
An Efficient Parallel and Distributed Algorithm
for Counting Frequent Sets

S. Orlando1, P. Palmerini1,2, R. Perego2, F. Silvestri2,3

1 Dipartimento di Informatica, Università Ca’ Foscari, Venezia, Italy
2 Istituto CNUCE, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

3 Dipartimento di Informatica, Università di Pisa, Italy

Abstract Due to the huge increase in the number and dimension of
available databases, efficient solutions for counting frequent sets are nowa-
days very important within the Data Mining community. Several sequen-
tial and parallel algorithms were proposed, which in many cases exhibit
excellent scalability. In this paper we present ParDCI, a distributed and
multithreaded algorithm for counting the occurrences of frequent sets
within transactional databases. ParDCI is a parallel version of DCI (Direct
Count & Intersect), a multi-strategy algorithm which is able to adapt its
behavior not only to the features of the specific computing platform (e.g.
available memory), but also to the features of the dataset being processed
(e.g. sparse or dense datasets). ParDCI enhances previous proposals by
exploiting the highly optimized counting and intersection techniques of
DCI, and by relying on a multi-level parallelization approach which ex-
plicitly targets clusters of SMPs, an emerging computing platform. We
focused our work on the efficient exploitation of the underlying archi-
tecture. Intra-Node multithreading effectively exploits the memory hier-
archies of each SMP node, while Inter-Node parallelism exploits smart
partitioning techniques aimed at reducing communication overheads. In
depth experimental evaluations demonstrate that ParDCI reaches nearly
optimal performances under a variety of conditions.

1 Introduction

Association Rule Mining (ARM) [6,7] is one of the most popular topic in the Data
Mining field. The process of generating association rules has historically been
adopted for Market-Basket Analysis, where transactions are records representing
point-of-sale data, while items represent products on sale. The importance for
marketing decisions of association rules like “the 80% of customers who buy
products X with high probability also buy Y ” is intuitive, and explains the
strong interest in ARM.

Given a database of transactions D, an association rule has the form X ⇒ Y ,
where X and Y are sets of items (itemsets), such that (X ∩ Y) = ∅. A rule
X ⇒ Y holds in D with a minimum confidence c and a minimum support s, if
at least the c% of all the transactions containing X also contain Y , and X ∪Y is
present in at least the s% of all the transactions of the database. It’s important

to distinguish among support and confidence. While confidence measures the
probability of having Y when X is given, the support of a rule measures the
number of transactions in D that contain both X and Y .

The ARM process can be subdivided into two main steps. The former is con-
cerned with the Frequent Set Counting (FSC) problem. During this step, the set
F of all the frequent itemsets is built, where an itemset is frequent if its support
is greater than a fixed support threshold s, i.e. the itemset occurs in at least
minsup transactions (minsup = s/100 ·n, where n, is the number of transaction
in D). In the latter step the association rules satisfying both minimum support
and minimum confidence conditions are identified. While generating association
rules is straightforward, the first step may be very expensive both in time and
space, depending on the support threshold and the characteristic of the dataset
processed. The computational complexity of the FSC problem derives from the
size of its search space P(M), i.e. the power set of M , where M is the set of
items contained in the various transactions of D. Although P(M) is exponential
in m = |M |, effective pruning techniques exist for reducing it. The capability of
effectively pruning the search space derives from the intuitive observation that
none of the superset of an infrequent itemset can be frequent. The search for
frequent itemsets can be thus restricted to those itemsets in P(M) whose subsets
are all frequent. This observation suggested a level-wise, or breadth-first, visit of
the lattice corresponding to P(M), whose partial order is specified by the subset
relation (⊆) [16].

Apriori [3] was the first effective algorithm for solving FSC. It iteratively
searches frequent itemsets: at each iteration k, the set Fk of all the frequent
itemsets of k items (k-itemsets), is identified. In order to generate Fk, a candidate
set Ck of potentially frequent itemsets is first built. By construction, Ck is a
superset of Fk, and thus in order to discover frequent k-itemsets, the supports of
all candidate sets are computed by scanning the entire transaction database D.
All the candidates with minimum support are then included in Fk, and the next
iteration is started. The algorithm terminates when Fk becomes empty, i.e. when
no frequent set of k or more items is present in the database. Apriori strongly
reduces the number of candidate sets generated on the basis of a simple but very
effective observation: a k-itemset can be frequent only if all its subsets of k − 1
items are frequent. Ck is thus built at each iteration as the set of all k-itemsets
whose subsets of k−1 items are all included in Fk−1. Conversely, k-itemsets that
at least contain an infrequent (k − 1)-itemset are not included in Ck.

