Enhancing the Aprior: algorithm for Frequent Set Counting*

Salvatore Orlando
Dipartimento di Informatica, Universita Ca’ Foscari, Venezia, Italy. E-mail: orlandoQunive.it
Paolo Palmerini, Raffaele Perego
CNUCE, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy. E-mail: {paolo.palmerini,raffaele.perego}@cnuce.cnr.it

Abstract

In this paper we review the Apriori class of Data Mining algorithms proposed for solving the
Frequent Set Counting problem, and we propose DCP, a new algorithm which introduces several
improvements to the classic Apriori. Our goal was the optimization of the most time consuming
phases of Apriori algorithms, i.e. the initial iterations during which small itemsets are counted.
The main enhancements regard the use of an innovative method for storing candidate itemsets and
counting their support, and the exploitation of an effective pruning techniques which sensibly reduce
the size of the dataset as execution progresses. We implemented and engineered several algorithms
belonging to the Apriori class, and conducted accurate experimental evaluations to compare them, by
taking into account not only execution time, but also virtual memory usage and I/O activity. When
possible, locality of data and pointer dereferencing were accurately optimized due to their importance
with respect to the recent developments in computer architectures. The experimental results confirm
that our new algorithm, DCP, sensibly outperforms the others previously proposed. Our test bed was
a Pentium-based Linux workstation, while the datasets used for tests were synthetically generated.

1 Introduction

The Frequent Set Counting (FSC) [1] problem has been extensively studied as a method of unsupervised
Data Mining [6, 7, 12] for discovering all the subsets of items (or attributes) that frequently occurs in the
transactions of a given database. Knowledge on the frequent sets is generally used to extract Association
Rules stating how a subset of items influences the presence of another itemset in the transaction database.
The process of generating association rules (Association Mining) has historically been adopted for market-
basket analysis, where transactions are records representing point-of-sale data, while items represent
products.

In this paper we concentrate our attention on the FSC problem, which is the most time-consuming
phase of the Association Mining process. An itemset is frequent if it appears in at least min_sup transac-
tions of the database D. In this case we say that the itemset has a minimum support, where the support
of an itemset is the set of all the transactions in D which actually includes the itemset itself. When D
and the number of items included in the transactions are huge, and we are looking for itemsets which
are not very frequent (i.e., min_sup is small w.r.t. the number n of transactions in D), the number of
frequent itemsets becomes very large, and the FSC problem very expensive to solve both in time and
space.

Apriori [3] is one of the most effective algorithms proposed for solving the FSC problem. Apriori
iteratively searches frequent itemsets: at each iteration k, Fy, the set of all the frequent itemsets of £ items
(k-itemsets), is identified. In order to generate Fy, a candidate set Cj of potentially frequent itemsets is
firstly built. By construction, CY, is a superset of F}, and thus to discover frequent k-itemsets the support
of all candidate sets is computed by scanning the entire transaction database D. All the candidates with
minimum support are then included in Fj, and the next iteration started. The algorithm terminates
when Fj becomes empty, i.e. when no frequent set of k or more items is present in the database.

It is worth considering that the computational cost of the k-th iteration of Apriori strictly depends
on both the cardinality of C} and the size of D. Note that the number of possible candidates is, in

*Paper ID 125. Corresponding author: Raffaele Perego, CNUCE-CNR, Via V. Alfieri, 1, 56010 Ghezzano, Pisa, Italy.
E-mail: raffaele.perego@cnuce.cnr.it. Tel.: (+39) 050 3152993. Fax: (4+39) 050 3138091

principle, exponential in m, the number of items appearing in the various transactions of D. Apriori
strongly reduces the number of candidate sets on the basis of a simple but very effective observation:
a k-itemset can be frequent only if all its subsets of k — 1 items are frequent. C} is thus built at each
iteration as the set of all k-itemsets whose subsets of k — 1 items are all included in Fj_;. Conversely,
k-itemsets that at least contain an infrequent (k — 1)-itemset are not included in Cj.

DHP [11], an algorithm presented as an enhancement of Apriori, not only tries to further reduce the
size of C}, by pre-computing an approximated and larger F} (through a hash table) during the previous
algorithm iteration, but also recognizes the need to reduce the size of D as execution progresses. As an
example of heuristics to prune D, consider that items which are not present in any itemset of F}, are not
useful for the subsequent steps of the algorithm, and can be thus removed from D. Similarly, transactions
with less than k items can be also removed from D, since they cannot contain any k-itemset. In DHP a
pruned dataset Dy; is thus written to the disk at each iteration k of the algorithm and employed at the
next iteration.

An important algorithmic problem addressed by these algorithms is counting the support of the
candidate itemsets. During iteration k, all the k-subsets of each transaction ¢ € D must be determined
and their presence in Cy be checked. To reduce the complexity of this phase, both Apriori and DHP
store the various candidate itemsets in the leaves of a hash-tree, while suitable hash tables are placed in
the internal nodes of the tree to direct the search of k-itemsets within Cj. The performance, however,
only improves if the hash-tree splits C}, into several small disjoint partitions stored in the leaves of the
tree. Unfortunately this does not happen for small values of k since the depth of the tree and thus the
number of its leaves depends on k. Depending on the particular problem instance, itemsets of cardinality
lower than 4 can contribute to the total execution time even for more than the 90%.

In this paper we propose a new algorithm, DCP (Direct Count of candidates & Prune transactions),
which introduces important enhancements aimed at solving the issues stated above. DCP exploits an
innovative method for storing candidate itemsets and counting their support. The method is a general-
ization of the Direct Count technique used by both Apriori and DHP for counting the support of unary
itemsets, and allows to strongly reduce both in time and space the cost of the initial iterations of the
algorithm. Moreover, DCP adopts a simple and effective pruning of D without using the complex hash
filter used by DHP.

To validate our proposal, we conducted accurate experimental evaluations by taking into account not
only execution times, but also virtual memory usage, and I/O activity and its effects on the elapsed
time. When possible, locality of data and pointer dereferencing were accurately optimized due to their
importance with respect to the recent developments in computer architectures. The experimental results
confirm that our new algorithm, DCP, outperforms the others. Our test bed was a Pentium-based Linux
workstation, while the datasets used for tests were synthetically generated.

The paper is organized as follows. In Section 2 we review some of the most recent results in the
FSC field. Section 3 describes Apriori and DHP and discusses related implementation issues. Section 4
introduces DCP, and discusses in depth its peculiarities. Section 5 details the method used to generate
the synthetic datasets used in the tests, and reports the promising results obtained with DCP. Finally,
Section 6 draws some conclusions and outlines future work. In Table I we report the notation adopted
throughout the paper.

D transaction database
t generic transaction
m

n

number of items in D

number of transactions in D

Fi, | frequent k-itemsets

Cy | candidate k-itemsets

H;, | hash table used by DHP at iteration k

Dy, | pruned transaction database read at iteration k (D1 = D)
M, | set of the significative items in Dy,

m | cardinality of My

Table I: Symbols used in the paper.

