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Abstract. Given an undirected graph with positive weights on the vertices, the maximum
weight clique problem (MWCP) is to find a subset of mutually adjacent vertices (i.e., a clique) hav-
ing largest total weight. The problem is known to be NP -hard, even to approximate. Motivated
by a recent quadratic programming formulation, which generalizes an earlier remarkable result of
Motzkin and Straus, in this paper we propose a new framework for the MWCP based on the corre-
sponding linear complementarity problem (LCP). We show that, generically, all stationary points of
the MWCP quadratic program exhibit strict complementarity. Despite this regularity result, how-
ever, the LCP turns out to be inherently degenerate, and we find that Lemke’s well-known pivoting
method, equipped with standard degeneracy resolution strategies, yields unsatisfactory experimental
results. We exploit the degeneracy inherent in the problem to develop a variant of Lemke’s algorithm
which incorporates a new and effective “look-ahead” pivot rule. The resulting algorithm is tested
extensively on various instances of random as well as DIMACS benchmark graphs, and the results
obtained show the effectiveness of our method.
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1. Introduction. Given an undirected graph, the maximum clique problem
(MCP) consists of finding a subset of pairwise adjacent vertices (i.e., a clique) hav-
ing largest cardinality. The problem is known to be NP -hard for arbitrary graphs
and, according to recent theoretical results, so is the problem of approximating it
within a constant factor. An important generalization of the MCP arises when pos-
itive weights are associated to the vertices of the graph. In this case the problem
is known as the maximum weight clique problem (MWCP) and consists of finding a
clique in the graph which has largest total weight. (Note that the maximum weight
clique does not necessarily have largest cardinality.) It is clear that the classical un-
weighted version is a special case in which the weights assigned to the vertices are
all equal. As an obvious corollary, the MWCP has at least the same computational
complexity as its unweighted counterpart. The MWCP has important applications
in such fields as computer vision, pattern recognition, and robotics, where weighted
graphs are employed as a convenient means of representing high-level pictorial infor-
mation (see, e.g., [17, 28]). We refer to [4] for a recent review concerning algorithms,
applications, and complexity issues of this important problem.

Inspired by a classical result in graph theory contributed by Motzkin and Straus
[24], Gibbons et al. [13] have recently formulated the MWCP in terms of a standard
quadratic optimization problem (StQP), which consists of minimizing a quadratic form
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over the standard simplex [3]. As shown in [7], however, their original formulation
suffers from the presence of “spurious” solutions, namely, solutions of the continu-
ous problem that are not in one-to-one correspondence with solutions in the original
combinatorial problem. To avoid this drawback, in [3, 7] a new regularized quadratic
programming formulation is proposed in which local and global solutions are char-
acterized in terms of cliques of maximal and maximum weight, respectively, and no
spurious solutions exist. A further benefit of this modified formulation, as we will
show in this paper, is that generically all of its Karush–Kuhn–Tucker (KKT) points
exhibit strict complementarity. This is a regularity property which not only favors
numerical stability but also plays an important role in simplifying (second-order)
optimality conditions.

It is well known that KKT points of quadratic optimization problems with linear
constraints, like StQPs, can be characterized as the solutions of a linear complemen-
tarity problem (LCP), a class of inequality systems for which a rich theory and a large
number of algorithms have been developed [11]. Hence, once the MWCP is formu-
lated in terms of an StQP, the use of LCP algorithms naturally suggests itself, and
this is precisely the main idea proposed in the present paper. Among the many LCP
methods presented in the literature, pivoting procedures are widely used, and within
this class Lemke’s method is certainly the best known. Unfortunately, like other piv-
oting schemes, its finite convergence is guaranteed only for nondegenerate problems,
and ours is indeed degenerate. To avoid this drawback, we incorporated standard de-
generacy resolution strategies into Lemke’s “Scheme I” procedure and tested it over a
number of DIMACS benchmark graphs, but the computational results obtained were
rather discouraging. The inherent degeneracy of the problem, however, is beneficial
as it leaves freedom in choosing the blocking variable, and we exploit this property to
develop a variant of Lemke’s algorithm which uses a new and effective “look-ahead”
pivot rule. The procedure depends critically on the choice of a vertex in the graph
which identifies the second blocking variable in the pivoting process. Since there is
no obvious way to determine such a vertex in an optimal manner, we resort to iterat-
ing this procedure over most, if not all, vertices in the graph. Also, upon analyzing
the overall behavior of our heuristic, we obtain a number of invariants which are ex-
ploited to reduce the amount of data and the complexity of certain operations needed
to process the problem.

The paper is organized as follows. In section 2 we review and investigate the
reformulation of the MWCP as an StQP such that maximal cliques correspond to
local solutions, and vice versa. Further, we establish that, for an open and dense
set of weights, for a given graph all KKT points are strictly complementary. The
relevance of this property becomes even more obvious in light of the discussion of
second-order optimality conditions for StQPs, which we include for background in-
formation in an appendix. In the present context it is important to discriminate
between strict complementarity (as a sort of “geometric” regularity condition) and
the LCP degeneracy (which can be viewed as “algebraic”). The latter is shown to be
inherent in the LCPs emerging from our MWCP in section 3, where we also describe
our pivoting-based heuristic. Section 4 contains experimental findings. We test our
approach on unweighted DIMACS benchmark graphs and various types of randomly
generated weighted graphs. The results obtained show the effectiveness of our method
and its clear superiority compared to other continuous-based heuristics. It also com-
pares well with other state-of-the-art (non–continuous-based) heuristics presented in
the literature.
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2. Continuous formulation of the MWCP.

2.1. Basic theory. Let G = (V,E,w) be an arbitrary undirected and weighted
graph, where V = {1, . . . , n} is the vertex set and E ⊆ (

V
2

)
is the edge set,

(
V
2

)
denoting the system of all two-element subsets of V . Further, w ∈ R

n is the weight
vector, the ith component of which corresponds to the weight assigned to vertex i.
It is assumed that wi > 0 for all i ∈ V . Two distinct vertices i, j ∈ V are said to
be adjacent if they are connected by an edge, i.e., if {i, j} ∈ E. The neighborhood of
a vertex i will be indicated with N (i) = {j ∈ V : {i, j} ∈ E}, and its degree will be
deg (i) = |N (i)|, the cardinality of N (i). Given a subset of vertices S, the weight
assigned to S will be denoted by

W (S) =
∑
i∈S

wi.

As usual, the sum over the empty index set is defined to be zero.
A clique is a subset of V in which all vertices are pairwise adjacent. A clique S

is called maximal if no strict superset of S is a clique. A maximal weight clique S is
a clique which is not contained in any other clique having weight larger than W (S).
Since we are assuming that all weights are positive, it is clear that the concepts of
maximal and maximal weight clique coincide; hence we shall not make any distinction
between these throughout the paper. A maximum cardinality clique (or, simply, a
maximum clique) is a clique whose cardinality is the largest possible. The maximum
size of a clique in G is called the clique number (of G) and is denoted by ω (G). A
maximum weight clique is a clique having largest total weight, and the maximum
weight clique problem (MWCP) is the problem of finding such a clique. The weighted
clique number of G, denoted by ω (G,w), is the maximum weight of a clique in G.

Let G = (V,E) be an undirected (unweighted) graph, and let ∆ denote the
standard simplex in the n-dimensional Euclidean space R

n:

∆ =
{
x ∈ R

n : xi ≥ 0 for all i ∈ V, eTx = 1
}
,

where e is a vector of appropriate length, consisting of unit entries. (Hence eTx =∑
i∈V xi.) We will also denote by ei the ith column of the n× n identity matrix In.

