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2Istituto ISTI, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

3Dipartimento di Informatica, Università di Pisa, Italy

Abstract

The performance of an algorithm that mines frequent
sets from transactional databases may severely depend on
the specific features of the data being analyzed. More-
over, some architectural characteristics of the computa-
tional platform used – e.g. the available main memory –
can dramatically change its runtime behavior. In this paper
we presentDCI (Direct Count & Intersect), an efficient al-
gorithm for discovering frequent sets from large databases.
Due to the multiple heuristics strategies adopted,DCI can
adapt its behavior not only to the features of the specific
computing platform, but also to the features of the dataset
being mined, so that it results very effective in mining both
short and long patterns from sparse and dense datasets. Fi-
nally we also discuss the parallelization strategies adopted
in the design ofParDCI, a distributed and multi-threaded
implementation ofDCI.

1 Introduction

Association Rule Mining (ARM), one of the most popu-
lar topic in the KDD field, regards the extractions of asso-
ciation rules from a database of transactionsD. Each rule
has the formX ⇒ Y , whereX andY are sets of items
(itemsets), such that(X ∩ Y ) = ∅. A rule X ⇒ Y holds
in D with a minimum confidencec and a minimum support
s, if at least thec% of all the transactions containingX also
containsY , andX∪Y is present in at least thes% of all the
transactions of the database. In this paper we are interested
in the most computationally expensive phase of ARM, i.e
the Frequent Set Counting (FSC) one. During this phase,
the set of all thefrequentitemsets is built. An itemset ofk
items (k-itemset) is frequent if its support is greater than the
fixed thresholds, i.e. the itemset occurs in at leastminsup
transactions (minsup = s/100 · n, wheren is the number
of transactions inD).

The computational complexity of the FSC problem de-

rives from the exponential size of its search spaceP(M),
i.e. the power set ofM , whereM is the set of items con-
tained in the various transactions ofD. A way to prune
P(M) is to restrict the search to itemsets whose subsets
are all frequent. TheApriori algorithm [5] exactly exploits
this pruning technique, and visits breadth-firstP(M) for
counting itemset supports. At each iterationk, Apriori gen-
eratesCk, a set of candidatek-itemsets, and counts the
occurrences of these candidates in the transactions. The
candidates inCk for which the the minimum support con-
straint holds are then inserted intoFk, i.e. the set of fre-
quentk-itemsets, and the next iteration is started. Other
algorithms adopt instead a depth-first visit ofP(M) [8, 2].
In this case the goal is to discover long frequent itemsets
first, thus saving the work needed for discovering frequent
itemsets included in long ones. Unfortunately, while it is
simple to derive all the frequent itemsets from the maximal
ones, the same does not hold for their supports, which re-
quire a further counting step. In the last years several vari-
ations to the originalApriori algorithm, as well as many
parallel implementations, have been proposed. We can rec-
ognize two main methods for determining the supports of
the various itemsets present inP(M): a counting-based
approach [3, 5, 10, 13, 8, 1, 7], and anintersection-based
one [15, 9, 16]. The former one, also adopted inApriori,
exploits ahorizontal dataset andcountshow many times
each candidatek-itemset occurs in every transaction. The
latter method, on the other hand, exploits averticaldataset,
where atidlist, i.e. a list of transaction identifiers (tids),
is associated with items (or itemsets), and itemset supports
are determined through tidlist intersections. The support of
a k-itemsetc can thus be computed either by ak-way in-
tersection, i.e. by intersecting thek tidlists associated with
the k items included inc, or by a2-way intersection, i.e.
by intersecting the tidlists associated with a pair of frequent
(k − 1)-itemsets whose union is equal toc. Recently an-
other category of methods, i.e. thepattern growth ones,
have been proposed [1, 11, 14].FP-growth [11] is the best
representant of this kind of algorithms. It is not based on



candidate generation asApriori, but builds in memory a
compact representation of the dataset, where repeated pat-
terns are represented once along with the associated repeti-
tion counters.FP-growth does not perform well on sparse
datasets [17], so the same authors recently proposed a new
pattern-growth algorithm,H-mine [14], based on an inno-
vative hyper-structure that allows the in-core dataset to be
recursively projected by selecting those transactions that in-
clude a given pattern prefix.

