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ABSTRACT
A search engine infrastructure must be able to provide the
same quality of service to all queries received during a day.
During normal operating conditions, the demand for re-
sources is considerably lower than under peak conditions,
yet an oversized infrastructure would result in an unneces-
sary waste of computing power. A possible solution adopted
in this situation might consist of defining a maximum thresh-
old processing time for each query, and dropping queries for
which this threshold elapses, leading to disappointed users.
In this paper, we propose and evaluate a di↵erent approach,
where, given a set of di↵erent query processing strategies
with di↵ering e�ciency, each query is considered by a frame-
work that sets a maximum query processing time and selects
which processing strategy is the best for that query, such
that the processing time for all queries is kept below the
threshold. The processing time estimates used by the sched-
uler are learned from past queries. We experimentally vali-
date our approach on 10,000 queries from a standard TREC
dataset with over 50 million documents, and we compare it
with several baselines. These experiments encompass testing
the system under di↵erent query loads and di↵erent maxi-
mum tolerated query response times. Our results show that,
at the cost of a marginal loss in terms of response quality,
our search system is able to answer 90% of queries within
half a second during times of high query volume.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

Keywords: Query E�ciency Prediction, Scheduling

1. INTRODUCTION
Commercial Web search engines are expected to process

user queries under tight response time constraints while be-
ing able to operate under heavy query tra�c loads. Queries
that cannot be processed within their time constraint experi-
ence degraded result quality [5]. Operating under these con-
ditions requires building a very large infrastructure involving
thousands of computers and making continuous investments
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Figure 1: The query distribution of a 24 hours time
span covering 1st May 2006 from MSN query log.

to maintain this infrastructure [3]. Hence, optimising the
e�ciency of Web search engines is important to reduce their
infrastructure costs.

The user query volume typically received by a Web search
engine is illustrated in Figure 1, showing how the rate of
queries received can vary through the course of a day. In
order to guarantee that each query is processed with sub-
second response times, the computing/communication in-
frastructure has to support worst-case query volume, which
reaches its maximum during the day time (about 13 queries
per second from 10:00 to 14:00 in the workload depicted
in Figure 1), typically around midday. Hence, the typi-
cal approach taken by Web search engines is to deploy a
distributed search architecture [8]. According to this archi-
tecture, the servicing of a search query uses many query
servers, each in charge of a partition of the global index.
When a query reaches one of these servers, it is processed

immediately if the server is idle, otherwise it is placed in a
queue waiting for processing. Hence, the completion time of
a query at each server includes both a waiting time and a
processing time, in turn relying on the processing strategy.

We argue that in order to realise a Web search engine
that can answer a query within a given deadline, there are
three options for how the system can respond in presence
of high query volume. Firstly, if the system is not able to
reduce the processing time of each query and the scheduling
of the queries cannot be modified, queries with long process-
ing times might simply be dropped – resulting in error pages
being returned to users – or interrupted – where a partial
result list is presented. While this technique does guarantee
high quality results for a (possibly small) subset of queries,
it is unfortunate that this is the only possible choice when
the query volume cannot be sustained by a given search
engine infrastructure. The second option, discussed in re-
cent works [10, 14], is based on query e�ciency predictions,
along with suitable scheduling algorithms, to re-order the
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query queue. The aim of this technique is to reduce the
overall queueing time of queries, thus increasing the query
throughput. A third, alternative option, proposed in this
paper, is to dynamically select a suitable query processing
(retrieval) strategy to process the queries to satisfy the per-
query deadlines, thus reducing the query processing time.
In particular, when deciding between processing strategies,
our proposed approach considers the time necessary to sat-
isfy the per-query deadlines for all queries queued after the
current query. In this way it can allocate available resources
fairly across the waiting queries.

On the other hand, a strategy that reduces the processing
time of a query has obvious drawbacks: we need to exploit
approximate processing strategies, such as dynamic prun-

ing [4, 16, 20], that can reduce the quality of the query
results. However, pruning can be applied selectively, on a
per-query basis [19], depending on the expected processing
time of the query and the status of the search engine. In
this work, we go further, as our novel scheduling methodol-
ogy can selectively adopt dynamic pruning processing strate-
gies only when the system is experiencing high workloads,
thereby trading o↵ some e↵ectiveness to ensure e�ciency.

In summary, this paper argues that the e↵ectiveness of
search results can be maintained whilst meeting comple-
tion time constraints by choosing an appropriate pruning
strategy to use for each query to be processed by a given
server. In particular, our method can examine not just the
current query, but also the other queries queued for pro-
cessing. Hence, the contributions of this paper are two-fold:
We propose a load-sensitive selective pruning framework for
bounding the permitted processing time of a query, which
consider goals such as meeting a time threshold, e↵ectiveness
and fairness to other queries waiting to be processed; More-
over, to support our proposed framework, we propose an
accurate approach for query e�ciency prediction of term-at-
a-time dynamic pruning strategies. Our experiments show
that the proposed framework is able to produce results of
quality comparable to that of a search system that does not
bound query processing time, while at high query workloads
the system can still respond to queries in less than a prede-
termined time threshold. For instance, when 40 queries per
second are arriving at the search engine, our framework is
able to answer 90% of queries within 0.5 seconds with a 5%
drop in results quality compared to an e↵ective processing
strategy for which 0% of queries meet the time threshold.

The remainder of this paper is structured as follows: In
Section 2, we introduce the necessary preliminaries by dis-
cussing the context of our work; Section 3 discusses re-
lated work in e�cient retrieval; In Section 4, we propose
our framework for load-sensitive selective pruning; Section 5
discusses the processing strategies we deploy, and how their
response times can be accurately predicted; Section 6 de-
fines the experimental setup for the evaluation that follows
in Section 7; We provide concluding remarks in Section 8.

2. PRELIMINARIES
Web search engines have to manage huge quantities of

documents while achieving the goal of e↵ectively answering
users’ queries, and doing so e�ciently – i.e., within a fraction
of a second. To achieve this multi-objective goal despite the
large size of the Web, the corpus of documents the search
engine must manage are partitioned into sub-collections that
are each manageable by a single machine. This results in
several query servers engaged in answering a user’s query,

Figure 2: Our reference architecture of a distributed
search engine node (based on [5]).

each of them storing the index shard [3] for a subset of the
index built on the corpus.