Several variations to the original Apriori algorithm, as well as many parallel
implementations, have been proposed in the last years. We can recognize two
main methods for determining itemset supports: a counting-based [1,3,5,8,13]
and an intersection-based [14,16] one. The former one, also adopted by Apriori ,
exploits a horizontal dataset, where the transactions are stored sequentially. The
method is based on counting how many times each candidate k-itemset occurs in
every transaction. The intersection–based method, on the other hand, exploits a
vertical dataset, where a tidlist, i.e. a list of the identifiers of all the transactions
which contain a given item, is associated with the identifier of the item itself.

In this case the support of any k-itemset can be determined by computing the
cardinality of the tidlist resulting from the k-way intersection of the k tidlists
associated with the corresponding k items. If we are able to buffer the tidlists of
previously computed frequent (k−1)-itemsets, we can speedup the computation
since the support of a generic candidate k-itemset c can be simply computed
by intersecting the tidlists of two (k − 1)-itemsets whose union produces c. The
counting-based approach is, in most cases, quite efficient from the point of view
of memory occupation, since it only requires enough main memory to store Ck

along with the data structures exploited to make the access to candidate itemsets
faster (e.g. hash-trees or prefix-trees). On the other hand, the intersection-based
method is more computational effective [14]. Unfortunately, it may pay the re-
duced computational complexity with an increase in memory requirements, in
particular to buffer the tidlists of previously computed frequent (k−1)-itemsets.

In this paper we discuss ParDCI, a parallel and distributed implementation of
DCI (Direct Count & Intersect), which is an effective FSC algorithm previously
proposed by the same authors [12]. DCI resulted faster than previously proposed,
state-of-the-art, sequential algorithms. The very good results obtained for sparse
and dense datasets, as well as for real and synthetically generated ones, justify
our interest in studying parallelization and scalability of DCI. ParDCI works sim-
ilarly to DCI. It is based on a level-wise visit of P(M), and adopts a hybrid
approach to determine itemset supports: it exploits an effective counting-based
method during the first iterations, and a very fast intersection-based method
during the last ones. When the counting method is employed, ParDCI relies on
optimized data structures for storing and accessing candidate itemsets with high
locality. The database is partitioned among the processing nodes, and a simple
but effective database pruning technique [11,12] is exploited which allows to trim
the transaction database partitions as execution progresses. When the pruned
dataset is small enough to fit into the main memory, ParDCI changes its behavior,
and adopts an intersection-based approach to determine frequent sets. The rep-
resentation of the dataset is thus transformed from horizontal into vertical, and
the new dataset is stored in-core on each node. Using this approach, candidates
are partitioned in a way that grants load balancing, and the support of each can-
didate itemset is locally determined on-the-fly by intersecting the corresponding
tidlists. Tidlists are actually represented as vectors of bits, which can be accessed
with high locality and intersected very efficiently. Differently from other propos-
als, our intersection approach only requires a limited and configurable amount
of memory. To speedup the intersecting task, ParDCI reuses most of the inter-
sections previously done, by caching them in a fixed-size buffer for future use.
Moreover, ParDCI adopts several heuristic strategies to adapt its behavior to the
features of datasets processed. For example, when a dataset is dense, the sections
of tidlists which turn out to be identical are aggregated and clustered in order
to reduce the number of intersections actually performed. Conversely, when a
dataset is sparse, the runs of zero bits in the intersected tidlists are promptly
identified and skipped. More details on these strategies can be found in [12].

ParDCI implementation is explicitly targeted towards the efficient use of clus-
ters of SMP nodes, an emerging computing platform. Inter-Node parallelism
exploits the MPI communication library, while Intra-Node parallelism uses mul-
tithreading and out-of-core techniques in order to effectively exploit the memory
hierarchies of each SMP node. To validate our proposal we conducted several
experiments on a cluster of three dual-processor PCs running linux. Different
synthetic datasets and various support thresholds were used in order to test
ParDCI under different conditions. The results were very encouraging since the
performances obtained were nearly optimal.

This paper is organized as follows. Section 2 introduces FSC parallelization
techniques and discusses same related work. In Section 3 we describe ParDCI
in depth, while Section 4 presents and discusses the results of the experiments
conducted. Finally in Section 5 we draw future works and some conclusions.