2 Related work

The algorithms of the Apriori class [2, 3, 8, 11] are based on the same simple observation: if a given
itemset in not frequent then none of its supersets can be frequent. They have a level-wise behavior: they
start with k£ = 1 by evaluating singleton itemsets, and base the computations performed at step k on the
results of the previous iteration k& — 1. This level-wise behavior has been often criticized because of the
consequent multiple scans of the dataset, one for each level. A lot of research has been thus devoted to
minimize the number of dataset scans.

In [13] an algorithm that solves several FSC local problems on distinct partitions of the dataset is
discussed. Partitions are chosen small enough to fit in main memory, so that all these local FSC problem
can be solved with a single dataset scan. While during this first scan a superset of all the frequent
itemsets is identified, a second scan is needed to compute the actual global support of all the itemsets.
This algorithm may generate a too large superset of all the frequent itemsets due to data skew, thus
making very expensive in time and space the next iteration of the algorithm. In [9] some methods to
reduce the effects of this problem are discussed.

Dataset sampling as a method of reducing computation and I/O costs has also been proposed. Un-
fortunately, the FSC results obtained from a sampled dataset can not be accurate since data patterns
are not precisely represented due to the sampling process. An algorithm has been proposed [14] that,
although based on sampling, is able to exactly find the frequent sets in the original dataset. The main
idea is to solve the FSC problem on the sampled dataset by using a lowered frequency threshold in order
to obtain a superset of the frequent itemsets. Then this superset, suitably augmented with other item-
sets, is checked against the rest of the original dataset to compute the exact frequency of itemsets. The
method is however probabilistic, and the sampling may miss some frequent itemsets. In the last case, the
method becomes more expensive.

Even though the DHP [11] algorithm is often cited only for its capacity of reducing the number of
candidate sets, it reduces I/O activity without modifying the level-wise behavior of Apriori. DHP, in
fact, at each iteration re-writes a dataset of smaller size. The next iteration has thus to cope with a
smaller input dataset than the previous one. The benefits are not only in terms of I/O, but also of
reduced work in subset counting due to the reduced number and size of transactions. In [4] we observed
that, when a dataset is sequentially scanned by reading fixed blocks of data, one can take advantage of
the OS prefetching. Overlapping between computation and I/O activity can occur, provided that the
computation granularity is large enough. Moreover, OS buffer cache virtualizes I/O disk accesses, and,
more importantly, small datasets can be completely contained in buffer cache, i.e. in main memory. In
this case, subsequent scans of the dataset do not entail I/O disk accesses. In summary, if granularity of
computation is large enough and dataset are sequentially scanned, prefetching and buffer cache are able
to hide I/O time.

In the following, when we will discuss our experimental results, we will see that on modern architec-
tures, level-wise algorithms belonging to the Apriori family are compute and not I/O-bound. We think
that performance issues of level-wise algorithms for the FSC problem are only partially related to the
multiple dataset scans involved. Since algorithms that reduce dataset scans [13, 9, 14] entail increasing
the amount of work that is carried out at each iteration, we argue that further work has to be done to
quantitatively analyze advantages and disadvantages in adopting these algorithms rather than level-wise
ones.

Recently some new algorithms [15] for solving the FSC problem were also proposed. They are not
based on Apriori and adopt a different format of the database, which is organized as a set of lists
composed of transaction identifiers (tid-list). Each list is associated with a distinct item, and contains
the identifiers of the transactions where this item appears. The idea here is to reduce the scans of the
dataset, and to partition the dataset on the basis of a decomposition of the original search space into
smaller parts. This allows these partitions to be processed independently in memory. The algorithm uses
a lattice-theoretic approach to reason about search space decomposition. The new approach proposed
seems truly interesting, but the experimental evaluations have only compared the new algorithms with
the classic Apriori [2] and the Partition [13] algorithms, which are not very efficient.

3 Apriori-based algorithms

This section reviews the classic Apriori and DHP algorithms. Some of our implementation choices are
also detailed. We have in fact implemented and engineered both these algorithms in order to make an
effective comparison with DCP.

3.1 The Aprior: algorithm

As stated above, Apriori iteratively looks for frequent itemsets. At each iteration &, F},, the set of frequent
k-itemsets is identified. In order to generate F}, a candidate set C} of potentially frequent k-itemsets is
first built. The occurrences in D of all the itemsets of C} are then counted. Finally, the itemsets of C}
having a minimum support are included into Fj.

In the following, we illustrate the pseudo code of the algorithm. We separated the first algorithm iter-
ation, during which Fj is generated, from the following iterations of Apriori. Moreover, some important
subroutines of the algorithm are detailed: the generation of the candidate set C} starting from Fj_;, and
the exploitation of a hash-tree to count the support of the candidate itemsets in C}.

Searching frequent 1-itemsets. The first iteration of Apriori, whose pseudo code is shown in Figure 1,
is very simple. F} is optimally built by counting all the occurrences of each item i € {1,2,...,m} in
every t € D. To this end, an array of m positions is used to store the item counters. Occurrences are
counted by scanning D, and the items having minimum support are included into Fj.

:foralli|1<i<mdo
COUNTSJi] «+ 0

end for

: for all t € D do
for all 7 € t do

COUNTSJi] « COUNTS[i] + 1

end for

end for

: F1 ={i| 1 <i<m | COUNTS[i] > min_sup}

SR B A O

Figure 1: First iteration of the Apriori algorithm.

Searching frequent k-itemsets. Subsequent iterations of Apriori are much more complex. Figure 2
shows the pseudo code of the main steps performed by the Apriori algorithm.

1: k2
2: while Fj,_; # 0 do
3: Cy = apriorigen(Fj_1)
if Cr =0 then
return
end if
build_hash_tree(Cy)
for all t € D do
subset_and_count(C, t)
10: end for
11: Fp ={c€ Ck | c.COUNT > min_sup}
122 k+k+1
13: end while

Figure 2: Main loop of the Apriori algorithm.

Most part of the total execution time is spent within subroutines apriori_gen() and subset_and_count().
The first one generates C} from Fj_;. The second one, which is called for each transaction ¢, checks
whether the subsets of k items of ¢ belong to Cj. To this end, subroutine subset_and_count() exploits a
hash tree, built over C}, by subroutine build_hash_tree(Cy).

Generating candidate sets. The subroutine apriori_gen(Fy_1) generates Cj from Fy_;. Cj is a
superset of F},, and is built by observing that a k-itemset can be frequent only if all its subsets of £ — 1
elements are frequent (i.e. belong to Fj_1).

The pseudo code of the subroutine is shown in Figure 3, where we assume that each itemset c¢ is stored
in lexicographic order in a vector, i.e. ¢[i] < c[i +1],¥i € {1,...,k — 1}. The subroutine takes advantage
from the fact that also the frequent (k — 1)-itemsets in Fj_; are lexicographically ordered. This order
simplifies the selection of the pairs c,,c; € Fy_1. For each cp, in Fi_1, in fact, we look for ¢, in the tuples
which immediately follow ¢, in Fj_;, and we stop the search when we find a ¢, whose first k£ — 2 items
are not equal to the first k£ — 2 items of ¢,. Only if we find a ¢, such that ¢,[i] = ¢,[i]] Vi € {1,...,k—2},
then we can create the k-itemset ¢ = ¢, (Jeg = {¢p[1],- .., e[k — 2], ¢p[k — 1], ¢4[k — 1]}. Note that, due
to the same ordering of the tuples in Fj_1, checking whether the subsets of ¢ are included in Fj_; (line
4 in Figure 3) can be done in logarithmic time.