Without loss of generality, in this work we assume a dis-
tributed search engine where data are distributed according
to a document partitioning strategy [2]. The index is thus
partitioned into shards each one relative to a particular par-
tition of the documents. To increase query throughput, each
index shard is typically replicated into several replicas and
a query received by the search front-end is routed to one of
the available replicas. In this work, we assume a multi-node
search engine without replicas, because our experimental re-
sults are independent from the number of replicas, and hence
can be applied directly to each replica independently [5].

Figure 2 depicts our reference architecture for a single
replica. New queries arrive at a front-end machine called
query broker, which broadcasts the query to the query servers
of all shards, before collecting and merging the final results
set for presentation to the user. When a query reaches a
query server, it is processed immediately if the server is idle.
Indeed, each query server comprises a query processor, which
is responsible for tokenising the query and ranking the doc-
uments of its index shard according to a scoring function (in
our case we use the BM25 scoring function [18]). Strategies
such as dynamic pruning [4, 16, 20] can be used to process
queries in an e�cient manner on each query server. In this
work, we consider document-sorted indices, as used by at
least one major search engine [8]. Other e�cient retrieval
techniques such as frequency-sorted [20] or impact-sorted
indices [1] are possible, which also support our objective of
early termination of long running queries. However, there
is no evidence of such index layouts in common use within
commercial search engines [15], perhaps – as suggested by
Lester et al. [12] – due their practical disadvantages such as
di�culty of use for Boolean and phrasal queries. As such,
in this work, we focus on the realistic scenario of standard
document-sorted index layouts. Finally, we use disjunctive
semantics for queries, as supported by Craswell et al. [7] who
highlighted that disjunctive semantics does not produce sig-
nificantly di↵erent high-precision e↵ectiveness compared to
conjunctive retrieval.

If the query server is already busy processing another
query, each newly arrived query is placed in a queue, waiting
to be selected by a query scheduler for processing. Hence,
the time that a query spends with a query server, i.e. its
completion time, can be split into two components: a wait-

ing time, spent in the queue, and a processing time, spent
being processed. While the latter depends on the particu-
lar retrieval strategy (which we call the processing strategy)
and the shard’s characteristics, the former depends on the
specific scheduling algorithm implemented to manage the
queue and on the number of queries in the queue itself.
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Indeed, it has been observed that a query scheduler can
make some gains in overall e�ciency by re-ordering queries,
thereby delaying the execution of expensive queries [14].
However, this approach only considers the cost of execut-
ing single queries, and hence cannot respond to surges in
query tra�c. Instead, in this work, we take a di↵erent ap-
proach, by arguing that the time available to execute a query
on a query server – whilst meeting the completion time con-
straints – is influenced by the other queries queued on that
query server. Hence in this paper, we estimate the target
completion times for a query on a server based on the pre-
diction of queueing and completion times for the queries
scheduled after the query in the queue.

The utility of query scheduling is particularly evident when
queries arrive at a higher rate than the maximum sustain-
able peak load of the system [11]. Indeed, in our proposed
framework, we set the maximum query processing time to a
carefully chosen value (see Section 4), such that the system
load is kept under control, thereby enabling an optimal man-
agement of the peak load at the cost of a slightly reduced
results quality (see Section 7.2). Our proposed framework
exploits novel machine learning models for estimating pro-
cessing time under di↵erent processing strategies.

3. RELATED WORK
Having defined the architecture context of our work, in

this section we discuss some related work on which various
components of our architecture rely, namely dynamic prun-
ing (Section 3.1), query e�ciency prediction (Section 3.2)
and selective pruning (Section 3.3).

3.1 Dynamic Pruning
The strategies to match documents to a query fall in two

categories [16]: in a term-at-a-time (TAAT) strategy, the
posting lists of query terms are processed and scored in se-
quence, while, in a document-at-a-time (DAAT) strategy,
the query term postings lists are processed in parallel. To
attain the typical sub-second response times of Web search
engines, various techniques to enhance retrieval e�ciency
have been proposed (e.g. [4, 16, 20]). In particular, dynamic

pruning aims to eliminate the scoring of documents that will
not be present in the final list of top results. Most DAAT
dynamic pruning strategies [4, 20] exhibit e�ciency improve-
ments without negatively impacting e↵ectiveness, but some
TAAT dynamic pruning techniques [12, 16], while they en-
hance e�ciency, negatively impact retrieval e↵ectiveness be-
cause some relevant document can be pruned.

In this work, we consider the Continue TAAT dynamic
pruning strategy [16], which we denote TAAT-CS. Our
choice of the TAAT-CS strategy is motivated by the fact that
its overall e�ciency is directly proportional to the number of
accumulator to create in the first phase [16]. Indeed, the fine
tuning of the number of accumulators gives us the flexibility
to directly control the e�ciency of the pruning strategy.

3.2 Query Efficiency Prediction
The query scheduler component must select the next query

to be processed from the queue of waiting queries. To achieve
this, it is fundamental to know in advance an estimate of the
processing time for the query to be scheduled. Indeed, ef-
ficiency predictions estimate the response time of a search
engine for a query [14].

Mo↵at et al. [15] stated that the response time of a query
is related to the posting list lengths of its constituent query

terms. However, in dynamic pruning strategies (e.g.Wand [4]),
the response time of a query is more variable, as not every
posting is scored, and many postings can be skipped [16],
resulting in reduced retrieval time. As a result, for Wand,
the length of the posting lists is insu�cient to accurately
predict the response time of a query [14]. Query e�ciency

predictors [14] have been proposed to address the problem of
predicting the response time of Wand for an unseen query.
In particular, various term-level statistics are computed for
each term o✏ine. When a new query arrives, the term-level
features are aggregated into query-level statistics, which are
used as input to a learned regression model.

