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ABSTRACT
Web Search Engines provide a large-scale text document
retrieval service by processing huge Inverted File indexes.
Inverted File indexes allow fast query resolution and good
memory utilization since their d-gaps representation can be
effectively and efficiently compressed by using variable length
encoding methods. This paper proposes and evaluates some
algorithms aimed to find an assignment of the document
identifiers which minimizes the average values of d-gaps,
thus enhancing the effectiveness of traditional compression
methods. We ran several tests over the Google contest col-
lection in order to validate the techniques proposed. The
experiments demonstrated the scalability and effectiveness
of our algorithms. Using the proposed algorithms, we were
able to sensibly improve (up to 20.81%) the compression
ratios of several encoding schemes.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software Performance evaluation—efficiency and effec-
tiveness; E.4 [Data]: Coding and Information Theory Data
compaction and compression

General Terms
Algorithms, Experimentation, Performance

Keywords
Clustering property, Index Compression, Web Search En-
gines, Document Identifier Assignment

1. INTRODUCTION
Compressing the huge index of a Web Search Engine (WSE)

entails a better utilization of memory hierarchies and thus a
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lower query processing time [11]. During the last years sev-
eral works addressed the problem of index compression. The
majority of them focused on devising effective and efficient
methods to encode the document identifiers (DocIDs) con-
tained in the posting lists of Inverted File (IF) indexes [11,
9, 1, 2, 14]. Since posting lists are ordered sequences of in-
teger DocID values, and are usually accessed by scanning
them from the beginning, these lists are stored as sequences
of d-gaps, i.e. differences between successive DocID values.
d-gap lists are then compressed by using variable-length en-
codings, thus representing smaller integers in less space than
larger ones. Variable-length encoding schemes can be bit-
wise, or bytewise:

• In bitwise schemes, the list of integers is stored as a se-
quence of variable-length codewords, each composed of
a variable number of bits. Well-known bitwise schemes
include: Elias’ gamma, Delta, Golomb-Rice [14], and
Binary Interpolative coding [9]. Bitwise codes, in gen-
eral, achieve very good compression ratios. The main
of these methods is the relatively high decoding time,
which may negatively impact on the query processing
performance of the system. To overcome this draw-
back, Anh and Moffat recently proposed a very effec-
tive bitwise encoding schema, which enhances consid-
erably the decoding performance [2].

• In bytewise encoding, each integer is represented using
a fixed and integral number of bytes. In its simplest
form, the seven least significant bits of each byte are
used to encode an integer, while the most significant
bit is used as a sort of “continuation bit”, to indicate
the existence of following bytes in the representation
of the integer. An effective bytewise method, where
word-alignment is retained, even at the cost of some
bits wasted within each word, has been recently pro-
posed by Anh and Moffat [1]. Bytewise codes have low
decoding time, but are, in general, less effective than
bitwise ones.

Since small d-gaps are much more frequent than large ones
within postings lists, such variable-length encoding schemes
allow IF indexes to be represented concisely. This feature
of posting lists is called Clustering property, and is pas-
sively exploited by compression algorithms. However, by
permuting DocIDs in a way that increases the frequency of
small d-gaps, we may likely enhance the effectiveness of any



variable-length encoding schema. Only three works previ-
ously addressed this possibility [12, 3, 13].

Shieh et al. [12] proposed a DocID reassignment algorithm
adopting a Travelling Salesman Problem (TSP) heuristic. A
similarity graph is built by considering each document of the
collection as a vertex, and by inserting an edge between any
pair of vertexes whose associated documents share at least
one term. Moreover, edges are weighted by the number of
terms shared by the two documents. The TSP heuristic al-
gorithm is then used to find a cycle in the similarity graph
having maximal weight and traversing each vertex exactly
once. The suboptimal cycle found is finally broken at some
point, and the DocIDs are reassigned to the documents ac-
cording to the ordering established. The rationale is that
since the cycle preferably traverses edges connecting docu-
ments sharing a lot of terms, if we assign close DocIDs to
these documents, we should expect a reduction in the aver-
age value of d-gaps, and thus in the size of the compressed
IF index. The experiments conducted demonstrated a good
improvement in the compression ratio achieved. Unfortu-
nately, this technique requires to store the whole graph in
the main memory, and is too expensive to be used for real
Web collections: the authors reported that reordering a col-
lection of approximately 132, 000 documents required about
23 hours and 2.17 GBytes of main memory.