In this paper we discussDCI (Direct Count & Intersect),
a new algorithm to solve the FSC problem. We also in-
troduceParDCI, a parallel version ofDCI, which explic-
itly targets clusters of SMPs. Several considerations con-
cerning the features of real datasets to be mined and the
characteristics of modern hw/sw system have motivated the
design ofDCI. On the one hand, transactional databases
may have different peculiarities in terms of the correlations
among items, so that they may result either dense or sparse.
Hence, a desirable characteristic of a new algorithm should
be the ability to adapt its behavior to these features.DCI,
which supports this kind of adaptiveness, thus constitutes
an innovation in the arena of previously proposed FSC al-
gorithms, which often outperformed others only for spe-
cific datasets. On the other hand, modern hw/sw systems
need high locality for effectively exploiting memory hierar-
chies and achieving high performances. Large dynamic data
structures with pointers may lack in locality due to unstruc-
tured memory references. Other sources of performance
limitations may be unpredictable branches.DCI tries to take
advantages of modern systems by using simple array data
structures, accessed by tight loops which exhibit high spa-
tial and temporal locality. In particular,DCI exploits such
techniques for intersecting tidlists, which are actually repre-
sented as bit-vectors that can be intersected very efficiently
with primitive bitwiseand instructions. Another issue re-
gards I/O operations, which must be carefully optimized in
order to allow DM algorithms to efficiently manage large
databases. Even if the disk-stored datasets to be mined
may be very large, DM algorithms usually access them se-
quentially with high spatial locality, so that suitable out-of-
core techniques to access them can be adopted, also taking
advantage of prefetching and caching features of modern
OSs [6].DCI adopts these out-of-core techniques to access
large databases, prunes them as execution progresses, and
starts using in-core strategies as soon as possible.

Once motivated the design requirements ofDCI, we can
now detail how it works. AsApriori, at each iterationDCI
generates the set of candidatesCk, determines their sup-
ports, and produces the setFk of the frequentk-itemsets.
However,DCI adopts a hybrid approach to determine the
support of the candidates. During its first iterations,DCI
exploits a novel counting–based technique, accompanied by
an effective pruning of the dataset, stored to disk in horizon-

tal form. During the following iterations,DCI adopts a very
efficient intersection–based technique.DCI starts using this
technique as soon as the pruned dataset fits into the main
memory.

DCI deals with dataset peculiarities by dynamically
choosing between distinctheuristic strategies. For exam-
ple, when a dataset is dense, identical sections appearing
in several bit-vectors are aggregated and clustered, in order
to reduce the number of intersections actually performed.
Conversely, when a dataset is sparse, the runs of zero bits
in the bit-vectors to be intersected are promptly identified
and skipped. We will show how the sequential implementa-
tion of DCI significantly outperforms previously proposed
algorithms. In particular, under a number of different tests
and independently of the dataset peculiarities,DCI results
to be faster thanApriori and FP-growth. By comparing
our experimental results with the published ones obtained
on the same sparse dataset, we deduced thatDCI is also
faster thanH-mine [14]. DCI performs very well on both
synthetic and real-world datasets characterized by different
density features, i.e. datasets from which, due to the differ-
ent correlations among items, either short or long frequent
patterns can be mined.

The rest of the paper is organized as follows. Section
2 describes theDCI algorithm and discusses the various
adaptive heuristics adopted, while Section 3 sketches the
solutions adopted to designParDCI, the parallel version of
DCI. In Section 4 we report our experimental results. Fi-
nally in Section 5 we present some concluding remarks.