In this work, arising from our focus on the TAAT-CS
pruning strategy, we propose query e�ciency predictions for
TAAT-CS, by describing a set of features that can be easily
used to estimate the e�ciency of a query through a learned
approach. These predictions represent our estimates for the
query processing time, which we exploit to determine a max-
imum amount of processing time to allocate for each query.

3.3 Selective Pruning
Dynamic pruning strategies, such as Wand and TAAT-CS

can all be configured to be made more aggressive. In doing
so, the strategy becomes more e�cient, but at a possible
loss of e↵ectiveness [4]. For instance, reducing the maximum
number of accumulators in the TAAT-CS strategy results in
less documents being examined before the second stage of
the algorithm commences, when no new accumulators can
be added. Hence, reducing the number of accumulators in-
creases e�ciency, but can result in relevant documents not
being identified within the set of accumulators, thereby hin-
dering e↵ectiveness [16].

Typically, the aggressiveness is selected a priori to any
retrieval, independent of the query to be processed and its
characteristics. However, in [19], Tonellotto et al. showed
how theWand pruning strategy could be configured to prune
more or less aggressively, on a per-query basis, depending on
the expected duration of the query. They call this approach
selective pruning.

Our work makes an important improvement to selective
pruning compared to [19], by observing that the appropriate
aggressiveness for a query should be determined not just by
considering the current query. Instead, our proposed load-

sensitive selective pruning framework also accounts for the
other queries waiting to be processed, and their predicted
response times, together with their positions in the waiting
queue. These are used to select the dynamic pruning ag-
gressiveness in order to process the queries with a fixed time
threshold, when possible, or to process it more e�ciently,
when the time constraint cannot be respected.

4. LOAD-DRIVEN SELECTIVE PRUNING
One of the problems that must be addressed to build a

large-scale Web search engine is how to provide the service
when the received query volume is excessively high. In par-
ticular, when the entire system is overloaded, the response
time of the queries increases, making it necessary to answer
queries more rapidly. A common strategy is to drop queries
that have been waiting or executing for a long time, return-
ing empty results list; alternatively, it is possible to set a
time threshold and interrupt the retrieval whenever a query
is going to take too much time. Both strategies are sub-
optimal and have the huge drawback of disappointing the
users who submitted those queries that have been dropped.
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Figure 3: The components of the proposed load-
sensitive selective pruning framework (bottom),
along with a representation of the variables depict-
ing the queries currently queued (top).

Typically, in search systems critical situations arise when
bursts of queries are submitted (almost) at the same time.
See, for instance, the peak load around 12 PM in the query
workload plotted in Figure 1.

In this section, we discuss a novel load-sensitive frame-
work, based on query e�ciency predictors and taking into
account other features like the length of the list of queries
waiting to be processed and the duration each query has
been queued for. We aim to dynamically adapt the retrieval
strategy, by reducing the processing time of queries when the
system is heavily loaded. Indeed, during high query load, we
propose to adopt aggressive pruning strategies, thus speed-
ing up query processing, while possibly impacting negatively
on the e↵ectiveness of the returned results.

Let us consider the search engine state depicted in Fig-
ure 3, which shows the system at time t. There are n queries
q1, . . . , qn waiting to be processed in the scheduler’s queue.
Let ti be the arrival time of query qi, where ti  tj whenever
i < j, i.e., t1  . . . , tn  t. Query q1 is the head of the
queue, as it has been queued for the longest time.

Until time t, the query processor was busy by processing
the previous queries (not shown in the figure), and at time
t it becomes idle. Then, the query scheduler must select
the next query to be processed. We assume that schedul-
ing follows a first-in first-out discipline, that is, query q1 –
which has been queued for the longest time – is selected for
processing next. Furthermore, each query can be processed
by several processing strategies �1, . . . ,�p, such as TAAT
or DAAT with di↵erent levels of dynamic pruning aggres-
siveness. We assume that strategy �1 is the search engine’s
full processing strategy, such as TAAT or DAAT, while sub-
sequent strategies are increasingly more e�cient, such that
�p is the most e�cient processing strategy. Moreover, we
assume that, while �k+1 is more e�cient than �k, the ef-
fectiveness of �k is, in general, better than the e↵ectiveness
of �k+1. This assumption is well-founded, because e�cient
processing strategies typically have a negative impact on the
corresponding retrieval e↵ectiveness [13, 19, 21].
For query q1, we associate with each strategy �k the pro-

cessing time ek(q1), which the strategy is predicted to take
to process query q1. This means that, for example, e1(q1)
represents the processing time of query q1 when the less ef-
ficient (but most e↵ective) processing strategy is adopted,
while ep(q1) represents the most e�cient yet less e↵ective
predicted processing strategy.
A constant time threshold T represents the maximum

time budget for the processing of any query: the completion
time of any query must be not greater than T , such that its
results can be presented to the user in a timely manner. This

means that the time elapsed between the arrival of any query
and its processing finish time must not exceed T . Note that,
since the query has already spent some time in the queue,
its available processing time, i.e., the maximum time it is
allowed to spend in processing, is not, in general, equal to
T , but it is decreased by the time it has spent in the queue.
Moreover, if there are other subsequent queries queued, then
it can be considered unfair for the query to take all available
time, while other queries are starved. Hence, we argue that
the available processing time for each query is bounded by
some time budget depending on various factors such as the
time the query has spent in the queue, and the number of
queued queries.

The definition of a suitable time budget is central to this
paper. Let f(qi) be this time budget for query qi, which
has to ensure “fairness” in query processing: whenever the
query workload is close to the maximum allowed, enqueued
queries should be assigned reduced time budgets for their
processing. Once f(qi) has been computed, we have to
select the processing strategies able to process the query
within the time budget, i.e. any strategy �k(qi) such that
ek(qi)  f(qi). Finally, among all these strategies, we se-
lect the best strategy in term of e↵ectiveness, i.e., according
to our assumptions, the strategy that takes the largest pro-
cessing time among all admissible strategies. The definition
of a suitable time budget function f(qi) depends on various
aspects: the position of the query in the queue, its arrival
time, the current time, and the status of the queue.