Also Blelloch and Blandford [3] proposed an algorithm
(hereinafter called B&B) that permutes the document iden-
tifiers in order to enhance the clustering property of posting
lists. Starting from a previously built IF index, a similar-
ity graph G is considered where the vertexes correspond to
documents, and the edges are weighted with the cosine sim-
ilarity [4] measure between each pair of documents. The
B&B algorithm recursively splits G into smaller subgraphs
Gl,i = (Vl,i, El,i) (where l is the level, and j is the position of
the subgraph within the level), representing smaller subsets
of the collection. Recursive splitting proceeds until all sub-
graphs become singleton. The DocIDs are then reassigned
according to a depth-first visit of the resulting tree. The
main drawback of this approach is its high cost both in time
and space: similarly to [12] it requires to store the whole
graph G in the main memory. Moreover, the graph split-
ting operation is expensive, although the authors proposed
some effective sampling heuristics aimed to reduce its cost.
In [3] the results of experiments conducted with the TREC-
8 ad hoc track collection are reported. The enhancement of
the compression ratio obtained is significant, but execution
times reported refer to tests conducted on a sub-collection
of only 32, 000 documents. The paper addresses relevant
issues, but due to its cost, also the B&B algorithm seems
unfeasible for real Web collections.

In our opinion, another drawback of the previous ap-
proaches is that they focus on reassigning DocIDs appearing
in a previously built IF index. The innovative point of our
work is a bunch of DocID assignment techniques according
to which DocIDs are assigned on the fly, during (and not
after) the inversion of the document collection. In order to
compute efficiently and effectively a good assignment, a new
model to represent the collection of documents is needed.
We propose a model that allows the assignment algorithm
to be placed into the typical spidering-indexing life cycle of
a WSE. Our model, hereinafter called Transactional Model,
is based on the popular bag-of-words model, but it does not
consider the within-doc frequency of the terms. In a previ-

ous work [13], we presented preliminary results relative to
one of the algorithms discussed in this paper. Here we ex-
tend and complete the work by proposing and comparing
several scalable and space-effective algorithms that can be
used to assign DocIDs while the spidered collection is being
processed by the Indexer. This means that when the index is
actually committed on the disk, the new DocID assignment
has been already computed. Conversely, the other methods
proposed so far require that the IF index has already been
computed before.

The rest of the paper is organized as follows. Section 2 in-
troduces the DocID assignment problem more formally, and
defines the goals of our algorithms. Section 3 introduces the
model of document collection on which we will base the pro-
posed algorithms. Section 4 presents and discusses our novel
DocID assignment algorithms. The complexity in time and
space is also evaluated. In Sections 5 and 6 we discuss the
experimental performance of the algorithms, measured on
the publicly available Google Programming Contest collec-
tion. Finally, Section 7 reports some conclusions along with
a description of the research directions we plan to investigate
in the near future.

2. THE ASSIGNMENT PROBLEM
Let D =

˘
d1, d2, . . . , d|D|

¯
be a set of |D| textual doc-

uments. Moreover, let T be the set of distinct terms ti,
i = 1, . . . , |T |, present in D. Let G be a bipartite graph
G = (V, E), where the set of vertexes V = T ∪D and the set
of edges E contains arcs of the form (t, d), t ∈ T and d ∈ D.
An arc (t, d) appears in E if and only if term t is contained
in document d.

Definition 1. A document assignment for a collection
of documents D is defined as a bijective function π:

π : D → {1, . . . , |D|}
that maps each document di into a distinct integer identifier
π (di).

Definition 2. Let lπi be the posting list associated with
a term ti. This list refers to both the set of vertexes dj ∈ D
making up the neighborhood of vertex ti ∈ T , and a given
assignment function π:

lπi = 〈π(dj)|(ti, dj) ∈ E〉 i = 1..|T |
The posting list is ordered. More formally, if lπi,u and lπi,v are
respectively the u-th and v-th elements of lπi , then lπi,u < lπi,v
iff u < v.