Now consider the following quadratic function, which is sometimes called the
Lagrangian of G:

g(x) = xTAGx =
∑

{i,j}∈E

xixj ,

where AG = (aij)i,j∈V is the adjacency matrix of G—i.e., aij = 1 if {i, j} ∈ E, and

aij = 0 if {i, j} /∈ E—and let x∗ be a global maximizer of g in ∆. Motzkin and
Straus [24] showed that the clique number ω (G) of G is related to g(x∗) according to
the following formula:

ω (G) =
1

1− g(x∗)
.

Additionally, they proved that a subset of vertices S is a maximum clique of G if and
only if its characteristic vector xS , which is the vector in ∆ defined by xSi = 1/ |S| if
i ∈ S and xSi = 0 otherwise, is a global maximizer of g in ∆.1

1Actually, in their original paper, Motzkin and Straus proved just the “only if” part of this
theorem. The converse direction is, however, a straightforward consequence of their result [27].
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Gibbons et al. [13] have generalized the Motzkin–Straus theorem to the weighted
case. Given a weighted graph G = (V,E,w), they introduced the concept of the
weighted characteristic vector xS,w ∈ ∆ for a given vertex-set S ⊆ V , whose coordi-
nates are

xS,wi =

{ wi

W (S) if i ∈ S ,
0 otherwise.

Using a proof technique suggested by Lovász, they reformulated the Motzkin–Straus
problem as a minimization problem and extended the correspondence between global
minimizers that have the form of weighted characteristic vectors and the maximum
weight cliques of G. Their results were proved over a whole class of matrices, rather
than just a single matrix as in the original Motzkin–Straus formulation. Of course,
both the latter and the matrix class considered in [13] depend on G.

However, the formulation of Gibbons et al. has a major drawback which, as in
the unweighted case [27], relates to the presence of “spurious” solutions, i.e., local
or global solutions that are not in the form of weighted characteristic vectors xS,w

for some subset S of vertices. (See [7] for an in-depth study on this topic.) Even
though in certain specific circumstances such solutions may provide useful information
concerning the structure of the underlying graph, computationally they represent a
nuisance, for we cannot extract the vertices comprising the clique directly from them;
they just provide information about the weighted clique number.

This problem is solved in [3] by considering the matrix QG = [qij ]i,j∈V×V defined
as

qij =




1
2wi

if i = j,

0 if {i, j} ∈ E,
1

2wi
+ 1

2wj
otherwise

(1)

and investigating the StQP

minimize f(x)
subject to x ∈ ∆

(2)

with

f(x) = xTQGx.(3)

Indeed, a whole class of matrices serves the same purpose again; this class, of course,
differs from that used in [13].

The following theorem proved in [3] summarizes the result around which our work
is centered.

Theorem 2.1. Let G = (V,E,w) be an arbitrary graph with positive weight
vector w ∈ R

n, and consider problem (2). Then the following assertions hold.

• A vector x ∈ ∆ is a local solution of (2) if and only if x = xS,w, where S is
a maximal clique of G.
• A vector x ∈ ∆ is a global solution of (2) if and only if x = xS,w, where S is
a maximum weight clique of G.

Moreover, all solutions of (2) are strict.
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2.2. From KKT points to maximal cliques. It is a simple exercise to show
that the KKT first-order optimality conditions for a point x ∈ ∆ in program (2), with
a general symmetric n× n matrix Q in place of QG, can be written as

(Qx)i

{
= λ if xi > 0,
≥ λ if xi = 0,

(4)

for some real-valued constant λ.
Of course, a KKT point is not necessarily a local solution of (2), and hence a

maximal clique of G, but in light of (4) it is possible to derive some useful properties
that virtually eliminate the need to guarantee local optimality and give direct methods
to attain it once a KKT point is available. For x ∈ ∆, let us denote by

S(x) = {i ∈ V : xi > 0}
the support of x.

Theorem 2.2. Let G = (V,E,w) be a weighted graph and x a KKT point of (2).
If C = S(x) is a clique of G, then C is a maximal clique.

Proof. If C = S(x) is a nonmaximal clique, then there exists a k /∈ C such that
(i, k) ∈ E for all i ∈ C. For such a k we have

(QGx)k =
∑
j∈C

qkjxj = 0.

On the other hand, for any i ∈ C, we have

(QGx)i =
∑
j∈C

qijxj = qiixi > 0,

which contradicts the hypothesis that x is a KKT point for (2).
The practical significance of Theorem 2.2 reveals itself in large graphs: Even if

these are quite dense, cliques are usually much smaller than the graph itself. Now
suppose we are returned a KKT point x by some method. Then we set C = S(x) and
check whether or not C is a clique. This requires O(s2) steps if C contains s vertices,
while checking whether this clique is maximal would require O(sn) steps and, as
stressed above, usually s � n. But Theorem 2.2 now guarantees that the obtained
clique C (if it is one) must automatically be maximal, and thus we are spared from
trying to add external vertices. But how should one behave in the case of a nonclique
KKT point? The answer is to be found in part of the proof of Theorem 5 in [13] and
is summarized in the following result.

Theorem 2.3. Let G = (V,E,w) be a weighted graph and x a KKT point of
(2) with support C = S(x). If i, j ∈ V are two nonadjacent vertices of C, then
xδ = x + δ (ei − ej) improves the objective function f of (2); i.e., f(xδ) < f(x) for
any 0 < δ ≤ xj.

Proof. From the symmetry of QG, we have

f(xδ) = (x+ δ (ei − ej))T QG (x+ δ (ei − ej))
= xTQGx+ 2δ (ei − ej)T QGx+ δ2 (ei − ej)T QG (ei − ej) .

Since x is a KKT point, the second term is null, and hence

f(xδ) = f(x) + δ2 (qii + qjj − 2qij) .
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But {i, j} /∈ E implies that qii + qjj − 2qij < 0, and this concludes the proof.
Once a KKT point has been obtained by some method, the most effective way to

use Theorem 2.3 is to check for pairs {i, j} /∈ E with {i, j} ⊆ C. If there are none,
C is a clique and hence a maximal clique. Otherwise, choose any pair of nonadjacent
vertices in C and construct a new “better” point as described in Theorem 2.3. The
proof of the theorem also provides us with a criterion to determine the best such
points, namely, the one which minimizes x2

j (qii + qjj − 2qij). This can be done very

quickly in O ((
m
2

))
time, where m = |C|.

Clearly, the new improved point does not necessarily correspond to a (maximal)
clique, but by iterating this procedure, as suggested in [20] for the unweighted case,
we can readily obtain one. Alternatively, and more interestingly, one can give the
new improved point as input to any gradient-based technique. These are typically
very efficient in terms of computation time and can be quite effective if kick-started
from within a close range to a good suboptimal solution. An example of such tech-
niques is given by the so-called replicator dynamics, a class of dynamical systems
developed and studied in evolutionary game theory [15]. We refer to [26] for a recent
review concerning the application of these dynamics to combinatorial optimization,
and to [22, 23] for independent connections between this kind of dynamical equations
and LCPs.