The outline of the proposed selective pruning framework is
shown in Algorithm 1. For a queue of queries awaiting pro-
cessing, q1, . . . , qn, their expected processing times for all
possible processing strategies are estimated. This allows the
time budget to be calculated f(q1) for the next query to be
processed. Thereafter, we choose an appropriate query pro-
cessing strategy, which aims to ensure that the query meets
its completion time threshold T , while providing results that
are as e↵ective as possible.

Algorithm 1 Load-Sensitive Selective Pruning Framework

Input: The queries q1, . . . , qn
The completion time threshold T

Output: The selected processing strategy �⇤ for query q1
1: for all processing strategies �k, k = 1, . . . , p
2: for all enqueued queues qi, i = 1, . . . , n
3: expected processing time ek(qi)  Predict(�k, qi)
4: Time budget f(q1) Bound(T,�1(q1), . . . ,�p(qn))
5: Processing strategy �⇤  Select(f(q1), e1(q1), . . . , ep(q1))

In order to select the processing strategy �⇤, we must
implement the following functions within our framework:

• Predict(): Defines a mechanism allowing to predict the
processing time for each query in the queue when the
processing strategy can be selected among the di↵erent
dynamic pruning strategies. This mechanism is used to
estimate the processing times ek(qi) of the available pro-
cessing strategies, and the pruning strategy that will most
likely process the query within the desired time threshold
T .

• Bound(): Defines a method to compute the time budget
f(q1) for query q1, depending on the global time threshold
T and on the queries waiting to be processed. The time
budget defines a bound on the processing time that query
q1 will be permitted.

382



• Select(): Defines a mechanism to select the “best”process-
ing strategy that is able to process query q1 according to
the maximum processing time, f(q1), that q1 is allowed to
take and that maximises the resulting query e↵ectiveness.

Similar to previous work on selective pruning [19], it fol-
lows that the processing times of a query can be estimated
through the use of query e�ciency prediction [14], i.e. Pre-
dict(). However, as no such predictors have previously been
defined for TAAT strategies such as TAAT-CS, in Section 5
we address query e�ciency prediction for TAAT. In the re-
mainder of this section, we propose mechanisms for Bound()
(Section 4.1) and Select() (Section 4.2).

4.1 Bound()
We assume a list of queries q1, q2, . . . , qn that are currently

(at time t) in the queue of the system. Each query is asso-
ciated with its arrival time ti. Roughly speaking, the query
processing time bound f(q1) has the following goals:

1. E�ciency: q1 (the least recently queued query) will have
a completion time not greater than T , the global time
threshold.

2. E↵ectiveness: The time available to process q1 will be as
large as possible, such that the most e↵ective processing
strategy can be deployed.

3. Fairness: Queries q2, . . . , qn received after q1 are not
starved of processing time, and hence are each able to
meet T .

Clearly, these three goals can be at odds with each other.
In the following, we describe four methods of defining f(q1)
that address some or all of the goals to varying extents:
Perfectionist. Query q1 is processed as e↵ectively as pos-

sible, i.e. using the most ine�cient processing strategy:

f(q1) = argmax
k

{ek(q1)} = e1(q1).

This method ignores the waiting time spent in the queue,
and makes no attempt to prune aggressively queries such
that the threshold T can be met, by this query or other
queries in the queue. In other words, it is a method that
is neither fair nor e�cient. For this reason, we use it as a
baseline with maximal e↵ectiveness.
Manic. Query q1 is processed as fast as possible, by using

the most e�cient, aggressive pruning strategy for all queries:

f(q1) = argmin
k

{ek(q1)} = ep(q1).

In this method, we ignore the waiting time that the query
q1 has spent in the queue. Similarly to the Perfectionist

method, Manic serves as a baseline method that does not
explicitly consider the fairness or e↵ectiveness goals. How-
ever, in contrast to Perfectionist, Manic consumes the least
computing resources, and hence is the fairest method, even
if the other queries do not exploit the unused resources.
Selfish. The query q1, enqueued at time t1, should be

processed by time t1 + T . Hence, at time t, the amount of
remaining time �1 to process the query such that threshold
T is met has decreased by t� t1 seconds, i.e.:

�1 = (t1 + T )� t

If �1 > 0, the processing time bound is f(q1) = �1, and
depends only on the time q1 has spent in the queue, with-
out consideration for the processing time needed for other

queued queries. Then, if the time threshold T for this query
has elapsed (�1  0), the query is processed as fast as pos-
sible, as in the Manic case:

f(q1) =

(

�1 if �1 > 0

ep(q1) otherwise

Altruistic. The previous method has the disadvantage
that q1 processing is bound with the maximum amount of
time available (given the time spent in the queue), disregard-
ing the queries that are still in the queue. This can penalise
queued queries q2, . . . , qn that have not yet been processed.
In contrast, Altruistic enforces “fairness”, by firstly comput-
ing how much time is left to empty the current queue. This
is simply the time at which the lastly queued query qn should
be completed (tn+T ) minus the current time. Formally, �n,
the remaining time to finish processing up to query n, is:

�n = (tn + T )� t

Then, to compute the maximum time available for q1 we
have to subtract the minimum time necessary to process all
the queued queries. This time is simply given by the sum of
the estimations ep(qi) of the processing time needed by the
fastest processing strategy p. Hence, we define the available
slack time, e�n, as:

e�n = �n �
n
X

i=1

ep(qi).

If e�n > 0, we evenly distribute this extra slack time to the
queued queries. In doing so, if some time is left to process
all enqueued queries faster than the minimum possible, each
one might receive a fair amount of extra processing time1.
Hence the processing bound for query q1 becomes ep(q1) +
e�n/n. However, this quantity can exceed �1, and will re-
sult in too much extra budget assigned to query q1, beyond
the time threshold T . In this case, the processing bound for
the query q1 is simply �1. Finally, if e�n  0, we process
the query as fast as possible, as in the Manic case, i.e.,

f(q1) =

(

min
n

�1, ep(q1) + e�n/n
o

if e�n > 0

ep(q1) otherwise

The Altruistic method to compute Bound() is a central
contribution of our paper. Once the time budget f(q1) has
been computed, it is used by the query processor to “select”
the most suitable processing strategy among those available
to process the query. In the following, we describe Select(),
which is the function used to take these decisions.

