [17℄, they introdue the notion of Bisimulation-basednon Deduibility on Compositions (BNDC ): a system E is BNDC if what a lowlevel user sees of the system is not modi�ed (in the sense of the bisimulationsemantis) by omposing any high level proess � with E. The main advantageof BNDC with respet to trae-based properties is that it is powerful enoughto detet information ows due to the possibility, for a high level maliiousproess, to blok or unblok a system. In partiular, in [8,19℄, it is shownthat a maliious proess may build a hannel from high to low, by suitablybloking and unbloking some system servies aessible by low level users.The system used to build this overt hannel turns out to be seure for trae-based properties. This motivates the use of more disriminating equivalenessuh as bisimulation.Non-interferene properties, like BNDC, provide formal de�nitions of informa-tion ow seurity and, as a onsequene, are useful in order to well understand2



and reason about system and network seurity. In this paper we also approahthe problem of automatially heking BNDC -like properties, whih is use-ful in many respets. First, as disussed in [20℄, having eÆient automatedhekers is useful to test a property against non-trivial system spei�ations.It is important to hek on many examples that what is intuitively onsid-ered inseure is orretly rejeted by the property. It is also ruial to verifythat the property is not stronger than expeted, and aepts as seure whatis intuitively so. An automated tool is a good way for observing properties atwork.Moreover, there are some ases in whih it is possible to analyze spei�a-tions that are stritly related to the \real world". An interesting example isthe analysis of seurity protools, i.e., simple distributed algorithms basedon ryptography. They are simple to speify using proess aluli like SPA,sine they are haraterized by little loal omputation and some message ex-hanges. In [21℄ it is shown how to use BNDC -like properties to hek manydi�erent network seurity properties like, e.g., serey and authentiation. Themain idea is that BNDC allows us to hek whether or not a maliious enemyis able to interfere on the orret (expeted) protool exeution. In this set-ting, the automated veri�ation of BNDC allows to either disover aws onprotool or validate (�nite instanes of) them.Although Martinelli [22℄ has shown that a lass of BNDC -like properties isdeidable over �nite state proesses, the problem of eÆiently verifying BNDCis still open. Indeed, deidability of BNDC is still an open problem. The maindiÆulty onsists of getting rid of the universal quanti�ation on high levelproesses �. A way to overome this problems is to adopt suÆient onditionsfor BNDC. We reall from [19,23℄ two of them, named Strong BNDC (SBNDC,for short) and Persistent BNDC (P BNDC, for short) 1 . Indeed, P BNDC isinteresting per se, sine it has been proposed for analysing systems in dynamiontexts. Intuitively, P BNDC is a persistent version of BNDC in whih everyreahable state is (BNDC ) seure. In [23℄ it is shown that this property issuitable when some abstrat form of mobility is onsidered. If a proess movesto a di�erent exeution environment (e.g., a di�erent host) in the middle ofits omputation, then we have to be guaranteed that suh an intermediatestate is still seure. Requiring, from the beginning, that every reahable stateis seure trivially guarantees that every possible migration will be done in aseure state.In the literature there are two di�erent haraterizations of seurity propertiesthat do not require the universal quanti�ation over high level proesses �.They allow us to exploit two di�erent veri�ation tehniques:1 In [23℄, P BNDC is shown to be equivalent to the SBSNNI property of [19℄.3



(i) Bisimulation-based haraterizations are based on a bisimulation-like equiv-alene relation between the system E to be analysed and the low level viewof the system itself, denoted by EnH, i.e., the system E prevented from per-forming on�dential ations. These haraterizations allow us to exploit veryeÆient tehniques for verifying the properties over �nite-state proesses,by using existing algorithms for the veri�ation of strong bisimulation.(ii) Unwinding onditions demand properties of individual ations. They aimat \distilling" the loal e�et of performing high level ations and are use-ful to de�ne both proof systems (see, e.g., [24℄) and re�nement operatorsthat preserve seurity properties, as done in [25℄. Proof systems allow toinrementally build systems whih are seure by onstrution. Similarly,re�nement operators are useful in a stepwise development proess, sineproperties whih have been already investigated in some phase need not tobe re-investigated in later phases.In this paper, we start by onsidering the two haraterizations above forP BNDC, given in [24℄. By studying the relation between suh two harateri-zations, we generalize them to a parametri seurity property alled s BNDC,where parameter s spei�es the way high level ations and internal ationsare treated in the underlying bisimulation relation. We show that the SBNDCproperty, whih was originally de�ned through unwinding onditions, is aninstane of s BNDC. This diretly gives a new bisimulation-based harateri-zation for SBNDC property. As a next step, we investigate the ompositional-ity of P BNDC and SBNDC. Compositionality is useful for both veri�ationand synthesis: if a property is preserved when systems are omposed, then theanalysis may be performed on subsystems and, in ase of suess, the systemas a whole an be proved to satisfy the desired property. We notie that bothP BNDC and SBNDC are ompositional with respet to the parallel oper-ator, but they are not fully ompositional, sine they are not preserved bythe non-deterministi hoie operator. In partiular, when we build a systemthat may (non-deterministially) hoose to behave as one of two seure sub-systems, we ould obtain an inseure system. As also observed in [26℄, thisseems to be ounterintuitive. We approah this issue by introduing a new se-urity property, named Progressing P BNDC (PP BNDC ), stritly strongerthan P BNDC, whih is fully ompositional, i.e., it is ompositional also withrespet to the non-deterministi hoie. We show that PP BNDC is an in-stane of the parametri property s BNDC and an be thus expressed bothin terms of a bisimulation-like equivalene and through unwinding onditions.We also onsider the spei� problem of automatially heking our persistentseurity properties. In partiular, we desribe two methods for determiningwhether a system is P BNDC, SBNDC or PP BNDC. The �rst method isbased on the derivation of Charateristi Formulae [27,28℄ in the languageof modal �-alulus [29℄ (see Setion 6.1). The harateristi formulae anbe automatially veri�ed using model hekers for �-alulus, suh as NCSU4



Conurreny Workbenh [30℄. Even if in the worst ase this method has anexponential time omplexity in the number of states of the proess, it is stillusable in many ases, and has the advantage of reduing the hek of seu-rity properties to the standard problem of verifying a �-alulus formula. Theseond method (see Setion 6.2) is in the spirit of [28℄: it is based on theomputation of a sort of transitive losure (Closure up to high level ations)of the system and on the veri�ation of a Strong Bisimulation. This allows usto use existing veri�ation tools, sine many di�erent algorithms for omput-ing the largest strong bisimulation between two proesses (e.g, [31{34℄) havebeen integrated in model hekers, suh as NCSU Conurreny Workbenh,XEVE [35℄, FDR2 [36℄. In partiular, this seond approah improves on thepolynomial time omplexity of the Compositional Seurity Cheker (CoSeC)presented in [20℄, sine only one bisimulation test is neessary.The paper is organized as follows. In Setion 2, we introdue some basi notionson the SPA language and the seurity properties BNDC and P BNDC. Wereall the two haraterizations of P BNDC in terms of a bisimulation-likeequivalene relation and an unwinding ondition. In Setion 3 we introduea parametri seurity property named s BNDC in terms of bisimulation andwe prove that it an be equivalently haraterized in terms of a parametriunwinding ondition. P BNDC is just an instane of s BNDC. In Setion4, we show that property SBNDC is an instane of s BNDC and provide abisimulation-based haraterization of it. In Setion 5, we introdue the lassof PP BNDC proesses, whih is again an instane of s BNDC, and prove thatit is fully ompositional. In Setion 6, we propose two methods to prove ourpersistent seurity properties and we demonstrate some omplexity results.Finally, in Setion 7 we disuss related works and draw some onlusions.2 Basi NotionsIn this setion we report the syntax and semantis of the Seurity ProessAlgebra (SPA, for short) [19℄ and the de�nition of the seurity propertiesBNDC [8℄ and P BNDC [23℄ together with some main results [24℄.2.1 The SPA LanguageThe Seurity Proess Algebra [19℄ is a variation of Milner's CCS [37℄, wherethe set of visible ations is partitioned into high level ations and low levelones in order to speify multilevel systems. SPA syntax is based on the sameelements as CCS that is: a set L of visible ations suh that L = I [O whereI = fa; b; : : :g is a set of input ations and O = f�a;�b; : : :g is a set of output5



