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Abstract rives from the exponential size of its search sp&¢a/),
i.e. the power set o/, where M is the set of items con-
The performance of an algorithm that mines frequent tained in the various transactions Df A way to prune
sets from transactional databases may severely depend orP(M) is to restrict the search to itemsets whose subsets
the specific features of the data being analyzed. More-are all frequent. Thépriori algorithm [5] exactly exploits
over, some architectural characteristics of the computa- this pruning technique, and visits breadth-fiataf) for
tional platform used — e.g. the available main memory — counting itemset supports. At each iteratigrApriori gen-
can dramatically change its runtime behavior. In this paper eratesC}, a set of candidaté-itemsets, and counts the
we presenDCI (Direct Count & Intersect), an efficient al- occurrences of these candidates in the transactions. The
gorithm for discovering frequent sets from large databases. candidates irC';, for which the the minimum support con-
Due to the multiple heuristics strategies adoptB| can straint holds are then inserted infq, i.e. the set of fre-
adapt its behavior not only to the features of the specific quentk-itemsets, and the next iteration is started. Other
computing platform, but also to the features of the datasetalgorithms adopt instead a depth-first visit/fA/) [8, 2].
being mined, so that it results very effective in mining both In this case the goal is to discover long frequent itemsets
short and long patterns from sparse and dense datasets. Fidirst, thus saving the work needed for discovering frequent
nally we also discuss the parallelization strategies adopted itemsets included in long ones. Unfortunately, while it is
in the design oParDClI, a distributed and multi-threaded  simple to derive all the frequent itemsets from the maximal
implementation oDCI. ones, the same does not hold for their supports, which re-
quire a further counting step. In the last years several vari-
ations to the originalApriori algorithm, as well as many
1 Introduction parallel implementations, have been proposed. We can rec-
ognize two main methods for determining the supports of
the various itemsets present ™(M/): a countingbased
approach [3, 5, 10, 13, 8, 1, 7], and entersectionbased
one [15, 9, 16]. The former one, also adoptedipriori,
exploits ahorizontal dataset anagtountshow many times
each candidaté-itemset occurs in every transaction. The
latter method, on the other hand, exploitgestical dataset,
where atidlist, i.e. a list of transaction identifiers (tids),
is associated with items (or itemsets), and itemset supports
re determined through tidlist intersections. The support of
k-itemsetc can thus be computed either bykavayin-
tersection, i.e. by intersecting tietidlists associated with
the k items included irc, or by a2-wayintersection, i.e.
by intersecting the tidlists associated with a pair of frequent
(k — 1)-itemsets whose union is equal ¢0 Recently an-
other category of methods, i.e. tipattern growth ones
have been proposed [1, 11, 1&P-growth [11] is the best
representant of this kind of algorithms. It is not based on

Association Rule Mining (ARM), one of the most popu-
lar topic in the KDD field, regards the extractions of asso-
ciation rules from a database of transacti@hsEach rule
has the formX = Y, whereX andY are sets of items
(temsety such thaf X NY) = &. Arule X = Y holds
in D with a minimum confidence and a minimum support
s, if at least the:% of all the transactions containing also
containsY’, andX UY is present in at least th&} of all the
transactions of the database. In this paper we are intereste
in the most computationally expensive phase of ARM, i.e
the Frequent Set Countingg$Q one. During this phase,
the set of all thdrequentitemsets is built. An itemset df
items (-itemset) is frequent if its support is greater than the
fixed thresholds, i.e. the itemset occurs in at leasinsup
transactionsr@insup = s/100 - n, wheren is the number
of transactions irD).

The computational complexity of the FSC problem de-



candidate generation aspriori, but builds in memory a  tal form. During the following iteration€)CI adopts a very
compact representation of the dataset, where repeated paefficient intersection—based techniq@EC| starts using this
terns are represented once along with the associated repetiechnique as soon as the pruned dataset fits into the main
tion counters.FP-growth does not perform well on sparse memory.

datasets [17], so the same authors recently proposed a new DCI deals with dataset peculiarities by dynamically
pattern-growth algorithmk-mine [14], based on an inno-  choosing between distintteuristic strategies For exam-
vative hyper-structure that allows the in-core dataset to beple, when a dataset is dense, identical sections appearing
recursively projected by selecting those transactions that in-in several bit-vectors are aggregated and clustered, in order
clude a given pattern prefix. to reduce the number of intersections actually performed.