4.2 Select()
Given the time budget f(q1) granted by Bound(), the role

of the Select() function is to choose the most e↵ective strat-
egy �⇤ = �k 2 {�1, . . .�p} to resolve query q1 within the
assigned budget f(q1). Primarily, the selection of an appro-
priate processing strategy is based on the estimated query
processing times e1(q1), . . . , ep(q1). Assuming the estimates
are sorted in descending order of expected processing times,
i.e., e1(q1) � · · · � ep(q1), we can identify the strategy �k

where 1  k  p is the smallest such that ek(q1)  f(q1).
In order words, we select �k as the best strategy in terms of
e↵ectiveness, whose expected completion time is not greater
than the budget the query has been granted by Bound().

1This is true as far as no additional queries are received.
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Note that, in the case that no strategy is able to process
query q1 within the computed time budget, we always se-
lect the most aggressive processing strategy, i.e., �p. As a
remark, when the Manic and Perfectionist methods are used
Select() will resort to always pick CS�1000 (i.e. �p) and
DAAT (i.e. �1), respectively.

Both Bound() and Select() descriptions have been given
using the informal, and implicit, concept of an e�ciency

predictor. In the next section, we detail in a more pre-
cise way how – inspired by the work in [19] – we predict-
ing the e�ciency of a TAAT-CS strategy before processing
commences.

5. PRUNING STRATEGIES & PREDICTORS
The framework we described in the previous section relies

on the concept of query e�ciency predictors. In our defini-
tion, given a query and a set of query processing strategies,
e�ciency predictors return the estimated query processing
time for each one of the strategies considered.

The load-sensitive selective pruning framework proposed
in Section 4 is general with respect to the deployed retrieval
strategy. However, in this work we focus on two partic-
ular strategies, namely DAAT and TAAT-CS. In particu-
lar, we adopt document-at-a-time (DAAT) for full process-
ing. Full-processing is chosen when, in normal load con-
ditions, processing time is not constrained. On the other
hand, when the system is experiencing a high workload, we
resort to use faster and less precise processing strategies,
specifically, based on the term-at-a-time-continue strategy
(TAAT-CS) [16]. In the remainder of this section, we de-
fine the details of TAAT-CS (Section 5.1), before explaining
how the processing time of both DAAT and TAAT-CS can
be accurately measured (Section 5.2).

5.1 TAAT-CS Dynamic Pruning
As defined in [16], TAAT-CS works as follows. Given a

set of terms to process, sorted in decreasing order of posting
list length, an OR phase processes the posting lists one by
one until we have K accumulators. From this point, no new
accumulators are created, and an AND phases processes the
remaining posting lists by intersecting them with the ex-
isting accumulators. The e�ciency of the AND phase can
benefit from skip pointers [16] within the posting lists, such
that the postings of documents that are not in the top K
accumulators are not decompressed, leading to IO benefits.
Therefore, smaller values of K correspond to more aggressive
pruning, as the AND phase is started earlier, and more skip-
ping can occur during this phase. However, smaller K values
are likely to lead to result lists with degraded e↵ectiveness.

Our implementation of the TAAT-CS dynamic pruning
strategy adopts a further heuristic, to optimise the initial
phase in which new accumulators are created. Given that
DAAT processing is faster than TAAT processing [9], we al-
ter the accumulator creation phase as follows. We select the
shortest l posting lists, such that the sum of their lengths
is greater than or equal to the number of accumulators K.
These posting lists for this initial set of terms are processed
using a DAAT strategy, instead of TAAT. In doing so, the
resulting number of accumulators will never be greater than
the number of accumulators we will get after processing the
first list with a classic TAAT-CS strategy. After this mod-
ified OR phase, the processing strategy proceeds with the
AND phase as in TAAT-CS. Using our refined strategy, we
may end up with less accumulators than using the tradi-

Query E�ciency Prediction Features
total number of postings in the query’s term lists

number of terms in the query
variance of the length of the posting lists
mean of the length of the posting lists

length of the shortest posting list
length of the longest posting list

number of terms processed in the first phase of CS
length of the posting lists processed in the first phase of CS

number of terms processed in the second phase of CS
length of the posting lists processed in the second phase of CS

Table 1: Features used for prediction processing
time: the top features are method independent, the
bottom features are method dependent, for CS.

tional TAAT-CS. However, in our initial experiments, we
found that this happens only for 0.01% of the 10,000 queries
used in this paper. Yet, on average, the response time of our
DAAT/TAAT-CS strategies exhibit a 2x improvement over
the classical TAAT-CS strategy.

The adoption of the DAAT/TAAT-CS strategy motivates
also the comparison of our selective pruning strategies with
DAAT, instead than TAAT. Indeed, in terms of e�ciency,
out-performing DAAT as a baseline is, in general, more dif-
ficult than for TAAT [9]. In the following, we refer to our
DAAT/ TAAT-CS with K accumulators as CS-K (e.g. CS-
1000 uses K = 1000 accumulators), without further mention
of the use of DAAT for the initial phase. As a side note, we
are not aware of any previous work studying this small vari-
ation on TAAT-CS. Therefore, to the best of our knowledge,
this is another new contribution presented by this work.

5.2 Query Efficiency Prediction
In the preceding section, we defined the processing strate-

gies used within this paper. In this section, we describe
how we obtain query e�ciency predictions for the process-
ing strategies. In particular, we are inspired by the query
e�ciency predictors for DAAT previously defined by Mac-
donald et al. [14]. However, in this work we also use TAAT-
CS for aggressive pruning. Hence, in the following we devise
a method for predicting the processing time of CS-K, be-
fore retrieval commences, using a Linear Regression-based
technique.