2.3. Strict complementarity is generic. We close this section by establishing
easy-to-check regularity conditions for the StQP (2) based on the matrix QG, which
ensure the strict complementarity of all KKT points of this StQP. It turns out that,
when we fix the discrete structure (V,E) of the graph in an arbitrary way, strict
complementarity holds for a set of weights w that is an open and dense subset of the
positive orthant R

n
+. Recall that a KKT point x satisfies the strict complementarity

condition for the StQP (2), with a general symmetric n× n matrix Q in place of QG,
if and only if all Lagrange multipliers are strictly positive: λi > 0 for all i ∈ V \S(x),
where λi = (Qx)i − λ from (4).

We now characterize strict complementarity and establish easy-to-check sufficient
conditions.

Theorem 2.4. Let x ∈ ∆ be a KKT point for (2), and again set S(x) = {i ∈ V :
xi > 0} as well as T (x) = {i ∈ V : (Qx)i = xTQx}. Then S(x) ⊆ T (x). Further, the
following assertions are equivalent:

(a) S(x) = T (x) (which in particular holds true if S(x) = V );
(b) x satisfies the strict complementarity condition.

Both conditions are met if for all i ∈ V \ S(x) the matrices

QS(x)(i) = [qkj − qij ](k,j)∈S(x)×S(x)

are nonsingular.
Proof. The inclusion S(x) ⊆ T (x) is nothing other than (4); indeed, it easily

follows that λ = xTQx. Further, we also get 0 ≤ λi = (Qx)i−λ = (Qx)i−xTQx, from
which the equivalence of (a) and (b) is immediate. Finally, suppose that there is an
index i ∈ T (x)\S(x) ⊆ V \S(x). Then we get QS(x)(i)xS(x) = [(Qx)k−(Qx)i]k∈S(x) =
o while xS(x) = [xk]k∈S(x) �= o, contradicting the assumption.

Now we are ready to establish the main result for matrix Q = QG used in the
MWCP treatment; for almost all weights w in a given graph G, every KKT point has
this property. We also specify simple explicit sufficient conditions which guarantee
this.
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Theorem 2.5. Let G = (V,E,w) be a weighted graph and suppose that w = µz,
where µ > 0 and zi > 0 are odd integers for all i ∈ V . Then, regardless of the
structure of G, all the matrices QS(x)(i) originating from the matrix Q = QG are
nonsingular, and hence all KKT points x for (2) satisfy strict complementarity.

Further, the set of all weights such that the nonsingularity condition (and thus
strict complementarity) holds is open and dense in R

n
+.

Proof. As is easily seen, the entries of QS(x)(i) all are sums of two terms belonging

to the set {0,± 1
2wj

: j ∈ V }. Hence multiplication of the weights wj by a common

factor µ does not alter any aspect of the assertion. Thus the result holds for all µ,
given that we establish it for a special value of it, e.g., for µ = [2

∏
i∈V zi]

−1. But then
QS(x)(i) has odd integer diagonal entries while all other entries are even integers. Thus
the determinant is an odd number, whence it follows that QS(x)(i) is nonsingular.
Turning to the genericness assertion, openness is clear from the continuity of the
determinant, while denseness follows from an approximation argument; indeed, every
positive w can be arbitrarily well approximated by a vector with positive rational
entries ni/d, where ni and d are positive integers. Next choose an integer K large
enough such that these ratios ni/d in turn are close to w̃i = µ(2Kni + 1) with
µ = [2Kd]−1. Now w̃ satisfies the first condition of the theorem, and the result
follows.

Note that the result applies particularly to the nonweighted case; in fact, w = e
satisfies the first condition in the above theorem.

In spite of these results, namely, that this “geometric” form of degeneracy is
highly unlikely, we will see in the next section that a sort of “algebraic” degeneracy is
inherent to the problem class considered here. To promote the flow of the argument,
we defer to an appendix a discussion of further aspects of strict complementarity in
relation to the optimality condition.

3. Complementary pivoting.

3.1. Lemke’s method. The KKT points of (2) can be computed by solving the
LCP (qG,MG), which is the problem of finding a vector x satisfying the system

y = qG +MGx ≥ 0, x ≥ 0, xT y = 0,(5)

where

qG =




0
...
0
−1
1


 , MG =


 QG −e e
eT 0 0
−eT 0 0


 ,(6)

and QG is as in (1). With the above definitions, it is well known that if z is a
complementary solution of (qG,MG) with zT = [xT , yT ] and x ∈ R

n, then x is a
KKT point of (2). Note that QG is strictly R

n
+-copositive; hence so is MG, and this

is sufficient to ensure that (qG,MG) always has a solution—see the fundamental book
[11], where a large number of LCP algorithms can also be found. The most popular
among them is probably Lemke’s method, largely for its ability to provide a solution
for several matrix classes. Lemke’s “Scheme I” belongs to the family of pivoting
algorithms. Given the generic LCP (q,M), it deals with the augmented problem
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(q, d,M) defined by

y = q + [M,d]

[
x
θ

]
≥ 0, θ ≥ 0, x ≥ 0, xT y = 0.(7)

Vector d is called the covering vector and must satisfy di > 0 whenever qi < 0. A
solution of (q, d,M) with θ = 0 promptly yields a solution for (q,M), and Lemke’s
method intends to compute precisely such a solution. We refer to [11] for a detailed
description of Lemke’s algorithm. In our implementation we chose d = e, as our
problem does not expose peculiarities that would justify a deviation from this common
practice.

Assuming the nondegeneracy of the LCP is a strategy commonly taken to prove
the finiteness of pivoting schemes. In particular, Lemke’s method is guaranteed to
process any nondegenerate problem (q,M), where M is strictly R

n
+-copositive, and to

do so without terminating on a secondary ray [11].

Unfortunately (qG,MG) is degenerate, but it is possible to give an equivalent
formulation of (2) in order to obtain a nondegenerate LCP. To this end, it is easy to
see that program (2) is equivalent to the following program:

minimize xT Q̂Gx+ cTx
subject to x ∈ ∆,

where c ∈ R
n and Q̂G = QG −

(
ceT + ecT

)
. If c ≤ 0, then copositivity is maintained,

and if all its entries are different, then the corresponding LCP is nondegenerate.
Furthermore, if ci ≤ −1 for some i, it is straightforward to check that even the first
pivot step of Lemke’s method changes.

The above method for degeneracy removal has a characteristic in common with the
lexicographic degeneracy resolution method (LDR) [11]. Namely, they both require
the introduction of extra data: vector c in the previous case, and a nonsingular square
matrix as big asM with lexicographically positive rows in the case of LDR. Of course,
these objects have to be assigned values and there are myriads of sensible methods for
doing so, each one having a different theoretical ground and/or performance impact
on the final result.

We report in Tables 1 and 2 (column LDR) the results obtained on the DIMACS
benchmark graphs (see subsection 4.1) by running Lemke’s “Scheme I” with LDR,
using the identity matrix as extra data. Their order, density, and clique number are
shown in columns Order, Density, and ω, respectively. A complete description of
the table can be found in subsection 4.1. It is clear to see that in all but the most
trivial cases LDR performs poorly, although it is extremely fast. The tendency of
the previously discussed degeneracy treatment methods is that they lead to inefficient
local minimizers, i.e., to maximal cliques of small size.