In this paper we discus3CI (Direct Count & Intersect), ~ Conversely, when a dataset is sparse, the runs of zero bits
a new algorithm to solve the FSC problem. We also in- I the _blt—vectors tq be intersected are prornp_tly identified
troduceParDCI, a parallel version oDCI, which explic- ~ &nd skipped. We will show how the sequential implementa-
itly targets clusters of SMPs. Several considerations con-t0n of DCI significantly outperforms previously proposed
cerning the features of real datasets to be mined and thé¥/gorithms. In particular, under a number of different tests
characteristics of modern hw/sw system have motivated the2nd independently of the dataset peculiaritR€,l results
design of DCI. On the one hand, transactional databases!© Pe faster thampriori and FP-growth. By comparing
may have different peculiarities in terms of the correlations OUr experimental results with the published ones obtained
among items, so that they may result either dense or sparse?” the same sparse dataset, we deducedftis also
Hence, a desirable characteristic of a new algorithm shouldf@ster tharH-mine [14]. DCI performs very well on both
be the ability to adapt its behavior to these featu€l, synthetic and real-world datasets characterized by different

which supports this kind of adaptiveness, thus constitutesdensity features, i.e. datasets from which, due to the differ-
an innovation in the arena of previously proposed FSC al- ent correlations among items, either short or long frequent
gorithms, which often outperformed others only for spe- Patterns can be mined. _ _
cific datasets. On the other hand, modern hw/sw systems 1he rest of the paper is organized as follows. Section
need high locality for effectively exploiting memory hierar- 2 describes théCl algorithm and discusses the various
chies and achieving high performances. Large dynamic dat@dap.tlve heuristics adopted, while Section 3 skchhes the
structures with pointers may lack in locality due to unstruc- Solutions adopted to desigrarDCI, the parallel version of -
tured memory references. Other sources of performance?C!- In Section 4 we report our experimental results. Fi-
limitations may be unpredictable branchBI triestotake ~ Nally in Section 5 we present some concluding remarks.
advantages of modern systems by using simple array data

structures, accessed by tight loops which exhibit high spa-2  The DCI algorithm

tial and temporal locality. In particulaDCI exploits such

techniques for intersecting tidlists, which are actually repre- During its initial counting-based phas&®Cl exploits
sented as bit-vectors that can be intersected very efficiently,, out-of-core, horizontal database with variable length
with primitive bitwise and instructions. Another issue re-  ocor(s. DCI, by exploiting effective pruning techniques
gards I/O operations, which must be carefully optimized in inspired by DHP [13], trims the transaction database as ex-
order to allow DM glgorithr_ns to efficiently manage Iarge ecution progresses. In particular, a pruned dat@set;
databases. Even if the d|sl_<-stored datasets to be minegs \yritten to disk at each iteratioh, and employed at the
may be very large, DM algorithms usually access them se-peyt jteration. Letm;, andny, be the number of items
quentially with high spatial locality, so that suitable out-of- 44 transactions that are included in the pruned dalset
core techniques to access them can be adopted, also takin\g,heremk > musr andng > nyi1. Pruning the dataset
advantage of prefetching and caching features of modermyay entail a reduction in 1/0 activity as the algorithm pro-
OSs [6]. DCI adopts these out-of-core techniques t0 accesSyregses, but the main benefits come from the reduced com-
large databases, prunes them as execution progresses, aihation required for subset counting at each iterafipn

starts using in-core strategies as soon as possible. due to the reduced number and size of transactions. As
Once motivated the design requirement®@afl, we can soon as the pruned dataset becomes small enough to fit
now detail how it works. A#\priori, at each iteratioCl into the main memonpCl adaptively changes its behavior,
generates the set of candidatés, determines their sup- builds avertical layout database in-core, and starts adopt-
ports, and produces the sBt of the frequentk-itemsets. ing an intersection-based approach to determine frequent
However,DCI adopts a hybrid approach to determine the sets. Note, however, th&CI continues to have a level-
support of the candidates. During its first iteratioBs;| wise behavior. At each iteratioCl generates the can-