First of all, we define a set of features to represent each
query. In the case of DAAT, Macdonald et al. [14] show
that there is a strong correlation between the distribution
of postings in the query terms and the response time of
the query itself. Therefore, to predict the response time of
DAAT we use the features listed in the top part of Table 1.

On the other hand, as discussed above, TAAT-CS strate-
gies do not score all postings in the posting lists of the query
terms. Hence, we do not expect that relying only on post-
ing features can lead to good predictions. Instead, given
the characteristics of our TAAT-CS strategies (a first phase
where we fully evaluate a subset of terms using DAAT, and
a second phase where we use the remaining terms to update
the accumulators found in the first phase) we build a regres-
sion model using the features listed in the bottom part of Ta-
ble 1, in addition to the method-independent features listed
in the top part. It is of note that all of these query e�ciency
prediction features can be calculated using commonly avail-
able statistics, particularly the length of the query term’s
corresponding posting lists, before retrieval commences, and
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hence query e�ciency predictions can be made with very low
overheads, as soon as a query arrives at a query server.

In total, our prediction method models the problem using
a feature space made up of 10 distinct features. As our
reference architecture is a distributed one, each query server
might have di↵erent response times for the same query. For
this reason, we need to build di↵erent models for each server.

We adopt a linear regression model to estimate the run-
ning time ej(qi) of query qi when scored using method j. In
other words, we model ej(qi) as a linear combination of the
features fi weighted by a real value �f . Features and weights
are di↵erent for each scoring method thus we indicate fji and
�jf to refer to values for scoring method j. Formally,

ej(qi) = �j0fj0 + . . .+ �j9fj9.

Linear regression is then used to find the values for various
�jf with the goal of minimising the least square error of
processing time on a training set of queries [14].

In the next section, we define the experimental setup for
our experiments. In particular, our experiments demon-
strate the accuracy of the proposed e�ciency predictors for
TAAT-CS, before showing how the proposed selective schedul-
ing framework proposed in Section 4 can increase the ability
of a search engine to e↵ectively and e�ciently handle di↵er-
ent tra�c query loads.

6. EXPERIMENTAL SETUP
In the following experiments, we deploy a widely used

document collection created as part of TREC, namely the
ClueWeb09 (cat. B) collection, which comprises around 50
million English Web documents, and is designed to repre-
sent the first-tier index of a commercial Web search en-
gine. We index the document collection using the Terrier
search engine [17], removing standard stopwords and ap-
plying Porter’s English stemmer. The resulting index is
document partitioned into ten separate index shards, while
maintaining the original ordering of the collection. Each
inverted index shard, which is stored on disk, also has skip-
ping information embedded, to permit skipping [16] during
the Continue phase of TAAT-CS.

For the retrieval experiments, we use a distributed C++
search system engine, accessing the index produced by Ter-
rier. Our experiments are conducted on a cluster of twelve
quad-core machines, where each machine has one Intel Xeon
2.40GHz X32230 CPU and 8GB of RAM, connected using
Gigabit Ethernet. Only a single core on each query server
is used to serve queries.2 Two additional nodes are used as
follows: one as the query broker, and one as the client ap-
plication that sends the queries to the system. Finally, each
query server has a queue used to keep queries coming from
the broker, while the query processor on each query server
processes queries one at a time. As query processing strate-
gies, we use DAAT, as well as TAAT-CS with di↵erent ac-
cumulators, i.e. CS-1000, CS-2000, CS-5000 and CS-10000.
Documents are scored using BM25, with parameters at the
default settings [18].

We use queries from the TRECMillion Query Track 2009 [6],
which contains 40, 000 queries, some of which have relevance
assessments. In our experiments, 30, 000 of these queries

2While increasing the number of cores on each query server
obviously increases throughput, we prefer to use a single-
threaded environment to reduce any resource contention
that may reduce the reliability of experimental results.

are used as the training set for learning � values in our re-
gression models, while the other 10, 000 are used for testing
the accuracy of the predictors, and retrieval experiments.
Indeed, for measuring the accuracy of our query e�ciency
predictors, we use root mean square error (RMSE), while
for retrieval e↵ectiveness, we compute NDCG@1000 using
the 687 queries out of the 10, 000 that have relevance as-
sessments from TREC 2009. E�ciency is measured using
mean response time computed over 5 runs for each test. In
our experiments, we do not use query caching, in order to
better analyse the impact of our models on the processing
performance. Moreover, adding a cache in front of our ar-
chitecture would only reduce the query arrival rate, but not
the e�ciency and e↵ectiveness of our method.

7. EXPERIMENTS
In the following, we address these research questions:
RQ1. What is the accuracy of the linear regression-based
approach for query e�ciency prediction for TAAT-CS? (Sec-
tion 7.1)
RQ2. Do the proposed methods achieve e↵ective and e�-
cient retrieval under di↵erent query loads? (Section 7.2)
RQ3. To what extent can e�cient query per second servic-
ing be attained for di↵erent time thresholds? (Section 7.3)

7.1 Predictors Error Evaluation
E�ciency predictors, which aim to predict the processing

time of a query before retrieval commences, are an impor-
tant component of our work. In this first research ques-
tion, we aim to ensure that our estimations, particularly for
TAAT-CS pruning strategies, are accurate. We compare the
accuracy of the features listed in Table 1 when combined us-
ing linear regression. In particular, we compare the set that
only includes the six “method independent” features, with
the set that includes, in addition to the previous six, the
four “method dependent” features proposed for TAAT-CS.
Table 2 reports the accuracy of the linear regression mod-
els combining the six and ten features, as well as a baseline
predictor that uses only the total number of postings for
the query terms as a feature. In the table, we report the
mean, over the ten query servers, of the query processing
time (QPT) for each strategy, as well as the Root Mean
Square Error (RMSE), and the percentage of queries for
which the prediction error is less than 10 milliseconds. The
best value in each row for each measure is highlighted.