2 TheDCI algorithm

During its initial counting-based phase,DCI exploits
an out-of-core,horizontal database with variable length
records. DCI, by exploiting effective pruning techniques
inspired by DHP [13], trims the transaction database as ex-
ecution progresses. In particular, a pruned datasetDk+1

is written to disk at each iterationk, and employed at the
next iteration. Letmk and nk be the number of items
and transactions that are included in the pruned datasetDk,
wheremk ≥ mk+1 andnk ≥ nk+1. Pruning the dataset
may entail a reduction in I/O activity as the algorithm pro-
gresses, but the main benefits come from the reduced com-
putation required for subset counting at each iterationk,
due to the reduced number and size of transactions. As
soon as the pruned dataset becomes small enough to fit
into the main memory,DCI adaptively changes its behavior,
builds avertical layout database in-core, and starts adopt-
ing an intersection-based approach to determine frequent
sets. Note, however, thatDCI continues to have a level-
wise behavior. At each iteration,DCI generates the can-
didate setCk by finding all the pairs of(k − 1)-itemsets
that are included inFk−1 and share a common(k − 2)-



prefix. SinceFk−1 is lexicographically ordered, the var-
ious pairs occur in close positions, and candidate gener-
ation is performed with high spatial and temporal local-
ity. Only during theDCI counting-phase,Ck is further
pruned by checking whether also all the other subsets of
a candidate are included inFk−1. Conversely, during the
intersection-based phase, since our intersection method is
able to quickly determine the support of a candidate item-
set, we found much more profitable to avoid this further
check. While during its counting-based phaseDCI has to
maintainCk in main memory to search candidates and in-
crement associated counters, this is no longer needed dur-
ing the intersection-based phase. As soon as a candidatek-
itemset is generated,DCI determines its support on-the-fly
by intersecting the corresponding tidlists. This is an impor-
tant improvement over otherApriori-like algorithms, which
suffer from the possible huge memory requirements due to
the explosion of the size ofCk [11].

DCI makes use of a large body of out-of-core techniques,
so that it is able to adapt its behavior also to machines with
limited main memory. Datasets are read/written in blocks,
to take advantage of I/O prefetching and system pipelin-
ing [6]. The outputs of the algorithm, e.g. the various fre-
quent setsFk, are written to files that aremmap-ped into
memory during the next iteration for candidate generation.

2.1 Counting-based phase

Since the counting-based approach is used only for few
iterations, in the following we only sketch its main features.
Further details aboutDCI counting technique can be found
in [12], where we proposed an effective algorithm for min-
ing short patterns. In the first iteration, similarly to all FSC
algorithms,DCI exploits a vector of counters, which are di-
rectly addressed through item identifiers. Fork ≥ 2, instead
of using complex data structures like hash-trees or prefix-
trees,DCI uses a novelDirect Count techniquethat can be
thought as a generalization of the technique used fork = 1.
The technique uses aprefix table, PREFIXk[ ], of size

(
mk

2

)
.

In particular, each entry of PREFIXk[ ] is associated with a
distinctordered prefixof two items. Fork = 2, PREFIXk[ ]
can directly contain the counters associated with the var-
ious candidate 2-itemsets, while, fork > 2, each entry
of PREFIXk[ ] contains the pointer to the contiguous sec-
tion of ordered candidates inCk sharing the same prefix.
To permit the various entries of PREFIXk[ ] to be directly
accessed, we devised an order preserving, minimal perfect
hash function. This prefix table is thus used to count the
support of candidates inCk as follows. For each transac-
tion t = {t1, . . . , t|t|}, we select all the possible 2-prefixes
of all k-subsets included int. We then exploit PREFIXk[ ]
to find the sections ofCk which must be visited in order to
check set-inclusion of candidates in transactiont.