ations; a speial ation � whih models internal omputations, i.e., not visibleoutside the system; a omplementation funtion �� : L ! L, suh that ��a = a,for all a 2 L. At = L[f�g is the set of all ations. The set of visible ations ispartitioned into two sets, H and L, of high and low ations suh that H = Hand L = L.The syntax of SPA terms (or proesses) is de�ned as follows:E ::= 0 j a:E j E + E j EjE j E n v j E[f ℄ j Zwhere a 2 At , v � L, f : At ! At is suh that f(��) = f(�), f(�) = � ,f(H) � H [ f�g, and f(L) � L [ f�g, and Z is a onstant that must beassoiated with a de�nition Z def= E.Intuitively, 0 is the empty proess that does nothing; a:E is a proess that anperform an ation a and then behaves as E; E1 + E2 represents the nonde-terministi hoie between the two proesses E1 and E2; E1jE2 is the parallelomposition of E1 and E2, where exeutions are interleaved, possibly synhro-nized on omplementary input/output ations, produing an internal ation� ; E n v is a proess E prevented from performing ations in v; 2 ; E[f ℄ is theproess E whose ations are renamed via the relabelling funtion f .We denote by E the set of all SPA proesses and by EH the set of all high levelproesses, i.e., those onstruted only using ations in H [ f�g.The operational semantis of SPA agents is given in terms of Labelled Transi-tion Systems (LTS, for short). A LTS is a triple (S;A;!) where S is a set ofstates, A is a set of labels (ations), !� S �A� S is a set of labelled transi-tions. The notation (S1; a; S2) 2! (or equivalently S1 a! S2) means that thesystem an move from the state S1 to the state S2 through the ation a. Theoperational semantis of SPA is the LTS (E ;At ;!), where the states are theterms of the algebra and the transition relation !� E � At � E is de�nedby strutural indution as the least relation generated by the inferene rulesdepited in Figure 1. In Setion 6.2 we use also the notion of rooted labelledtransition system whih is a LTS augmented with a distinguish node, the root.The onept of observation equivalene is used to establish equalities amongproesses and it is based on the idea that two systems have the same seman-tis if and only if they annot be distinguished by an external observer. Thisis obtained by de�ning an equivalene relation over E . The weak bisimula-tion relation [37℄ equates two proesses if they are able to mutually simulatetheir behavior step by step. Weak bisimulation does not are about internal �ations.2 In CCS the operator n requires that the ations of E n v do not belong to v [ �v.6



We will use the following auxiliary notations. If t = a1 � � �an 2 At� andE a1! � � � an! E 0, then we write E t! E 0. We also write E t=) E 0 if E( �!)� a1!( �!)� � � � ( �!)� an! ( �!)�E 0 where ( �!)� denotes a (possibly empty) sequeneof � labelled transitions. If t 2 At�, then t̂ 2 L� is the sequene gained bydeleting all ourrenes of � from t. As a onsequene, E â=) E 0 stands forE a=) E 0 if a 2 L, and for E( �!)�E 0 if a = � (note that �=) requires at leastone � labelled transition while �̂=) means zero or more � labelled transitions).We say that E 0 is reahable from E when there exists t suh that E t! E 0.The notion of weak bisimulation is de�ned as follows.De�nition 2.1 (Weak Bisimulation) A binary relation R � E � E overagents is a weak bisimulation if (E; F ) 2 R implies, for all a 2 At,� if E a! E 0, then there exists F 0 suh that F â=) F 0 and (E 0; F 0) 2 R;� if F a! F 0, then there exists E 0 suh that E â=) E 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are weakly bisimilar, denoted by E � F , if there existsa weak bisimulation R ontaining the pair (E; F ).The relation � is the largest weak bisimulation and it is an equivalene rela-tion [37℄.A Rooted Labelled Transition System is a LTS augmented with a distinguishednode, the root. Given a proess E we denote by LTS(E) = (SE; E;At ;!)the rooted LTS onstituted of the subpart of the SPA LTS reahable from E.E is a �nite-state proess if LTS(E) has a �nite number of nodes, that is SEis �nite.2.2 Seurity PropertiesThe BNDC [8℄ seurity property aims at guaranteeing that no informationow from the high to the low level is possible, even in the presene of mali-ious proesses. The main motivation is to protet a system also from internalattaks, whih ould be performed by the so alled Trojan Horse programs,i.e., programs that are apparently honest but hide inside some maliious ode.Property BNDC is based on the idea of heking the system against all highlevel potential interations, representing every possible high level maliiousprogram. In partiular, a system E is BNDC if for every high level proess �a low level user annot distinguish E from (Ej�), i.e., if � annot interfere7



with the low level exeution of the system E. In other words, a system E isBNDC if what a low level user sees of the system is not modi�ed by omposingany high level proess � to E.De�nition 2.2 (BNDC) Let E 2 E.E 2 BNDC i� 8 � 2 EH ; E nH � (Ej�) nH:Example 2.3 The BNDC property is powerful enough to detet informationows due to the possibility for a high level maliious proess to blok or unbloka system. Let H = fhg, L = fl; jg and E1 = l:h:j:0 + l:j:0. Consider theproess � = �h:0. We have that (E1j�) nH � l:j:0, while E1 nH � l:0+ l:j:0.Note that the latter may (nondeterministially) blok after the l input. Havingmany instanes of this proess, a low level user ould dedue if �h is exeutedby observing whether the system always performs j or not. Proess E1 may be\repaired", by inluding the possibility of hoosing to exeute j or not insidethe proess. Indeed, proess E2 = l:h:j:0 + l:(�:j:0 + �:0) is BNDC. 2In [23℄, it is introdued a seurity property alled Persistent BNDC (P BNDC,for short), whih is suitable for analysing systems in dynami exeution en-vironments. Intuitively, a system E is P BNDC if it never reahes inseurestates.De�nition 2.4 (P BNDC) Let E 2 E.E 2 P BNDC i� 8 E 0 reahable from E; E 0 2 BNDC :We show the idea of P BNDC through a simple example.Example 2.5 Consider the proess E2 of Example 2.3, i.e., E2 = l:h:j:0 +l:(�:j:0 + �:0) where l; j 2 L and h 2 H. Suppose now that E2 is moved inthe middle of a omputation. This might happen when it �nd itself in the stateh:j:0 (after the �rst l is exeuted). Now it is lear that this proess is notseure, as a diret ausality between h and j is present. In partiular h:j:0 isnot BNDC and this gives evidene that E2 is not P BNDC. The proess maybe \repaired" as follows: E3 = l:(h:j:0 + �:j:0 + �:0) + l:(�:j:0 + �:0). It maybe proved that E3 is P BNDC. Note that, from this example it follows thatP BNDC � BNDC. 2In [23℄ it has been shown that even if the de�nition of P BNDC introduesan universal quanti�ation over all the possible reahable states, this an beavoided by inluding the idea of \being seure in every state" inside the bisimu-lation equivalene notion. This is done by de�ning an equivalene notion whihjust fous on observable ations whih do not belong to H. More in details, itis de�ned an observation equivalene, named weak bisimulation up to H where8