The compression methods commonly used to encode the
various posting lists lπi exploit a dgap-based, representation
of lists. Before encoding lπi , the list is thus transformed into
a list of dgaps of the form (lπi,k+1 − lπi,k), i.e., gaps between

successive document identifiers. Let l
π
i be the dgap-based

representation of lπi .

Definition 3. Let Lπ be the set of all l
π
i , i = 1..|T |

making up an IF index. We can define the size of the IF
index encoded with m as:

PSizem
Lπ =

P
i=1,...,|T |

Encodem

“
l
π
i

”
where Encodem is a function that returns the number of bits
required to encode the list l

π
i .

Definition 4. The document assignment problem is an
optimization problem, which aims to find the assignment



π that yields the most compressible IF index with a given
method m:

min
π

PSizem
Lπ

The above definition is very informal, since the optimal-
ity of an assignment also depends on the specific encoding
method. However, we can observe that a practical simple
measure of compressibility is the value of the average gap
appearing in the various lists. When we reduce the average
gap, the resulting IF results smaller almost independently
from the encoding method actually adopted.

3. COLLECTION MODEL
Differently from the approaches proposed so far, our algo-

rithms adopt a collection model which does not assume the
existence of a previously built IF index. All the algorithms
take in input a transactional representation of the docu-
ments belonging to the collection. Each document di ∈ D
is represented by the set edi ⊆ T of all the terms that the
document contains. We denote the collection of documents
in its transactional form with eD =

ned1, ed2, . . . , ed|D|

o
. Basi-

cally, the transactional representation is very similar to the
more popular bag-of-words one, but it does not consider the
frequency of occurrences of the word within the documents
(i.e. the within-doc frequency)

The transactional representation is actually stored by us-
ing a sort of digest scheme for each term. That is, for eachedi we store a list of integers obtained from the digest of
the terms contained within. In our case, for each term we
proceed as follows: we compute the MD5 digest [10] and
pick the first four bytes of the computed digest. Since the
MD5 features a very low collision rate for arbitrary long
texts, it is very likely that it remains true even consider-
ing just the first four bytes of the digest. To support our
claim, we tested this digest scheme on the terms contained
in the Google collection. We measured a collision ratio of
0.0006083, i.e. roughly a collision every thousand distinct
terms.

Finally, we used the Jaccard measure [7] to evaluate docu-
ment similarity. The Jaccard measure is a well known metric
used in cluster analysis to estimate the similarity between
two generic objects described by the presence or absence of
attributes. It counts the number of attributes common to
both objects, and divides this number by the number of at-
tributes owned by at least one of them. More formally, the
Jaccard measure used to measure the similarity between two

distinct documents edi, and edj of eD is given by:

jaccard measure(edi, edj) =
|edi ∩ edj |
|edi ∪ edj |

4. OUR ALGORITHMS
From a first analysis of the problem we could devise two

different assignment schemes:

• top-down assignment : we start from the collection as
a whole, and we recursively partition it by assigning,
at each level, similar documents to the same partition.
At the end of this partitioning phase a merging phase
is performed until a single and ordered group of docu-
ments is obtained. The assignment function π is then

deduced by the ordering of this last single group. This
is the approach also followed by B&B . Within this
scheme we propose two different algorithms which will
be discussed in the following: Transactional B&B
and Bisecting ;

• bottom-up assignment : we start from a flat set of docu-
ments and extract from this set disjoint sequences con-
taining similar documents. Inside each sequence the
documents are ordered, while we do not make any as-
sumption on the precedence relation among documents
belonging to different sequences. The assignment func-
tion π in this case is deduced by first considering an
arbitrary ordering of the produced sequences and then
the internal ordering of the sequences themselves. In
our case to order the produced sequences we simply
consider the same order in which the sequences are
produced by the algorithms themselves. Within this
approach we propose two different algorithms: single-
pass k-means and k-scan.