Subroutine apriori_gen(Fjy_1)
1: Cp 1]
2: for all ¢p,cq € Fr—1 | opli] = ¢qli], Vie {1,...,k—2} do

3: C=0Cp ch = {cp[l])"')cp[k —2],Cp[k— 1])641[k - 1]}
4: ifVéeCe | |el=k—1,¢€ Fr_: then

5: Cr + Ch U c
6: end if
7: end for

end Subroutine

Figure 3: Pseudo code of the subroutine apriori_gen().

Counting candidate sets with a hash tree. After the creation of Cy,, subroutine build_hash_tree(Cy)
(see Figure 2) is called to create the tree whose leaves will contain pointers to the various candidate
itemsets and the associated counters. More specifically, these leaves reference to distinct partitions of
C. The hash function used to direct both the insertion of candidate itemsets and the search in C} of
transaction subsets is very simple. It is a function hash(i) = i mod H, H < m, where m is the number
of items.

Subroutine subset_and_count(Cy,t) (see Figure 2) recursively traverses the tree from the root to the
leaves, with every item in ¢t = {iy,...,iq} chosen as a possible starting item of a candidate itemset*. The
recursive behavior of the subroutine allows us to apply the same technique at each level of the tree: for
example, at the second level, if i; is the item in ¢ chosen at the first level (root) of the tree, we go on with
the visit of the tree by choosing every items in ¢ which follows i; as possible next items of a candidate
itemset. When a transaction ¢ reaches a leaf of the tree, all candidate itemsets are checked against ¢ and
their counters updated accordingly.

The advantage of using a hash tree for FSC should be an effective partitioning of C}, resulting in a
reduction of the number of candidates against which a transaction ¢ has to be checked. However, we
can achieve this goal only if each transaction ¢ ends all its recursive visits of the tree by only reaching a
limited number of leaves, and these leaves contain a small number of candidate itemsets.

Unfortunately, for small values of k&, we have that:

e the tree can only have a few levels and thus a few leaves. Therefore we are not able, using such a
tree, to split Cf into a large number of small partitions;

e by growing the branch degree of the tree, i.e. by increasing the constant H of our hash function,
we obtain a larger number of C}’s partitions.
Unfortunately, this may not always bring directly proportional advantages in the measured per-
formance of the routine subset_and_count(Cy,t). In fact a transaction, during its tree traversing,
might now reach much more leaves than for small values of H;

*More precisely, since the items in ¢ are ordered, and we are looking for candidate itemsets whose size is k, the starting
items of each itemset can only be chosen in {i1,...,%4_k41} C t.

e in general, since k is small with respect to the size of ¢, there are a lot of ¢’s subsets composed of k
elements. The presence of several subsets increases the probability that during the visit of the tree
the transaction t traverses several paths and reaches several leaves.

3.2 The DHP algorithm

DHP [11] introduces several enhancements to Apriori. The basic idea of DHP is pruning both the
candidates and the dataset by means of an effective hash filtering technique. Remember that, in the first
steps of Apriori, the cardinality of C} is of crucial importance for performance. Adopting its filtering
technique, DHP is able to drastically reduce the difference observed in Apriori between |Cy| and |Fj|.
This difference, however, is usually very high only for small values of k, e.g. k = 2,3. DHP also re-write
D at each iteration, thus progressively reducing the size of the dataset. In this case the advantages are
twofold. The reduced number and size of transactions, along with the reduced dimension of C},, improves
the performance of the more expensive steps of the Apriori algorithm. Moreover, since for large values of
k the size of D becomes often very small, D could be completely contained in main memory. If this is the
case, the original out-of-core algorithm could become in-core, with obvious performance improvements.
Note that this transformation is automatically achieved by modern OSs, even if the dataset continues
to be virtually accessed from the disk [4]. In fact, in modern OSs, the main memory left unused by the
kernel and the processes is employed as a buffer cache for block devices such as disks [5].

The hash filter of DHP requires the construction of a hash table Hy,; at each iteration k. Hyp4
furnishes an approximate knowledge on the actual composition of Fjy1. Hpy is build during iteration
k as follows: while reading each transaction ¢ all the (k + 1)-subsets of ¢ are hashed to a bucket of Hy1
through a suitable hash function. The counter associated with the bucket is thus incremented. At the
end of iteration k, we know that a generic (k + 1)-itemset may be frequent only if it is hashed to a bucket
of Hy+1 which stores a counter greater than or equal to min_sup. Note that this is a necessary condition,
since there might be several different (k + 1)-itemsets which conflict on the same bucket of Hy1.

At iteration k, k > 1, the hash table Hj, built at the previous iteration is thus exploited to remove
from C} those candidate itemsets whose bucket in Hj, contains a counter that is smaller than min_sup.
In addition, Hy, is used also to prune transactions in order to generate, the pruned dataset Dy 1.

By looking at the buckets of Hy, in fact, DHP removes from each transaction ¢ all those items which
cannot belong to frequent (k + 1)-itemsets. This is done by checking whether all the k-subsets of each
(k + 1)-subset of ¢ can be frequent or not!.

Given a generic k-itemset {z1, ...,z }, the hash function hy(z1,...,zx) used by DHP to build Hy, is
the following:

k
hi(zy,...,z) = (Z:a:z -A* 1)y mod s (1)
i=1
where the two constants s and A define the filter. Constant s gives the number of different buckets in
Hy,, while A is generally set to be equal to the number of items m. For the above technique to work well,

it is necessary that s is large enough to avoid conflicts. In [11] s is chosen as a power of 2 as close as

possible to (7,';) In our experiments the maximum value used for s was gllog, (7)1+1, Of course, there is

a tradeoff in the adoption of such large tables, which may entail sensible performance degradations due
to virtual memory swapping activity.

Finally, it is worth noting that the construction of the hash table can be very expensive, both in
space and time. So, besides the benefits of pruning through hash filtering, we have to consider also the
drawbacks of the construction of the hash table. In particular, the space depends on s and thus on m
and k, while the time depends on the average transaction length and the size of D.

The DHP algorithm is advantageous over the classic Apriori only if the construction of the hash
table at each iteration entails a large pruning of either Cy or Dy. If this pruning does not occur, the
construction of the hash table only introduces overheads. For this reason, DHP uses the hash filtering
only for the first iterations of the algorithm, when C} or Dy are very large. The condition to switch to
the classic Apriori is finding a small number of buckets with minimum support in the hash table. This

TNote that F}, is still under construction, so it can not be used at this purpose.

means that for the following iterations the number of frequent itemsets is becoming small, and thus also
the technique used by Apriori is able to generate small candidate sets without incurring in the hash
filtering overheads.