ations from H are allowed to be ignored, i.e., they are allowed to be mathedby zero or more � ations. To this aim, the following transition relation isused.De�nition 2.6 Let a 2 At. We de�ne the transition relation â=)nH as fol-lows: â=)nH = 8><>: â=) if a 62 Ha=) or �̂=) if a 2 HNote that the relation â=)nH is a generalization of the relation â=) used inthe de�nition of weak bisimulation [37℄. In fat, if H = ;, then for all a 2 At ,E â=)nH E 0 oinides with E â=) E 0.The onept of weak bisimulation up to H is de�ned as follows.De�nition 2.7 (Weak Bisimulation up to H) A binary relationR � E�E over agents is a weak bisimulation up to H if (E; F ) 2 R implies, for alla 2 At,� if E a! E 0, then there exists F 0 suh that F â=)nH F 0 and (E 0; F 0) 2 R;� if F a! F 0, then there exists E 0 suh that E â=)nH E 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are weakly bisimilar up to H, written E �nH F , if(E; F ) 2 R for some weak bisimulation R up to H.The relation �nH is the largest weak bisimulation up to H and it is an equiv-alene relation. In [23℄ P BNDC has been haraterized in terms of �nH asstated below.Theorem 2.8 (P BNDC - Bisimulation [23℄) Let E 2 E. E 2 P BNDCif and only if E �nH E nH:In [24℄ we give a further haraterization of P BNDC proesses in terms of un-winding onditions. This new haraterization provides a better understandingof the operational semantis of P BNDC proesses. In pratie, whenever astate E 0 of a P BNDC proess may exeute a high level ation moving to astate E 00, then E 0 should be also able to simulate suh high move through a �sequene moving to a state E 000 whih is equivalent to E 00 for a low level user.Theorem 2.9 (P BNDC - Unwinding [24℄) Let E 2 E be a proess. E 2P BNDC i� for all E 0 reahable from E, if E 0 h! E 00, then E 0 �̂=) E 000 andE 00 nH � E 000 nH. 9



Here we observe that there is a strit relation between the bisimulation-basedharaterization of P BNDC given in Theorem 2.8 and the unwinding ondi-tion of Theorem 2.9: the equivalene �nH between E and E nH in Theorem2.8 states that high level ations of E are simulated by zero or more � ationsof E n H, while the unwinding ondition in Theorem 2.9 says that for everyhigh level ation there must exists a path of zero or more � ations leadingto equivalent states from the low level view. This suggests us that onsistenthanges in the way of dealing with high level ations in �nH and in the or-responding unwinding ondition, may lead to di�erent bisimulation-like andunwinding haraterizations of novel information ow seurity properties.This idea will be exploited in the next setions when we study the propertiesSBNDC and PP BNDC.In [23℄ it is also proved that P BNDC is ompositional with respet to theparallel omposition, restrition and low level pre�x operators.Proposition 2.10 ([23℄) Let E; F 2 E. If E; F 2 P BNDC, then� a:E 2 P BNDC, for all a 2 L [ f�g;� (EjF ) 2 P BNDC;� E n v 2 P BNDC, for all v � L;� E[f ℄ 2 P BNDC 3 .Unfortunately, P BNDC is not ompositional with respet to the nondeter-ministi hoie operator as illustrated below.Example 2.11 Let E4 = h:0 with h 2 H and E5 = l:0 with l 2 L. It is easyto see that both E4 and E5 are P BNDC but E4 + E5 is not P BNDC. Thisexample will be further illustrated in the next setion. 23 A GeneralizationIn this setion we generalize both the notion of weak bisimulation up to highlevel ations of De�nition 2.7 and the unwinding ondition expressed by Theo-rem 2.9, by making them parametri with respet to a parameter s 2 f�; 0;+g.Then, we introdue a parametri seurity property, named s BNDC , by gen-eralizing the quanti�ation-free haraterization given by Theorem 2.8 forP BNDC proesses. Finally, we prove that s BNDC proesses an be equiva-lently de�ned by means of the generalized unwinding ondition. This result isused in the next setions to provide a quanti�ation-free haraterization of3 This last item is not in [23℄, but it is immediate to prove it.10



SBNDC [8℄ and of a novel, fully ompositional property, named ProgressingP BNDC.We introdue the following binary relations on proesses whih are parametriwith respet to a parameter s 2 f�; 0;+g.De�nition 3.1 Let s 2 f�; 0;+g. The transition relations a=)s and a,!s arede�ned as follows:a=)s = 8><>: â=) if either s = � or s = 0a=) if s = +a,!s = 8><>: a=)s if a 62 Ha=) or ( ��!)s if a 2 Hwhere ( ��!)s stands for �̂=) if s = �, for �=) if s = +, and for a sequene ofzero ations 4 , if s = 0.Sine â=) and a=) oinide for a 2 L, the various instanes of a=)s are di�erentonly when a = � . In this ase both �=)� and �=)0 represent a sequene of 0 ormore � ations while �=)+ represents a sequene with at least one � .Fat. The relation a,!� oinides with â=)nH of De�nition 2.6.Example 3.2 Let E � �:h:�:l:0 with h 2 H and l 2 L. We have E h=)s l:0for all s 2 f�; 0;+g, E �=)s h:�:l:0 for all s 2 f�; 0;+g, E �=)s �:h:�:l:0for s = � and s = 0, but E 6 �=)+ �:h:�:l:0. Moreover, E h,! s l:0 for alls 2 f�; 0;+g, E h,!s �:h:�:l:0 for s = � and s = 0 but E 6 h,!s �:h:�:l:0 fors = +, E h,!s h:�:l:0 for s = � and s = + but E 6 h,!s h:�:l:0 for s = 0. 2The following de�nition generalizes the notion of weak bisimulation up to H.De�nition 3.3 (s-Weak Bisimulation up to H) A binary relation R �E �E over agents is a s-weak bisimulation up to H if (E; F ) 2 R implies, forall a 2 At,� if E a! E 0, then there exists F 0 suh that F a,!sF 0 and (E 0; F 0) 2 R;� if F a! F 0, then there exists E 0 suh that E a,!sE 0 and (E 0; F 0) 2 R.4 If E( a�!)0E0 then E oinides with E0.11



Two agents E; F 2 E are s-weakly bisimilar up to H, written E �snH F , if(E; F ) 2 R for some s-weak bisimulation R up to H.It is easy to see that all the three instanes of �snH are equivalene relationsand that �snH is the largest s-weak bisimulation.The notion of s-weak bisimulation up to H an be used to de�ne a parametrilass of seurity properties as follows.De�nition 3.4 (s BNDC) Let E 2 E. E 2 s BNDC if and only if E �snHE nH:Fat. The relation ��nH oinides with �nH of De�nition 2.7, hene � BNDCis exatly P BNDC.In order to generalize also the unwinding ondition we �rst introdue thefollowing generalized notion of weak bisimulation.De�nition 3.5 (s-Weak Bisimulation) A binary relation R � E � E overagents is a s-weak bisimulation if (E; F ) 2 R implies, for all a 2 At,� if E a! E 0, then there exists F 0 suh that F a=)sF 0 and (E 0; F 0) 2 R,� if F a! F 0, then there exists E 0 suh that E a=)sE 0 and (E 0; F 0) 2 R.Two agents E; F 2 E are s-weakly bisimilar, denoted by E �s F , if thereexists a s-weak bisimulation R ontaining the pair (E; F ).Fat. The relations �� and �0 oinide with the weak bisimulation relation�, while the relation �+ oinides with the progressing bisimulation relation�p de�ned in [38℄.De�nition 3.6 (s-Unwinding Condition) Let E 2 E be a proess. E sat-is�es the s-unwinding ondition if for all E 0 reahable from E, if E 0 h! E 00,then E 0( ��!)sE 000 and E 00 nH �s E 000 nH.Also in this ase, for s = � we get bak the unwinding ondition of Theorem 2.9whih haraterizes P BNDC proesses.The following relationships between �, �s, and �snH hold.Proposition 3.7 Let E; F 2 E.(1) If E �s F then E � F ;(2) If E �snH F then E nH �s F nH;12