4.1 Top-down assignment
In the top-down scheme we start from the set eD. The

general scheme of our top-down algorithms is the following
(see Algorithm 1):

1. center selection (steps 3-5 of algorithm 1): according
to some heuristic H, we select two (groups of) docu-

ments from eD which will be used as partition repre-
sentatives during the next step;

2. redistribution (steps 6-18) : according to their similar-
ity to the centers, we assign each unselected document

to one of the two partitions eD′ and eD′′. Actually, we
adopt a simple heuristic which consists in assigning

exactly | eD|
2

documents to each partition in order to
equally split the computational workload among the
two partitions;

3. recursion (steps 19-20): we recursively call the algo-
rithm on the two resulting partitions until each parti-
tion becomes a singleton;

4. merging (steps 21-25): the two partitions built at each
recursive call are merged (operator ⊕) bottom-up thus
establishing an ordering (�) between them. The prece-
dence relation � is obtained by comparing the borders

of the partitions to merge ( eD′ and eD′′) and, accord-

ing to the distance measure adopted, we put eD′ beforeeD′′ if the similarity between the last document(s) ofeD′ and the first document(s) of eD′′ is greater than the
similarity computed by swapping the two partitions.

It is also possible to devise a general cost scheme for such
top-down algorithms.

Claim 1. Let eD be a collection of documents. The cost
of our top-down assignment algorithms is

T
“
| eD|” = O

“
| eD| log “| eD|””

Proof. Let σ be the cost of computing the Jaccard dis-
tance between two documents, and τ the cost of comparing
two Jaccard measures. Computing the Jaccard similarity
mainly consists in performing the intersection of two sets,



Algorithm 1 TDAssign( eD, H): the generic top-down as-
signment algorithm.

1: Input:

• The set eD.
• The function H used to select the initial docu-

ments to form the centers of mass of the partitions.

2: Output:
• An ordered list representing an assignment func-

tion π for eD.

3:
“ eD′, eD′′

”
= H

“ eD”;
4: c1 = center of mass

“ eD′
”
;

5: c2 = center of mass
“ eD′′

”
;

6: for all not previously selected d ∈ eD \
“ eD′ ∪ eD′′

”
do

7: if

„˛̨̨ eD′
˛̨̨
≥ | eD|

2

«
∨
„˛̨̨ eD′′

˛̨̨
≥ | eD|

2

«
then

8: Assign d to the smallest partition;
9: else

10: dist1 = distance (c1, d);
11: dist2 = distance (c2, d);
12: if dist1 < dist2 then
13: eD′ = eD′ ∪ {d};
14: else
15: eD′′ = eD′′ ∪ {d};
16: end if
17: end if
18: end for
19: fD′

ord = TDAssign(fD′, H);

20: fD′′
ord = TDAssign(fD′′, H);

21: if fD′
ord � fD′′

ord then
22: eDord = fD′

ord ⊕ fD′′
ord

23: else
24: eDord = fD′′

ord ⊕fD′
ord

25: end if
26: return eDord;

while comparing the similarity of two document only re-
quires to compare two floats. We thus have that σ � τ .
Furthermore, let CH be the cost of the heuristic H used to
select the initial centers, and CS be the cost of the merging
step.

At each iteration, the top-down algorithm computes the

initial centers. Then it computes at most | eD| − 2 Jaccard
distances in order to assign each document to the right par-
tition. The total cost of this phase at each iteration is thus

bounded by: σ
“
| eD| − 2

”
+ CH .

At the end of the center selection and distribution phases,
the top-down algorithm proceeds by calling recursively itself
on the two equally sized sub-partitions obtained so far (re-
cursion step) and then proceeds to order and merge the two
partitions obtained (merging step).

The total cost of the algorithm is thus given by the fol-
lowing recursive equation:

T
“
| eD|” = CH + σ

“
| eD| − 2

”
+ 2T

 
| eD|
2

!
+ CS (1)

This equation corresponds to the well known:

T
“
| eD|” = O

“
| eD| log “| eD|””

Furthermore, we can compute the space occupied by the
top-down assignment algorithm.

Claim 2. The space occupied by our top-down assign-
ment algorithm is given by

S
“
| eD|” = O

“
| eD| log

“
| eD|””

Proof. Since we need to keep, at each level, a bit indi-

cating the assigned partition, we need in total Srec

“
| eD|” =

| eD| + Srec

“
| eD|
2

”
= O

“
| eD| log | eD|” bits to store the par-

tition assignment map. In practice Srec

“
| eD|” defines the

total space occupied by the partitions D′ and D′′ at all lev-
els.