2 Related Work

Several parallel algorithms for solving the FSC problem have been proposed in
the last years [2,8]. Zaki authored a survey on ARM algorithms and relative
parallelization schemas [15]. Most proposals can be considered parallelizations
of the well-known Apriori algorithm. Agrawal et al. in [2] proposes a broad
taxonomy of the parallelization strategies that can be adopted for Apriori on
distributed-memory architectures. These strategies, summarized in the following,
constitute a wide spectrum of trade–offs between computation, communication,
memory usage, synchronization, and exploitation of problem–domain knowledge.

The Count Distribution strategy follows a data-parallel paradigm according
to which the transaction database is statically partitioned among the processing
nodes, while the candidate set Ck is replicated. At each iteration every node
counts the occurrences of candidate itemsets within the local database partition.
At the end of the counting phase, the replicated counters are aggregated, and
every node builds the same set of frequent itemsets Fk. On the basis of the
global knowledge of Fk, candidate set Ck+1 for the next iteration is then built.
Inter-Node communication is minimized at the price of carrying out redundant
computations in parallel.

The Data Distribution strategies attempts to utilize the aggregate main mem-
ory of the whole parallel system. Not only the transaction database, but also the
candidate set Ck are partitioned in order to permit both kinds of partitions
to fit into the main memory of each node. Processing nodes are arranged in a
logical ring topology to exchange database partitions, since every node has to
count the occurrences of its own candidate itemsets within the transactions of
the whole database. Once all database partitions have been processed by each
node, every node identifies the locally frequent itemsets and broadcasts them
to all the other nodes in order to allow them to build the same set Ck+1. This
approach clearly maximizes the use of node aggregate memory, but requires a
very high communication bandwidth to transfer the whole dataset through the
ring at each iteration.

The last strategies, Candidate Distribution, exploits problem–domain knowl-
edge in order to partition both the database and the candidate set in a way that
allows each processor to proceed independently. The rationale of the approach is
to identify, as execution progresses, disjoint partitions of candidates supported
by (possibly overlapping) subsets of different transactions. Candidates are sub-
divided on the basis of their prefixes. This trick is possible because candidates,
frequent itemsets, and transactions, are stored in lexicographical order. Depend-
ing from the resulting candidate partitioning schema, the approach may suffer
from poor load balancing. The parallelization technique is however very interest-
ing. Once the partitioning schema for both Ck and Fk is decided, the approach
does not involve further communications/synchronizations among the nodes.

The results of the experiments described in [2] demonstrate that algorithms
based on Count Distribution exhibits optimal scale-up and excellent speedup,
thus outperforming the other strategies. Data Distribution resulted the worst
approach, while the algorithm based on Candidate Distribution obtained good
performances but paid a high overhead caused by the need of redistributing the
dataset.

3 ParDCI

During its initial counting-based phase, ParDCI exploits a horizontal database
with variable length records. During this phase, ParDCI trims the transaction
database as execution progresses. In particular, a pruned dataset Dk+1 is written
to the disk at each iteration k, and employed at the next iteration [11]. Dataset
pruning is based on several criteria. The main criterium states that transactions
that do not contain any frequent k-itemset will not surely contain larger frequent
itemsets and can thus be removed from Dk+1. Pruning entails a reduction in I/O
activity as the algorithm progresses, since the size of Dk is always smaller than
the size of Dk−1. However, the main benefits come from the reduced computation
required for subset counting at each iteration k, due to the reduced number
and size of transactions. As soon as the pruned dataset becomes small enough
to fit into the main memory, ParDCI adaptively changes its behavior, builds a
vertical-layout in-core database, and adopts the intersection-based approach to
determine larger frequent sets. Note, however, that ParDCI continues to have
a level-wise behavior, so that the search space for finding frequent sets is still
traversed breadth-first [10].

ParDCI uses an Apriori -like technique to generate Ck starting from Fk−1.
Each candidate k-itemset is generated as the union of a pair of Fk−1 itemsets
sharing a common (k − 2)-prefix. Since itemsets in Fk−1 are lexicographically
ordered, the various pairs occur in close positions within Fk−1, and ParDCI can
generate candidates by exploiting high spatial and temporal locality. Only dur-
ing the counting-based phase, Ck is pruned by checking whether all the other
(k − 1)-subsets of a candidate k-itemset are frequent, i.e. are included in Fk−1.
Conversely, during the intersection-based phase, since our intersection method
is able to quickly determine the support of a candidate itemsets, we found more

profitable to avoid this check. As soon a candidate k-itemset is generated, ParDCI
determines on-the-fly its support by intersecting the corresponding tidlists. As a
consequence, while during its counting-based phase ParDCI has to maintain Ck

in main memory to search candidates and increment associated counters, this
is no longer needed during its intersection-based phase. This is an important
improvement over other FSC algorithms, which suffer from the possible huge
memory requirements due to the explosion of the size of Ck[9].