(3) E nH �s F nH is equivalent to E nH �snH F nH;(4) If s 2 f�; 0g then E � F is equivalent to E �s F .Proof. Immediate by De�nitions 3.5, 3.1 and 3.3. 2The next proposition shows that the following relationships between s BNDCproesses hold.Proposition 3.8 0 BNDC � � BNDC and + BNDC � � BNDC.Proof. Immediate by De�nitions 3.1, 3.3 and 3.4. 2A relevant property of P BNDC proesses is persisteny. We show that itholds also for s BDNC proesses.Proposition 3.9 Let E 2 E. If E 2 s BNDC then for all E 0 reahable fromE; E 0 2 s BNDC :Proof. Let E 2 s BNDC , i.e., E �snH E nH, and E 0 be a proess reahablefrom E. First, we prove that there exists E 00 nH reahable from E nH suhthat E 0 �snH E 00 nH. This part of the proof follows by indution on the lengthl of the path whih leads from E to E 0.� Base l = 0. We an hoose E 00 equal to E; then E � E 0 � E 00 and we knowthat E �snH E nH.� Indutive step l > 0. Let F be reahable from E with a path of length l� 1and F a! E 0. By indutive hypothesis, there exists F 0 suh that F 0 nH isreahable from E nH and F �snH F 0 nH. From the fat that F �snH F 0 nH,there exists E 00 nH suh that F 0 nH a,!sE 00 nH and E 0 �snH E 00 nH. SineE 00 nH is reahable from E nH we have the thesis.By Proposition 3.7 (2), we have that E 0 nH �s E 00nH and, by Proposition 3.7(3), E 0 nH �snH E 00 nH. Thus, E 0 �snH E 00 nH �snH E 0 nH, i.e., by transitivityof �snH , E 0 �snH E 0 nH. 2Finally, the following theorem shows the orrespondene between s BDNCand s-unwinding ondition, thus generalizing the one obtained by Theorems2.8 and 2.9 for P BDNC. This result is used in the next setions to hara-terize di�erent seurity properties.Theorem 3.10 Let E 2 E be a proess. E 2 s BNDC if and only if Esatis�es the s-unwinding ondition.Proof. ()) Let E 2 s BNDC . By De�nition 3.4 and persistene of s BNDC,for all E 0 reahable from E, E 0 �snH E 0 n H. Let E 0 be a proess reahablefrom E. Suppose that E 0 h! E 00. By the fat that E 0 �snH E 0 n H, it follows13



that E 0 nH h,!sE 000 nH and E 00 �snH E 000 nH. Sine, by persistene of s BNDC,E 00 �snH E 00 n H, we have by transitivity that E 00 n H �snH E 000 n H, i.e., byProposition 3.7 (2), E 00nH �s E 000nH. Sine E 0nH does not perform any highlevel ation, by De�nition 3.1, E 0 n H ( ��!)sE 000 n H and thus E 0( ��!)sE 000,hene the thesis.(() Let E be a proess satisfying the s-unwinding ondition, i.e.,(1) 8 E 0 reahable from E, if E 0 h! E 00 then E 0( ��!)sE 000 and E 00 n H �sE 000 nH.It is suÆient to prove thatS = f(E nH;F ) j F satisfy (1) and E nH �s F nHgis a s-bisimulation up toH. It follows from the following ases. Let (EnH;F ) 2S. Then,� E nH a! E 0 nH with a 62 H. From the hypothesis that E nH �s F nH, itfollows that F nH a=)sF 0 nH and E 0 nH �s F 0 nH. Hene, sine a 62 H,F a=)sF 0, i.e., by De�nition 3.1, F a,!sF 0. Moreover, sine property (1) ispersistent, F 0 satisfy (1) and thus, by de�nition of S, (E 0 nH;F 0) 2 S.� F a! F 0 with a 62 H. Hene, F n H a! F 0 n H. From the hypothesis thatE nH �s F nH, it follows that E nH a=)sE 0 nH, i.e., by De�nition 3.1,E n H a,!sE 0 n H, and E 0 n H �s F 0 n H. Moreover, sine property (1) ispersistent, F 0 satisfy (1) and thus, by de�nition of S, (E 0 nH;F 0) 2 S.� F a! F 0 with a 2 H. Sine F satis�es property (1), there exists F 00 suh thatF ( ��!)sF 00 and F 0 nH �s F 00 nH. We distinguish three ases orrespondingto s = �, s = 0 and s = +.� Let s = �. From the hypothesis that E n H �� F n H, it follows thatE n H �̂=) E 0 nH, i.e., E nH a,!�E 0 nH and E 0 nH �� F 00 nH. Hene,by transitivity of ��, E 0 n H �� F 0 n H. Moreover, sine property (1) ispersistent, F 0 satis�es (1) and thus, by de�nition of S, (E 0 nH;F 0) 2 S.� Let s = 0. Sine F ( ��!)0F 00, we have that F � F 00 and thus F n H �0F 0 nH. From the hypothesis that E nH �0 F nH and transitivity of �0,it holds that E n H �0 F 0 n H. By de�nition of a,!s, E n H h,!0E n H.Moreover, sine property (1) is persistent, F 0 satis�es (1) and thus, byde�nition of S, (E nH;F 0) 2 S.� Let s = +. From the hypothesis that E n H �+ F n H, it follows thatE nH �=) E 0 nH, i.e., E nH h,!+E 0 nH and E 0 nH �+ F 00 nH. Hene,by transitivity of �+, E 0 nH �+ F 0 nH. Moreover, sine property (1) ispersistent, F 0 satis�es (1) and thus, by de�nition of S, (E 0 nH;F 0) 2 S.2 14



4 Strong BNDCThe property Strong BNDC (SBNDC, for short) has been introdued in [8℄ asa suÆient ondition for verifying BNDC. It just requires that before and afterevery high step, the system appears to be the same, from a low level perspe-tive. It has been proved to be stronger than SBSNNI (and thus P BNDC )and it has been de�ned as follows.De�nition 4.1 (SBNDC [8℄) Let E 2 E. E 2 SBNDC i� for all E 0 reah-able from E, if E 0 h! E 00, then E 0 nH � E 00 nH.As a onsequene of Proposition 3.7 item (4), we an immediately reognizethat SBNDC is de�ned as the lass of proesses satisfying the 0-unwindingondition, whih is obtained by instantiating s to 0 in De�nition 3.6. Thus, byProposition 3.8 we immediately obtain the relation among SBNDC, P BNDCand BNDC .Corollary 4.2 SBNDC � P BNDC � BNDC :By exploiting Theorem 3.10 we an provide a quanti�ation-free harateriza-tion of SBNDC as follows.Theorem 4.3 (SBNDC - Bisimulation) Let E 2 E be a proess. E 2SBNDC if and only if E �0nH E nH:Proof. Immediate by Proposition 3.7 item (4) and Theorem 3.10. 2This theorem shows that we an avoid the universal quanti�ation over all thepossible reahable states in the de�nition of SBNDC by de�ning a suitablebisimulation equivalene notion. This property is partiularly appealing sineit suggests the e�etive omputability of SBNDC.Example 4.4 Let us onsider the proess depited below, modelling the useof a shared resoure by a low level produer and an high level onsumer, i.e.,produe 2 L and onsume 2 H.R0 = produe:R1Ri = produe:Ri+1 + onsume:Ri�1 for i 2 [1; n� 1℄Rn = produe:Rn + onsume:Rn�1Note that the resoure has a maximum apaity of n and the low level produeation is ignored when suh a limit is reahed. This non-intuitive behavior isneeded in order to avoid a potential ow from high to low level. In partiular,15