Now, let |S| be the average length of a document. The
total space of the algorithm is thus given by:

S
“
| eD|” = |S|| eD|+ documents

+2Srec

“
| eD|” space for D′ and D′′

We can get rid of the linear term thus obtaining:

S
“
| eD|” = O

“
| eD| log

“
| eD|”” (2)

As for the time, also the space complexity of the algorithm
is super-linear in the number of documents processed. In
practice, anyway, this is not a correct assertion. In fact the
linear term dominates the n log n one until 4 · log n ≤ 1000.
The last value for which the inequality holds is given by
log n ≤ 250 ⇔ n ≤ 2250. Obviously the size of the whole
Web is considerably smaller then 2250 documents!

We designed two different top-down algorithms: Trans-
actional B&B and Bisecting .

4.1.1 Transactional B&B

The Transactional B&B algorithm is basically a port-
ing under our model of the algorithm described in [3]. We
briefly recall how the original B&B algorithm works. It
starts by computing a sampled similarity graph: it chooses

a document out of | eD|ρ (ρ is the document sampling factor
0 < ρ < 1) only considering terms appearing in less than
τ documents. After this reduced similarity graph has been
built, it applies the Metis graph partitioning algorithm [8],
which splits the graph in two equally sized partitions. The
algorithm than proceeds with the redistribution, recursion,
and merging steps of the generic top-down algorithm. How-
ever, since in our model we do not have an IF index previ-
ously built over the document collection, we cannot know
which terms appear in less than τ documents, and thus
we did not introduce sampling over the maximum term fre-
quency as in the original implementation.

In Transactional B&B the cost CH at each iteration is
thus given by the cost of picking up a subset of documents
with a sampling factor equal to ρ, plus the cost of building
the distance graph over this subset and computing the Metis
algorithm over this graph.



4.1.2 Bisecting

The second algorithm we propose is called Bisecting . In
this algorithm we adopt a center selection step which sim-
ply consists of uniformly choosing two random documents
as centers. The cost of the centers selection step is thus
reduced considerably. The algorithm is based on the simple
observation that, since in Transactional B&B the cost
CH may be high, the only way to reduce it is to choose a
low sampling parameter ρ, thus selecting at each iteration a
very small number of documents as centers of the partitions.
Thus we thought to just get rid of the first three phases, i.e.
sampling, graph building, and Metis steps.

4.2 Bottom-up assignment
These algorithms consider each document of the collection

separately, and proceed by progressively grouping together
similar documents. Our bottom-up algorithms thus produce
a set of non-overlapping sequences of documents.

The two different assignment algorithms presented here
are both inspired by the popular k-means clustering algo-
rithm [5]:

• a single-pass k-means algorithm;

• k-scan which is based on a centroid search algorithm
which adapts itself to the characteristics of the pro-
cessed collection.

4.2.1 Single-passk-means
k-means [5], is a popular iterative clustering techniques

which defines a Centroid Voronoi Tessellation of the input
space. The k-means algorithm works as follows. It initially
chooses k documents as cluster representatives, and assigns

the remaining | eD| − k documents to one of these clusters
according to a given similarity metric. New centroids for
the k clusters are then recomputed, and all the documents
are reassigned according to their similarity with the new k
centroids. The algorithm iterates until the position of the
k centroids become stable. The main strength of this algo-

rithm is the O
“
| eD|” space occupancy. On the other hand,

computing the new centroids is expensive for large values

of | eD|, and the number of iterations required to converge
may be high. The single-pass k-means consists of just the
first pass of this algorithm where the k centers are chosen
using the technique described in [6]: Buckshot. We will
not describe here the Buckshot technique, the only thing
to keep into account is that the complexity of this step do
not influence the theoretical linear performance of k-means

which remains O
“
k| eD|”. Since th ek-means algorithm does

not produce ordered sequences but just clusters, the inter-
nal order of each cluster is given by the insertion order of
documents into each cluster.

4.2.2 k-scan
The other bottom-up algorithm developed is k-scan. It

resembles to the k-means one. It is, indeed, a simplified ver-
sion requiring only k steps. At each step i, the algorithm
selects a document among those not yet assigned and uses
it as centroid for the i-th cluster. Then, it chooses among

the unassigned documents the | eD|
k
− 1 ones most similar to

the current centroid and assign them to the i-th cluster.
The time and space complexity is the same as the single-
pass k-means one and produces sets of ordered sequences of

documents. Such ordering is exploited to assign consecutive
DocIDs to consecutive documents belonging to the same se-
quence. The k-scan algorithm is outlined in Algorithm 2.

