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Abstract

In this paper we propose DCI, a new algorithm for solving the Frequent Set Counting problem.
Similarly to Apriori, DCI adopts a level-wise approach, according to which at each iteration & all
the frequent k-itemsets and the associated supports are determined. Itemset supports are computed
by using a hybrid technique, which exploits a very effective counting-based method during the first
iterations, and a very fast intersection-based method during the last ones. During its counting-based
phase, DCI uses an innovative method for storing candidate itemsets and accessing them to count
their support. It also exploits effective pruning techniques to reduce the size of the dataset as execution
progresses. As soon as the pruned dataset becomes small enough to fit into the main memory,
DCI builds on the fly a vertical transaction database, and starts using a very efficient intersection-
based technique to determine the support of larger itemsets. We implemented and engineered DCI
and other algorithms belonging to the Apriori class. When possible, locality of data and pointer
dereferencing were optimized due to their importance with respect to developments in computer
architectures. In-depth experimental evaluations were conducted by taking into account not only
execution time, but also virtual memory usage and I/O activity. The experimental results show
that DCI remarkably outperforms Apriori and others previously proposed algorithms. We obtained
encouraging results for synthetically generated datasets characterized by both short and long length

frequent patterns.

1 Introduction

Association Rule Mining (ARM) is one of the most popular topic in the KDD field. The process of
generating association rules has historically been adopted for market-basket analysis, where transactions
are records representing point-of-sale data, while items represent products on sale. The importance for
marketing decisions of association rules like “the 80% of customers which buy products z; and z» also
buy y” is intuitive, and explains the strong interest for ARM [10, 11, 20].

Given a database of transactions D, an association rule has the form X = Y, where X and Y are
sets of items (itemsets), and X NY = (. A rule X = Y holds in D with a minimum confidence ¢ and a
minimum support s, if at least ¢% of all the transactions containing X also contain Y, and X UY" is present
in at least s% of all the transactions of the database. The ARM process can thus be subdivided into two
main steps. The former is concerned with the Frequent Set Counting (FSC) problem. During this step,
the set F, including all the frequent itemsets, is built, where an itemset is frequent if its support is greater
than a fixed threshold s, i.e. the itemset occurs in at least min_sup transactions (min_sup = s/100 - n,
where n is the number of transactions in D). In the latter step the association rules satisfying both
the minimum support and the minimum confidence are identified on the basis of the knowledge of both
the frequent itemsets and their supports. This step is less expensive than FSC, since it only requires to
check, for every X € F, the confidence of all the rules X \Y = Y, where Y C X, and Y # {). Since all



the subsets of a frequent itemset are frequent as well, and the support values of all frequent itemsets are
known from the previous step, computing the confidence of the generated rules is straightforward.

In this paper we concentrate our attention on the FSC problem [3]. Its search space is exactly P(M),
the power set of M, where M is the set of items contained in the transactions of D. Although P (M)
is exponential in m = |M|, effective pruning techniques exist for reducing it. Unfortunately, for small
support thresholds, pruning becomes less effective, thus making the FSC problem very expensive to solve
both in time and space. A lot of proposals regard the efficient solution of the FSC problem [3, 4, 5, 12,
14, 15, 16, 19, 21, 22, 23]. The main goals of these algorithms are to efficiently prune or partition P(M),
and to provide effective strategies for traversing it.

The capability of effectively pruning the search space derives from the intuitive observation that none
of the superset of an infrequent itemset can be frequent. The search for frequent itemsets can be thus
restricted to itemsets whose subsets are all frequent. This observation suggests a level-wise, or breadth-
first (BF'), visit of the lattice corresponding to P (M), whose partial order is specified by the subset relation
(C) [23]. The Apriori algorithm [5], one of the most important FSC algorithms, exactly adopts a BF visit
of P(M) for counting the supports of the various itemsets. Other algorithms [7, 2] adopt instead a depth-
first (DF) visit of P(M). The goal in this case is to discover long frequent itemsets first, thus saving the
work needed for counting the support of itemsets included in long ones. This approach is very effective,
but it does not allow the supports of all frequent itemsets to be exactly determined. Unfortunately, the
knowledge of the exact supports is needed to correctly compute association rule confidences.

Although a number of other solutions have been proposed, the Apriori algorithm [5] is still the most
commonly recognized reference to evaluate FSC algorithm performances. Apriori iteratively searches
frequent itemsets: at each iteration k, the set F}, of frequent itemsets of k items (k-itemsets) is identified,
where F = |J Fi. In other words, at iteration k, Apriori only visits the level k of the lattice corresponding
to P(M). In order to identify F}, however, Apriori does not consider all the possible k-itemsets of P(M),
but a pruned subset. In particular, the k-itemsets considered are only those included in a candidate set
Cy, constructed as the set of all the k-itemsets whose subsets of k£ — 1 items belong to Fy_1. In order
to determine the support of the candidate itemsets, Apriori directly counts their occurrences in all the
transactions of D. At the end of a complete scan of the database, the candidate k-itemsets with minimum
support are included in Fj, and the next iteration is started. The algorithm terminates when either Fj
or C}, results to be empty, i.e. when no frequent set of k items (or larger) is present in the database.