exploits a novel counting—based technique, accompanied bydidate set”), by finding all the pairs ofk — 1)-itemsets
an effective pruning of the dataset, stored to disk in horizon- that are included inF,_; and share a commofk — 2)-



prefix. SinceFy_, is lexicographically ordered, the var- 2.2 Intersection-based phase
ious pairs occur in close positions, and candidate gener-

ation is performed with high spatial and temporal local-  gjnce the counting-based approach becomes less effi-
ity. Only during theDCI counting-phase(’y is further  cient ask increases [15]PCI starts its intersection-based
pruned by checking whether also all the other subsets 0fypage as soon as possible. Unfortunately, the intersection-
a candidate are included if,,. Conversely, during the  jaqeq method needs to maintain in memory the vertical
intersection-based phase, since our intersection method ISepresentation of the pruned dataset. So, at iteration
able to quickly determine the support of a candidate item- ;. '~ 9 pc| checks whether the pruned datagat may
set, we found much more profitable to avoid this further it jnio the main memory. When the dataset becomes small
check. While during its counting-based phds€l has to  gnoygh, its vertical in-core representation is built on the fly,
maintainC in main memory to search candidates and in- il the transactions are read and counted ag@lpsThe
crement associated counters, this is no longer needed durersection-based method thus starts at the next iteration.
ng the mtersectlon-based pha;e. A? soon as a candidate The vertical layout of the dataset is based on fixed length
ftemset is g_eneratedDCI de“a”‘?'”e? Its supp(_)rt_on-th_e-fly records (tidlists), stored asit-vectors The whole verti-
by Intersecting the correspondmg t.'d“StS' T.h's 'S an IMPOr* ¢4 gataset can thus be seen as a bidimensional bit-array
tant improvement over othépriori-like algorlt.hms, which VD[] ], whose rows correspond to the bit-vectors associ-
suffer fro”! the possple huge memory requirements due ©4ted with non pruned items. Therefore, the amount of mem-
the explosion of the size @y, [11]. ) ory required to stor&D[ ][ ] is my, x ny bits.

DCI makes use of a large body of out-of-core techniques, °“A; aach iteration of its intersection-based phaB€)
so that it is able to adapt its behavior also to machines with computesF; as follows. For each candidateitemsetc
limited main memory. Datasets are read/written in b_IOCkS' we and-intersect the: bit-vectors associated with the items
FO take advantage of /O prefetphlng and SySte”.‘ pipelin- included inc (k-wayintersection), and count tHeés present
ing [6]. The outputs 9f the algonthm, e.g. the various fre- in the resulting bit-vector. If this number is greater or equal
quent setst. ; are written to f|_Ies that armmapped o4 minsup, We insertc into F;.. Consider that a bit-vector
memory during the next iteration for candidate generation. e rgection can be carried out efficiently and with high spa-

tial locality by using primitive bitwisend instructions with
2.1 Counting-based phase word operands. As previously stated, this method does not
requireCy, to be kept in memory: we can compute the sup-
Since the counting-based approach is used only for fewport of each candidateon-the-fly, as soon as it is generated.
iterations, in the following we only sketch its main features.  The strategy above is, in principle, highly inefficient, be-
Further details aboudCI counting technigue can be found cause it always needskawayintersection to determine the
in [12], where we proposed an effective algorithm for min- support of each candidate Nevertheless, a caching pol-
ing short patterns. In the first iteration, similarly to all FSC icy could be exploited in order to save work and speed up
algorithms,DCI exploits a vector of counters, which are di- our k-way intersection method. To this en®CI uses a
rectly addressed through item identifiers. Eor 2, instead ~ small “cache” buffer to store all the — 2 intermediate in-
of using complex data structures like hash-trees or prefix-tersections that have been computed for the last candidate
trees,DCI uses a noveDirect Count techniquéhat can be  evaluated. Since candidate itemsets are generated in lexico-

thought as a generalization of the technique used fer1. graphic order, with high probability two consecutive candi-
The technique usegmefix table PREFIX,[], of size (";k) dates, e.gc andc’, share a common prefix. Suppose that
In particular, each entry of PREFJX] is associated witha  and¢’ share a prefix of length > 2. When we process,
distinctordered prefi>of two items. Foik = 2, PREFIX,[ ] we can avoid performing the firét— 1 intersections since
can directly contain the counters associated with the var-their result can be found in the cache.