4 The DCP algorithm

In this section we will discuss our new algorithm, DCP (candidate Direct Count & transaction Pruning),
for solving the FSC problem. The main enhancements regard the exploitation of DHP-like pruning
techniques, and the use of an innovative method for storing candidate itemsets and counting their support:

Pruning. Similarly to DHP, we introduced dataset pruning into Apriori. The level of pruning is not the
same as in DHP, but in our approach we do not pay the cost of constructing the hash table;

Counting. We did not use a hash tree data structure for counting frequent sets. Instead we based our
algorithm on directly accessible data structures. Note that Apriori already adopts a “direct count”
technique for the first iteration of the algorithm, when frequent singleton itemsets are discovered.
Finally, it is worth remarking that DCP exploits both spatial and temporal locality in accessing
its data structures, also avoiding complex and expensive pointer dereferencing.

4.1 Pruning the dataset

As DHP, DCP generates at each iteration k£ a pruned dataset Dy41 which will be used at the next
iteration. In general, Dy41 will contain fewer transactions than Dy, and the average length of transactions
will be smaller as well. Two different pruning techniques are exploited. Dataset global pruning which
transforms a generic transaction t, read from Dy, into a pruned transaction £, and Dataset local pruning
which further prunes the transaction, and transforms # into ¢ before writing it to Dy;. While the former
technique is original, the latter has been already adopted by DHP.

Dataset global pruning. At each iteration k, k > 1, the Dataset global pruning technique is applied
to each t € Dy, to generate t. The technique is based on the following arguments: ¢ may contain a frequent
k-itemset I only if all its (k — 1)-subsets belong to Fj_.

Since searching Fj,_; for all the (k — 1)-subsets of any I € ¢ may be very expensive, a simpler heuristic
technique, whose pruning effect is smaller, was adopted. In this regard, note that the (k — 1)-subsets
of a given k-itemset I € t are exactly k, but each item belonging to ¢ only appears in k& — 1 of these k
itemsets. Therefore, we can derive that a necessary (but weaker) condition to keep a given item in ¢ is
that it appears in at least k — 1 frequent itemsets belonging to Fj_;. To check this condition, we build
a global vector G_1]] of counters on the basis of Fj,_;. Each counter is associated with one of the m
items of Dy. For each frequent (k — 1)-itemset belonging to Fj_1, the global counters associated with
the various items appearing in the itemset are incremented. At the end we have that if the value stored
in the counter G_1[t;] associated with a given item ¢;, 1 < i < m, is z, then ¢; appears in = frequent
itemsets of Fj,_1.

Counters G_1[| are thus used at iteration k as follows. An item ¢; belonging to ¢ is kept in £ only if
Gr_1[t;] is greater than or equal to k — 1. At the end of pruning, if |f| < k, the transaction is skipped,
because it can not surely contain any frequent k-itemset.

Dataset local pruning. The Dataset local pruning technique is applied during subset counting to
each transaction ¢. The idea on which this pruning technique is based has arguments similar to its global
counterpart. Transaction ¢ may contain a frequent (k+ 1)-itemset I only if all its k-subsets belong to F}.
All the items of ¢ which do not appear in frequent k-subsets can be thus pruned. Unfortunately, F}, is not
known when Dataset local pruning is applied. However, since Cy, is a superset of F}, a weaker necessary
condition for pruning t is to check whether all the k-subsets of any (k + 1)-itemset I € ¢ belong to Cj.
Only the items of t at least included in a (k 4 1)-itemset I whose all k-subsets belong to Ck are kept in
t. This pruning condition could locally be checked during subset counting of transaction .

Note that to implement the check above we should have to maintain, for each transaction ¢, information
about the inclusion of all the k-subsets of ¢ in C. Since storing this information may be expensive, we
adopted the simpler technique already proposed in [11], whose pruning effect is however smaller.

The technique is simply based on an array of |t| local counters L[]. In particular, for each transaction
t = {t1,...,t;} to be counted against Cy, we build a distinct array of counter L[|, where each Lj[i]
is associated with a distinct item #; in £. The counter L[i] is incremented every time we find that #; is
contained in a k-itemsets of £ which also belongs to Cj. At the end of the counting phase for transaction
t, we obtain a pruned transaction by removing from # all the items #; for which L[i] < k. Transaction
t is then written to Dy41 only if it at least contains k + 1 items.

This pruning technique works because the presence of counters greater or equal to k represents a
necessary condition for the existence of a (k + 1)-subset I € ¢ whose all k-subsets belong to Cy,. In that
case, in fact, since all the possible k-subsets of I are exactly k+ 1, but each item belonging to I may only
appears in k of these k + 1 subsets, the counters associated with all the items of I should be at least k.

4.2 Direct count of frequent k—itemsets

As discussed above, most part of the execution time of Apriori is spent on the first iterations, when the
smallest frequent itemsets are searched for. Experimentally it can be seen that in most cases itemsets
of cardinality lower than 4 contribute for more than 90% of the total execution time. While for & = 1
the direct count technique exploited within Apriori is very efficient, for k = 2 and 3, candidate sets Cy,
are usually very large, and the hash tree used by Apriori splits them into only a few partitions, since
the depth of the hash tree depends on k. Moreover, the pruning technique adopted by Apriori during
candidate generation is not effective for k = 2, and C5 is exactly equal to F; x F;. The DHP hash filtering
technique is able to reduce the cardinality of C5. Nevertheless, in some cases this reduction is not enough
and the hash tree used for counting can not be exploited efficiently. Moreover, the hash filtering technique
is expensive, both in time and space.

Starting from these considerations, for k& > 2 we used a Direct Count technique which is based on a
generalization of the technique exploited for k = 1. The technique is different for £ = 2 and for £ > 2 so
we will illustrate the two cases separately.

Counting frequent 2-itemsets. A trivial direct method for counting 2-itemsets can simply exploit a
matrix of m? counters, where only the counters appearing in the upper triangular part of the matrix will
be actually incremented [15]. Unfortunately, for large values of m, this simple technique may waste a lot
of memory. In fact, we can note that Cy = F} x F} and thus |Cy| = (‘lgll) which is lower than m?2.

Moreover, the items actually present in F} are less than m. In general, at each iteration k, we can
identify the set M}, which only contains the significative items that are not pruned by the Dataset global
pruning technique at iteration k. Let my be equal to |My|, where m < m. For k = 2 we have that
M2 = Fl, so that mo = |F1|

Our technique for counting frequent 2-itemset is thus based upon the adoption of a vector COUNTS]]
of |Cy]| = (m;) = (”;1 ‘) counters, which are used to accumulate the frequencies of all the possible itemsets
in C5 in order to obtain F5.

It is possible to devise a perfect hash function to directly access the counters in COUNTS[]. Let 73 be
a strictly monotonous increasing function from M to {1,...,m2}. A generic itemset ¢ € Cs, ¢ = {c1,¢2},
where 1 < ¢; < ¢2 < m, can thus be transformed into a pair {z1, 22}, where 1 = T3(c1) and 2 = T2(c2),
so that 1 <z < 2o < Mo.