In designing ParDCI we exploited effective out-of-core techniques, so that the
algorithm is able to adapt its behavior to the characteristics of the dataset and
of the underlying architecture. The efficient exploitation of memory hierarchies
received particular attention: datasets are read/written in blocks, to take advan-
tage of I/O prefetching and system pipelining [4]; at each iteration the frequent
set is written to a file which is then mmap-ped into memory in order to access it
for candidate generation during the next iteration.

In the following we describe the different parallelization techniques used
in the counting- and intersection-based phases of ParDCI. In both phases we
have to further distinguish between the Intra-Node and the Inter-Node level of
parallelism exploitation. At the Inter-Node level we used the message–passing
paradigm through the MPI communication library, while in the Intra-Node level
we exploited multi-threading through the Posix Thread library. A Count Dis-
tribution approach is adopted to parallelize the counting-based phase, while the
intersection-based phase exploits a very effective and original implementation of
the Candidate Distribution approach [2].

Thread
Master

Local Area Network

Thread
Master

Threa
d P.1

Threa
d P.2

Threa
d P.3

Threa
d P.N

Threa
d 1.

3

Threa
d 1.

N

Threa
d 1.

2

Threa
d 1.

1

Candidates 1 Candidates P

Frequent Sets 1 Frequent Sets P

Dataset

Partition P

Dataset

Partition 1

Figure1. ParDCI: threads and processes interaction schema.

3.1 The counting-based phase

A Count Distribution approach was adopted for the counting-based phase of
ParDCI. Since the counting-based approach is used only for a few iterations (in
all the experiments conducted ParDCI starts using intersections at the third or

fourth iteration), in the following we only sketch the main features of the count-
ing method adopted (interested readers can refer to [11]). In the first iteration,
as all FSC algorithms, ParDCI directly counts the occurrences of items within
all the transactions. For k ≥ 2, instead of using complex data structures like
hash-trees or prefix-trees, ParDCI uses a novel Direct Count technique that can
be thought as a generalization of the technique used for k = 1. The technique
uses a prefix table, PREFIXk[], of size

(
mk

2

)
, where mk is the number of dif-

ferent items contained in the pruned dataset Dk. In particular, each entry of
PREFIXk[] is associated with a distinct ordered prefix of two items. For k = 2,
PREFIXk[] directly contains the counters associated with the various candidate
2-itemsets, while, for k > 2, each entry of PREFIXk[] points to the contiguous
section of ordered candidates in Ck sharing the associated prefix. To permit the
various entries of PREFIXk[] to be directly accessed, we devised an order pre-
serving, minimal perfect hash function. This prefix table is thus used to count
the support of candidates in Ck as follows. For each transaction t = {t1, . . . , t|t|},
we select all the possible 2-prefixes of all k-subsets included in t. We then exploit
PREFIXk[] to find the sections of Ck which must be visited in order to check
set-inclusion of candidates in transaction t.

At the Inter-Node level, candidate set Ck is replicated, while the transaction
database is statically split in a number of partitions equal to the number of SMP
nodes available. Every SMP node at each iteration performs a scan of the whole
local dataset partition. When the occurrence of a candidate itemset c ∈ Ck is
discovered in a transaction, the counter associated with c is incremented. At the
end of the counting step, the counters computed by every node are aggregated
(via a MPI Allreduce operation). Each node then produces the same set Fk and
generates the same candidate set Ck+1 employed at the next iteration. These
operations are however inexpensive, and their duplication does not degrade per-
formances.
As depicted in Figure 1, at the Intra-Node level each node uses a pool of threads.
They have the task of checking in parallel each of the candidate itemset against
chunks of transactions of the local dataset partition. The task of subdividing
the local dataset in disjoint chunks is assigned to a particular thread, the Mas-
ter Thread. It loops reading blocks of transactions and forwarding them to the
Worker Threads executing the counting task. To overlap computation with I/O,
minimize synchronization, and avoid data copying overheads, we used an opti-
mized producer/consumer schema for the cooperation among the Master and
Worker threads. A prod/cons buffer, which is logically divided into Npos sec-
tions, is shared between the Master (producer) and the Workers (consumers).
We also have two queues of pointers to the various buffer positions: a Writable
Queue, which contains pointers to free buffer positions, and a Readable Queue,
which contains pointers to buffer positions that have been filled by the Mas-
ter with transactions read from the database. The operations that modify the
two queues (to be performed in critical sections) are very fast, and regard the
attachment/detachment of pointers to the various buffer positions. The Master
thread detaches a reference to a free section of the buffer from the Writable