3.2. A pivoting-based heuristic. Rather than continuing to investigate the
enormous variety of assignment techniques for removing degeneracy mentioned in the
previous subsection, we focused on examining the original degenerate form of the LCP
(qG,MG). Such degeneracy even turns out to be beneficial for performance, since
it permits freedom in choosing the blocking variable within a successful variant of
Lemke’s method. This is opposed to the nondegenerate version of the latter method,
in which those variables are uniquely determined. This is the topic of the present
subsection.
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As is customary, we will use an exponent for the problem data and, to make
notations simpler, we will omit subscripts indicating the dependence on graph G.
Hence, qν and Mν will identify the situation after ν pivots, and Qν will indicate the
n × n leading principal submatrix of Mν . Consistently, yν and xν will indicate the
vectors of basic and nonbasic variables, respectively, each made up of a combination of
the original xi and yi variables. The notation

〈
xνi , y

ν
j

〉
will be used to indicate pivoting

transformations. The index set of the basic variables that satisfy the min-ratio test
at iteration ν will be denoted with Ων , i.e.,

Ων = arg min
i

{−qνi
mν

is

: mν
is < 0

}
,

where s is the index of the driving column. Also, in what follows, the auxiliary
column that contains the covering vector d in (7) will be referred to as the column
n+3 of matrixM =MG. The nondegeneracy assumption basically amounts to having
|Ων | = 1 for all ν, thereby excluding any cycling behavior.

Here we employ the least-index rule, which amounts to blocking the driving vari-
able with a basic one that has minimum index within a certain subset of Ων , i.e.,
r = min Φν for some Φν ⊆ Ων . The set Φν is chosen in order to make the number of
degenerate variables decrease as slowly as possible, i.e., among the index-set

Φν = arg min
i

{|Ων | − ∣∣Ων+1
i

∣∣ > 0 : i ∈ Ων
} ⊆ Ων ,

where Ων+1
i is the index-set of those variables that would satisfy the min-ratio test at

iteration ν + 1 if the driving variable at iteration ν were blocked with yνi as i ∈ Ων .
The previous conditional implies that a pivot step is taken and then reset in a sort of
“look-ahead” fashion; hence we will refer to this rule as the look-ahead (pivot) rule.

Before actually proceeding to illustrate a variant of Lemke’s algorithm applied to
the MWCP, let us take a look at the tableaus that it generates. This will help us
to identify regularities that are reflected in the behavior of the algorithm itself. The
initial tableau follows:

q x1 · · · xn xn+1 xn+2 θ
y1 0 −1 1 1
...

... QG

...
...

...
yn 0 −1 1 1
yn+1 −1 1 · · · 1 0 0 1
yn+2 1 −1 · · · −1 0 0 1

.(8)

As qn+1 is the only negative entry for the column of q, the first pivot to occur during
initialization is 〈yn+1, θ〉, thereby producing the following transformation:

q x1 · · · xn xn+1 xn+2 yn+1

y1 1 −1 1 1
...

... QG − eeT
...

...
...

yn 1 −1 1 1
θ 1 −1 · · · −1 0 0 1
yn+2 2 −2 · · · −2 0 0 1

.(9)

The driving variable for the second pivot is xn+1. Since m1
i,n+1 = −1 for all i =

1, . . . , n, it is clear to see that the relative blocking variable can be any one of
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Algorithm 3.1. Lemke’s “Scheme I” with the “look-ahead” rule applied
to the MWCP.

Input: A graph G = (V,E,w) and p ∈ V .
Let (qG, e,MG) be the augmented LCP, where qG and MG are defined in (6).
ν ← 0, perform 〈yn+1, θ〉 and 〈yp, xn+1〉.
The driving variable is xp.
Infinite loop

ν ← ν + 1.
Let xνs denote the driving variable.
Ων = arg mini{−qνi /mν

is : mν
is < 0}.

If |Ων | = 1, then r = min Ων ;
else Φν = arg mini{|Ων | − |Ων+1

i | > 0 : i ∈ Ων}, r = min Φν .
Perform 〈yνr , xνs 〉.
If yνr ≡ θ, then:

Let x denote the complementary solution of (qG,MG) found.
The result is supp (x) ∩ V .

The new driving variable is the variable complementary to yνr .

y1, . . . , yn. In this case we apply no degeneracy resolution criterion but rather allow
for user intervention by catering for the possibility of deciding the second blocking
variable a priori. Thus let yp be the (arbitrary) variable that shall block xn+1. After
performing 〈yp, xn+1〉, we have the following tableau:

q x1 · · · xn yp xn+2 yn+1

y1 0 1 0 0
...

...
...

...
...

yp−1 0 1 0 0
xn+1 1 Qp −1 1 1
yp+1 0 1 0 0

...
...

...
...

...
yn 0 1 0 0
θ 1 −1 · · · −1 0 0 1
yn+2 2 −2 · · · −2 0 0 1

,(10)

where Qp denotes the matrix whose rows are defined as

(Qp)i =

{
(QG)p − eT if i = p,

(QG)i − (QG)p , otherwise.

Algorithm 3.1 formalizes the above statements. We now introduce a number of
invariants aimed at reducing the size of the data required by the process and the
complexity of certain operations.

Proposition 3.1. Within Algorithm 3.1, after the first pivot and as long as none
occurs within the last 2 rows of Mν , the ratios mν

n+1,j/m
ν
n+2,j = qνn+1/q

ν
n+2 = 1

2 for
j = 1, . . . , n do not change.

Proof. The proof is elementary by the definition of pivot operation and the
structure of tableau (9).

Corollary 3.2. In Algorithm 3.1, in the event that after ν pivot operations the
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whole driving column of Qν be nonnegative, the schema will pivot on the row of θ and
terminate.

Proof. The proof follows immediately from the fact that termination on the
secondary ray cannot occur, and from Proposition 3.1.

Proposition 3.3. After 2 pivot operations within Algorithm 3.1, the columns of
q, xn+2, yn+1 do not change as long as no pivot is performed on the rows of xn+1, θ,
or yn+2.

Proof. The proof follows from tableau (10), observing that the hypothesis implies
that either mν

is, m
ν
rj , or qνr is null when calculating the successive transforms of these

columns.

Corollary 3.4. After 2 pivot operations within Algorithm 3.1, if a pivot on
the row of xn+1 ≡ yνr occurs with xνs as the driving variable, then mν

i,s ≥ 0 for all
i = 1, . . . , r − 1, r + 1, . . . , n. Moreover, if mν

n+1,s < 0, then mν
n+1,s ≥ mν

r,s.

Proof. If there were other negative entries for i = 1, . . . , r − 1, r + 1, . . . , n for
Proposition 3.3, they would have a null ratio. On the other hand, the ratio for the
row of xn+1 is certainly positive. A similar argument proves the remaining part of
the corollary.

Proposition 3.5. After 2 pivot operations within Algorithm 3.1, pivoting on
the row of xn+1 ends the schema with the pivot sequence 〈xn+1, x

ν
s 〉, 〈yn+2, yn+1〉,

〈θ, xn+2〉.
Proof. After 〈xn+1, x

ν
s 〉, for Proposition 3.1 and Corollary 3.4 we have mν

i,n+2 =
mν

i,n+3 ≥ 0 for all i = 1, . . . , n. Corollary 3.4 yields mν
n+1,n+3 = 1 −mν

n+1,s/m
ν
r,s ≥

0, and this, together with the fact that no secondary ray termination can occur,
implies mν

n+2,n+3 < 0, thereby indicating 〈yn+2, yn+1〉 as the following pivot. Similar
arguments prove the remaining part of the proposition.