2.2 Intersection-based phase

Since the counting-based approach becomes less effi-
cient ask increases [15],DCI starts its intersection-based
phase as soon as possible. Unfortunately, the intersection-
based method needs to maintain in memory the vertical
representation of the pruned dataset. So, at iterationk,
k ≥ 2, DCI checks whether the pruned datasetDk may
fit into the main memory. When the dataset becomes small
enough, its vertical in-core representation is built on the fly,
while the transactions are read and counted againstCk. The
intersection-based method thus starts at the next iteration.

The vertical layout of the dataset is based on fixed length
records (tidlists), stored asbit-vectors. The whole verti-
cal dataset can thus be seen as a bidimensional bit-array
VD[ ][ ], whose rows correspond to the bit-vectors associ-
ated with non pruned items. Therefore, the amount of mem-
ory required to storeVD[ ][ ] is mk × nk bits.

At each iteration of its intersection-based phase,DCI
computesFk as follows. For each candidatek-itemsetc,
weand-intersect thek bit-vectors associated with the items
included inc (k-wayintersection), and count the1’s present
in the resulting bit-vector. If this number is greater or equal
to minsup, we insertc into Fk. Consider that a bit-vector
intersection can be carried out efficiently and with high spa-
tial locality by using primitive bitwiseand instructions with
word operands. As previously stated, this method does not
requireCk to be kept in memory: we can compute the sup-
port of each candidatec on-the-fly, as soon as it is generated.

The strategy above is, in principle, highly inefficient, be-
cause it always needs ak-wayintersection to determine the
support of each candidatec. Nevertheless, a caching pol-
icy could be exploited in order to save work and speed up
our k-way intersection method. To this end,DCI uses a
small “cache” buffer to store all thek − 2 intermediate in-
tersections that have been computed for the last candidate
evaluated. Since candidate itemsets are generated in lexico-
graphic order, with high probability two consecutive candi-
dates, e.g.c andc′, share a common prefix. Suppose thatc
andc′ share a prefix of lengthh ≥ 2. When we processc′,
we can avoid performing the firsth − 1 intersections since
their result can be found in the cache.

To evaluate the effectiveness of our caching policy, we
counted the actual number of intersections carried out by
DCI on two different datasets: BMS, a real-world sparse
dataset, and connect-4, a dense dataset (the characteristics
of these two datasets are reported in Table 1). We com-
pared this number with the best and the worst case. The
best case corresponds to the adoption of a2-way intersec-
tion approach, which is only possible if we can fully cache
the tidlists associated with all the frequent(k − 1)-itemsets
in Fk−1. The worst case regards the adoption of a purek-
wayintersection method, i.e. a method that does not exploit



caching at all. Figure 1.(a) plots the results of this analy-
sis on the sparse dataset for support thresholds = 0.06%,
while Figure 1.(b) regards the dense dataset mined with sup-
port thresholds = 80%. In both the cases the caching pol-
icy of DCI turns out to be very effective, since the actual
number of intersections performed results to be very close
to the best case. Moreover,DCI requires orders of magni-
tude less memory than a pure2-wayintersection approach,
thus better exploiting memory hierarchies.
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Figure 1. Evaluation of DCI intersection
caching policy.

We have to consider that while caching reduces the num-
ber of tidlist intersections, we also need to reduce intersec-
tion cost. To this end, further heuristics, differentiated w.r.t.
sparseor densedatasets, are adopted byDCI. In order to ap-
ply the right optimization, the vertical dataset is tested for
checking its density as soon as it is built. In particular, we
compare the bit-vectors associated with themost frequent
items, i.e., the vectors which likely need to be intersected
several times since the associated items occur in many can-
didates. If large sections of these bit-vectors turn out to
be identical, we deduce that the items are highly correlated
and that the dataset is dense. In this case we adopt a specific
heuristics which exploits similarities between these vectors.
Otherwise the technique for sparse datasets is adopted. In
the following we illustrate the two heuristics in more detail.