It takes as input parameters the set eD, and the number k
of sequences to create. It outputs the ordered list of all the
members of the k clusters. This list univocally defines π, an

assignment of eD minimizing the average value of the d-gaps.

Algorithm 2 The k-scan assignment algorithm.

1: Input:

• The set eD.
• The number k of sequences to create.

2: Output:
• k ordered sequences representing an assignment π

of eD.

3: sort eD by descending lengths of its members;
4: ci = ∅ i = 1, . . . , k;
5: for i = 1, . . . , k do

6: current center = longest member
“ eD”

7: eD = eD \ current center

8: for all edj ∈ eD do

9: sim [j] = compute jaccard
“
current center, edj

”
10: end for
11: M = select members (sim)
12: ci = ci ⊕M
13: eD = eD \M
14: ci = ci ⊕ current center
15: dump (ci)
16: end for

17: return
kL

i=1

ci;

The algorithm performs k scans of eD. At each scan i, it
chooses the longest document not yet assigned to a cluster
as current center of cluster ci, and computes the distances
between it and each of the remaining unassigned documents.
Once all the similarities have been computed, the algorithm

selects the
“˛̨̨ eD˛̨̨ /k

”
− 1 documents most similar to the cur-

rent center by means of the procedure reported in Algo-
rithm 3, and put them in ci. It is worth noting that when
two documents result to have the same similarity, the longest
one is selected. In fact, since the first DocID of each posting
list has to be coded as it is, assigning smaller identifiers to
documents containing a lot of distinct terms, maximizes the
number of posting lists starting with small DocIDs.

The complexity of k-scan in terms of number of distance
computation and in space occupied is given by the following
two claims.

Claim 3. The complexity of the k-scan algorithm is:

T (| eD|, k) = O
“
| eD|k”

Proof. Since we are focusing on the number of distance
computations, the initial ordering step (at point 3) of Al-
gorithm 2 should not be considered when computing the
complexity of the algorithm. Let σ be the cost of comput-
ing the Jaccard similarity between two documents, and τ
the cost of comparing two Jaccard measures. Computing
the Jaccard similarity mainly requires to intersect two sets,



Algorithm 3 The select members procedure.

1: Input:
• An array sim: sim [j] contains the similarity be-

tween current center and Sj .

2: Output:
• The set of the

“˛̨̨ eD˛̨̨ /k
”
−1 documents more similar

to current center.

3: Initialize a min heap of size
“˛̨̨ eD˛̨̨ /k

”
− 1

4: for i = 1, . . . , | eD| do
5: if (sim [i] > sim [heap root()]) OR

((sim [i] = sim [heap root()]) AND (length (i) >
length (heap root())))
then

6: heap insert(i)
7: end if
8: end for
9: M = ∅

10: for i = 1, . . . ,
“˛̨̨ eD˛̨̨ /k

”
− 1 do

11: M = M ⊕ heap extract()
12: end for
13: return M

while comparing two similarity measures only requires to
compare two floats. We thus have that σ � τ .

At each iteration, k-scan computes | eD|−i |
eD|
k

Jaccard mea-
sures. The total cost of this phase at each iteration i is thus:

σ

 
| eD| − i

| eD|
k

!
Once oll the entries in the vector of similarities sim have
been computed, k-scan calls the select members procedure

which performs | eD| − i |
eD|
k

insertions into a heap of size
| eD|
k
− 1. Since an insertion is actually performed only if

the element in the root of the heap is smaller than the el-
ement to be inserted, we should scale down the cost by a
factor τ ′ � 1. The total time spent in select members is
thus:

ω

 
| eD| − i

| eD|
k

!
· log

 
| eD|
k
− 1

!
ω = τ · τ ′.

The total time spent by the algorithm is thus given by:

T (| eD|, k) =

k−1X
i=0

T ′

where

T ′ = σ

 
| eD| − i

| eD|
k

!
+

 
ω

 
| eD| − i

| eD|
k

!
log

 
| eD|
k
− 1

!!
.