The above statements show that the x1, . . . , xn variables remain within the Qν

block for the whole duration of Algorithm 3.1. Furthermore, we do not need to
perform the terminal pivot sequence of Proposition 3.5 for, as soon as xn+1 blocks the
driving variable, we know which of the xi with i ∈ V will be basic, and that is enough
to compute the final clique. This is sufficient to derive that the rows and columns
associated with the simplex constraints and the covering vector are not needed to
process (qG,MG). On top of that, for Proposition 3.3 we can also discard the vector
q and reduce the min-ratio test to a mere negativity test. All these concepts are
formalized in Algorithm 3.2.

Empirical evidence indicated p as a key parameter for the quality of the final result
of Algorithm 3.2. Unfortunately we could not identify any effective means to restrict
the choice of values in V that can guarantee a good suboptimal solution. We thus had
to consider iterating for most, if not all, vertices of V as outlined in Algorithm 3.3.
Here we employ a very simple criterion to avoid considering those nodes that cannot
drive to larger cliques than the one we already have, because their weights and those
of their neighborhoods are too small. It is easy to comment that such a criterion is
effective only for very sparse graphs.

We also observed that the schema is sensitive to the ordering of nodes and found
that the best figures were obtained by reordering G by the decreasing weight of each
node and its neighborhood. This feature too is formalized in Algorithm 3.3. We will
refer to this scheme by the name pivoting-based heuristic (PBH).

Before concluding this section, it is worth mentioning the fact that we were not
able to prove that Algorithms 3.1 and 3.2 cannot terminate prematurely with an
empty Φν set, or to loop indefinitely with Ων being a singleton. However, neither
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Algorithm 3.2. A reduced version of Algorithm 3.1.

Input: A graph G = (V,E,w) and p ∈ V .
Let Qp = (qij). ν ← 2. K ← ∅.
The driving variable is xp.
Infinite loop

Let xνs denote the driving variable.
Ων = {i : qνis < 0}.
If Ων ⊆ {p}, stop: the result is K.
Φν = arg mini

{|Ων | − ∣∣Ων+1
i

∣∣ > 0 : i ∈ Ων
}

.
r = min Φν .
If yνr ≡ xi for some i, then K ← K \ {i} .
Perform 〈yνr , xνs 〉.
The new driving variable is the variable complementary to yνr .
ν ← ν + 1.
If yνr ≡ xi for some i, then K ← K ∪ {i}.

Algorithm 3.3. The pivoting-based heuristic (PBH) for the MWCP.

Input: A graph G = (V,E,w).
Let G′ = (V ′, E′, w′) be a permutation of G
with W (u′ ∪N (u′)) ≥W (v′ ∪N (v′)) for all u′, v′ ∈ V ′ with u′ < v′.
K� ← ∅.
For v′ = 1, . . . , n :W (v′ ∪N (v′)) > W (K�) do:

Run Algorithm 3.2 with G′ and v′ as input.
Let K be the obtained result.
If W (K) > W (K�), then K� ← K.

The result is the mapping of K� in G.

of these circumstances ever actually occurred in practice. Instead, for all the several
thousand graphs we tested them on, we observed that once an xi variable with i ∈ V
had entered the basis, it never exited it. In fact, if Algorithm 3.1 found a clique with
s nodes, it always performed exactly s + 3 pivot steps. This fact led us to consider
a simplified implementation of Algorithm 3.2 which was in fact used to produce the
results presented in the following section. This simplified version simply lacks the tests
to remove an x variable from the basis. A thorough empirical analysis has confirmed
that both the original and simplified versions of the algorithm behave identically.

Computing |Ων+1
i | can be done with O(n) time complexity, as only the driving

column is needed for this purpose, and a pivotal transformation takes O(n2) computa-
tions. This, together with our previous observation, gives us strong empirical evidence
that PBH is O(sn3), where s is the size of the clique found. Note, however, that it is
quite straightforward to parallelize the algorithm over n processors, thereby reducing
its time complexity to O(sn2). With respect to space complexity, our implementation
was O(n2), as we could not find better techniques than implementing tableau-style
pivoting.

4. Experimental results. To practically assess the effectiveness of the pro-
posed approach, we conducted a large number of experiments. First, we focused
on unweighted DIMACS graphs, which constitute a standard benchmark for clique-
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finding heuristics [19].2 Next, we considered various types of randomly generated
weighted graphs.

4.1. Unweighted DIMACS graphs. Tables 1 and 2 show the performance
figures obtained by running PBH (column PBH ) over a selection of DIMACS bench-
mark graphs. Their order, density, and clique number are reported in columns Order,
Density, and ω, respectively. The column marked with LDR lists the results per-
taining to Lemke’s method with the lexicographic degeneracy resolution criterion; see
subsection 3.1. Computing time (column Time) for LDR as well as PBH is in seconds
and refers to a C++ implementation for a Linux machine with a 655MHz Celeron
CPU (77MHz FSB × 8.5). Some figures are missing because the Unix clock system
call could not time periods longer than approximately 30 minutes on our test machine.

We compare our methods with three other heuristics based, as ours is, on the
Motzkin–Straus formulation. The first method considered is the continuous-based
heuristic (CBH) of Gibbons, Hearn, and Pardalos [12], which employs a parameter-
ized version of the original Motzkin–Straus program. The problem is divided into a
series of subproblems with the simplex constraints relaxed into spherical ones. Their
schema uses a combinatorial postprocessing phase to round the solutions produced
by a relaxation procedure that solves the subproblems.

The second algorithm is annealed replication (AR) [5]. It uses a different param-
eterized and unweighted maximization form of problem (2) that has xT (AG + αI)x
as objective function. The heuristic uses the replicator dynamics as a local search
technique and is based on a proper variation of α after a model similar to simulated
annealing, but it is motivated by more principled arguments.

The third method is the RD-algorithm (RD), a recent heuristic of Kuznetsova
and Strekalovsky [20]. They approach the approximate solution of the regularized
Motzkin–Straus (unweighted) program by splitting its objective function into two
convex terms, for which they obtain a set of global optimality conditions. At each
iteration their method improves upon a KKT point which is sought by some conven-
tional procedure.

Before commenting on the results presented in Tables 1 and 2, we note that LDR
performed very poorly in all but the most trivial instances, although it converged very
quickly. In fact, it is even worse than plain replicator dynamics, which are essentially
gradient-based procedures (see [6]).

The c-fat, Hamming, and Johnson graph categories are certainly those that have
proven most vulnerable to the different approaches. All methods, in fact, managed to
systematically attain a maximum clique, except for one Hamming graph. Hamming
and Johnson graphs are borrowed from coding theory, whereas the c-fat ones are used
in fault diagnosis. The notation “-” in columns AR, CBH, and RD indicates data not
presented in the original papers, from which the values here were taken.

The p hat graphs are generalized random graphs with a wider node degree spread.
The generation procedure is described in [30]. In 10 out of 15 cases PBH produced
the best results, and 6 of them were maximum cliques. The largest known clique was
actually reached in 9 cases.

Graphs prefixed with MANN are a reduction to the MCP of the minimum set
covering problem. For the two smallest problems, RD and our method performed
equally well, obtaining a maximum clique and a largest maximal one. For the third,
bigger problem, a clique very close to the maximum one (342 vs. 345) was obtained

2Data can be found at http://dimacs.rutgers.edu.
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Table 1
Performance of LDR, PBH, and other competing heuristics on unweighted DIMACS graphs

(part I). Entries that correspond to the best result for a given graph are boldfaced.