Sparse datasets. Sparse or moderately dense datasets
originate bit-vectors containing long runs of0’s. To
speedup computation, while we compute the intersection of
the bit-vectors relative to the first two itemsc1 andc2 of a
generic candidate itemsetc = {c1, c2, . . . , ck} ∈ Ck, we
also identify and maintain information about the runs of0’s
appearing in the resulting bit-vector stored in cache. The

further intersections that are needed to determine the sup-
port ofc (as well as intersections needed to process otherk-
itemsets sharing the same2-item prefix) will skip these runs
of 0’s, so that only vector segments which may contain1’s
are actually intersected. Since information about the runs of
0’s are computed once, and the same information is reused
many times, this optimization results to be very effective.
Moreover, sparse and moderately dense datasets offer the
possibility of further pruning vertical datasets as compu-
tation progresses. The benefits of pruning regard the re-
duction in the length of the bit-vectors and thus in the cost
of intersections. Note that a transaction, i.e. a column of
VD, can be removed from the vertical dataset when it does
not contain any of the itemsets included inFk. This check
can simply be done byor-ing the intersection bit-vectors
computed for all the frequentk-itemsets. However, we ob-
served that dataset pruning is expensive, since vectors must
be compacted at the level of single bits. HenceDCI prunes
the dataset only if turns out to be profitable, i.e. if we can
obtain a large reduction in the vector length, and the num-
ber of vectors to be compacted is small with respect to the
cardinality ofCk.
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Figure 2. Evaluation of DCI optimization
heuristics for sparse and dense datasets.

Dense datasets. If the dataset turns out to be dense, we
expect to deal with a dataset characterized by strong corre-
lations among the most frequent items. This not only means
that the bit-vectors associated with themost frequent items
contain long runs of1’s, but also that they turn out to be
very similar. The heuristic technique adopted byDCI for
dense dataset thus works as follows: A) we reorder the
columns of the vertical dataset, in order to move identical
segments of the bit-vectors associated with the most fre-
quent items to the first consecutive positions; B) since each



Table 1. Datasets used in the experiments.
Dataset Description

T25I10D10K Synthetic dataset with 1K items and 10K transactions [11]. The average size of transactions is 25, and the average size of the maximal
potentially frequent itemsets is 10.

T25I20D100K Synthetic dataset with 10K items and 100K transactions [11]. The average size of transactions is 25, and the average size of the
maximal potentially frequent itemsets is 20.

400k t10 p8 m10k 10K items and 400K transactions. The average size of transactions is 10, and the average size of the maximal potentially frequent
itemsets is 8. Synthetic dataset created with the IBM dataset generator [5].

400k t30 p16 m1k 1K items and 400K transactions. The average size of transactions is 30, and the average size of the maximal potentially frequent
itemsets is 16. Synthetic dataset created with the IBM dataset generator [5].

t20 p8 m1k With this notation we identify a series of synthetic datasets characterized by 1K items. The average transaction size is 20, and the
average size of maximal potentially frequent itemsets is 8. The number of transactions is varied for scaling measurements.

t50 p32 m1k
A series of three synthetic datasets with the same number of items (1K), average transaction size of 50, and average size of maximal
potentially frequent itemsets equal to 32. We used three datasets of this series with 1000k, 2000k and 3000k transactions.

connect-4 Publicly available dense dataset with 130 items and about 60K transactions. The maximal transaction size is 45.

BMS Publicly available sparse dataset also known asGazelle. 497 items and 59K transactions containing click-stream data from an
e-commerce web sitegazelle.com .

candidate is likely to include several of these most frequent
items, we avoid repeatedly intersecting the identical seg-
ments of the corresponding vectors. This technique may
save a lot of work because (1) the intersection of identical
vector segments is done once, (2) the identical segments are
usually very large, and (3), long candidate itemsets presum-
ably contains several of these most frequent items.