ious candidate 2-itemsets, while, fér > 2, each entry To evaluate the effectiveness of our caching policy, we

of PREFIX;[ ] contains the pointer to the contiguous sec- counted the actual number of intersections carried out by
tion of ordered candidates ifi, sharing the same prefix. DCI on two different datasets: BMS, a real-world sparse
To permit the various entries of PREFRJK] to be directly dataset, and connect-4, a dense dataset (the characteristics
accessed, we devised an order preserving, minimal perfecof these two datasets are reported in Table 1). We com-
hash function. This prefix table is thus used to count the pared this number with the best and the worst case. The
support of candidates i@’ as follows. For each transac- best case corresponds to the adoption @fwayintersec-

tiont = {t1,...,ty}, we select all the possible 2-prefixes tion approach, which is only possible if we can fully cache

of all k-subsets included ih We then exploit PREFIX ] the tidlists associated with all the frequéht— 1)-itemsets

to find the sections of’, which must be visited in orderto in F_,. The worst case regards the adoption of a pure
check set-inclusion of candidates in transaction wayintersection method, i.e. a method that does not exploit



caching at all. Figure 1.(a) plots the results of this analy- further intersections that are needed to determine the sup-
sis on the sparse dataset for support threshotd 0.06%, port of c (as well as intersections needed to process dther
while Figure 1.(b) regards the dense dataset mined with supitemsets sharing the sardtem prefix) will skip these runs

port thresholds = 80%. In both the cases the caching pol- of 0’s, so that only vector segments which may contéin

icy of DCI turns out to be very effective, since the actual are actually intersected. Since information about the runs of
number of intersections performed results to be very close(’s are computed once, and the same information is reused
to the best case. MoreovddClI requires orders of magni- many times, this optimization results to be very effective.
tude less memory than a puewayintersection approach, Moreover, sparse and moderately dense datasets offer the

thus better exploiting memory hierarchies. possibility of further pruning vertical datasets as compu-
Dataset=BMS, supp=0.06% tation progresses. The benefits of pruning regard the re-
oo sy —=" duction in the length of the bit-vectors and thus in the cost
§ 1aews Zamy = of intersections. Note that a transaction, i.e. a column of
| VD, can be removed from the vertical dataset when it does
»C-, 800000 not contain any of the itemsets includedf. This check
IO VA N can simply be done byr-ing the intersection bit-vectors
R computed for all the frequerititemsets. However, we ob-
s s 10 1 % served that dataset pruning is expensive, since vectors must
@ be compacted at the level of single bits. HeDx@l prunes
Dataset=connect-4, supp=80% the dataset only if turns out to be profitable, i.e. if we can
S0 Whay —=" obtain a large reduction in the vector length, and the num-
700000 2way - ber of vectors to be compacted is small with respect to the
600000 cardinality ofC}.
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We have to consider that while caching reduces the num-

ber of tidlist intersections, we also need to reduce intersec- 2200

tion cost. To this end, further heuristics, differentiated w.r.t. 2000

sparseor densalatasets, are adopted BZI. In order to ap-

ply the right optimization, the vertical dataset is tested for

checking its density as soon as it is built. In particular, we

compare the bit-vectors associated with thest frequent

items i.e., the vectors which likely need to be intersected 0

several times since the associated items occur in many can- o e e

didates. If large sections of these bit-vectors turn out to ()

be identical, we deduce that the items are highly correlated Figure 2. Evaluation of DCI optimization

and that the dataset is dense. In this case we adopt a specific heuristics for sparse and dense datasets.

heuristics which exploits similarities between these vectors.