Several variations to the original Apriori algorithm, as well as many parallel implementations, have
been proposed in the last years. We can recognize two main methods for determining the supports of
the various itemsets present in P(M): a counting-based [4, 5, 12, 19, 7, 1] and an intersection-based [21,
9, 23] one. The former one, also adopted by Apriori, exploits a horizontal dataset, where the various
transactions, containing information about the items included, are stored sequentially. The method is
based on counting how many times each candidate k-itemset occurs in every transaction. The intersection—
based method, on the other hand, exploits a vertical dataset, where a tidlist, i.e. a list of the identifiers
of all the transactions which contains a given item, is associated with the identifier of the item itself.
To determine the support of any k-itemset we must in this case compute the cardinality of the tidlist
resulting from the k-way intersection of the k tidlists associated with the corresponding items. If we are
able to buffer the tidlists of previously computed frequent (k — 1)-itemsets, we can further speedup the
computation since the support of a generic candidate k-itemset X can be simply computed by intersecting
the tidlists of two (k — 1)-itemsets whose union is X .

The counting-based approach is quite efficient from the point of view of memory occupation, since only
requires enough main memory to store C}, along with the data structures exploited to make the access
to candidate itemsets faster (e.g. hash-trees or prefix-trees). On the other hand, the intersection-based
method is much more computational effective than its counting-based counterpart [21]. Unfortunately, it



may pay the reduced computational complexity with an increase in memory requirements, in particular
to buffer the tidlists of previously computed frequent (k¥ — 1)-itemsets.

The algorithms of the Apriori class are often criticized because they require a number of database scans
equal to the cardinality of the longest frequent itemset. However, for some datasets and small support
thresholds, Apriori algorithms become compute-bound, so that techniques as those illustrated in [6] can
be effectively exploited to overlap I/O time with useful computation. In these cases the performance
penalty of Apriori with respect to other approaches is only partially due to the multiple dataset scans
involved. A crucial and not fully investigated aspect of Apriori-like algorithms is instead the method
exploited for counting the support of the candidate itemsets. During iteration k, all the k-subsets of each
transaction ¢t € D must be determined and their presence in C} be checked. To reduce the complexity
of this phase, Apriori stores the various candidate itemsets in the leaves of a hash-tree, while suitable
hash tables are placed in the internal nodes of the tree to direct the search of k-itemsets within Cy. The
performance, however, only improves if the hash-tree splits Cy into several small disjointed partitions
stored in the leaves of the tree. Unfortunately this does not happen for small values of k since the depth
of the tree and thus the number of its leaves depends on k. Depending on the particular instance of the
problem, itemsets of cardinality lower than 4 can contribute to even more than 90% of the total execution
time. In particular, this holds for datasets where the maximal frequent itemsets are not very long.

In this paper we propose DCI (Direct Count & Intersect), a new algorithm that, like Apriori, exploits
a level-wise visit of the search space of the FSC problem. It adopts a hybrid approach to determine
the support of frequent itemsets, by exploiting a very effective counting-based method during the first
iterations, and a very fast intersection-based method during the last ones. When the counting method
is employed, DCI relies on an innovative technique for storing and accessing candidate itemsets. The
method is a generalization of the Direct Count technique adopted to determine the support of singleton
itemsets, and allows to strongly reduce both in time and space the cost of the initial iterations of the
algorithm. Moreover, DCI adopts a simple and effective pruning of D. Even if the benefits of dataset
pruning were already recognized by DHP [19], DCI does not exploit the complex and expensive DHP hash
filter technique, but uses a simpler and efficient one. During the counting-based phase, the candidates
are maintained in-core, while the out-of-core dataset is accessed in blocks. Only when the pruned dataset
is small enough to fit into the main memory, DCI changes its behavior, and adopts an intersection-
based approach to determine frequent sets. The representation of the dataset is thus transformed from
horizontal to vertical, and the new dataset is stored in-core. Using this approach, the support of each
candidate itemset generated can be determined on-the-fly by intersecting the corresponding tidlists. Our
intersection approach is very efficient, and only requires a limited (and configurable) amount of memory.
Tidlists are actually represented as vectors of bits accessed with high locality, and can efficiently be
intersected without using expensive comparison and conditional branch instructions. To reduce the
complexity of intersection, DCI reuses most of the intersections previously done, by caching them in
a fixed-size buffer for future use. Even if, in the worst case, the lists corresponding to all the k items
included in a candidate k-itemset have to be intersected (k-way intersection), our caching method is able
to strongly reduce the number of intersections actually performed. In Section 4 we show that the number
of intersections actually carried out is very close to the minimum obtained when a 2-way intersection
approach is adopted. The 2-way intersection approach, however, requires much more memory to store,
at each iteration k, the tidlists associated with all the frequent (k — 1)-itemsets.