if the low level produer ould observe when the resoure is full, this will beexploited to dedue how many high level onsume ations have been performed.It is easy to see that this proess is SBNDC by diretly applying De�nition 4.1.It is suÆient to observe that all the Rj states are equivalent when restritedon high level ations, as they may only perform a produe ation moving toanother restrited Rj0 . 2In [19℄ (see Theorem 4) it is proved that SBNDC is ompositional with respetto the parallel and restrition operators. It is easy to extend the omposition-ality result by showing that SBNDC is also ompositional with respet to lowlevel pre�x and relabelling.Proposition 4.5 Let E; F 2 E. If E; F 2 SBNDC, then� a:E 2 SBNDC, for all a 2 L [ f�g;� (EjF ) 2 SBNDC;� E n v 2 SBNDC, for all v � L;� E[f ℄ 2 SBNDC.Similarly to P BNDC also SBNDC is not ompositional with respet to thenondeterministi hoie operator. Let us reonsider Example 2.11: the samereasoning holds both for P BNDC and for SBNDC.Example 4.6 Consider the proesses E4 = h:0 with h 2 H and E5 = l:0with l 2 L. It is easy to see that both E4 and E5 are SBNDC but E4 + E5 isnot SBNDC. In fat E4 + E5 h! 0 while E4 + E5 ( �!)0 E4 + E5 = h:0 + l:0,but (h:0 + l:0) nH 6� 0. The problem lies in the fat that while the high levelation in E4 is safely simulated by a sequene of zero � in E4 nH, the samehigh level ation in E4 + E5 is not safely simulated by a sequene of zero �in (E4 + E5) n H due to the presene of the additional omponent E5. Thisproblem would not arise if h were be simulated by at least one � ation. Thisobservation will be exploited in the next setion to de�ne a fully ompositionalseurity property. 25 Progressing P BNDCIt is well-known that seurity properties are, in general, not preserved un-der omposition [11℄. We have seen in the previous setions that P BNDCand SBNDC are both non-ompositional with respet to the nondeterministihoie operator. However, ompositionality results are ruial for making thedevelopment of large and omplex systems feasible [13,39,40℄. In this setionwe show that by instantiating s to + in De�nition 3.4 one obtains a prop-16



erty whih is fully ompositional (i.e., it is ompositional also with respetto the nondeterministi hoie). We all suh a lass Progressing P BNDC(PP BNDC, for short). We de�ne it in terms of the bisimulation-like relation�+nH .De�nition 5.1 (PP BNDC - Bisimulation) Let E 2 E.E 2 PP BNDC i� E �+nH E nH:By exploiting Theorem 3.10, PP BNDC an be haraterized also by an un-winding ondition.Theorem 5.2 (PP BNDC - Unwinding) Let E 2 E. E 2 PP BNDC i�for all E 0 reahable from E, if E 0 h! E 00 then E 0 �=) E 000 and E 00nH �+ E 000nH.Proof. Immediate by Theorem 3.10 and the fat that ( �!)+ and �=) oin-ide. 2In [1℄ and [41℄ a similar unwinding ondition is introdued where weak bisim-ulation is used instead of �+. The seurity property so de�ned is alled5 CP BNDC . Sine E �+ F implies E � F , PP BNDC � CP BNDC .By Proposition 3.8 we immediately obtain the relation between PP BNDC,P BNDC and BNDC .Corollary 5.3 PP BNDC � CP BNDC � P BNDC � BNDC:Notie that neither SBNDC implies PP BNDC nor PP BNDC implies SB-NDC. For example, proess h:0 is SBNDC but it is not PP BNDC, as no �transitions simulate the high level h. On the other hand, the proess E �h:0 + l:0 + �:0 is PP BNDC but not SBNDC. In fat E 6�0nH E n H sineE h! 0 but E n H is not weak bisimilar to 0. However, there are proesseswhih are both SBNDC and PP BNDC, e.g., proesses whih perform onlylow level ations. To be more preise, by putting together the two unwindingharaterizations, we an say that a proess E is both SBNDC and PP BNDCif and only if for all E 0 reahable from E, if E 0 h! E 00, then E 0 �=) E 000 andE 0 n H � E 00 n H �+ E 000 n H. Consider for instane E � h:0 + �:0. Thesituation is summarized in Fig. 2. Notie that all the inlusions are strit.Example 5.4 Consider the proess C (hannel) desribed through a value-passing extension of SPA by:5 Note that in [1℄ the name CP BNDC has been erroneously introdued by usinga bisimulation-like relation 17



C = in(x):(out(x):C + �:C):C may aept a value x at the left-hand port, labelled in. When it holds avalue, it either delivers it at the right-hand port, labelled out, or resets itselfperforming an internal transition.If the domain of x is f0; 1g, then the hannel C an be translated into SPA ina standard way by following [37℄ as:C = in0:(out0:C + �:C) + in1:(out1:C + �:C):Let us assume that C is used as ommuniation hannel from low to high level.This an be expressed as in0; in1 2 L and out0; out1 2 H. Sine, in orrespon-dene of eah high level ation (out0; out1) there is a � transition leading to thesame state, by Theorem 5.2 we an onlude that C is PP BNDC. The � tran-sitions basially makes the hannel a lossy one, as high level outputs may benon-deterministially lost. However, note that non-determinism is used to ab-strat away implementation details. For example, suh � 's ould orrespond,at implementation time, to time-outs for the high level output ations, i.e.,events that empty the hannel and allow a new low level input, whenever highoutputs are not aepted within a ertain amount of time. Analogously, it ispossible to see that C is also SBNDC. Note that proess C 0 = in(x):out(x):C 0with no � 's is neither PP BNDC nor SBNDC. Indeed, a high level user mayblok and unblok C 0 in order to transmit information to low level user. 2Exploiting the unwinding haraterization we are now ready to prove thatPP BNDC is ompositional with respet to the nondeterministi hoie oper-ator. This is a onsequene of the fat that �+ oinides with the notion ofprogressing bisimulation introdued by Montanari and Sassone in [38℄ whih isfully ompositional. Notie that an analogous result holds also for CP BNDCas proved in [1℄.Proposition 5.5 Let E; F 2 E. If E; F 2 PP BNDC, then� a:E 2 PP BNDC, for all a 2 L [ f�g;� (E + F ) 2 PP BNDC;� (EjF ) 2 PP BNDC;� E n v 2 PP BNDC, for all v � L;� E[f ℄ 2 PP BNDC.Proof. We show only the ase (E + F ), sine the other ases are similar tothe ones of Theorem 4 in [19℄. Let E; F 2 PP BNDC . By Theorem 5.2, it issuÆient to show that 18



(1) 8G reahable fromE+F , ifG h! G0 then G �=) G00 andG0nH �+ G00nH.Aording to the operational semantis of the nondeterministi hoie op-erator, G an be either a proess reahable from E or a proess reahablefrom F or the proess E + F itself. In the �rst two ases, the fat G sat-isfy (1) follows from the hypothesis that both E and F 2 PP BNDC . Sup-pose that E + F h! G0. Then E h! G0 or F h! G0. Again, sine bothE and F 2 PP BNDC , we have that E �=) G00 (resp. F �=) G00) andG0 n H �+ G00 n H. Hene E + F �=) G00 and G0 n H �+ G0 n H satisfy-ing (1). 26 Automati Veri�ation and its ComplexityIn this setion we present two methods to determine whether E �snH E nH, inthe ase that E is a �nite-state proess. Spei�ally, we takle the problem ofproving E �snH F , when E and F are �nite-state proesses. The �rst methodonsists of assoiating to any proess E a modal �-alulus formula ��snHEsuh that F satis�es ��snHE if and only if E �snH F . This method is obtainedby applying the tehnique presented in [27℄. The seond method onsists oftransforming the LTS's of E and F into two LTS's that are strongly bisimilarif and only if E �snH F . The �rst method has the advantage that it diretlyexploits already existing model hekers for the �-alulus. Unfortunately, ithas an exponential time omplexity with respet to the size of the LTS's of Eand F . On the other hand, the seond method requires the implementationof some ad-ho transformations of the LTS's, but it has a polynomial timeomplexity.6.1 Charateristi FormulaeThe modal �-alulus [29℄ is a small, yet expressive proess logi. We on-sider modal positive �-alulus formulae onstruted aording to the follow-ing grammar:� ::= true j false j �1 ^ �2 j �1 _ �2 j hai� j [a℄� j X j �X:� j �X:�where X ranges over an in�nite set of variables and a over a set of ationsAt . The �xpoint operators �X and �X bind the respetive variable X andwe adopt the usual notion of losed formula. Notie that we give a syntaxwithout using the negation operator : or impliation, i.e., we onsider onlyformulae in positive normal form (see [29℄).19