The entry of COUNTSJ | corresponding to a generic candidate 2-itemset ¢ = {c1, ¢z} can be thus
directly accessed by means of the following order preserving, minimal perfect hash function:

1}171
_ , B ~1
As(er,c2) = Fy* (w1, m2) = E (Mz —i) + (w2 —m1) = m2($1—1)—7$1(x12)+$2—JJ1, (2)
i—1

where x1 = T2(c1) and z2 = T2(c2). Equation 2 can easily be derived by considering how the counters
associated with the various 2-itemsets are stored in vector COUNTS] | (see Figure 4.(a)). We assume, in
fact, that the counters relative to the various pairs {1,z2}, 2 < zo < T2 are stored in the first (2 — 1)
positions of vector COUNTS, while the counters corresponding to the various pairs {2,z2}, 3 < z2 < Mo,
are stored in the next (2 — 2) positions, and so on. Moreover, the pair of counters relative to {z1,z2}
and {x;,z2 + 1}, where 1 < z; < x2 <2 — 1, are stored in contiguous positions of COUNTS]].

i x0, x1 COUNTS PREFIX,, t1 to COUNT
1 1.2 NULL 2 3
, 2|3

2 1,3 NULL .
3 - 3|4

1, Mo

2,3 Ap(2,8) |~

2, Mo

3,4 AR (3,4) b

Ty — 2, My — 1

Ty — 2, Ty

(a) (b)
Figure 4: Data structures used to count (a) 2-itemsets and (b) k > 2-itemsets.

Counting frequent k-itemsets. The technique above cannot be generalized to count the frequencies

of k-itemsets when k& > 2. In fact, although my, decreases with k, the amount of memory to store (mk’“)

counters might become huge, since (mk’“) can become much larger than |C|.

Before detailing the technique exploited by DCP for k& > 2, remember that, at step k, for every
transaction ¢, we have to check whether any of its (‘,tcl) k-subsets belong to Cj. Adopting a naive
approach, one could generate all the possible k-subsets of ¢ and check each of them against all candidates
in Cy. The hash tree used by Apriori is aimed at limiting this check to only a subset of all the candidates.
A prefix tree is another data structure that can be used at the same purpose [10]. In DCP we adopted a
limited and directly accessible prefiz tree to select subsets of candidates sharing a given prefix, the first
two items of the k-itemset. Note that, since C}, is ordered, each subset of candidates sharing a common
2-item prefix is stored in a contiguous section of Cy. To efficiently implement our prefiz tree, a directly
accessible vector PREFIX,[] of size ("y*) is allocated (see Figure 4.(b)). Each location in PREFIXy][]
contains the pointer to the first candidate in C} characterized by the associated 2-item prefix. More
specifically, PREFIX},[Ag(c1, c2)] contains the starting position in C}, of the segment of candidates whose
prefix is {c1,c2}. As for the case k = 2, in order to specify Ag(c1,c2), we need to exploit a strictly
monotonous increasing function 7 from My to {1,...,m}. Ag(c1,cz) can be thus defined as follows:

Ag(cr,c0) = Fa*(x1,x0)

where z; = T;.(c1) and @ = T;(c2), while the hash function 3™ is that defined by Equation (2).

DCP exploits PREFIX}[] as follows. We select all the possible prefixes of length 2 of any k-subsets
of t. Since items within transactions are ordered, once a prefix {¢;,,%:,}, ti; < t;, is selected, the possible
completions of all the k-subsets of ¢ sharing this common prefix are exactly {ti,+1,%i,+2, ..., }. The con-
tiguous section of Cj, which must be visited to check these k-subsets is delimited by PREFIX[Ag (ti,, iy)]
and the next entry PREFIX;[A(ti,,ti,) + 1]. Moreover, the check can be limited to the suffix of ¢
starting from item ¢;,41, since the 2-item prefix {t;,,t;, } is surely contained in each candidate belonging
to the segment just selected. Note that our technique exploit high spatial locality. Subsequent memory
references are directed to contiguous addresses, thus resulting in an efficient use of the memory hierarchies.

In addition, we highly optimized the code which checks each candidate itemset against {¢1,...,%}.
This check is in fact performed with at most k comparisons. The algorithmic trick used is based on the
knowledge of the number and the range of all the possible items appearing in each transaction ¢ and
in each candidate k-itemset c¢. This knowledge allows in fact to build a vector POS[1...m], storing
information about which items actually appear in ¢. More specifically, for each item ¢; of ¢, POS[t;]
stores the position of ¢; in ¢, zero otherwise. The possible positions range from 1 to |t|. Therefore, given a
candidate ¢ = {c1, ..., ¢}, ¢ is not included in ¢ if there exists at least an item ¢; such that POS[¢;] = 0.

Moreover, since since both Cj} and t are ordered, we can deduce that a candidate itemset is not
included in a transaction without checking all the items.

This happen when, given a candidate itemset ¢ = {c1,...,c} to be checked against a transaction
t={t1,...,tp}, an item ¢; of c appears in ¢ (i.e. POS[c;] # 0), but its position POS|[c;] is such that

(It = POS[ei]) < (k—1i)

In this case ¢ cannot in fact be included in ¢ since in ¢ there are other (k — i) items greater than ¢;, while
in ¢ such items are only (|t| — POS[c;]) < (k —1).

Remarks. Our technique based on a directly accessible, limited prefix tree is particularly efficient for
small values of k, where it effectively reduces the search space within C}. Moreover, the technique adopted
enhances locality exploitation, and for large values of k the above discussed use of a vector storing the
item positions within a transaction permits the number of item comparisons to be considerably reduced.

1: global_counter(G1, F1)
2 k<« 2

3: Mg + |F1|

4: for all i € [1,m2] do

5: COUNTS[i] «+ 0

6: end for

7: D3+ 0

8: for all t € Dy do

9: t = global_pruning(t,G1,2)
10: if |{| > 2 then

11: for all {t;,,t:,} € f| 1<ii<ix < |f| do
12: A= A2(ti1,ti2)

13: COUNTS[A] « COUNTS[A] + 1

14: end for

15: end if

16: if |f| > 3 then

17: D3 < Ds Ut

18: end if

19: end for

20:

21: Fy» = {c1,c2 € Co | COUNTS[Az(c1,c2)] > min_sup}
22: k+ 3

Figure 5: Pseudo code of the second iteration of DCP.

4.3 Pseudo code of DCP.

Figure 5 shows the pseudo code of the second iteration of DCP, which exploits the direct count technique
discussed in Section 4.2. We first update the counters used for the global pruning (line 1). The pseudo-
code for subroutine global_counter(Gy, F},) is not reported. The subroutine handles a vector of m counters
G], and simply increments the counter Gi[i] each time an item ¢ is included in a frequent k-itemset of
Fy,. For each transaction read from the dataset, we prune all the items whose associated global counter
are greater than 1 (line 9). Then we generate all the 2-itemsets of the pruned transaction and increment
the corresponding counters (lines 11-14). At step 2 it is not possible to apply the local pruning technique,
since all the 2-itemsets of ¢ are included in C» = Fy x F| by definition. Therefore we just add the
transactions 7 to the pruned dataset Dy (line 17).

