
A Search Architecture for Grid Software Components

Fabrizio Silvestri
HPC-Lab

ISTI-CNR, Italy
fabrizio.silvestri@isti.cnr.it

Diego Puppin
HPC-Lab

ISTI-CNR, Italy
diego.puppin@isti.cnr.it

Domenico Laforenza
HPC-Lab

ISTI-CNR, Italy
domenico.laforenza@isti.cnr.it

Salvatore Orlando
Dipartimento di Informatica

Universit̀a di Venezia - Mestre
orlando@unive.it

Introduction. Today, the development of Grid applica-
tions is considered a nightmare, due to lack of grid pro-
gramming environments, standards, off-the-shelf software
components, and so on.

Many authors envision the existence of a marketplace for
software components where developers can gather the com-
ponents for their applications [3]. This model, if globally
accepted, would find its natural end in the Grid platform.
The main obstacles to this goal seem to be the: (a) the lack
of a standard for describing components and their interac-
tions, and (b) the need for a service able to locate relevant
components satisfying some kind of cost constraints. Re-
garding standards, recent advances in Component and Grid
technology, such as JavaBeans, ActiveX, and Grid Services,
are providing a basis for interchangeable parts. The Grid
and the Internet, instead, provide a means for consumers
(i.e. programmers) to locate available components.

Moreover, standardization efforts on component models,
integration platforms, and business domain concepts will
accelerate the usage and the spreading of components for
building component-based Grid Applications[1]. Hence, it
can be expected that in a very near future, there will be
thousands of components providers available on the Grid.
It is worth noting that within the above mentioned market
of components, the same kind of service would be sold by
different vendors at different prices and with different qual-
ity.

From the considerations made so far, it is clear that when
this way of developing applications starting from basic and
separately bought building blocks will become fully opera-
tional, the most challenging goal to pursue will be finding
the best components suitable for each user’s needs. As far as
we know, there has been limited effort in the Grid research
community towards this goal. In this paper, we are going to
discuss the challenges we have to face in designing a search
service for locating software components on the Grid. In-

deed, the specifications of our search engine rely heavily on
the concept ofEcosystem of Components. Basically it con-
sists in an extension of the marketplace concept to the Grid.
The ecosystem, in fact, provides applications a virtual en-
vironment where they canlive (i.e. are executed), and find
other components to which they can refer (i.e.cooperate)
to build larger (and more complex) systems.

In other words, the idea ofEcosystem of Componentscan
be easily compared to the well known concept of Web. Un-
der this vision a software component is a sort of Web page
and an application built by composing different blocks can
be seen as a Web site (i.e. a composition of different Web
pages). From the application perspective, each part can be
either a component available locally (i.e. alocal web page),
or a remote component (i.e. aremoteweb page). In addi-
tion, the links interconnecting Web pages can be compared
to the links indicating interactions among components of
the same application. The most interesting characteristic
of this model, anyway, is that a user can, possibly, make
publicly available the relationships between the different
components involved in the application. Regarding this last
point, one could argue that a developer would not publicize
how s/he has realized an application. We do not think so:
there are many reasons why s/he would do so. First of all,
as in the Web there are portals like SourceForge1, or Fresh-
Meat2 that allow the publishing of open source application,
we think that in the Grid will exists public repository of ap-
plications. Moreover, in the Web there are many examples
of popular services that publicize their use of other impor-
tant and effective services: AOL, for instance, claims that
it uses the Open Directory Project (ODP [9]) as its back-
bone for offering its search service. Ask Jeeves [7] shows
results from its own editors and it asserts that it gets spi-
dered listings fromTeoma.com[5] and paid listings from

1http://www.sourceforge.net
2http://www.freshmeat.net



Google [4]. Translated to the Grid, the importance of an
application could be raised by using another, and more pop-
ular, component. In other words, we would inherit the im-
portance of the used components.

As already said, our system tackles the concept of Work-
flow graphs for modeling Grid Application to compute a
sort of static importance valuethat will be used as a mea-
sure of the “quality” of each application. The idea is rather
simple: the more an application is referred by other ap-
plications the more important this application is consid-
ered. Note that this concept is very close to the well known
PageRank[8] measure used by Google[4] to rank the pages
it stores.

Grid Applications and Workflows. To date, we can ob-
serve that there has been very limited work on Grid-specific
programming languages. This is not too surprising since au-
tomatic generation of parallel applications from high-level
languages usually works only within the context of well de-
fined execution models [11], and Grid applications have
a more complex execution space than parallel programs.
Some interesting results on Grid programming tools have
been reached by scripting languages such as Python-G [6],
and workflow languages such as DAGMAN [10]. These ap-
proaches have the additional benefit that they focus on coor-
dination of components written in traditional programming
languages, thus facilitating the transition of legacy applica-
tions to the Grid environment.