Since σ � τ � ω we have that:

T (| eD|, k) ≈
k−1X
i=0

σ

 
| eD| − i

| eD|
k

!
= σ| eD|„k + 1

2

«
= O

“
| eD|k”

Claim 4. The space occupied by the k-scan algorithm is:

S
“
| eD, k|

”
= O

“
| eD|”

Proof. Let |S| be the average length of a document. The

k-scan algorithm thus uses |S|| eD| words for storing the doc-

uments, 8| eD| for the array of similarities and 4 | eD|
k

for the
heap data structure used by Algorithm 3.

The total space is thus given by

S
“
| eD, k|

”
= |S|| eD|+ documents

+8| eD|+ array of similarities

+4 | eD|
k

+ the heap data structure

= O
“
| eD|”

5. EXPERIMENTAL SETUP
To assess the performance of our algorithms we tested

them on a real collection of Web documents, the publicly
available Google Programming Contest collection1. The
main characteristics of this collection are:

• it contains about 916, 000 documents coming from real
web sites;

• it is monolingual;

• the number of distinct terms is about 1, 435, 000.

On the considered collection we performed a preprocess-
ing step consisting in the transformation of the documents
considered in the transactional model.

For each method proposed we evaluated: the comple-
tion time, the space occupied, and the compression ratios
achieved after the assignment. The effectiveness gains re-
sulting by adopting Binary Interpolative [9], Gamma [14]
and Variable Byte [11] encoding methods were evaluated.
We ran our tests on a Xeon 2GHz PC equipped with 1GB
of main memory, and an Ultra-ATA 60GB disk. The oper-
ating system was Linux.

6. COMPARISONS
In Figure 1 the performance in terms of completion time

(a), and space consumed (b) are shown. All the time re-
ported are the actual times taken by all the algorithms to
finish their operations and do not include I/O.

From Figure 1.(a) we can draw several important conclu-
sions. First of all, the execution time of the original B&B
algorithm is remarkably higher than the time spent by all
our algorithms. In particular, on the whole Google con-
test collection (i.e. about 916, 000 documents) the B&B al-
gorithm ran out of memory before finishing its operations.
Please note that the values plotted in the curve of the orig-
inal B&B do not consider the time spent in preliminarly
computing the input IF index. If we look at the curve re-
lated to the original implementation of the B&B algorithm
we can observe an n log n behavior that is typical of top-
down approaches described above. Looking at the curves
of our algorithms, it is evident that the single-pass k-means
algorithm is the one that takes the highest time to compute

1http://www.google.com/programming contest



 0

 500

 1000

 1500

 2000

 2500

 0  100000  200000  300000  400000  500000  600000  700000  800000  900000  1e+06

T
im

e 
(s

ec
)

Collection size

Completion time of the various algorithms vs. collection size

single-pass k-means k = 100
TRANSACTIONAL BB sampling factor 0.25

bisecting
original BB sampling factor 0.25

k-scans k = 100

(a)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0  100000  200000  300000  400000  500000  600000  700000  800000  900000  1e+06

S
pa

ce
 (

K
B

)

Collection size

Space occupied by the various algorithms vs. collection size

single-pass k-means k = 100
TRANSACTIONAL BB sampling factor 0.25

bisecting
k-scans k = 100

(b)

Figure 1: (a) Time (in seconds) and (b) Space (in
KBytes) consumed by the proposed transactional
assignment algorithms as a function of the collec-
tion size.

the assignment. On the other hand, the others transactional
techniques have relatively low completion times. In partic-
ular the k-scan algorithm sensibly outperforms the others.
Obviously, the linear behavior exhibited by this algorithm
evidentiates that on large collections k-scan will remarkably
outperforms the others which instead show a n log n trend.

Figure 1.(b) shows the space occupancy of our algorithms.
Since the tests with the original B&B algorithm were per-
formed by using the implementation kindly provided to us
by the authors, we were not able to measure directly the
space occupied by this algorithm. However the algorithm is
memory consuming and, as said above, on the whole Google
contest collection it ran out of memory. Obviously, also in
our case we cannot fit completely in memory large collec-
tions. In those cases we can split the collections in sev-
eral partitions and then proceed to reorder each partition
separately. The curves plotted in Figure 1.(b) show that,
as expected, Transactional B&B and Bisecting use the
same amount of memory and exhibit a linear scale-up trend.
This last fact follows directly from the observations made in
Section 4 about the space complexity of the top-down ap-

proaches. Anyway, the space occupied by all our algorithms
appears to grow linearly with respect to the collection size.