Queue, and uses that section to read a block of transactions from disk. When
reading is completed, the Master inserts the reference to the buffer section into
the (initially empty) Readable Queue. Symmetrically, each Worker thread self–
schedules its work by extracting a reference to a chunk of transactions from the
Readable Queue, and by counting the occurrences of candidate itemsets within
such transactions. While the transactions are processed, the Worker also per-
forms transaction pruning, and uses the same buffer section to store pruned
transactions to be written to Dk+1. At the end of the counting step relative to
the current chunk of transactions, the worker writes the transactions to disk
and reinserts the reference to the buffer section into the Writable Queue. When
all transactions (belonging to the partition of Dk) have been processed, each
Master thread performs a local reduction operation over the various copies of
counters (reduction at the Intra-Node level), before performing via MPI the
global counter reduction operation with all the other Master threads running
on the other nodes (reduction at the Inter-Node level). Finally, to complete the
iteration of the algorithm, each Master thread generates Fk, writes this set to
the local disk, and generates Ck+1.

3.2 The intersection-based phase

When the size of the pruned dataset Dk becomes small enough to fit into the
main memory of all nodes, ParDCI changes its behavior, and starts the intersec-
tion-based phase, by first transforming the dataset from horizontal into vertical.
Tidlists in the vertical dataset are actually represented as bit-vectors, where the
bit i is set within tidlist j if transaction i contains item j. This representation en-
hances locality exploitation, and allows intersections to be efficiently performed
by using simple Boolean and instructions.

In order to speedup tidlist intersection, ParDCI stores and reuses most of the
intersections previously done by caching them in a fixed-size buffer. In particu-
lar, it uses a small “cache” buffer to store all the intermediate intersections that
have been computed to determine the support of c ∈ Ck, where c is the last
evaluated candidate. The cache buffer used is a simple bi-dimensional bit-array
Cache[][], where the bit vector Cache[j][], 2 ≤ j ≤ (k− 1) is used to store the
results of the intersections relative to the first j items of c. Since candidate item-
sets are generated in lexicographic order, with high probability two candidates
consecutively generated, say c and c′, share a common prefix. Suppose that c and
c′ share a prefix of length h ≥ 2. When we consider c′ to determine its support,
we can save work by reusing the intermediate result stored in Cache[h][]. Even
if, in the worst case, the tidlists corresponding to all the k items included in
a candidate k-itemset have to be intersected (k-way intersection), our caching
method is able to strongly reduce the number of intersections actually performed
[12].

During the intersection-based phase, an effective Candidate Distribution ap-
proach is adopted at both the Inter and Intra-Node levels. This parallelization
schema makes the parallel nodes completely independent: communications and
synchronization are no longer needed for all the following iterations of ParDCI.

Let us first consider the Inter-node level, and suppose that the intersection-
based phase is started at iteration k + 1. Therefore, at iteration k the various
nodes build the bit-vectors representing their own portions of the vertical in-
core dataset. The construction of the vertical dataset is carried out on-the-fly,
while transactions are read from the horizontal dataset for subset counting. The
partial vectors are then broadcast to obtain a complete replication of the whole
vertical dataset on each node. The frequent set Fk (i.e., the set computed in
the last counting-based iteration) is then statically partitioned among the SMP
nodes by exploiting problem-domain knowledge, thus entailing a Candidate Dis-
tribution schema for all the following iterations. Partitioning is done in a way
that allows each processing node P i to generate a unique Ci