This workflow-centric vision of the Grid is the one we
are going to investigate in this work. We envision a Grid
programming environment where different components can
be adapted and coordinated through workflows, also allow-
ing hierarchical composition. According to this approach,
we thus may composemetacomponents, in turn obtained
as a workflow that uses other components. An example of
workflow graph is shown in Figure 1. Even if this graph
is flat, it has been obtained through composing different
metacomponents, in particular “flight reservation” and “ho-
tel reservation” components. As you can note, we have
not chosen a typicalscientificGrid application, but rather
a business-orientedone. This is because we are at the mo-
ment of convergence of the two worlds, and because we
would like to show that such Grid programming technolo-
gies could also be used in this case.

The strength of the Grid should be the possibility of pick-
ing up components from different sources. The question is
now: where are the components located? In the following
we are going to present some preliminary ideas on this is-
sue.

Application Development Cycle. In our vision, the
application development should be a three-staged process,
which can be driven not only by an expert programmer, but

Figure 1. An example of a workflow-based ap-
plication for arranging a conference trip. The
user must reserve two flights (outward and re-
turn) before reserving the hotel for the confer-
ence. Note that, in the case that only the third
hotel has available rooms, a car is needed and
must be booked too.

also by an experienced end-user, possibly under the super-
vision of a problem solving environment (PSE). In partic-
ular, when a PSE is used, we would give the developer the
capability of using components coming from:

• a local repository, containing components already
used in past applications, as well as others we may
have previously installed;

• asearch engine, which is able to discovery the compo-
nents that fit users’ specifications.

Hence, the three stages which drive the application devel-
opment process are:

1. application sketching;

2. components discovering;

3. application assembling/composition.

Starting from stage1 (i.e. sketching), developers may
specify anabstractworkflow graph orplan. The abstract
graph would contain what we callplace-holdercompo-
nents and flow links indicating the way information passes
through the application’s parts.

A place-holder component represents a partially speci-
fied object that just contains a brief description of the op-
erations to be carried out and a possibly inaccurate descrip-
tion of its functions. The place-holder component, under
this model, can be thought as aquerysubmitted to the com-
ponent search module, in order to obtain a list of (possibly)
relevant component for its specifications.

Obviously, the place-holder specifications can be as sim-
ple as specifying only some keywords related tonon func-
tional characteristics of the component (e.g. its description

2



in natural language), but it can soon become complex if
we include alsofunctional information. For example, the
“Flight Reservation” component can be searched through
a place-holder query based on the keywords:airplane, re-
serve, flight, trip, take-off, but we can also ask for a spe-
cific method signature to specify the desired destination and
take-off time.

The Component Search Module.In the last years, the
Web Search Engine study has became a new and impor-
tant research topic. In particular, several researchers’ efforts
have been spent on Web models suitable for ranking results
of a query to a Search Engine [2].

We would like to approach the problem of searching soft-
ware components using this mature technology. We would
like to exploit the concept ofecosystemof components to
design a solution able todiscoverand indexapplications’
building blocks, and allows the search of the most relevant
components for a given query. Furthermore, the most im-
portant characteristic is the exploitation of theinterlinked
structureof metacomponents (workflows) in the designing
of smart Ranking algorithms. These workflows ranking
schemas, in fact, will be aware of the context where the
components themselves are placed.

To summarize, Figure 2 shows the overall architecture of
our Component Search Engine calledGRIDLE: GoogleTM-
like Ranking, Indexing and Discovery service for a Link-
based Eco-system of software components.

The main modules of GRIDLE are theComponent
Crawler, theIndexerand theQuery Answering.

Figure 2. The architecture of GRIDLE.

The Component Crawlermodule is responsible for au-
tomatically retrieving new components. TheIndexerhas to
build theindexdata structure of GRIDLE. This step is very
important, because some information about the relevance
of the components within the ecosystem must be discov-
ered and stored in the index. The last module of GRIDLE is
theQuery Answeringone, which actually resolves the com-
ponents queries on the basis of the index. As other, tradi-
tional, search engine, the GRIDLE searching algorithm is

made up of two steps. First, GRIDLE tries to resolve the
place-holder by using the components contained in the lo-
cal repository. If a suitable component is found locally, then
this is promptly returned to the user without searching on re-
mote sites. On the other hand, if it cannot be found locally, a
Query Sessionis started. The goal is to retrieve aranked list
of components that arerelevantto the specification given in
the place-holder plan graph.

After the searching phase, we have to put together all the
chosen modules in order to: (1) fill in all the place-holders,
and (2)materializethe connections among the components.

As an example, let us consider the above steps in the
development process of the example depicted in Figure 1.
In a Grid software development environment a programmer
could have sketched the abstract workflow plan graph de-
picted in Figure 3.

Flight
Reserv.

Hotel
Reserv. success

failure

OK

OK
Error

E
rror

Ret. Flight
Reserv.

OK

Error

OK

OK
Error

Placeholder
component

Figure 3. A partially specified workflow graph,
describing the application of Figure 1 at the
highest level possible.