The plots reported in Figure 2 show the effectiveness of
the heuristic optimizations discussed above in reducing the
average number of bitwiseand operations needed to in-
tersect a pair of bit-vectors. In particular, Figure 2.(a) re-
gards thesparseBMS dataset mined with support threshold
s = 0.06%, while Figure 2.(b) regards thedensedataset
connect-4 mined with support thresholds = 80%. In both
cases, we plotted the per-iteration cost of each bit-vector in-
tersection in terms of bitwiseand operations when either
our heuristic optimizations are adopted or not. The two
plots show that our optimizations for both sparse and dense
datasets have the effect of reducing the intersection cost up
to an order of magnitude. Note that when no optimizations
are employed, the curves exactly plot the bit-vector length
(in words). Finally, from the plot reported in Figure 2.(a),
we can also note the effect of the pruning technique used
on sparse datasets. Pruning has the effect of reducing the
length of the bit-vectors as execution progresses. On the
other hand, when datasets are dense, the vertical dataset
is not pruned, so that the length of bit-vectors remains the
same for all theDCI iterations.

3 ParDCI

In the following we describe the different paralleliza-
tion techniques exploited for the counting- and intersection-
based phases ofParDCI, the parallel version ofDCI. Since

our target architecture is a cluster of SMP nodes, in both
phases we distinguish betweenintra-nodeand inter-node
levels of parallelism. At the inter-node level we used the
message–passing paradigm through the MPI communica-
tion library, while at the intra-node level we exploited multi-
threading through thePosix Threadlibrary. A Count Distri-
butionapproach is adopted to parallelize the counting-based
phase, while the intersection-based phase exploits a very ef-
fectiveCandidate Distributionapproach [4].

The counting-based phase. At the inter-node level, the
dataset is statically split in a number of partitions equal to
the number of SMP nodes available. The size of partitions
depend on the relative powers of nodes. At each iteration
k, an identical copy ofCk is independently generated by
each node. Then each nodep reads blocks of transactions
from its own dataset partitionDp,k, performs subset count-
ing, and writes pruned transactions toDp,k+1. At the end of
the iteration, an all-reduce operation is performed to update
the counters associated to all candidates ofCk, and all the
nodes produce an identical setFk.

At the intra-node level each node uses a pool of threads,
each holding a private set of counters associated with candi-
dates. They have the task of checking in parallel candidate
itemsets against chunks of transactions read fromDp,k.

At the end of each iteration, a global reduction of coun-
ters take place, and a copy ofFk is produced on each node.

The intersection-based phase. During the intersection-
based phase, a Candidate Distribution approach is adopted
at both the inter- and intra-node levels. This parallelization
schema makes the parallel nodes completely independent:
inter-node communications are no longer needed for all the
following iterations ofParDCI.
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Figure 3. Total execution times for DCI, Apriori, and FP-growth on various datasets as a function of
the support threshold.

Let us first consider the inter-node level, and suppose
that the intersection-based phase is started at iterationk+1.
Therefore, at iterationk the various nodes build on-the-fly
the bit-vectors representing their own in-core portions of
the vertical dataset. Before starting the intersection-based
phase, the partial vertical datasets are broadcast to obtain a
complete replication of the whole vertical dataset on each
node. The frequent setFk (i.e., the set computed in the
last counting-based iteration) is then partitioned on the ba-
sis of itemset prefixes. A disjoint partitionFp,k of Fk is
thus assigned to each nodep, where

⋃
p Fp,k = Fk. It is

worth remarking that this partitioning entails a Candidate
Distribution schema for all the following iterations, accord-
ing to which each nodep will be able to generate a unique
Cp

k (k > k) independently of all the other nodes, where

Cp
k ∩ Cp′

k = ∅ if p 6= p′, and
⋃

p Cp
k = Ck.

At the intra-node level, a similar Candidate Distribution
approach is employed, but at a finer granularity by using
dynamic scheduling to ensure load balancing.