The pseudo-code for the following iterations & > 3 is shown in Figure 6. First we set the global
counters on the basis of Fy_; (line 2). Then candidates are generated adopting the same procedure as in
Apriori (line 3). Once the candidates are generated, the limited prefix tree described in the above section
is built (line 7). We then process each transaction. After applying the global pruning technique (line 10),
we start scanning the candidates to count how many of them are contained in any k-subset of # (lines
11-24). To this purpose, we generate all the possible prefixes of two items from the elements of #, and we
store the addresses of the first and the last candidates of C} sharing this common prefix in variables start
and end (lines 14-17). Then the subroutine count_candidates() (line 18) is called. It scans the contiguous

10

1: while Fj_; # 0 do

2: global_counter(Gr—1, Fr—1)

3 Cr = apriori-gen(Fj_1)

4: if Cy =0 then

5: return

6 end if

7. PREFIX;[] = init_candidates(k,Ck)

8 'Dk+1 — 0

9: for all t € Dy, do

10: t = global_pruning(t, Gr_1, k)

11: if |{| > k then

12: Initialize local counters L] |

13: POS[] = init_positions(f)

14: for all {t;,t;,} €t 1<i <i»<[|t|—k+2do
15: A= Ak(til,ti2)

16: start = PREFIX;[A]

17: end = PREFIX,[A +1] - 1

18: count_candidates(|t|, k, Cy, POS, start,end, L)
19: end for
20: t = local_pruning(t, Ly,)
21: if |{| > (k + 1) then
22: Dk+1 — Dk+1 U t
23: end if
24: end if
25: end for
26: F, ={c € Ck | c.COUNTS > min_supp}
27 k+k+1
28: end while

Figure 6: Pseudo code of a generic iteration of DCP for k£ > 3.

section of C}, identified by start and end. The fast scanning of the various candidates against ¢ employs
the vector POS[], which is initialized with the positions of all the items included in ¢ (line 13). Note
that subroutine count_candidates() also updates L[|, the per-transaction vector of counters exploited
by the local pruning technique (line 20). L[] is zeroed for each new transaction read from the dataset
(line 12). Finally, Figure 7 shows the pseudo-code for subroutine count_candidates() which exploits the
technique previously discussed.

5 Experimental results

The results we present in this section were obtained running our implementations of Apriori, DHP, and
DCP. In addition, we also tested a version of Apriori, called Aprioripp, which enhances Apriori by
employing the same dataset pruning technique introduced in DCP?.

For the tests we used several synthetic datasets obtained with one of the most commonly adopted
dataset generator [3]. The datasets we used in our experiments are characterized by the parameters
reported in Table I, where T indicates the average transaction size, I the size of the maximal potentially
frequent itemset, n the number of transactions, m the number of items, and L the number of maximal
potentially frequent itemsets.

The test bed architecture used in our experiments was a Linux-based workstation, equipped with a
Pentium IIT running at 450MHz, 512MB RAM, and a Ultra2 SCSI disk.

Pruning. We first compared our pruning technique with the one used by DHP for two different datasets
(Table III.(a) and III.(b)). The fields Number of transactions and Dataset size appearing in a generic
row k of the two tables both refer to the dataset written at iteration k, i.e. to the dataset Dy read
at the next iteration. The dataset generated at each iteration is bigger in DCP than in DHP. However,

In all the plots, the label identifying the classic Apriori will be AP, while the label identifying Aprioripp will be APdp.

11

Subroutine count_candidates(|t|, k, Cy, POS, start,end, Ly,)

1: for all ¢ = {ci1,...,cx} | Ck[start] < c < Cilend] do
2 // c is included in the ordered segment of candidates
31 // comprised between Cy[start] and Cilend)

4: found < True

5: 143

6: while ((i<k) AND found) do

7 if ((POS[ci]=0) OR (|| - POS[c;] < k—1i)) then
8 found + False

9: else

10: 1 i+1

11: end if

12: end while

13: if found then

14: ¢.COUNTS < ¢.COUNTS + 1
15: for all ¢; € ¢ do

16: Lk[cl] — Lk[cl] +1

17: end for

18: end if

19: end for

end Subroutine

Figure 7: Pseudo code of the subroutine count_candidates().

| Database | TJI] n [m [L] Size(MB) |
200k_t10_m1k 20 4 200k 1k 2000 10
400k_t10_m1k 10 8 400k 1k 2000 18
400k_t10_.m100k 10 8 400k 100k 2000 18
400k_t30_m1k 30 8 400k 1k 2000 50
400k_t30-m100k | 30 | 8 400k 100k | 2000 50
800k_t30_m1k 30 | 8 800k 1k 2000 100
2000k_t20_m1k 20 | 4 | 2000k 1k 2000 180
5000k_t20_m1k 20 | 8 | 5000k 1k 2000 438

Table II: Values for parameters of the synthetic datasets used in the experiments

due to the global dataset pruning technique, DCP further reduces the size of each transaction ¢ as soon
as it is read from Dy. Finally, looking at the two tables we can see that, after a certain dimension of
the candidate set (k = 12 in both cases), the effect of the two dataset pruning techniques in exactly the
same.

I/O costs. Since in several instances of the FSC problem, input datasets are larger than main memory
and are accessed repeatedly, these datasets must be maintained on disks and accessed in blocks by using
an out-of-core technique. It is however possible to take advantage of modern OS features such as caching
and prefetching [4], thus limiting I/O overhead. In particular, if a file is accessed sequentially, the OS
prefetches the next block while the current one is being elaborated. Moreover, the OS stores blocks in
the buffer cache, i.e. in main memory, for possible future reuses.

To show the benefits of I/O prefetching, we conducted some synthetic tests whose results are plotted
in Figure 8. In these tests, we read a file of 256 MB in blocks of 4KB, and used a SCSI Linux workstation
with 256 MB of RAM. Before running the tests, the buffer cache did not contain any blocks of the file. We
artificially varied the per-block computation time, and measured the total elapsed time. The difference
between the elapsed time and the CPU time actually used to elaborate all the blocks corresponds to the
combination of CPU idle time and time spent for I/O activity. The plots in Figure 8.(a) correspond to
tests where the file is read and elaborated only once, and the z-axis reports the total CPU time needed
to elaborate all the blocks of the file. Note that an approximated measure of the I/O cost for reading
the file can be deduced for null per-block CPU time (z = 0): in this case the measured I/O bandwidth
is about 10MB/sec. As we increase the per-block CPU time, the total execution time does not increase
proportionally, but remains constant up to a certain limit. After this limit, the computational grain of

12

N. Trans D. Size (bytes) N. Trans D. Size (bytes)
k DCP DHP DCP DHP k DCP DHP DCP DHP
1 399979 | 399979 52401548 | 52401548 1 338603 | 338603 19695500 | 19695500
2 399979 | 399979 51358952 | 40981912 2 338388 | 338399 19432864 9484108
3 399973 | 399153 34139464 9055900 3 334452 | 229062 5792664 3198796
4 387094 | 200532 6310708 5860728 4 119390 76960 2748736 2464004
5 130528 | 128096 4934708 4934708 5 59367 57135 1943112 1943112
6 91845 104152 3241580 3241580 6 40790 43309 1341392 1341392
7 64403 64403 2643864 2643864 7 27037 27786 1049884 1049884
8 48031 50686 1548384 1548384 8 18651 20666 589696 589696
9 27332 27332 1224564 1224564 9 10648 10648 436924 436924
10 20760 20760 361984 361984 10 7486 7486 164120 164120
11 4381 4381 361984 361984 11 2259 2259 116800 116800
12 4381 4381 361984 361984 12 1414 1414 116680 116680
13 4381 4381 361792 361792 13 1412 1412 116616 116616
14 4378 4378 360500 360500 14 1411 1411 116208 116208
15 4359 4359 356036 356036 15 1405 1405 115200 115200
16 4297 4297 341444 341444 16 1391 1391 109804 109804
17 4105 4105 273924 273924 17 1320 1320 88284 88284
18 3261 3261 0 0 18 1051 1051 0 0

(a) (b)

Table III: Pruning effect in DCP and DHP for (a) dataset 400k_t30_.m1k and min_sup = 0.75%, and for
(b) dataset 400k_t10_m1k and min_sup = 0.25%.

the program is large enough to allow the OS to completely overlap computation and I/0O.