Starting from here, s/he would proceed as follow. First,
s/he would look for a flight reservation component match-
ing the place-holder. Let us suppose that such a compo-
nent is available locally. GRIDLE will automatically return
a pointer to it and expand the place-holder with the found
component (binding). Figure 4 shows the workflow graph
as it appears at this point of development. In the picture
we can see that the found component has been instantiated
twice, for both the outward and return flight reservations.
Moreover, note that the matching component is a metacom-
ponent, i.e. it is composed of several (interconnected) com-
ponents.

Then, the user selects the “Hotel Reservation” place-
holder. Since this is not available in the local repository, a
query session is initiated. GRIDLE starts looking for a com-
ponent. The search process is two-staged. In its first part,
GRIDLE tries to find an initial (possibly inaccurate) list of
components. Then, the user has to refine it until a shorter,
and more relevant, list of components is obtained. Once the
search phase is ended the user would pick up the most suit-
able component to replace the corresponding place-holder
(binding). Finally, when all the components are fully spec-
ified, the developer will continue refining the application

3



success

failure

OK

Error

OK

Flight
Reserv. 1

Flight
Reserv. 1

success

Train
Reserv.

Return
Flight 1

Return
Fligth 2

Return
Train.

OK

success

OK OK

ERROR ERROR ERROR

ERROR ERROR ERROR

ERROR

failure

Found components

failure

OK OK OK

Hotel
Reserv.

Placeholder
component

Figure 4. The abstract workflow graph as it
appears after the “flight reservation compo-
nent” has been found.

until it meets his/her original requirements.
The binding phase may be as simple as forwarding the

output channel of a component to the input of the next
(as for Unix pipes), but it may be more complex if data
and/or protocol conversions are needed. In this latter case,
a user-driven, framework-assisted procedure is needed. The
framework should try to determine the type and the seman-
tics of components’ input/output ports, using any available
header, XML and textual descriptions, Web ontologies, pat-
tern matching and naming conventions. With this informa-
tion, the programmer should choose the best chain of con-
versions, and ask the framework to instantiate an ad-hoc
filter, performing the transformation needed (for instance,
the output of a components needs to be converted from a
chain of strings into a Java array of double, and sent over
HTTP/SOAP).

Conclusions. In this contribution, we presented our vi-
sion of a new tool allowing the design of workflow-based
Grid applications where a composition of different work-
flows can be seen as a single autonomous meta-component.
The main issue presented in the work is thecomponent
search service, which allows users to locate the components
they need. We believe that in the near future there will be a
growing demand for ready-made software services, and cur-
rent Web Search technologies will help in the deployment
of effective solutions. The search engine, based on infor-
mation retrieval techniques, in our opinion should be able
to rankcomponents on the basis of: their similarity with the
place-holder description, their popularity among developers
(something similar to the hit count), their use within other
services (similarly to PageRank) etc.

Clearly, it is of primary importance the existence of a
quick, efficient, automatic way to deploy software com-
ponents out of existing code. In our opinion, there is the
need for automatic tools able to extract signature informa-
tion from legacy code, and able to create the bridging code
needed to make the component communicate with other en-
tities, designed with different languages or running on dif-

ferent platforms.
When all these services become available, building a

Grid application will become a straight-forward process. A
non-expert user, aided by a graphical environment, will give
a high-level description of the desired operations, which
will be found, and possibly paid for, out of a quickly evolv-
ing market of services. At that point, the whole Grid will
become as a virtual machine, tapping the power of a vast
numbers of resources [3].

References

[1] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna
Keahey, Scott Kohn, Lois McInnes, Steve Parker, and
Brent Smolinski. Toward a common component ar-
chitecture for high-performance scientific computing.
In Proceedings of the The Eighth IEEE International
Symposium on High Performance Distributed Com-
puting, page 13. IEEE Computer Society, 1999.

[2] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto.
Modern Information Retrieval. ACM Press / Addison-
Wesley, 1999.

[3] Rajkumar Buyya. Economic-based Distributed Re-
source Management and Scheduling for Grid Com-
puting. PhD thesis, Monash University, Melbourne,
Australia, April 2002.

[4] The Google Search Engine. http://www.google.com.

[5] The Teoma Search Engine. http://www.teoma.com.

[6] N. Jackson. pyglobus: a python interface to the globus
toolkit. Concurrency and Computation: Practice and
Experience, 14(13-15):1075–1084, 2002.

[7] Ask Jeeves. http://www.askjeeves.com.

[8] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford
Digital Library Technologies Project, 1998.

[9] The Open Directory Project. http://www.dmoz.org.

[10] D. Thain, T. Tannenbaum, and M. Livny.Grid Com-
puting: Making The Global Infrastructure a Reality,
chapter 11 - Condor and the Grid, pages 299–335.
John Wiley, 2003.

[11] Cheer-Sun D. Yang and Lori L. Pollock. All-uses test-
ing of shared memory parallel programs.Software
Testing, Verification, and Reliability Journal, (13):3–
24, 2003.

4