On analysing Table 2, we note that for DAAT, using the
six features improves over the baseline single feature predic-
tor by 42% (from RMSE 8.78 ·10�3 to 4.98 ·10�3), with 95%
of the queries having a prediction error of less than 10 ms.
On the other hand, using only the six features is insu�cient
for accurate processing time prediction for the CS-K strate-
gies – for instance, for CS-10000, only 65% of queries are
accurately predicted within 10 ms. However, for the linear
regression models that uses the additional 4 method depen-
dent features (10 features in all)3, the error is one order of
magnitude lower, and for the vast majority of queries (95-
99%) our linear model is able to predict the correct response
time up to a 10ms error.

Therefore, in answering research question RQ1, we find
that the proposed linear regression model is accurate, with
an error smaller than 10 ms in more than 95% of the cases.

3The 4 method dependent features do not apply to DAAT.
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1 Feature: sum of postings 6 Features: method independent 10 Features: incl. method depend.
Strategy QPT RMSE err  10 ms RMSE err  10 ms RMSE err  10 ms
DAAT 0.110 s. 8.78 ·10�3 87.83 % 4.98 ·10�3 95.53 % - -
CS-1000 0.025 s. 1.96 ·10�2 65.85 % 1.07 ·10�2 86.08 % 2.88 ·10�3 99.44 %
CS-2000 0.030 s. 2.50 ·10�2 63.52 % 1.96 ·10�2 80.38 % 3.55 ·10�3 98.63 %
CS-5000 0.037 s. 2.64 ·10�2 56.74 % 2.16 ·10�2 72.30 % 4.29 ·10�3 97.11 %
CS-10000 0.044 s. 2.78 ·10�2 51.31 % 2.32 ·10�2 65.10 % 4.64 ·10�3 96.55 %

Table 2: Mean query processing time (QPT, in seconds), as well as prediction accuracy using various feature
sets, for each processing strategy.
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Figure 4: Average query response time in seconds
for di↵erent methods, T = 0.5.

In particular, the best performing models for predicting CS-
K strategies are those obtained by the full set of ten features
described in Section 5, while in the case of DAAT, the six
features describing the lengths of the lists associated with
query terms perform very well. Therefore, in the following
experiments, we use six features for the prediction of the
DAAT processing times and the full set of ten features for
the prediction of TAAT CS-K processing times.

7.2 Efficiency and Effectiveness Analysis
In this section, we experiment to address RQ2, in com-

paring the e�ciency and e↵ectiveness of our proposed load-
sensitive selective pruning framework. In particular, we
compare our methods, Selfish and Altruistic, with three dif-
ferent baselines: Perfectionist and Manic, as well as applying
CS�10000 for all queries. We remark that, by their respec-
tive definitions, Perfectionist corresponds to a pure DAAT
full processing strategy and Manic corresponds to using CS-
1000. Within this section, we use a maximum threshold time
of T = 0.5 seconds, which mandates that the results for each
query must be returned, including both queueing and pro-
cessing, before this time elapses. Later, in Section 7.3, we
analyse how T a↵ects the performances of our methods.

We analyse our methods in terms of query response time
and e↵ectiveness, stressing our search system with di↵erent
rates of queries, measured in queries per second (q/s). The
query response time corresponds to measuring how much
time the query spends within the queues and being processed
– in other words the time a user waits for the results to be
returned. We evaluate e↵ectiveness using NDCG@1000, ex-
ploiting the 687 queries that have relevance assessments.

Firstly, we experiment to determine the average response
time of the various methods by varying the number of queries
per second submitted to the search system. As the Mil-
lion query track query set does not have query arrival times,
queries are submitted at uniform query rate – in other words
a submission rate of N q/s corresponds to submitting a
query every 1/N seconds. This allows us to measure the be-
haviour of the various techniques under various load condi-
tions, as shown in Figure 4. As expected, when using Perfec-
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Figure 5: Average query response time in seconds
for di↵erent methods (enlargement of Figure 4).
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tionist method, the mean response time exceeds the thresh-
old (T = 0.5) for all except very low workloads. CS�10000
can sustain slightly higher loads than Perfectionist, however
for loads greater than 20 q/s the response times are well
above the threshold.

Figure 5 enlarges the curves of Figure 4 for query response
times up to the threshold T = 0.5. This allows us to better
analyse the behaviour of the various methods for a workload
of 40 q/s or less. Clearly, Manic attains the smallest response
times, as it aggressively prunes all queries. However, both
Selfish and Altruistic methods are less e�cient than Manic,
but still achieve the threshold up to 40 q/s.

To show how the various methods cope with queries of
varying e�ciency, Figure 6 plots the actual query response
times for a subset (one hundred) of all the test queries, for a
query workload of 40 q/s. In particular, the response times
forManic, CS-10000, Selfish, and Altruistic are shown. Spikes
in the lines correspond to the e↵ect of expensive queries
on other later queries. Indeed, expensive queries delay the
queries submitted later, as expected though Selfish and Al-

truistic are more uniform than the others. In particular, in
the case of Altruistic, the line is also close to the time thresh-
old, indicating a better utilisation of the resources.

To determine how the threshold is adhered to for di↵er-
ent methods and workloads, Figure 7 shows the percent-
age of queries whose response time are within the threshold
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Figure 7: Percentage of queries achieving T = 0.5 for
di↵erent methods and query workloads.

T = 0.5. From the figure, we observe that for Selfish, the
percentage of queries meeting the 0.5 seconds deadline falls
for workloads greater than 20 q/s, whereas Altruistic and
Manic are able to keep this percentage above 90% for work-
loads up to 40 q/s.