k (k > k) indepen-
dently of all the other nodes, where Ci

k ∩Cj
k = ∅, i 6= j, and

⋃
i Ci

k = Ck. To this
end Fk is partitioned as follows. First, it is split into l sections, on the basis of
the prefixes of the lexicographically ordered frequent itemsets included. All the
frequent k-itemsets that share the same k − 1 prefix (i.e. those itemsets whose
first k − 1 items are identical) are assigned to the same section. Since ParDCI
builds each candidate (k+1)-itemsets as the union of two k-itemsets sharing the
first k items, we are sure that each candidate k-itemset can be independently
generated starting from one of the l disjoint sections of Fk. The various parti-
tions of Fk are then created by assigning the l sections to the various processing
nodes, by adopting a simple greedy strategy that considers the number of item-
sets contained in each section in order to build well-balanced partitions. From
our tests, this policy suffices for balancing the workload at the Inter-Node level.
Once completed the partitioning of Fk, nodes independently generate the asso-
ciated candidates and determine their support by intersecting the corresponding
tidlists of the replicated vertical dataset. Finally they produce disjoint parti-
tions of Fk+1. Nodes continue to work according to the schema above also for
the following iterations. It is worth noting that, although at iteration k the whole
vertical dataset is replicated on all the nodes, as the execution progresses, the
implemented pruning techniques trim the vertical dataset in a different way on
each node.

At the Intra-Node level, the same Candidate Distribution parallelization
schema is employed, but at a finer granularity and by exploiting a dynamic
scheduling strategy to balance the load among the threads. In particular, at each
iteration k of the intersection-based phase, the Master thread initially splits the
local partition of Fk−1 into x sections, x >> t, where t is the total number of
active threads. This subdivision entails a partitioning of the candidates gener-
ated on the basis of these sections (Candidate Distribution). The information to
identify every section Si are inserted in a shared queue. Once this initialization is
completed, also the Master thread becomes a Worker. Thereinafter, each Worker
thread loops and self-schedules its work by performing the following steps:

1. access in mutual exclusion the queue and extract information to get Si, i.e.
a section of the local partition of Fk−1. If the queue is empty, write Fk to
disk and start a new iteration.

2. generate a new candidate k-itemset c from Si. If it is not possible to generate
further candidates, go to step 1.

3. compute on-the-fly the support of c by intersecting the vectors associated
with the k items of c. In order to reuse effectively previous work, each thread
exploits a private cache for storing the partial results of intersections. If c
turns out to be frequent, put c into Fk. Go to step 2.

The various sections Si are not created on the basis of prefixes. So, since in
order to generate candidates we have to pick pairs of frequent itemsets, once
selected a section Si only the first element of each pair must belong to Si,
while the second element must be searched in the following elements of the local
partition of Fk.

4 Experimental Evaluation

ParDCI is the parallel version of DCI, a very fast sequential FSC algorithm pre-
viously proposed by the same authors [12]. In order to show both the efficiency
of the counting method exploited during early iterations, and the effectiveness
of the intersection-based approach used when the pruned vertical dataset fits
into the main memory, we report the result of some tests where we compared
DCI performances with those of two other FSC algorithms: FP-growth, currently
considered one of the fastest algorithm for FSC1, and the Christian Borgelt’s
implementation of Apriori2. For these tests we used publicly available datasets,
and a Windows-NT workstation equipped with a Pentium II 350 MHz proces-
sor, 256 MB of RAM memory and a SCSI-2 disk. The datasets used are the
connect-4 dense dataset, which contains many frequent itemsets also for high
support thresholds, and the T25I20D100K synthetic dataset3.

Figure 2 reports the total execution times of Apriori , FP-growth, and DCI on
these two datasets as a function of the support threshold s. As it can be seen,
DCI significantly outperforms both FP-growth and Apriori . The efficiency of our
approach is also highlighted by the plots reported in Figure 3, which show per
iteration execution times for DCI and Apriori on dataset T25I20D100K with sup-
port thresholds equal to 0.3 and 1. As it can be seen DCI significantly outperforms
Apriori in every iteration but the second one due to the additional time spent
by DCI to build the vertical dataset used for the following intersection-based
iterations. Complete performance tests and comparisons of DCI are discussed
in depth in [12]. In that work we analyzed benchmark datasets characterized
by different features, thus permitting us to state that the design of DCI is not
focused on specific datasets, and that our optimizations are not over-fitted only
to the features of these datasets.
1 We acknowledge Prof. Jiawei Han for kindly providing us the last version of FP-

growth, significantly optimized with respect to the one used for the tests reported in
[9].

2 http://fuzzy.cs.uni-magdeburg.de/∼borgelt
3 http://www.almaden.ibm.com/cs/quest.

1

10

100

1000

0 0.5 1 1.5 2 2.5 3

T
ot

al
 R

un
 T

im
e

(s
ec

)

Support (%)

Dataset = T25I20D100K

Apriori
fp-growth

DCI

1

10

100

1000

10000

60 65 70 75 80 85 90

T
ot

al
 R

un
 T

im
e

(s
ec

)

Support (%)

Dataset = connect-4

fp-growth
DCI

Figure2. Total execution times for DCI, Apriori , and FP-growth on datasets
T25I20D100K and connect-4 as a function of the support threshold.