Otherwise the technique for sparse datasets is adopted. Iense datasets. If the dataset turns out to be dense, we

the fOIIOWing we illustrate the two heuristics in more detail. expect to deal with a dataset characterized by Strong corre-
lations among the most frequent items. This not only means

Sparse datasets. Sparse or moderately dense datasets that the bit-vectors associated with tmest frequent items

originate bit-vectors containing long runs éfs. To contain long runs ofl’s, but also that they turn out to be

speedup computation, while we compute the intersection ofvery similar. The heuristic technique adopted DI for

the bit-vectors relative to the first two itemg andc, of a dense dataset thus works as follows: A) we reorder the

generic candidate itemset= {c1,c2,...,cx} € Ci, We columns of the vertical dataset, in order to move identical

also identify and maintain information about the rung’sf segments of the bit-vectors associated with the most fre-

appearing in the resulting bit-vector stored in cache. The quent items to the first consecutive positions; B) since each

without opt. —e—
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Table 1. Datasets used in the experiments.
Dataset [ Description |

T25110D10K Synthetic dataset with 1K items and 10K transactions [11]. The average size of transactions is 25, and the average size of the maximal
potentially frequent itemsets is 10.

T25120D100K Synthetic dataset with 10K items and 100K transactions [11]. The average size of transactions is 25, and the average gize of the
maximal potentially frequent itemsets is 20.

400k t10_p8.m10k 10K items and 400K transactions. The average size of transactions is 10, and the average size of the maximal potentially frequent
o itemsets is 8. Synthetic dataset created with the IBM dataset generator [5].

400k t30.p16.m1k 1K items and 400K transactions. The average size of transactions is 30, and the average size of the maximal potentially frequent
itemsets is 16. Synthetic dataset created with the IBM dataset generator [5].

t20_p8.m1k With this notation we identify a series of synthetic datasets characterized by 1K items. The average transaction size is 20, and the
average size of maximal potentially frequent itemsets is 8. The number of transactions is varied for scaling measurements.

A series of three synthetic datasets with the same number of items (1K), average transaction size of 50, and average size gf maximal

150.p32m1k potentially frequent itemsets equal to 32. We used three datasets of this series with 1000k, 2000k and 3000k transactions.
connect-4 Publicly available dense dataset with 130 items and about 60K transactions. The maximal transaction size is 45.
BMS Publicly available sparse dataset also knowrGazelle 497 items and 59K transactions containing click-stream data from an

e-commerce web sitgazelle.com

candidate is likely to include several of these most frequentour target architecture is a cluster of SMP nodes, in both
items, we avoid repeatedly intersecting the identical seg-phases we distinguish betweertra-node and inter-node
ments of the corresponding vectors. This technique maylevels of parallelism. At the inter-node level we used the
save a lot of work because (1) the intersection of identical message—passing paradigm through the MPI communica-
vector segments is done once, (2) the identical segments aréon library, while at the intra-node level we exploited multi-
usually very large, and (3), long candidate itemsets presum-threading through thBosix Threadibrary. A Count Distri-

ably contains several of these most frequent items. butionapproach is adopted to parallelize the counting-based

- . phase, while the intersection-based phase exploits a very ef-
The plots reported in Figure 2 show the effectiveness of fective Candidate Distributiorapproach [4].

the heuristic optimizations discussed above in reducing the
average number of bitwisend operations needed to in-
tersect a pair of bit-vectors. In particular, Figure 2.(a) re- The counting-based phase. At the inter-node level, the
gards thesparseBMS dataset mined with support threshold dataset is statically split in a number of partitions equal to
s = 0.06%, while Figure 2.(b) regards thdensedataset  the number of SMP nodes available. The size of partitions
connect-4 mined with support threshald= 80%. In both depend on the relative powers of nodes. At each iteration
cases, we plotted the per-iteration cost of each bit-vector in-%, an identical copy of’j, is independently generated by
tersection in terms of bitwisend operations when either each node. Then each nogeeads blocks of transactions
our heuristic optimizations are adopted or not. The two from its own dataset partitio®,, ;,, performs subset count-
plots show that our optimizations for both sparse and denseing, and writes pruned transactionsi®g ;.. At the end of
datasets have the effect of reducing the intersection cost ughe iteration, an all-reduce operation is performed to update
to an order of magnitude. Note that when no optimizations the counters associated to all candidate€’pfand all the

are employed, the curves exactly plot the bit-vector length nodes produce an identical dé.