Graph Ord. Dens. ω AR CBH RD LDR Time PBH Time
c-fat200-1 200 7.7% 12 - 12 12 12 0.07 12 5.0
c-fat200-2 200 16.3% 24 - 24 24 24 0.12 24 9.0
c-fat200-5 200 42.6% 58 - 58 58 58 0.28 58 22.5
c-fat500-1 500 3.6% 14 - 14 14 14 0.48 14 100.3
c-fat500-2 500 7.3% 26 - 26 26 26 0.79 26 185.2
c-fat500-5 500 18.6% 64 - 64 64 64 1.83 64 464.5
c-fat500-10 500 37.4% 126 - 126 126 126 3.59 126 1024.2
hamming6-2 64 90.5% 32 - 32 32 32 0.01 32 0.4
hamming6-4 64 34.9% 4 - 4 4 4 0.00 4 0.1
hamming8-2 256 96.9% 128 - 128 128 128 0.98 128 252.6
hamming8-4 256 63.9% 16 - 16 16 16 0.14 16 22.8
hamming10-2 1024 99.0% 512 - 512 - 512 61.01 512 -
hamming10-4 1024 82.9% ≥ 40 - 35 - 32 4.1 32 -
johnson8-2-4 28 55.6% 4 - 4 4 4 0.00 4 0.0
johnson8-4-4 70 76.8% 14 - 14 14 14 0.01 14 0.3
johnson16-2-4 120 76.5% 8 - 8 8 8 0.01 8 1.1
johnson32-2-4 496 87.9% ≥ 16 - 16 16 16 0.54 16 184.8
p hat300-1 300 24.4% 8 8 8 8 6 0.10 8 14.0
p hat300-2 300 48.9% 25 25 25 25 16 0.20 25 34.9
p hat300-3 300 74.5% 36 35 36 34 21 0.25 35 61.0
p hat500-1 500 25.3% 9 9 9 9 6 0.27 9 83.5
p hat500-2 500 50.5% 36 36 35 35 26 0.82 36 282.5
p hat500-3 500 75.2% ≥ 50 47 49 49 30 0.94 48 485.7
p hat700-1 700 24.9% 11 9 11 11 5 0.47 10 249.4
p hat700-2 700 49.8% 44 41 44 44 20 1.26 44 1022.3
p hat700-3 700 74.8% ≥ 62 59 60 62 29 1.76 62 1804.0
p hat1000-1 1000 24.5% ≥ 10 10 10 - 7 1.17 10 798.0
p hat1000-2 1000 49.0% ≥ 46 44 46 - 18 2.37 46 -
p hat1000-3 1000 74.4% ≥ 66 62 65 - 31 3.82 64 -
p hat1500-1 1500 25.3% 12 10 11 - 9 3.12 12 -
p hat1500-2 1500 50.6% ≥ 65 64 63 - 28 7.69 64 -
p hat1500-3 1500 75.4% ≥ 94 91 94 - 43 11.43 91 -

by PBH. Note that here LDR performs remarkably well.

The test graphs prefixed with keller arise in conjunction with Keller’s conjecture
on tilings using hypercubes [10]. Here we could run PBH on only the two smallest
instances due to memory restrictions. RD and PBH computed a maximum clique,
and the latter also obtained the largest clique for the second instance.

Brockington and Culberson [9] developed their method that produced the graphs
prefixed with brock. Their method uses a form of degree equalization to hide a large
clique in a multitude of smaller ones. Also for this category PBH reached the largest
cliques, except for one instance in which CBH found the maximum one. All other
computed cliques are not maximum and the size gap between them and the maximum
ones grows with the order of the graphs. The latter fact shows the effectiveness of
Brockington and Culberson’s approach for producing hard problems for algorithms
based on the Motzkin–Straus continuous formulation.

The generation procedure for the Sanchis graphs (san) is described in [18, 29]. In
12 out of 15 cases, PBH produced the best results, and 11 of them were maximum
cliques. In only one case did we obtain a clique smaller than that of AR, and in
two cases RD performed slightly better. It is interesting to notice that AR and CBH
obtained cliques that are, on average, half the size of those returned by PBH and RD.
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Table 2
Performance of LDR, PBH, and other competing heuristics on unweighted DIMACS graphs

(part II). Entries that correspond to the best result for a given graph are boldfaced.

Graph Ord. Dens. ω AR CBH RD LDR Time PBH Time
MANN a9 45 92.7% 16 16 16 16 16 0.00 16 0.1
MANN a27 378 99.0% 126 117 121 125 125 2.18 125 699.7
MANN a45 1035 99.6% 345 - 336 - 340 43.72 342 -
keller4 171 64.9% 11 8 10 11 7 0.03 11 3.6
keller5 776 75.2% 27 16 21 25 15 1.27 26 1093.5
keller6 3361 81.8% ≥ 59 - - - 31 45.54 - -
brock200 1 200 74.5% 21 19 20 20 13 0.07 20 9.7
brock200 2 200 49.6% 12 10 12 11 7 0.04 11 5.1
brock200 3 200 60.5% 15 13 14 14 10 0.6 14 6.4
brock200 4 200 65.8% 17 14 16 15 11 0.06 16 7.3
brock400 1 400 74.8% 27 20 23 24 17 0.37 24 111.6
brock400 2 400 74.9% 29 23 24 24 17 0.37 24 113.3
brock400 3 400 74.8% 31 23 23 24 17 0.37 24 111.2
brock400 4 400 74.9% 33 23 24 24 16 0.35 24 112.7
brock800 1 800 64.9% 23 18 20 21 13 1.18 21 858.6
brock800 2 800 65.1% 24 18 19 20 13 1.19 20 866.4
brock800 3 800 64.9% 25 19 20 20 15 1.34 20 864.5
brock800 4 800 65.0% 26 19 19 20 16 1.40 20 862.4
san200 0.7 1 200 70.0% 30 15 15 30 16 0.09 30 9.9
san200 0.7 2 200 70.0% 18 12 12 18 12 0.08 17 8.2
san200 0.9 1 200 90.0% 70 45 46 70 38 0.19 70 28.8
san200 0.9 2 200 90.0% 60 39 36 60 30 0.16 60 22.8
san200 0.9 3 200 90.0% 44 31 30 44 25 0.13 44 19.0
san400 0.5 1 400 50.0% 13 7 8 13 7 0.20 13 52.3
san400 0.7 1 400 70.0% 40 20 20 40 20 0.43 40 142.0
san400 0.7 2 400 70.0% 30 15 15 30 15 0.35 30 110.7
san400 0.7 3 400 70.0% 22 12 14 19 14 0.31 17 93.8
san400 0.9 1 400 90.0% 100 50 50 100 45 0.88 100 397.8
sanr200 0.7 200 69.7% 18 16 18 18 12 0.07 18 8.2
sanr200 0.9 200 89.8% 42 41 41 41 32 0.16 41 21.4
sanr400 0.5 400 50.1% 13 13 12 12 10 0.25 13 059.5
sanr400 0.7 400 70.0% ≥ 21 21 20 20 16 0.36 20 101.9
san1000 1000 50.2% 15 8 8 - 8 1.34 15 1185.0

Overall, these results show the clear superiority of PBH over both AR and CBH.
It also turns out that PBH and RD perform equally well. However, the authors report
in [20] that for graphs of order up to 500, the computational time of RD on a PC
Pentium 166 MMX varied from 30 to 40 minutes on average, with a maximum of
1 h. 43 min. On larger graphs (i.e., up 800 vertices), the algorithm took from 17
min. to 8 h. 22 min. to converge. These high computational times prevented them
from applying RD on graphs with more than 800 nodes.