The DocIDs of four collections of different size, with up to
916, 000 documents, were assigned by exploiting the various
algorithms. For each assignment we measured the compres-
sion performance. Table 1 reports the average number of
bits required to represent each posting of the IF obtained
after the DocID assighment with three popular encoding
methods: Interpolative, Gamma, and Variable Byte. In all
the cases we can observe a reduction in the average number
of bits used with respect to a random DocID assignment,
i.e., the baseline for comparisons reported in the first block
of rows of the table. We can see that the original implemen-
tation of the B&B algorithm outperforms our algorithms.
The gain in the compression performance of B&B is, in al-
most all the cases, about 10% which corresponds to ∼ 0.5
bits saved for each posting. However, our methods spend re-
markably less time than the B&B one. We can also observe
that our methods are similar in terms of compression gain.
For the largest collection the performance obtained is ap-
proximately the same for all the encoding methods and for
all the assignment algorithms implemented. Moreover, we
can note that the Transactional B&B algorithm obtains
worse results than the original B&B algorithm. We think
that this may depend on the term sampling which cannot
be exploited by our Transactional B&B . (see Section 4).
The higher gains in compression performance were obtained
by using the Gamma algorithm. This is a very important
result since a method which is very similar to Gamma was
recently presented in [2]. This method is characterized by
a very good compression performance and a relatively low
decoding overhead, in some cases lower than those of the
Variable Byte method. The results on the Gamma algo-
rithm are thus very important to validate our approaches.

7. SUMMARY
In this paper we presented an analysis of several efficient

algorithms for computing approximations of the optimal Do-
cID assignment for a collection of textual documents. We
have proved that our algorithms are a viable way to enhance
the compressibility (up to 21%) of IF indexes.

The algorithms proposed operate following two opposite
strategies: a top-down approach and a bottom-up approach.
The first group includes the algorithms that recursively split
the collection in a way that minimizes the distance of lexi-
cographically closed documents. The second group contains
algorithms which compute an effective reordering employing
linear space and time complexities. Although our algorithms
obtain gains in compression ratios which are slightly worse
than those obtained by the B&B algorithm, their perfor-
mance in terms of space and time are instead remarkably
higher. Moreover, an appealing feature of our approach is
the possibility of performing the assignment step on the fly,
during the indexing process. As future work we plan to test
the performance of our algorithms on some recently pro-
posed encoding methods. In particular we would like to
evaluate the method described in [2] for which we should
be able to obtain good results. Furthermore, we want to
investigate possible adaptations of the algorithms proposed
to collections which change dynamically in the time.
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Bits per Postings
Assignment Algorithm Collection Size Interpolative Gamma Var Byte
Random assignment 81,875 6.52 8.96 9.67

323,128 6.59 9.05 9.71
654,535 6.61 9.08 9.73
916,429 6.61 9.10 9.72

B&B 81,875 5.31 6.71 9.17
323,128 5.18 6.58 9.20
654,535 5.08 6.40 9.14
916,429 N/A N/A N/A

Transactional B&B 81,875 5.56 7.20 9.29
323,128 5.46 7.11 9.32
654,535 5.54 7.19 9.35
916,429 6.04 8.04 9.52

Bisecting 81,875 5.66 7.60 9.37
323,128 5.62 7.53 9.33
654,535 5.71 7.66 9.38
916,429 6.10 8.23 9.52

single-pass k-means 81,875 5.60 7.27 9.26
323,128 5.64 7.34 9.32
654,535 5.67 7.44 9.32
916,429 6.10 8.11 9.51

k-scan 81,875 5.53 7.25 9.20
323,128 5.56 7.36 9.27
654,535 5.66 7.54 9.33
916,429 6.10 8.11 9.51

Table 1: Performance, as average number of bits used to represent each posting, as a function of the assign-
ment algorithm used, of the collection size (no. of documents), and of the encoding algorithm adopted. The
row labeled “Random assignment” reports the performance of the various encoding algorithms when DocIDs
are randomly assigned.
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