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14

pe
r

ite
ra

tio
n

tim
e

(s
ec

)

iteration (k)

Dataset=T25I20D100K, s=0.3

DCI
Apriori

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

pe
r

ite
ra

tio
n

tim
e

(s
ec

)

iteration (k)

Dataset=T25I20D100K, s=1

DCI
Apriori

Figure3. Per iteration execution times for DCI and Apriori on dataset T25I20D100K
with support thresholds 0.3 and 1.

For what regards parallelism exploitation, we report an experimental eval-
uation of ParDCI on a Linux cluster of three two-way SMPs, for a total of six
processors. Each SMP is equipped with two Pentium II 233MHz, 256 MB of
main memory, and a SCSI disk.

First we compared the performance of DCI and ParDCI on the dense dataset
connect-4. Figure 4 plots total execution times and speedups (nearly optimal
ones) as functions of the support thresholds s (%). ParDCI-2 corresponds to the
pure multithread version running on a single 2-way SMP, while ParDCI-4 and
ParDCI-6 also exploit inter-node parallelism, and run, respectively, on two and
three 2-way SMPs. Note that, in order to avoid exponential explosion in the
number of frequent itemsets, we used relatively high supports for the tests with
the dense connect-4 dataset.

Figure 5 plots the speedups obtained on three synthetic datasets for two
fixed support thresholds (s = 1.5% and s = 5%), as a function of the number
of processors used. The datasets used in these tests were all characterized by an
average transaction length of 50 items, a total number of distinct items of 1000,
and a size of the maximal potentially frequent itemset of 32. We only varied the
total number of transactions from 500K to 3000K, so we can identify them on
the basis of their number of transactions. It is important to remark that since
our cluster is composed of 2-way SMPs, we mapped tasks on processors always

0

100

200

300

400

500

600

700

65 70 75 80 85 90

T
ot

al
 ti

m
e

(s
ec

)

support (%)

connect_4

DCI
ParDCI-2
ParDCI-4
ParDCI-6

(a)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

65 70 75 80 85 90

S
pe

ed
up

support (%)

connect_4

ParDCI-2
ParDCI-4
ParDCI-6

(b)

Figure4. Dense dataset connect-4: completion times of DCI and ParDCI (a) and
speedups of ParDCI (b), varying the minimum support threshold.

using the minimum number of nodes (e.g., when we use 4 processors, we actually
use 2 SMP nodes). This implies that experiments performed on either 1 or 2
processors actually have the same memory and disk resources available, whereas
the execution on 4 processors benefits from double amount of such resources.
According to these experiments, ParDCI shows a quasi linear speedup. As it can
be seen by considering the results obtained with one or two processors, the slope
of the speedup curve turns out to be relatively worse than its theoretical limit,
due to resource sharing and thread implementation overheads at the Inter-Node
level. Nevertheless, when several nodes are employed, the slope of the curve
improves. For all the three datasets, when we fix s = 5%, we obtain a very small
number of frequent itemsets. As a consequence, the CPU-time decreases, and
becomes relatively smaller than I/O and interprocess communication times.

1

2

3

4

5

6

1 2 3 4 5 6

S
pe

ed
up

N. processors

supp=1.5%

1000k
2000k
3000k

(a)

1

2

3

4

5

6

1 2 3 4 5 6

S
pe

ed
up

N. processors

supp=5.0%

1000k
2000k
3000k

(b)

Figure5. Speedup for the three datasets 1000K 2000K and 3000K with support = 1.5%
(a) and support = 5%(b).

Figure 6 plots the scaleup, i.e. the relative execution times measured by
varying, at the same time, the number of processors and the dataset size. We
can observe that the scaling behavior remains constant, although slightly above

one. This is again due to thread management overheads and resource sharing
(mainly disk sharing).

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6

S
ca

le
up

N. proc (N. trans = N. proc x 500k)

supp=1.5%

(a)

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6

S
ca

le
up

N. proc (N. trans = N. proc x 500k)

supp=5.0%

(b)

Figure6. Scaling behavior obtained varying the dataset size together with the number
of processors for support = 1.5% (a) and support = 5%(b).