Modal �-alulus positive formulae are interpreted over proesses, whih aremodelled by LTS's. Let E be a proess and LTS(E) = (SE; E;At ;!). Anenvironment is a partial mapping � : Var ! 2SE whih interprets variables bysubsets of SE. Given a formula � and an environment � de�ned on all the freevariables of �, the set of proesses that satisfy � with respet to �, denotedby ME(�)(�), is de�ned 6 in Fig. 3.Intuitively, true (false) holds for all (no) states; ^ and _ are interpreted byonjuntion and disjuntion; hai� holds in a state E 0 2 SE if there is a state E 00reahable from E 0 with an ation a whih satis�es �; and [a℄� holds for E 0 if allstates E 00 reahable from E 0 with an ation a satisfy �. The interpretation of avariableX is as presribed by the environment. The formula �X:�, alled least�xpoint formula, is interpreted by the smallest subset x of SE whih interprets�X:� when the environment assoiates x to X. Similarly, �X:�, alled greatest�xpoint formula, is interpreted by the largest suh set.The set of proesses satisfying a losed formula � is Pro(�) = fF j F 2MF (�)g.We onsider also equation systems of modal �-alulus formulae in the formEqn : X1 = �1; : : : ; Xn = �nwhere X1; : : : ; Xn are mutually distint variables and �1; : : : ; �n are modal�-alulus formulae having at most X1; : : : ; Xn as free variables.An environment � : fX1; : : : ; Xng ! 2SE is a solution of an equation systemEqn, if �(Xi) = ME(�i)(�), for all i = 1; : : : ; n. By ordering environments de-�ned on the same set fX1; : : : ; Xng of variables with respet to omponentwiseinlusion: �1 � �2 () �1(Xi) � �2(Xi); i = 1; : : : ; n;we an determine the greatest of suh solutions, whih we denote byME(Eqn).It interprets an equation system on the proesses reahable from a given pro-ess E.We an assoiate a set of proesses to an equation system by saying that aproess satis�es an equation system Eqn if it belongs to the greatest solutionof the �rst equation. Thus the set of proesses satisfying the system Eqn isPro(Eqn) = fF j F 2MF (Eqn)(X1)g.In order do derive a harateristi formula for a proess E and a given property,we follow the approah desribed by M�uller-Olm in [27℄ where he shows how to6 Given a set x � SE and a variable X, we write �[x=X℄ for the environment thatmaps X to x and any other variable Y 6= X into �(Y ).20



derive �-alulus formulae haraterizing �nite state proesses up to strong orweak bisimulation diretly from the greatest �x-point haraterization of thebisimulation relation. As pointed out in [27℄ it is easy to extend the method todi�erent bisimulation-like relations. The method onsists in onstruting �rstan appropriate system of equations of �-alulus formulae and then a singleharateristi formula by applying semanti preserving transformation ruleson equation systems.Before introduing our systems of equations, for any formula �, any ation aand s 2 f�; 0;+g we de�ne the formulas hhaiis� and hhaiisnH� as follows:hhaiis� = 8><>: hhâii� if s = � or s = 0hhaii� if s = +where hh�̂ii� = �X:� _ h�iX , with X not in �, hhaii� = hh�̂iihaihh�̂ii� , and ifa 6= � , hhâii� = hhaii� .
hhaiisnH� = 8>>>>>>>><>>>>>>>>:

hhaiis� if a 62 Hhhaii� _ hh�̂ii� if s = � and a 2 Hhhaii� _ � if s = 0 and a 2 Hhhaii� _ hh�ii� if s = + and a 2 HThe operators hhaiisnH , hh�̂ii and hhaii model a,!s, �̂) and a), respetively, sinetheir semantis is given byME(hhaiisnH�)(�) = fE 0 j 9E 00 : E 0 a,!sE 00 ^ E 00 2ME(�)(�)g;ME(hh�̂ii�)(�) = fE 0 j 9E 00 : E 0 �̂=) E 00 ^ E 00 2ME(�)(�)g;ME(hhaii�)(�) = fE 0 j 9E 00 : E 0 a=) E 00 ^ E 00 2ME(�)(�)g:We onstrut a harateristi equation system as follows.De�nition 6.1 Let E be a �nite-state proess, SE = fE1; : : : ; Eng and E1 =E. For every Ei 2 SE we de�ne��snHEi = Va2At VEi a!EjhhaiisnHXEj^Va2At [a℄WEi a,!sEj XEj : 21



The harateristi equation system of the proess E is:Eqn�snHE : XE1 = ��snHE1 ; : : : ; XEn = ��snHEn :The formulae ��snHEi have been de�ned in suh a way that the largest solutionMF (Eqn�snHE ) of Eqn�snHE on an arbitrary proess F assoiates to the variablesXEi exatly the states Fj of F whih are s-weakly bisimilar up to H to Ei.This is formalized by the following theorem whose proof is omitted sine it isjust an instane of the analogous result in [27℄.Theorem 6.2 Let E; F be a �nite-state proess, Ei be reahable from E, Fj bereahable from F , and Eqn�snHE the harateristi equation system of De�nition6.1. Then Fj 2MF (Eqn�snHE )(XEi) i� Ei �snH Fj.Example 6.3 Consider the proess E2 of Example 2.3. The harateristiequation system of E2 is de�ned as follows:XE2 = hhliisnHXh:j:0 ^ hhliisnHX�:j:0+�:0^[l℄(Xh:j:0 _X�:j:0+�:0 _Xj:0 _X0) ^ [� ℄XE2 ^ [h℄XE2X�:j:0+�:0 = hh�iisnHXj:0 ^ hh�iisnHX0^[� ℄(X�:j:0+�:0 _X�:j:0 _Xj:0 _X�:0 _X0)^[h℄(X�:j:0+�:0 _X�:j:0 _Xj:0 _X�:0 _X0)X�:j:0 = hh�iisnHXj:0 ^ [� ℄(X�:j:0 _Xj:0) ^ [h℄(X�:j:0 _Xj:0)Xh:j:0 = hhhiisnHXj:0 ^ [� ℄Xh:j:0 ^ [h℄(Xh:j:0 _Xj:0)Xj:0 = hhjiisnHX0 ^ [h℄Xj:0 ^ [� ℄Xj:0 ^ [j℄X0X�:0 = hh�iisnHX0 ^ [� ℄(X�:0 _X0) ^ [h℄(X�:0 _X0)X0 = [h℄X0 ^ [� ℄X02Corollary 6.4 Pro(Eqn�snHE ) = fF j E �snH Fg:This result holds for all proesses F as Eqn�snHE does not depend on F .Charateristi formulae, i.e., single positive formulae haraterizing proessesan be onstruted by applying simple semantis-preserving transformationrules on equation systems as desribed in [27℄. We urge the reader to [27℄ for22