4 Experimental Results

TheDCI algorithm is currently available in two versions,
a MS-Windows one, and a Linux one.ParDCI, which ex-
ploits the MPICH MPI and thepthreadlibraries, is currently
available only for the Linux platform. We used the MS-
Windows version ofDCI to compare its performance with
other FSC algorithms. For test comparisons we used the

FP-growth algorithm1, and the Christian Borgelt’s imple-
mentation ofApriori2. For the sequential tests we used a
Windows-NT workstation equipped with a Pentium II 350
MHz processor, 256 MB of RAM memory and a SCSI-
2 disk. For testingParDCI performance, we employed a
small cluster of three Pentium II 233MHz 2-way SMPs, for
a total of six processors. Each SMP is equipped with 256
MBytes of main memory and a SCSI disk. For the tests, we
used both synthetic and real datasets by varying the mini-
mum support thresholds. The characteristics of the datasets
used are reported in Table 1.

DCI performances and comparisons. Figure 3 reports
the total execution times obtained runningApriori, FP-
growth, and our sequentialDCI algorithm on some datasets
described in Table 1 as a function of the support threshold
s. In all the tests conducted,DCI outperformsFP-growth
with speedups up to 8. Of course,DCI also remarkably out-
performsApriori, in some cases for more than one order of
magnitude. For connect-4, the dense dataset, the curve of
Apriori is not shown, due to the relatively too long execu-
tion times. Note that, accordingly to [17], on the real-world
sparse dataset BMS (also known asGazelle), Apriori turned
out to be faster thanFP-growth. To overcome such bad per-
formance results on sparse datasets, the same authors ofFP-
growth recently proposed a new pattern-growth algorithm,
H-mine [14]. By comparing our experimental results with

1We acknowledge Prof. Jiawei Han for kindly providing us the latest,
fully optimized, binary version ofFP-growth.

2http://fuzzy.cs.uni-magdeburg.de/ ∼borgelt



the published execution times on the BMS dataset, we de-
duced thatDCI is also faster thanH-mine. Fors = 0.06%,
we obtained an execution time of about 7 sec., whileH-
mine completes in about 40 sec. on a faster machine.

The encouraging results obtained withDCI are due to
both the efficiency of the counting method exploited during
early iterations, and the effectiveness of the intersection-
based approach used when the pruned vertical dataset
fits into the main memory. For only a dataset, namely
T25I10D10K,FP-growth turns out to be slightly faster than
DCI for s = 0.1%. The cause of this behavior is the size of
C3, which in this specific case results much larger than the
final size ofF3. Hence,DCI has to carry out a lot of useless
work to determine the support of many candidate itemsets,
which will eventually result to be not frequent. In this case
FP-growth is faster thanDCI since it does not require can-
didate generation.
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Figure 4. Total execution times of (a) DCI,
and (b) FP-growth, on datasets in the series
t20 p8 m1k (s = 0.5%) on a PC equipped with
different RAM sizes as a function of the num-
ber of transactions (ranging from 100K to
2M ).

We also tested the scale-up behavior ofDCI when both
the size of the dataset and the size of RAM installed in the
PC vary. The datasets employed for these tests belong to the
series t20p8 m1k (see Table 1) mined with support thresh-
old s = 0.5%, while the available RAM was changed from
64MB to 512MB by physically plugging additional mem-
ory into the PC main board. Figure 4.(a) and 4.(b) plot
several curves representing the execution times ofDCI and
FP-growth, respectively, as a function of the number of
transactions contained in the dataset processed. Each curve
plotted refers to a series of tests conducted with the same