(in words). Finally, from the plot reported in Figure 2.(a), At the intra-node level each node uses a pool of threads,
we can also note the effect of the pruning technique usedeach holding a private set of counters associated with candi-
on sparse datasets. Pruning has the effect of reducing thelates. They have the task of checking in parallel candidate
length of the bit-vectors as execution progresses. On theitemsets against chunks of transactions read figym.

other hand, when datasets are dense, the vertical dataset At the end of each iteration, a global reduction of coun-
is not pruned, so that the length of bit-vectors remains theters take place, and a copy Bf is produced on each node.
same for all theDCl iterations.

The intersection-based phase. During the intersection-
3 ParDCI based phase, a Candidate Distribution approach is adopted
at both the inter- and intra-node levels. This parallelization
In the following we describe the different paralleliza- schema makes the parallel nodes completely independent:
tion techniques exploited for the counting- and intersection- inter-node communications are no longer needed for all the
based phases &arDCI, the parallel version dDCl. Since following iterations ofParDCI.
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Figure 3. Total execution times for  DCI, Apriori, and FP-growth on various datasets as a function of
the support threshold.

Let us first consider the inter-node level, and suppose FP-growth algorithm', and the Christian Borgelt's imple-
that the intersection-based phase is started at iteration mentation ofApriori?. For the sequential tests we used a
Therefore, at iteratiok the various nodes build on-the-fly Windows-NT workstation equipped with a Pentium 11 350
the bit-vectors representing their own in-core portions of MHz processor, 256 MB of RAM memory and a SCSI-
the vertical dataset. Before starting the intersection-based disk. For testing?arDCI performance, we employed a
phase, the partial vertical datasets are broadcast to obtain amall cluster of three Pentium Il 233MHz 2-way SMPs, for
complete replication of the whole vertical dataset on eacha total of six processors. Each SMP is equipped with 256
node. The frequent sdt; (i.e., the set computed in the MBytes of main memory and a SCSI disk. For the tests, we
last counting-based iteration) is then partitioned on the ba-used both synthetic and real datasets by varying the mini-
sis of itemset prefixes. A disjoint partitioﬁpﬁ of Fyis mum support thresholel The characteristics of the datasets
thus assigned to each nogewhere{J, I, 7 = Fy. Itis used are reported in Table 1.
worth remarking that this partitioning entails a Candidate
Distribution schema for all the following iterations, accord- ) )
ing to which each nodg will be able to generate a unique DC! performances and comparisons. Figure 3 reports

C? (k > k) independently of all the other nodes, where the total execution times obtained runnidgpriori, FP-
/ . growth, and our sequenti&Cl algorithm on some datasets
Cyney =0ifp#yp',and, Cy = Cx.

described in Table 1 as a function of the support threshold
At the intra-node level, a similar Candidate Distribution 5. In all the tests conducte@®CI outperformsFP-growth
approach is employed, but at a finer granularity by using with speedups up to 8. Of courdeCl also remarkably out-
dynamic scheduling to ensure load balancing. performsApriori, in some cases for more than one order of
magnitude. For connect-4, the dense dataset, the curve of
Apriori is not shown, due to the relatively too long execu-
4 Experimental Results tion times. Note that, accordingly to [17], on the real-world
sparse dataset BMS (also known@azellg, Apriori turned
out to be faster thalRP-growth. To overcome such bad per-
formance results on sparse datasets, the same auttis of
growth recently proposed a new pattern-growth algorithm,
H-mine [14]. By comparing our experimental results with