From the consideration above, we can deduce that, when an application is compute-bound, we can
have a quasi complete overlapping between I/0 activity and useful computation. In our case, an Apriori
algorithm results to be compute-bound when the activity of counting candidate is very expensive. This
often happens for instances of the FSC problem with small supports. Therefore, we argue that the
performance problems observed in Apriori are often due to the extremely high computational cost of
candidate counting, more than to the I/O cost of multiple dataset scans.

Dataset = f256M.dat; Block = 4 KB; Dataset = f256M.dat; Block = 4 KB;Reduc = 2
70 / 200
60 180 -
o 160
50
o 9 140 =
g 40 / %
- T 120
2 30 ~ g //
£ y E 100
oo b TOT time —— - F o
T, I/0+idle time - 80 [/TOT time]
%, ek I/0+idle time -
10 < 60 s S
K== = Hem e
0 40 : : :
0 10 20 30 40 50 60 70 0 20 40 60 80 100 120 140
CPU time (sec) CPU time (sec)
(a) (b)

Figure 8: Total and I/O+idle time versus computational granularity. Dataset size is 256 MB. In (a) the
file is completely read and elaborated once. In (b) we have a iterated elaboration of the dataset, which
is re-written at each step. Only half of the read blocks are however written back on disk and used at the
next iteration.

We repeated the experiment above by introducing disk writing, and by also iterating the elaboration
performed on the dataset. Specifically, we only wrote half of the blocks read each time, reproducing in
this way, the situation we have to face with when the transaction dataset is pruned, as in DHP and DCP.
The dataset read at each iteration is thus the one written at the previous iteration. Our test is iterated
till the dataset becomes empty. Figure 8.(b)) refers to these tests. Also in this case, the z-axis reports

13

the total CPU time needed to elaborate all the blocks read, and thus takes into account the iterated
elaboration of the pruned dataset. Note that, due to write activities, the effect of I/O overlapping is
less effective than in the previous test. However, when the written dataset becomes smaller than main
memory size, it can be completely contained in the buffer cache so that blocks can be read without
actually accessing the disk. Finally, note that even if blocks are accessed in buffer cache, I/O does not
disappear, since blocks written to the cache must be synchronized with the disk.

Per-iteration Execution Times. From the analysis of the execution times for every step of the three
algorithms studied in this work, we can observe that the behavior of the algorithms strictly depends on
the dataset chosen. Besides the values of parameters which are known statically - such as the number
of transactions, or the number of itemsets - also the internal correlations present in the transactions
determine sensibly different behaviors.

The plots reported in Figure 9 show per-iteration execution times of DCP, Aprioripp and DHP.
The two plots refer to tests conducted on the same dataset, for different values of min_sup. First note
that DCP always outperforms the other algorithms due to its more efficient counting technique. The
performance improvements is impressive for small values of k. In particular from Figure 9.(a) we can see
that the second iteration of DCP takes about 21 sec. with respect to the 853 and 1321 sec. of DHP
and Aprioripp. Moreover, we can observe that DHP is effective only when the number of candidates
can actually be reduced, otherwise the construction of the hash table introduces useless overhead. For
a larger support (min_sup = 0.75%), in fact, DHP outperforms Aprioripp (see Figure 9.(a)), since it
is able to prune more candidates than Aprioripp. For a lower support (min_sup = 0.50%), since only
few transactions and items can be pruned, DHP only pays the overhead of constructing the hash table
(see Figure 9.(b)). In other words, for low supports and small values of k, we have that almost all the
candidates selected by Aprioripp are found to be frequent.

Dataset = 400k_t30_mlk; SUPP.75 Dataset = 400k_t30_mlk; SUPP.5
1400 T T T 1 3500 T
1200 I APdp s | 3000 APdp = |
1000 2500
o 800 [L 2000
0] o}
n 0]
600 1500
400 1000
200 500
o Lm B T 11| [T o L R .
1 2 3 4 5 6 7 8 910111213141516 1 2 3 45 6 7 8 910111213141516
k k

(a) (b)

Figure 9: Per-iteration execution times of DHP, Aprioripp, and DCP on dataset 400k t30_nlk with
min_sup = 0.75% (a) and min_sup = 0.50% (b).

Total Execution Times. Figure 10 reports the total execution time obtained running Apriori, DHP,
Aprioripp, and DCP on a dataset containing a small number n of transactions as a function of min_sup.
Figure 10.(a) and (b) refer to datasets where the average transaction size is 10 and 20, with a fixed n.
Changing the average transaction size has the twofold effect of increasing the dataset size, and, at the
same time, increasing the average size of the maximal frequent itemset. In all the tests DCP showed
better performances. It also reveals to be more stable to possible correlations in the dataset that can
cause a heavier computational load. To this regard, note that DHP, whose pruning technique is more
effective than ours, is not able to effectively handle dataset 200k_t10_n1k for min_sup = 1%. This is due
to the high number of candidates of Co> which DHP is not able to further reduce.

We also studied the influence of the total number m of items present in D. As we increase m, we expect
to find smaller maximal frequent itemsets. In other words, the effect of increasing m is the reduction of

14

Dataset = 200k _t10_p4 mlk Dataset = 200k _t20_p4 mlk

100 1000
________ ES o v
100
[} [S
0] 10 Q
9} o) e
‘ 10 ——
AP B AP a
// APdp - N APdp - -
DHP - tond DHP ===
DCP —+— DCP —+—
1 1 :
1 0.75 0.5 0.25 1 0.75 0.5 0.25
Support Support

(a) (b)

Figure 10: Total execution times for Apriori, DHP, Aprioripp, and DCP on dataset 200k_t10nlk (a),
200k-t20_n1k (b) for different supports.

Dataset = 400k_t10_mlk Dataset = 400k_t10_ml00k
1000 1000
3 100
100 e
I -
9] o [»
] [0} 10
« %)
_______ X
10 Fee Dl
AP @ 1 AP 4
e APdp DRRS APdp - o
DHP --xc---- DHP
DCPp —— DCp ——
1 . 0.1 f
1 0.75 0.5 0.25 1 0.75 0.5 0.25
Support Support

(a) (b)

Figure 11: Total execution times for Apriori, DHP, Aprioripp, and DCP on dataset 400k_t10.nlk (a),
400k_t10.n100k (b) for different supports.

the number of algorithm iterations. This is confirmed by our experiments, whose results are reported in
Figure 11. In particular, for m = 100k and min_sup € {1,0.75}, we have observed that F» = (). This
is the reason why DHPis particularly penalized in this case, since the additional cost of the hash table
construction at the second iteration is surely useless.