a detailed desription of suh rules whih reall Gaussian elimination proess.Let � be suh that Pro(Eqn) = Pro(�) (see [27℄), we obtain that:Theorem 6.5 For all �nite-state proesses E and s 2 f�; 0;+g there is amodal �-alulus formulae ��snHE suh that Pro(��snHE ) = fF j E �snH Fg:Using this method we an for instane exploit the model heker NCSU Con-urreny Workbenh ([30℄) to hek whether E �snH F . Unfortunately, in the�-alulus formula we obtain for a proess E there are both � and � op-erators (see [27℄). In the worst ase the number of � and � alternations in��snHE is 2jSEj + 1 (when LTS(E) has a unique strongly onneted ompo-nent) and in that ase the omplexity of model heking ��snHE on LTS(F ) isO(jSF j(2jSEj+1)=2) (see [42,43℄).This deidability result for s BNDC properties di�ers from the one provedby Martinelli in [22℄, even if the underline approah is very similar. Both ap-proahed onsider only �nite-state systems and are based on the onstrutionof harateristi formulae in modal �-alulus. But we onsider suÆient on-ditions for BNDC while Martinelli onsiders a neessary ondition for BNDC.In fat he restrits also the lass of attahers to �nite-state proesses.6.2 Strong BisimulationWe show now how to redue the problem of testing whether two proesses ares-weakly bisimilar up to H to a strong bisimulation problem.The next property follows from the de�nition of a,!s.Proposition 6.6 Let s 2 f�; 0;+g. A binary relation R � E � E over agentsis a s-weak bisimulation up to H if and only if (E; F ) 2 R implies, for alla 2 At1. if E a,!sE 0, there is F 0 2 E suh that F a,!sF 0 and (E 0; F 0) 2 R;2. if F a,!sF 0, there is E 0 2 E suh that E a,!sE 0 and (E 0; F 0) 2 R.Proof. ()). We prove that if R � E � E is a s-weak bisimulation up to H,and (E; F ) 2 R, then 1 . and 2 . hold for all a 2 At. We distinguish threeases.Case 1. a = � . In this ase E a,!sE 0 oinides with E �=) sE 0. The prooffollows by indution on the number m of � ations in E �=)sE 0. There aretwo di�erent base ases: m = 0 if s 6= +, and m = 1 if s = +. In the �rst aseE 0 = E and we an hoose F 0 = F . The seond ase is immediate by de�nition23



of s-weak bisimulation up to H. For the indutive step, let E �! E 00 �=)sE 0.Sine, (E; F ) 2 R, there exists F 00 2 E suh that F �=)sF 00 and (E 00; F 00) 2 R.By the indutive hypothesis, there exists F 0 2 E suh that F 00 �=)sF 0 and(E 0; F 0) 2 R. This proves the thesis sine F �=)sF 00 and F 00 �=)sF 0 impliesF �=)sF 0.Case 2. a 6= � and a 62 H. In this ase E a,!sE 0 oinides with E a=)sE 0 andthere exist E 00 suh that E �=)�E 00 a! E 000 �=)�E 0. By Case 1.1 above, thereexist �F 00 2 E suh that F �=)� �F 00 and (E 00; �F 00) 2 R. By De�nition 3.3 thereexists �F 000 2 E suh that �F 00 a,!s �F 000, i.e. �F 00 a=)sF 000, and (E 000; �F 000) 2 R. Againby Case 1.1 above, there exists F 0 2 E suh that �F 000 �=)�F 0 and (E 0; F 0) 2 R.This proves the thesis sine F �=)� �F 00 a=)s �F 000 �=)�F 0 implies F a=)sF 0.Case 3. a 2 H. In this ase E a,!sE 0 oinides either with E a=)sE 0 or withE( �!)sE 0. If E a=)sE 0 we proeed as for Case 2 above. If E( �!)sE 0 and s = �or s = + then ( �!)s oinides with �=)s and we proeed as for Case 1 above.Finally, if E �=)0E 0 then E 0 = E and we an hoose F 0 = F .
((). It is suÆient to observe that, by De�nition 3.1, E a! E 0 implies E a,!sE 0for eah E;E 0 2 E and a 2 At. 2A diret onsequene of this theorem is that two systems are s-weakly bisimilarup toH if and only if they are strongly bisimilar when in plae of the transitionrelations a! we onsider the transition relations a,!s.We an exploit this fat to determine whether E �snH E nH by: (i) translatingthe two labelled transition systems LTS(E) and LTS(E nH), into LTSsH(E)and LTSsH(E nH); (ii) omputing the largest strong bisimulation � betweenLTSsH(E) and LTSsH(E nH). More formally LTSsH(E) is:De�nition 6.7 (s-Closure up to H) Let E 2 E be a proess suh thatLTS(E) = (SE; E;At ;! ). The s-losure up to H of E is the rooted labelledtransition system LTSsH(E) = (SE; E;At ; ,!s).The notion of bisimulation on rooted labelled transition systems has been�rst introdued in the areas of modal logis (see [44℄) and non-well-foundedset theories (see [45℄). Two rooted labelled transition systems are stronglybisimilar when, starting from the two roots, eah step on the �rst transitionsystem an be simulated on the seond one and vie-versa.De�nition 6.8 (Strong Bisimulation on Rooted Labelled TransitionSystems) Let G1 = (S1; n1;At ; ,!1) and G2 = (S2; n2;At ; ,!2) be tworooted labelled transition systems. G1 and G2 are strong bisimilar, denoted byG1 � G2, if there exists a binary relation R � S1 � S1 suh that (n1; n2) 2 R24



Let E 2 E with LTS(E) = (SE; E;At ;!). The s-losure up to H of E,LTSsH(E) = (SE; E;At ; ,!s), is omputed as follows:(1) alulate ( �!)+ (transitive losure of �!) and ( �!)� (transitive and reex-ive losure of �!);(2) alulate part of a,!s as:(1) ( �!)�Æ a! Æ( �!)�, if a 6= � ;(2) ( �!)�, if a = � and s 6= +;(3) ( �!)+, if a = � and s = +;(3) alulate ( �!)s as(1) ( �!)�, if s = �;(2) ( �!)+, if s = +;(3) E 0 �!0 E 0, for eah E 0 2 SE, if s = 0;(4) for eah a 2 H and E 0; E 00 2 SE add E 0 a,!sE 00, every time E 0( �!)sE 00.and (n01; n02) 2 R implies, for all a 2 At� if n01 a,!1 n001, there is n002 2 S2 suh that n02 a,!2 n002 and (n001; n002) 2 R;� if n02 a,!2 n002, there is n001 2 S1 suh that n01 a,!1 n001 and (n001; n002) 2 R.The next result is an immediate onsequene of Proposition 6.6.Corollary 6.9 Let E; F 2 E. Then, E �snH F i� LTSsH(E) � LTSsH(F ):Now, our �rst problem is to ompute LTSsH(E) from LTS(E), using De�ni-tion 6.7. This an be immediately obtained with the following algorithm:Corretness of algorithm above is trivially obtained by observing that: if a 62 Hand a 6= � , then a,! s oinides with â=), step 2(1); if a 2 H, then a,! sis the union of â=) (whih oinides with a=) and with a=)s), step 2(1),and of ( �!)s, step 4; if a = � and s 6= +, then a,!s is ( �!)�, step 2(2); ifa = � and s = +, then a,!s is ( �!)+, step 2(3). As far as time and spaeomplexities are onerned, we notie that they depend on the algorithmsused for omputing the reexive and transitive losure and the ompositionof relations. We start by �xing some notations. Let n = jSEj be the numberof states in LTS(E), for eah a 2 At, let ma be the number of a! transitionsin LTS(E), and m = Pa2Atma. Similarly, let m̂a be the number of a,! stransitions in LTSsH(E), and m̂ = Pa2At m̂a.The next lemma shows that LTSsH(E) an be omputed in polynomial timewith respet to the number of nodes and edges in LTS(E).Lemma 6.10 Let s 2 f�; 0;+g. Algorithm 6.2 an be exeuted in timeO(nm̂� + nw) and spae O(n2), where w denotes the exponent in the run-ning time of the matrix multipliation algorithm used. If m̂ � n, then it is25