We now analyse the e↵ectiveness of the proposed meth-
ods. In Figure 8, we plot the NDCG@1000 values achieved
for the di↵erent methods and workloads. These results are
mirrored in Table 3, where we also show the significance of
our results (paired t-test) compared to the Manic method
(i.e. CS-1000). From the curves in Figure 8, we observe that
the three baseline methods (Manic, CS-10000, and Perfec-

tionist) have a constant e↵ectiveness under any load condi-
tions, as they do not apply any form of adaptation to load
changes. On the other hand, Selfish and Altruistic adapt the
processing strategy according to the load level, such that
while e↵ectiveness degrades further as load increases, e↵ec-
tiveness is still significantly better than applying Manic, for
all of the tested workloads.
Finally, to complete our answering of research question

RQ2, e↵ectiveness and e�ciency results must be compared,
by examining Figures 4 and 5 (query processing time) and
Table 3 (NDCG@1000). For relatively low workloads, i.e.
5-20 q/s, the e↵ectiveness of the Altruistic method is better
than other approaches and is able to meet the time con-
straint of processing queries in less than T = 0.5 seconds. On
the other hand, for higher query workloads of 30 and 40 q/s,
Altruistic is clearly the most e↵ective method able to keep
response times below T . This is explained in that Altruistic

is able to fairly distribute query processing resources, en-
abling later queries in the queue to meet the deadline whilst
still maintaining a significantly high e↵ectiveness compared
to the Manic method. For workloads greater than 40 q/s,
none of our proposed methods are able to respect the time
constraint. Nevertheless, it is worth remarking that Altru-

istic still attains higher e↵ectiveness than Manic, which in
turn has the same average response time.

7.3 Effect of Parameter T on Response Times
Another advantage of our proposed framework is that the

parameter T can be adjusted to tune the response time of
the queries and adapt the retrieval strategy to the require-
ments of the search engine. In Figure 9 & 10, we show how
the response times and NDCG@1000 with respect to three
di↵erent thresholds, T = {0.1, 0.25, 0.5}. In particular, in
addition to Manic, we show the results for Altruistic, which
was the best performing in the previous section, with a su�x
denoting the T value (e.g. Altruistic-0.25 for T = 0.25).
As expected, on examination of Figure 9, we find that

by lowering the time threshold we also reduce the maximum
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Figure 9: Average query response time in seconds
for di↵erent T .

sustainable load. In general, Altruistic attains the highest ef-
fectiveness whilst being able to answer within the threshold
to a relatively high query load. Indeed, Altruistic can achieve
T = 0.5 with query loads up to 40 q/s, while T = 0.25 is
achieved up to 30 q/s, and up to 10 q/s for T = 0.1 seconds.
On the other hand, on examination of Figure 10, we ob-
serve that the e↵ectiveness of Altruistic increases for larger T ,
particularly for low workloads. Indeed, for the challenging
T = 0.1 threshold, even if at 5 q/s not all queries attain max-
imal e↵ectiveness, we note that this is only a 5% di↵erence4

with the NDCG@1000 of Perfectionist (0.347 vs. 0.352).
Overall, from these results, we find that for very high

query arrival rates and challenging time thresholds, it is im-
possible to attain T (for instance, T = 0.1 seconds at rates
above 10 q/s). If the system must ensure that T is met,
then the only alternative is to interrupt or drop late queries
during processing.5

To summarise, for research question RQ3 we find that in
response to more challenging time thresholds T , the Altruis-

tic method is able to adjust e�ciency to facilitate servicing
higher query loads within T than Perfectionist, whilst im-
proving over the e↵ectiveness of the uniform Manic method.

8. CONCLUSIONS
In this paper, we presented an innovative solution to the

important problem of processing queries during times of high

4Due to the large number of queries, all e↵ectiveness di↵er-
ences are statistically significant for p < 0.05.
5While we conducted experiments on the e↵ectiveness of
both dropping and interrupting query processing, we do not
fully report these results due to lack of space. In brief, as
expected, the drop strategy for Perfectionist results in a dra-
matic decrease in NDCG@1000, down to 0.097 for 40 q/s.
A slightly better result is obtained when the queries that
exceed the deadline are interrupted, and partial results re-
turned. In this case, NDCG@1000 was 0.23, which is still
markedly lower than Manic for the same setting.
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Method 5 q/s 10 q/s 20 q/s 30 q/s 40 q/s 50 q/s 100 q/s
Manic 0.316 0.316 0.316 0.316 0.316 0.316 0.316

CS-10000 0.348N 0.348N 0.348N 0.348N 0.348N 0.348N 0.348N
Perfectionist 0.352N 0.352N 0.352N 0.352N 0.352N 0.352N 0.352N

Selfish 0.352N 0.352N 0.347N 0.339N 0.329N 0.3184 0.3184
Altruistic 0.352N 0.352N 0.350N 0.345N 0.335N 0.324N 0.324N

Table 3: E↵ectiveness (NDCG@1000) for the di↵erent methods for T = 0.5. Statistically significant improve-
ments vs. Manic, as measured by the paired t-test, are denoted by 4 (p < 0.05) and N (p < 0.01).
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system load. In particular, we design a query processing
framework relying on the two novel functions, namely Pre-

dict(), and Bound(). These use the predicted processing time
for a query to calculate a processing time budget for that
query, depending on both a global response time threshold,
and the other queries waiting to be processed, while taking
into account goals such as e�ciency, e↵ectiveness and fair-
ness. This allows an appropriate dynamic pruning strategy
to be selected for each query. For Predict(), we presented a
regression-based model that can correctly predict the pro-
cessing times of both DAAT and TAAT strategies with less
than 10ms error in more than 90% of cases.

On the other hand, for Bound(), we proposed an Altruistic

among other methods, which is able to fairly allocate pro-
cessing resources across all queries currently queued. Through
extensive experiments on a standard test collection, Altru-
istic is shown capable of processing queries within various
time thresholds T and with the smallest loss in terms of
NDCG@1000. Finally, we show that Altruistic not only on
average is able to stay within the time threshold T , but,
under high load, is also the method that has the smallest
percentage of queries for which the processing time exceeds
T . Indeed, our results show that at a workload of 40 queries
per second, Altruistic is able to meet a deadline of 0.5 seconds
for 90% of queries (see Figure 7) while still attaining signif-
icantly high e↵ectiveness (Table 3). In contrast, the next
most e↵ective Selfish method can only meet the deadline for
40% of queries.
This paper opens several directions for future work. For

instance, one direction is the definition of a computational
optimisation problem to address Bound() that can adapt to
the continuous stream of queries arriving. On the other
hand, we believe that improved definitions for Predict() and
Bound() can consider the entire distributed search architec-
ture, rather than each query server in independence.
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