Comparing complexity and computational times, however, is very difficult for
this kind of heuristics. In fact we completely lack a clear complexity assessment of
CBH, AR, and RD, and the computing times provided with each method refer to
architectures and implementation solutions too different to be worth analyzing.

A remarkable empirical finding was that Algorithms 3.1 and 3.2 never failed to
return a clique; hence, by Theorem 2.2, they always returned a maximal clique. Thus,
we never needed to invoke any local search procedure in order to reach a nearby local
minimizer. We tried to find exceptions by running them on random unweighted graphs
with nonclique regular subgraphs, which do correspond to nonoptimal KKT points
of (2). Hundreds of experiments were conducted on random instances with different
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degrees of noise, but they never failed to return a maximal clique. At the moment we
cannot give a formal proof of this fact.

Before we present the results obtained by PBH on weighted graphs, it is worth
discussing how it compares with other maximum clique heuristics that are not based
on the Motzkin–Straus or related continuous formulations. Many such heuristics were
presented at the second DIMACS implementation challenge on cliques, coloring, and
satisfiability [19], and those based on tabu search, simulated annealing, and neural
networks are among the most powerful. In the following discussion we shall neglect
the easiest graph families, i.e., c-fat, Hamming, Johnson, and MANN, where straight-
forward greedy heuristics (and indeed Lemke’s algorithm) already provide satisfactory
results (see [30]).

In [30], Soriano and Gendreau presented three variants of tabu search for maxi-
mum cliques. The first two versions are deterministic algorithms. One uses a single
tabu list of the last solutions visited, while the other uses an additional list (with
an associated aspiration mechanism) containing the last vertices deleted. The third
algorithm is probabilistic in nature and uses the same two tabu lists and aspiration
mechanism as the second one. As it turns out, overall their results are comparable
with those obtained with PBH. On the p-hat graphs, PBH obtained the same clique
size as the three tabu search algorithms 8 times, it got smaller cliques in 6 cases (the
difference being typically of one or two nodes), and in one case it yielded a larger
clique. On the keller and the brock graphs, tabu search worked slightly better. In a
few cases it obtained a larger clique, but when this happened the difference consisted
of just a single vertex. Finally, on the san family the three tabu search heuristics did
not perform equally well, the probabilistic one being the poorest. Here PBH obtained
the same clique sizes as the double list variant in 11 cases, it returned a larger clique
in 2 cases, and a smaller one twice. Compared to the single list heuristic, a similar
picture emerges. Here PBH obtained a larger clique in three cases and a smaller one
twice. It should be noticed that when PBH outperforms tabu search, the difference
in clique size is significant (e.g., 30 vs. 19, 15 vs. 10, etc.), while the opposite is not
true.

Homer and Peinado [16] compare three heuristics for maximum clique, namely, a
straightforward greedy heuristic, a randomized version of Boppana and Halldórsson’s
subgraph-exclusion algorithm [8], and a version of simulated annealing with a simple
cooling schedule. The algorithms were tested over very large graphs, and the overall
conclusion was that simulated annealing outperforms the other competing algorithms.
As far as comparison with PBH is concerned, it turns out that the average clique sizes
obtained by simulated annealing in 1000 trials per graph on a selection of graphs from
the p-hat, keller, and brock families (no results are presented on the Sanchis graphs)
are always rather smaller than those obtained by PBH, which, by contrast, is run
only once. There is only one exception: the p hat1500-3 graph, where PBH found
a clique of 91 vertices and the average clique size found by simulated annealing was
92.2. Looking at the best results obtained over the 1000 runs, it turns out that
simulated annealing equaled PBH 8 times, found a slightly larger clique in another
8 cases (usually one vertex larger, except for p hat1500-3), and in a single case PBH
got a better result.

In [18], Jagota, Sanchis, and Ganesan developed several neural-network heuristics
based on the so-called Hopfield model to approximate maximum clique. Overall, the
best results were obtained using a greedy steep descent (GSD) dynamics, although it
was slower than the others. The best results on the Sanchis graphs, in contrast, were
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obtained using a stochastic steep descent heuristic endowed with a “reinforcement
learning” strategy that automatically adjusts the internal parameters as the process
evolves (SSDRL). PBH significantly outperforms these models. Specifically, on the
brock, keller, and p-hat graphs, PBH always found cliques of size larger than or equal
to those found by GSD. On the san family the contrast is even more evident. Here
PBH found a clique larger than SSDRL 11 times and obtained the same clique size in
the remaining 4 cases. In a few cases, the cliques found by PBH were substantially
larger than those found by SSDRL (44 vs. 33, 30 vs. 18, etc.).

Grossman [14] also proposed a neural-network heuristic based on the Hopfield
model, originally designed for an all-optical implementation. The model has a thresh-
old parameter which determines the character of the stable states of the network. The
author suggests an annealing strategy on this parameter, and an adaptive procedure
to choose the network’s initial state and threshold. Experiments over random as well
as selected DIMACS graphs are reported. (Being a randomized procedure, for each
graph hundreds of trials were performed.) Compared to PBH, a picture similar to
simulated annealing emerges. The average clique sizes found by Grossman’s heuristic
are substantially smaller than those returned by PBH on all graph families. (No re-
sults on the Sanchis family are presented in [14].) Taking the best results found, out
of 17 instances PBH found a larger clique in 5 cases, a smaller one in 4 cases, and the
same clique size in the remaining 8 instances. Again, we stress the fact that PBH is
run only once on each graph instance and no randomization takes place.

4.2. Weighted graphs. For the weighted case there are no widely accepted
benchmark graphs, and therefore we adopted weighted random graphs as a testbed
for Algorithm 3.3. To obtain the weighted clique number for each test graph, we
used Babel’s method [1], which is one of the most efficient algorithms available in the
MWCP literature. Babel uses a branch and bound approach as follows: Upper and
lower bounds for the maximum weight clique are found by coloring the weighted graph,
where the number of colors represents the total sum of all weights. The branching
part of Babel’s algorithm divides the bounded search-tree into smaller subproblems,
the branching decisions depending on a specific order of all possible remaining nodes.
By applying these steps recursively, the maximum weight clique will be found in finite
time, and for not too big and too dense graphs in very short time. Unfortunately, the
coloring heuristic employed by this method severely restricts node weights to discrete
values. For example, if we consider graphs with floating point weights between 1 and
10, and with 3 significant digits, this would lead to as many as 9,000 possible discrete
weights. This means that Babel’s method could use up to 900,000 colors in a graph of
order 100. To accommodate this deficiency we generated random graphs with random
integer weights ranging between 1 and 10.

In this series of experiments we did not run the LDR algorithm, because of the
poor performance obtained on unweighted graphs. Given the clique C found by Algo-
rithm 3.3, as a success measure we took the ratio R =W (C) /ω (G,w). Table 3 lists
average results (Avg. R columns) and their standard deviations (St. Dev. columns)
for families of 20 random graphs with 100 vertices and various density values p.

Usual random graphs (Normal in Table 3) tend to be very regular (i.e., the degree
of all nodes is nearly the same). This feature is typically not shared by real-world
instances; hence we used Algorithm 4.1, borrowed from [7], to generate more irregu-
lar instances (Irregular). The same intent drove the choice of performing tests over
families of DIMACS p-hat graphs (p-hat columns).

On all types of graphs we obtained very positive figures. In particular, for normal
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Algorithm 4.1. An edge generation procedure for random irregular
graphs.