PC equipped with a different amount of memory. As it can
be seen from Figure 4.(a),DCI scales linearly also on ma-
chines with a few memory. Due to its adaptiveness and the
use of efficient out-of-core techniques, it is able to modify
its behavior in function of the features of the dataset mined
and the computational resources available. For example,
in the tests conducted with the largest dataset containing
two millions of transactions, the in-core intersection-based
phase was started at the sixth iteration when only 64MB
of RAM were available, and at the third iteration when the
available memory was 512MB. On the other hand the re-
sults reported in Figure 4.(b) show thatFP-growth requires
much more memory thanDCI, and is not able to adapt itself
to memory availability. For example, in the tests conducted
with 64MB of RAM, FP-growth requires less than30 sec-
onds to mine the dataset with200k transactions, but when
we double the size of the dataset to400k transactions,FP-
growth execution time becomes1303 seconds, more than
40 times higher, due to an heavy page swapping activity.
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Figure 5. (a): Dense dataset connect-4 :
completion times of DCI and ParDCI vary-
ing the minimum support threshold. (b):
Speedup for sparse datasets 1000K, 2000K
and 3000K with s = 1.5%

Performance evaluation of ParDCI. We evaluated
ParDCI on both dense and sparse datasets. First we com-
pared the performance ofDCI and ParDCI on the dense
datasetconnect-4 , for which we obtained very good
speedups. Figure 5.(a) plots total execution times as func-
tions of the support thresholdss. ParDCI-2 corresponds
to the pure multithread version running on a single 2-way
SMP, while ParDCI-4 and ParDCI-6 also exploit inter-
node parallelism, and run, respectively, on two and three
2-way SMPs. For what regard sparse datasets, we used



the synthetic dataset series identified ast50 p32 m1k in
Table 1. We varied the total number of transactions from
1000k to 3000k. In the following we will identify the vari-
ous synthetic datasets on the basis of their number of trans-
actions, i.e. 1000k, 2000k, and 3000k. Figure 5.(b) plots the
speedups obtained on the three synthetic datasets for a given
support threshold (s = 1.5%), as a function of the number
of processors used. Consider that, since our cluster is com-
posed of three 2-way SMPs, we mapped tasks on processors
always using the minimum number of SPMP nodes (e.g.,
when we used 4 processors, we actually employed 2 SMP
nodes). This implies that experiments performed on either
1 or 2 processors actually have identical memory and disk
resources available, whereas the execution on 4 processors
benefit from a double amount of such resources. Accord-
ing to the tests above,ParDCI showed a speedup that, in
some cases, is close to the optimal one. Considering the re-
sults obtained with one or two processors, one can note that
the slope of the speedup curve is relatively worse than its
theoretical limit, due to resource sharing and thread imple-
mentation overheads at the inter-node level. Nevertheless,
when additional SMPs are employed, the slope of the curve
improves. The strategies adopted for partitioning dataset
and candidates on our homogeneous cluster of SMPs suf-
ficed for balancing the workload. In our tests we observed
a very limited imbalance. The differences in the execution
times of the first and last node to end execution were always
below the0.5%.

5 Conclusions

DCI uses different approaches for extracting frequent
patterns: counting-based during the first iterations and
intersection-based for the following ones. Adaptiveness
and resource awareness are the main innovative features of
the algorithm. On the basis of the characteristics of the
dataset mined,DCI chooses at run–time which optimiza-
tion to adopt for reducing the cost of mining. Dataset prun-
ing and effective out-of-core techniques are exploited dur-
ing the counting-based phase, while the intersection-based
phase works in core, and is started only when the pruned
dataset can fit into the main memory. As a result, our algo-
rithm can manage efficiently, also on machines with limited
physical memory, very large datasets from which, due to
the different correlations among items, either short or long
frequent patterns can be mined.

The experimental evaluations demonstrated thatDCI
significantly outperformsApriori andFP-growth on both
synthetic and real-world datasets. In many cases the perfor-
mance improvements are impressive. Moreover,ParDCI,
the parallel version ofDCI, exhibits excellent scaleups and
speedups on our homogeneous cluster of SMPs. The va-
riety of datasets used and the large amount of tests con-

ducted permit us to state that the performances ofDCI
are not influenced by dataset characteristics, and that our
optimizations are very effective and general. To share
our efforts with the data mining community, we made
the DCI binary code available for research purposes at
http://www.miles.cnuce.cnr.it/ ∼palmeri/datam/DCI .
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