possible to work in time O(nm̂) and spae O(n).Proof. First of all we have to determine the transitive losure of �! (step1). The algorithm proposed in [46℄ omputes the transitive losure of a graphrepresented with adjaeny-lists in time O(m� + ne), where e is the numberof edges in the transitive losure of the graph of the strongly onneted om-ponents. Sine m� ; e � m̂� , an upper bound to the ost of the omputation of( �!)+ and ( �!)� is O(nm̂� ).Let us onsider the omputation of the omposition ( �!)�Æ a! Æ( �!)� for a 6= �(step 2(1)). Given two transition relations!1 and!2 on a set of n nodes, theproblem of determining the omposition!1 Æ !2 is known to be equivalent tothe n�n Boolean matrix multipliation problem (see [47℄). In partiular, if Aiis the adjaeny-matrix de�ned by!i, for i = 1; 2, then the adjaeny-matrixof!1 Æ !2 is the matrix A1 �A2. Hene, in our ase, we have to: (i) determinethe adjaeny-matrixes A�� and Aa assoiated to ( �!)� and a! respetively;(ii) ompute the produt (A�� � Aa) �A��; (iii) rebuild the adjaeny-list rep-resentation (in the omputation of the strong bisimulation it is important touse the adjaeny-list representation). Starting from the adjaeny-list rep-resentations of ( �!)� and a! in time O(n2) we obtain their adjaeny-matrixrepresentations A�� and Aa. The matrix produt (A�� �Aa) �A�� an be deter-mined in time O(n2:376) using twie the algorithm in [48℄. Then, again in timeO(n2), we rebuild the adjaeny-list representation. So, the global ost of theomputation of ( �!)�Æ a! Æ( �!)� is O(n2:376). We have to perform this stepone for eah a 2 L, assuming that jLj is a onstant with respet to n. Notiethat we ould work using only 2 matrix multipliations, instead of 2jLj matrixmultipliations, but in this ase we would have to use matrixes in whih eahelement is an array of length L of bits, hene also in this way it is not possibleto drop the assumption that jLj is a onstant with respet to n.The omplexity of the omputation of a,!s for a = � (steps 2(2) and 2(3)) hasalready been onsidered above (see step 1).Consider now the omputation of ( �!)s (step 3) and the addition of the edgesa,!s with a 2 H of step 4:� if s = 0, then the omputation onsists in the addition of all the aps withlabel a 2 H, hene it osts O(n) (we are assuming that jLj is a onstant);� if s 6= 0, then see the �rst part of this proof (step 1);Hene, we have desribed a proedure whih maps E into LTSsH(E) in timeO(nm̂� + nw) and spae O(n2), where w is the exponent in the running timeof the matrix multipliation algorithm used (w = 2:376 using [48℄).In the proedure just desribed we use the adjaeny-matrix representationto ompute the relation a! Æ( �!)�. If we know that m̂ � n, then using the26



adjaeny-list representation and a na��ve algorithm (two iterations of the na��vealgorithm for the transitive losure [47℄) we an perform this step in timeO(nm̂). Thus, when m̂ � n, we determine LTSsH(E) in time O(nm̂) andspae O(n+ m̂) = O(n). 2From the above lemma, sine LTS(E n H) and LTSsH(E n H) have at mostthe same size of LTS(E) and LTSsH(E), respetively, we obtain the followingomplexity result.Theorem 6.11 Let s 2 f0; �;+g. The test E �snH E nH an be performed intime O(nm̂� + nw + m̂ logn) and spae O(n2), where w denotes the exponentin the running time of the matrix multipliation algorithm used. 7 If m̂ � n,then it is possible to work in time O(nm̂) and spae O(n).Notie that in the omplexity result m̂ logn omes from the fat that we usethe algorithm by Paige and Tarjan ([31℄) to ompute the maximum bisimula-tion.Example 6.12 Consider again proess E2 = l:h:j:0 + l:(�:j:0 + �:0) of Ex-ample 2.3. In Fig. 4 we show LTS(E2) and LTS(E2 nH). By performing thelosure up to H (Algorithm 6.2) we obtain the transformed labelled transi-tion systems LTS�H(E2) and LTS�H(E2 nH) reported in Fig. 5. In partiular,the �rst step just adds the � -loops in every state; the seond one, adds twotransitions labelled with l orresponding to l:� and one transition labelled withj orresponding to �:j; �nally, step 4 adds a h-labelled transition every timethere is a � transition. The two transformed transition systems are not stronglybisimilar: the leftmost node after l in LTS�H(E2) is not bisimilar to any nodein LTS�H(E2nH), sine in LTS�H(E2nH) all the nodes are either \sink-nodes"(whih only exeutes � and h loops) or they have at least one outgoing edgewith label j or l. Indeed, that node in LTS�H(E2) may exeute only h and� ations and ould thus be simulated only by sink-nodes in LTS�H(E2 n H).However, di�erently from sink-nodes, after one h, it is also able to exeutea j. This proves that LTS�H(E2) 6� LTS�H((E2 n H)), thus, by Corollary 6.9,E2 62 P BNDC. 27 Related Works and ConlusionsIn this paper we study three persistent information ow seurity propertiesbased on the bisimulation semantis model. For these properties we providetwo haraterizations: one in terms of a bisimulation-like equivalene relation7 In the algorithm in [48℄, whih is at the moment the fastest in literature, we havethat w = 2:376. 27



and another one in terms of unwinding onditions.The �rst haraterization allows us to perform the veri�ation of the proper-ties for �nite state proesses in polynomial time with respet to the numberof states of the system, also improving on the polynomial time omplexityrequired by the Compositional Seurity Cheker (CoSeC) presented in [20℄.The seond haraterization is based on unwinding onditions. This kind ofonditions for possibilisti seurity properties have been already explored inmany works like, e.g., [49{51,25℄. However, suh unwinding onditions, havebeen all proposed for traes-based models and represent, in most of the ases,only suÆient onditions for their respetive seurity properties. Our workontributes signi�antly in this researh �eld, by proposing new unwindingonditions for bisimulation-based seurity properties, whih are both neessaryand suÆient.Moreover, unwinding gives new interesting perspetives on the haraterizedproperties, and is also useful for veri�ation. In [24℄ we show how unwindingonditions an be exploited for de�ning a proof system whih provides a veryeÆient tehnique for the veri�ation and the development of P BNDC seureproesses. Indeed, the proof system allows us to verify whether a proess isseure just by inspeting its syntax, and thus avoiding the state-explosionproblem. In partiular, it allows us to deal with reursive proesses whihmay perform unbounded sequenes of ations, possibly reahing an in�nitenumber of states. Moreover, the system allows us to build proesses whih areP BNDC by onstrution in an inremental way. Suh a proof system ouldbe easily adapted to deal with the PP BNDC and SBNDC properties studiedin this paper. In [52℄, Mantel shows how one an easily de�ne re�nementoperators whih preserve seurity, starting from unwinding onditions. In [1℄,we give some preliminary results about re�nement operators whih preservesour persistent seurity properties. This is the topi of our urrent researh.Finally, in this paper we also deal with ompositionality issues. The develop-ment of large and omplex systems strongly depends on the ability of dividingthe task of the system into subtasks that are solved by system omponents.Thus, it is essential to know how properties of the omponents behave underomposition. We show that P BNDC and SBNDC are ompositional withrespet to all the operators of SPA language, exept the non-deterministihoie. Moreover, we prove that the new property named PP BNDC is fullyompositional. Compositionality of possibilisti seurity properties has beenwidely studied in the literature. There are several information ow properties,based on the traes model, whih have been proved to be fully ompositionallike, e.g., restritiveness [11℄, forward orretability [53℄ or separability [13℄.In [13,39℄ it has been studied how to restrit omposition in order to preserveertain seurity properties whih are not preserved by (more general) om-28
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Fig. 5. The labelled transition systems LTS�H(E2) and LTS�H(E2 nH).34