TheDCl algorithm is currently available in two versions,
a MS-Windows one, and a Linux on®arDCI, which ex-
ploits the MPICH MPI and thpthreadlibraries, is currently
av_allable only_for the Linux platform. We used the MS- 1we acknowledge Prof. Jiawei Han for kindly providing us the latest,
Windows version oDCI to compare its performance with g1y optimized, binary version oFP-growth.
other FSC algorithms. For test comparisons we used the 2http://fuzzy.cs.uni-magdeburg.de/ ~borgelt
g p




the published execution times on the BMS dataset, we de-PC equipped with a different amount of memory. As it can

duced thaDCl is also faster thakl-mine. Fors = 0.06%,

we obtained an execution time of about 7 sec., while

mine completes in about 40 sec. on a faster machine.
The encouraging results obtained witfCI| are due to

be seen from Figure 4.(aRCI scales linearly also on ma-
chines with a few memory. Due to its adaptiveness and the
use of efficient out-of-core techniques, it is able to modify
its behavior in function of the features of the dataset mined

both the efficiency of the counting method exploited during and the computational resources available. For example,
early iterations, and the effectiveness of the intersection-in the tests conducted with the largest dataset containing
based approach used when the pruned vertical datasetwo millions of transactions, the in-core intersection-based
fits into the main memory. For only a dataset, namely phase was started at the sixth iteration when only 64MB
T25110D10K,FP-growth turns out to be slightly fasterthan of RAM were available, and at the third iteration when the
DCI for s = 0.1%. The cause of this behavior is the size of available memory was 512MB. On the other hand the re-
C3, which in this specific case results much larger than the sults reported in Figure 4.(b) show tH&®-growth requires
final size of 3. Hence DCI has to carry out a lot of useless much more memory thadCl, and is not able to adapt itself
work to determine the support of many candidate itemsets,to memory availability. For example, in the tests conducted
which will eventually result to be not frequent. In this case with 64MB of RAM, FP-growth requires less thaB0 sec-
FP-growth is faster tharDCI since it does not require can- onds to mine the dataset wif)0k transactions, but when
didate generation. we double the size of the dataseutik transactionskP-
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Figure 4. Total execution times of (a) DCI, N. processors
and (b) FP-growth, on datasets in the series (b)
t20_p8_m1k (s = 0.5%) on a PC equipped with Figure 5. (a): Dense dataset connect-4
different RAM sizes as a function of the num- completion times of DCI and ParDCI vary-

ing the minimum support threshold. (b):
Speedup for sparse datasets 1000K, 2000K
and 3000K with s=1.5%

ber of transactions (ranging from 100K to

20M).

We also tested the scale-up behavioD&fl when both

the size of the dataset and the size of RAM installed in the Performance evaluation of ParDCl. We evaluated

PC vary. The datasets employed for these tests belong to th®arDCI on both dense and sparse datasets. First we com-
series t20p8.m1k (see Table 1) mined with support thresh- pared the performance &Cl and ParDCI on the dense

old s = 0.5%, while the available RAM was changed from datasetconnect-4 , for which we obtained very good
64MB to 512MB by physically plugging additional mem- speedups. Figure 5.(a) plots total execution times as func-
ory into the PC main board. Figure 4.(a) and 4.(b) plot tions of the support thresholds ParDCI-2 corresponds
several curves representing the execution timd3@fand to the pure multithread version running on a single 2-way
FP-growth, respectively, as a function of the number of SMP, while ParDCI-4 and ParDCI-6 also exploit inter-
transactions contained in the dataset processed. Each curveode parallelism, and run, respectively, on two and three
plotted refers to a series of tests conducted with the same2-way SMPs. For what regard sparse datasets, we used



the synthetic dataset series identifiedta8_p32_ml1k in ducted permit us to state that the performance®6i
Table 1. We varied the total number of transactions from are not influenced by dataset characteristics, and that our
1000k to 3000k. In the following we will identify the vari-  optimizations are very effective and general. To share
ous synthetic datasets on the basis of their number of transour efforts with the data mining community, we made
actions, i.e. 1000k, 2000k, and 3000k. Figure 5.(b) plots thethe DCI binary code available for research purposes at
speedups obtained on the three synthetic datasets for a givehttp://www.miles.cnuce.cnr.it/ ~palmeri/datam/DClI
support thresholds(= 1.5%), as a function of the number
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