µ = p
(
n
2

)
.

while (µ > 0)
choose randomly v ∈ {1, . . . , n} and d ∈ {1, . . . , n− 1};
add d edges to randomly chosen neighbors of v;
if this is not possible

add the maximum of free edges to neighbors of v;
µ = µ− number of actually added edges.

endwhile;

Table 3
Performance of Algorithm 3.3 on weighted random graphs with 100 vertices (see text for expla-

nation).

p Normal Irregular p-hat
Avg. R St. Dev. Avg. R St. Dev. Avg. R St. Dev.

0.10 97.95% ±0.15 98.44% ±0.13 99.33% ±0.09
0.20 97.73% ±0.16 98.63% ±0.12 97.17% ±0.17
0.30 97.25% ±0.17 98.84% ±0.11 96.38% ±0.20
0.40 95.04% ±0.23 98.53% ±0.12 97.54% ±0.16
0.50 94.61% ±0.24 98.74% ±0.12 94.56% ±0.24
0.60 94.71% ±0.23 99.64% ±0.06 96.20% ±0.20
0.70 96.10% ±0.20 98.94% ±0.11 94.44% ±0.24
0.80 93.13% ±0.26 98.56% ±0.12 94.64% ±0.23
0.90 94.29% ±0.24 99.56% ±0.07 95.26% ±0.22
0.95 96.49% ±0.19 99.75% ±0.05 94.49% ±0.24

random graphs one can see how efficiency slowly decreases with increasing density but
always remains above 93%. For irregular graphs these figures improve considerably,
never falling below 98.4% efficiency. The same can be said for the p-hat graphs. But
in this last case it must be taken into account that for p close to 0.5, the node degree
variance is largest. The table reflects this fact in that performance is optimal for
sparse graphs, is worst for p close to 0.5, and then slowly improves while moving
toward p = 1. At this end-point the increased density becomes the dominant reason
for not reaching the heaviest clique.

The above experiments were conducted on a machine equipped with a 400MHz
Alpha CPU. On this machine, computing times for PBH ranged (approximately)
between 0.6 and 9 seconds.

5. Conclusions. We have presented an effective heuristic for the MWCP which
employs a pivoting algorithm on an LCP problem formulation derived from a develop-
ment of the Motzkin–Straus theorem. The remarkable effectiveness of our approach
and the empirical immunity of Lemke’s method to saddle points seems to indicate that
pivoting-based methods offer a promising new way to tackle this and related combi-
natorial problems. The algorithm has already been applied with success to graph
matching problems arising in computer vision and pattern recognition [21]. Note also
that our algorithm is completely devoid of working parameters, a valuable feature
which distinguishes it from other heuristics proposed in the literature (see, e.g., [4]).
In future investigations we will try to give a formal proof of convergence to local min-
imizers, and we will tackle the problem of reducing the time and space complexity of
our method.
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Appendix. Optimality and strict complementarity. Here we provide a
discussion of second-order optimality conditions for (2), where f(x) = xTQx with
a general symmetric n × n matrix rather than QG, in relation to the strict com-
plementarity condition. First we rephrase optimality in terms of copositivity with
respect to a polyhedral cone Γ. Recall that, given a cone Γ ⊆ R

n, a symmetric ma-
trix Q is said to be Γ-copositive if xTQx ≥ 0 for all x ∈ Γ. If the inequality holds
strictly for all x ∈ Γ \ {o}, then Q is said to be strictly Γ-copositive. As usual, define
e⊥ = {v ∈ R

n : eT v = 0}.
Theorem A.1. Let x ∈ ∆ and γ = xTQx. If x is a KKT point of (2), then set

Γ�(x) = {v ∈ e⊥ : vi ≥ 0 if i ∈ V \ S(x) and vTQx = 0} .(11)

Then
(a) x is a local solution to (2) if and only if Q is Γ�(x)-copositive;
(b) x is a strict local solution to (2) if and only if Q is strictly Γ�(x)-copositive.
Proof. If Γ(x) = {v ∈ R

n : vi ≥ 0 if i ∈ V \ S(x)} denotes the tangent cone of ∆
at x, then Γ�(x) as defined in (11) satisfies Γ�(x) = {v ∈ Γ(x) : vT∇f(x) = 0}, i.e.,
coincides with the reduced tangent cone. Hence (a) is established by Theorem 2 of
[2], while (b) can be proved by a simpler variant of the argument therein.

Observe that, in light of the above conditions, the last statement of Theorem 2.1
can be rephrased as follows: If QG is Γ�(x)-copositive, then QG is even strictly so.
(This holds also for every other matrix Q ∈ C (G,w), the entire class introduced in
[3].)

For quadratic problems over polyhedra more general than ∆, there are similar
second-order optimality conditions, also for global optimality; see, e.g., [2]. All con-
ditions involve checking copositivity, which from a practical point of view should be
avoided, as checking copositivity is NP -hard [25] whereas checking definiteness (see
below) can be done in polynomial time. In contrast with several other problems (e.g.,
the simplex method in linear optimization), this difference in worst-case complexity
is also reflected in the actual average case behavior. Thus an additional aspect of the
significance of strict complementarity becomes evident.

Theorem A.2. If x ∈ ∆ is a KKT point of (2) which satisfies the strict comple-
mentarity condition, then the reduced tangent cone

Γ�(x) = {v ∈ e⊥ : vi = 0 if i ∈ V \ S(x)}(12)

becomes a linear subspace.
Further, if x is a vertex of ∆, then x is a strict local solution to (2).
Otherwise, assume that x has r + 1 ≥ 2 strictly positive coordinates, pick a fixed

i ∈ S(x), and form the symmetric r × r matrix

Q̄ = [qii + qjk − qij − qik](j,k)∈S(x)\{i}×S(x)\{i} .(13)

Then
(a) x is a strict local solution to (2) if and only if Q̄ is positive-definite;
(b) x is a local solution to (2) if and only if Q̄ is positive-semidefinite.
Proof. To show (12), we employ the KKT conditions (4). Then λi > 0 for all

i ∈ V \ S(x) implies via (11) and

0 = vT∇f(x) =
∑

i∈V \S(x)

λivi − λeT v =
∑

i∈V \S(x)

λivi
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that vi = 0 for all i ∈ V \ S(x) if v ∈ Γ�(x). The converse is also obvious. Next, if
x is a vertex of the feasible set, then Γ�(x) = {o}, so that the copositivity condition
in Theorem A.1(a) is void. (Note that local optimality of vertices which are strictly
complementary KKT points holds in a much more general context.) Now assume that
x is no vertex. Denoting again by ei the ith column of the n× n identity matrix In,
we obtain a basis for Γ�(x) by {ei − ej : j ∈ S(x) \ {i}} and collect these vectors as
columns of an n × r matrix U so that Γ�(x) = U(Rr). But U can be written, after
suitable reordering, as U = [e,−Ir, O]T . Now partition Q into appropriate blocks to
arrive at Q̄ = UTQU as in (13). As a consequence, Q is Γ�(x)-copositive if and only
if Q̄ is positive-semidefinite, and similarly for the strict versions.

A consequence of the last statement in Theorem 2.1 is that, under strict comple-
mentarity, the (positive-semidefinite) matrices Q̄ are nonsingular if Q = QG. (Again,
this holds for every Q ∈ C (G,w), the entire class introduced in [3].) Thus Theo-
rem A.2 can be viewed as a sort of converse of Theorem 2.4, where nonsingularity of
certain matrices in turn guarantees strict complementarity.
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