The strategies adopted for partitioning the dataset and the candidates well
balanced the workload among the processing nodes. In all the tests conducted on
our homogeneous cluster of SMPs used as a dedicated resource, the differences in
the completion time between the fastest and the slowest processing were always
lower than the 1% of the total execution time. Clearly, since we used a static
partitioning strategy at the inter-node level, in the case of a heterogeneous pool
of computational resources, or a non-dedicated environment, a different parti-
tioning strategy should be necessary.

5 Conclusions and Future Works

Originally used as a Market Baskets analysis tool, ARM is today used in various
fields such as Web Mining, where it is adopted to discover the correlations among
the various pages visited by users, Web Searching, where association rules can
be used to build a statistical thesaurus or to design intelligent caching policies.
Due to the impressive growth rate of data repositories, only efficient parallel
algorithms can grant the needed scalability of ARM solutions.

ParDCI originates from DCI, a very fast sequential FSC algorithm previously
proposed [12]. Independently of the dataset peculiarities, DCI outperforms not
only Apriori , but also FP-growth [9], which is currently considered one of the
fastest algorithm for FSC. ParDCI, the multithreaded and distributed version of
DCI, due to a number of optimizations and to the resulting effective exploitation
of the underlying architecture, exhibits excellent Scaleup and Speedup under a
variety of conditions. Our implementation of the Count and Candidate Distri-
bution parallelization approaches at both Inter and Intra-Node levels resulted to

be very effective with respect to main issues such as load balancing and commu-
nication overheads. In the near future we plan to extend ParDCI with adaptive
work stealing policies aimed to efficiently exploit heterogeneous/grid environ-
ments. To share our efforts with the data mining community, we made DCI and
ParDCI binary codes available for research purposes4.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast
Discovery of Association Rules in Large Databases. In Advances in Knowledge
Discovery and Data Mining, pages 307–328. AAAI Press, 1996.

2. R. Agrawal and J. C. Shafer. Parallel Mining of Association Rules. IEEE Trans-
action On Knowledge And Data Engineering, 8:962–969, 1996.

3. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proc. of the 20th VLDB Conf., pages 487–499, 1994.

4. R. Baraglia, D. Laforenza, S. Orlando, P. Palmerini, and R. Perego. Implementa-
tion Issues in the Design of I/O Intensive Data Mining Applications on Clusters
of Workstations. In Proc. of the 3rd Work. on High Performance Data Mining,
(IPDPS-2000), Cancun, Mexico, pages 350–357. LNCS 1800 Spinger-Verlag, 2000.

5. R. J. Bayardo. Efficiently Mining Long Patterns from Databases. In Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pages 85–93, 1998.

6. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smith, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. AAAI Press, 1998.

7. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining Very Large Databases. IEEE
Computer, 32(8):38–45, 1999.

8. E. H. Han, G. Karypis, and Kumar V. Scalable Parallel Data Mining for Associ-
ation Rules. IEEE Transactions on Knowledge and Data Engineering, 12(3):337–
352, May/June 2000.

9. J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Gener-
ation. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages
1–12, Dallas, Texas, USA, 2000.

10. Hipp, J. and Güntzer, U. and Nakhaeizadeh, G. Algorithms for Association Rule
Mining – A General Survey and Comparison. SIGKDD Explorations, 2(1):58–64,
June 2000.

11. S. Orlando, P. Palmerini, and R. Perego. Enhancing the Apriori Algorithm for
Frequent Set Counting. In Proc. of the 3rd Int. Conf. on Data Warehousing and
Knowledge Discovery, LNCS 2114, pages 71–82, Germany, 2001.

12. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and Resource-
Aware Mining of Frequent Sets. In Proc. of the 2002 IEEE Int. Conference on
Data Mining (ICDM’02), Maebashi City, Japan, Dec. 2002.

13. J. S. Park, M.-S. Chen, and P. S. Yu. An Effective Hash Based Algorithm for
Mining Association Rules. In Proc. of the 1995 ACM SIGMOD Int. Conf. on
Management of Data, pages 175–186, 1995.

14. A. Savasere, E. Omiecinski, and S. B. Navathe. An Efficient Algorithm for Mining
Association Rules in Large Databases. In Proc. of the 21th VLDB Conf., pages
432–444, Zurich, Switzerland, 1995.

4 Interested readers can download the binary codes at address
http://www.miles.cnuce.cnr.it/∼palmeri/datam/DCI

15. M. J. Zaki. Parallel and Distributed Association Mining: A Survey. IEEE Con-
currency, 7(4):14–25, 1999.

16. M. J. Zaki. Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering, 12:372–390, May/June 2000.