Finally, we tested the algorithm behaviors on large datasets (see Figure 12). Specifically, dataset
5000k_t20_nlk is about as large as the total physical memory available on the workstation used. This
test is important, since the disk buffer cache is not surely able to contain the whole dataset. Thus we
cannot take advantage from the presence in the buffer cache of blocks of the dataset read at previous
iterations. In most of these tests, DCP execution times are better than the others of about one order
of magnitude. Moreover, for very small supports (0.25%), some tests with the other algorithms were not
able to allocate all the memory needed.

DCP, on the other hand, requires less memory than its competitors, which exploit a hash tree for
counting candidates. DCP is thus able to handle very low supports, without the ezplosion of the size of
the data structures used. In this regard, Figure 13 plots the maximum amount of memory allocated by
the various algorithms during the tests on two different datasets.

15

Dataset = 2000k_t20_p4 mlk Dataset = 5000k_t20_p8 nlk

10000 100000
e
1000 o e 10000 bt
. e T e
g — ﬁ % a
100 —— 1000 Lo
AP -
APdp P Apdp R
DHP - S DHP ----xeeee
DCP —— — DCP ——
10 : 100 :
1 0.75 0.5 0.25 1 0.75 0.5 0.25
Support Support

(a)

Figure 12: Total execution times for Apriori, DHP, Aprioripp, and DCP on dataset 2000k_t20_p4 nlk
(a), 5000k_t20_p8_nlk (b) for different supports.

Dataset = 400k_t10_mlk Dataset = 400k_t10_ml00k
65536 262144
_—
32768 g 131072 frovrermmsrermms om0
16384 [65536
8192 32768
8 4096 : B 16384
2048 8192
1024 AP 1 4096 AP 1
APdp Herennn - APdp Heeeen
512 DHP 1 2048 DHP —eoxemee |
DCP —+— DCP —+—
256 : 1024 ‘
1 0.75 0.5 0.25 1 0.75 0.5 0.25
Support Support

(a)

Figure 13: Maximal sizes of physical memory allocated during the execution for Apriori, DHP, Aprioripp,
and DCP on dataset 400k_t10.nlk (a), 400k_t10.n100k (b) for different supports.

6 Conclusions

In this paper we reviewed the Apriori class of algorithms proposed for solving the FSC problem. These
algorithms have been often criticized because of their level-wise behavior which requires a number of
scans of the dataset equal to the cardinality of the largest frequent itemset discovered. We demonstrated
instead that the FSC is not an I/O-bound problem. In many cases, in fact, its computational granularity
is large enough to take advantage of the features of modern OSs which allow computation and I/O to be
effectively overlapped. Moreover, as the DHP algorithm demonstrates, counting the number of dataset
scans as a measure of Apriori algorithms complexity does not consider that very effective dataset pruning
techniques can be devised. These pruning techniques can rapidly reduce the size of the dataset until it
fits in main memory. Nevertheless, our experimental results showed that the efforts to reduce the size of
the dataset and the number of candidates are partially worthless if the counting procedure is not efficient.
Our proposal of a new algorithm for solving the FSC problem goes in this direction.

DCP uses effective pruning techniques which, differently from DHP, introduce only a limited over-
head, and exploits an innovative method for storing candidate itemsets and counting their support. Our
technique enhances spatial and temporal locality in accessing data structures, also avoiding complex and
expensive pointer dereferencing. As a result of its accurate design, DCP sensibly outperforms both DHP
and Apriori: on many problem instances the performance improvement is even more than one order of
magnitude. More importantly, DCP exhibits better scalability. Due to its counting efficiency and low

16

memory requirements, it can efficiently manage large datasets to find frequent sets with very low support.

Future work has to be done to compare the DCP algorithm with FSC algorithms which exploit a

tid-list organization of the dataset [15]. Such algorithms seem very interesting and efficient in discovering
frequent itemsets with very low support, but a deeper experimental evaluation is required to analyze
advantages and disadvantages of adopting these algorithms rather than level-wise ones.

References

[1]

[2]

[3]

[4]

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

R. Agrawal, T. Imielinski, and Swami A. Mining Associations between Sets of Items in Massive
Databases. In Proc. of the ACM-SIGMOD 1993 Int’l Conf. on Management of Data, pages 207-216,
Washington D.C., USA, 1993.

R. Agrawal, H. Manilla, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast Discovery of Associ-
ation Rules in Large. In Advances in Knowledge Discovery and Data Mining, pages 307-328. AAAT
Press, 1996.

R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases. In
Proc. of the 20th VLDB Conference, pages 487-499, Santiago, Chile, 1994.

R. Baraglia, D. Laforenza, S. Orlando, P. Palmerini, and R. Perego. Implementation issues in the
design of I/O intensive data mining applications on clusters of workstations. In Proc. of the 3rd
Workshop on High Performance Data Mining, in conjunction with IPDPS-2000, Cancun, Mezico,
pages 350-357. LNCS 1800 Spinger-Verlag, 2000.

M. Beck et al. Linux Kernel Internals, 2nd ed. Addison-Wesley, 1998.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge
Discovery and Data Mining. AAAT Press, 1998.

V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining Very Large Databases. IEEE Computer,
32(8):38-45, 1999.

E. H. Han, G. Karypis, and Kumar V. Scalable Parallel Data Mining for Association Rules. IFFE
Transactions on Knowledge and Data Engineering, 12(3):337-352, May/June 2000.

J.-L. Lin and M. H. Dunham. Mining association rules: Anti-skew algorithms. In Proceedings of the
14-th Int. Conf. on Data Engineering, pages 486—493, Orlando, Florida, USA, 1998. IEEE Computer
Society.

A. Mueller. Fast Sequential and Parallel Algorithms for Association Rule Mining: A Comparisons.
Technical Report CS-TR-3515, Univ. of Maryland, College Park, 1995.

J. S. Park, M.-S. Chen, and P. S. Yu. An Effective Hash Based Algorithm for Mining Association
Rules. In Proc. of the 1995 ACM SIGMOD International Conference on Management of Data, pages
175-186, San Jose, California, 1995.

N. Ramakrishnan and A. Y. Grama. Data Mining: From Serendipity to Science. IEEE Computer,
32(8):34-37, 1999.

A. Savasere, E. Omiecinski, and S. B. Navathe. An Efficient Algorithm for Mining Association
Rules in Large Databases. In Proceedings of the 21th VLDB Conference, pages 432—444, Zurich,
Switzerland, 1995.

H. Toivonen. Sampling Large Databases for Association Rules. In Proceedings of the 22th VLDB
Conference, pages 134-145, Mumbai (Bombay), IndiaA, 1996.

M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data
Engineering, 12:372-390, May /June 2000.

17