To validate our proposal, we conducted several experiments by taking into account not only execution
times, but also virtual memory usage, I/O activity, and its effects on the elapsed time. When possible,
locality of data and pointer dereferencing were accurately optimized due to their importance with re-
spect to the recent developments in computer architectures. Our test bed was a Pentium-based Linux
workstation, while the datasets used for tests were generated synthetically.



The paper is organized as follows. In Section 2 we report general assumptions and notations used
throughout the paper. Section 3 introduces DCI, and discusses its features in depth. In Section 4 we
detail the method used to generate the synthetic datasets used in the tests, we analyze how modern OSs
and computer architectures optimize the data access pattern of FSC level-wise algorithms, and discuss
the encouraging results obtained with DCI in comparison with other algorithms. In Section 5 we review
some of the most recent results in the FSC field, and compare the DCI approach with others. Section 6

draws some conclusions and outlines future work. Finally, Appendix A reports and discusses the pseudo
code of DCI.

Table I: Symbols used in the paper.

transaction database

D

n number of transactions in D
M set of items in D
m

t

number of items (m = |M]|)

a generic transaction of D

t; an item identifier appearing at position ¢ in transaction ¢

Fy, set of frequent k-itemsets

Cy set of candidate k-itemsets

c a generic candidate itemset belonging to Cj,

c; an item appearing at position ¢ in candidate itemset ¢

Dy | pruned transaction database read at iteration k (D; = D)

T | number of transactions in Dy, (71 = n)
My, | set of significative items in Dy (M1 = M)
my | cardinality of My (m1 = m)

2 Notation and general assumptions

To make easier the readability of the paper, Table I reports the most important symbols used throughout
the paper. Moreover, in this section we discuss our assumptions about database representation and
layout.

Without lacking of generality, we can associate integer identifiers with database transactions and items
appearing in transactions. In particular, each of the n transactions in D will be identified by a distinct
TID € {1,...,n}, while each of the m items will be identified by a distinct IID € {1,...,m}. In the
following, we will refer to an item ¢ to mean the item associated with the identifier IID = i. Databases
can be stored in either a horizontal or vertical format:

Horizontal. Each one of the n records of D corresponds to a different transaction TID, and stores
boolean information about the presence or the absence in the transaction of the various items. If
we refer to market-basket data, each record represents an individual customer purchase transaction,
while the items present in the transaction are products on sale bought by the customer.

Vertical. A different record is associated with each item IID (e.g., with a product on sale), and stores
boolean information about the presence (or the absence) of that item within the various transactions.
The total number of records is thus m.

In both the horizontal and vertical layouts, variable or fized length records can be adopted:

Variable length. Only the presence of items (or transactions) is explicitly coded. A list of identifiers,
in particular a list of IIDs in the horizontal case, and a list of TIDs in the vertical one, is stored in
each record.



Fixed length. Each record occupies a fixed number of bits. In the horizontal case, the record stores a
distinct TID and a vector of m bits, where the i-th bit is 1 or 0 to respectively indicate the presence
or the absence of item ¢ within transaction TID. In the wvertical case, on the other hand, each record
stores a different IID and a vector of n bits. The i-th bit is set only if item IID is present in the
transaction with TID = s.

In the remainder of the paper we will use the terms transaction and tidlist to refer to a generic record of
a horizontal or vertical database, respectively.

Moreover, we assume that each transaction of a horizontal database with variable length records is
stored as a vector of item identifiers sorted according to an increasing numerical ordering. Similarly,
itemsets, either candidate or frequent ones, are ordered vectors of item identifiers. Finally, we assume
that k-itemsets stored within sets C} and F}, are lexicographically ordered.

3 The DCI algorithm

DCI adopts a counting-based approach during the first iterations, and uses an efficient intersection-based
technique to determine larger itemsets. As other algorithms of the Apriori class, DCI uses a level-wise
approach, according to which at each iteration & all the frequent k-itemsets and the associated supports
are determined. During its counting-based phase, DCI exploits a horizontal layout database with variable
length records, while a wvertical layout database with fixed length records is constructed on the fly when
DCI switches to its intersection-based phase. During the former counting-based phase, DCI uses a
technique, similar to the one adopted by Apriori, to generate Cy from Fj_;. In this construction DCI
exploits the lexicographic order of Fy,_; to find pairs of (k — 1)-itemsets sharing a common (k — 2)-prefix.
Due to this order, in fact, the various pairs occur in close positions within Fj_;. The union of each pair
becomes a candidate ¢ € Cy only if all its subsets turn out to be included in Fj_;. Also in this case we
exploit the lexicographic order of F}_1, since we check whether all the subsets of ¢ are included in Fj_;
in logarithmic time. The main innovations introduced by DCIT are thus summarized below:

Pruning. During its counting-based phase, DCI trims the transaction database as execution progresses.
In particular, a pruned dataset Dyy; is written to the disk at each iteration k, and employed at
the next iteration. Note that this pruning entails a reduction in I/O activity as the algorithm
progresses, since the size of Dy, is always smaller than the size of Dy_;. However, the main benefits
come from the reduced computation required for subset counting at each iteration k, due to the
reduced number and size of transactions.

Counting. DCI does not use a hash tree data structure for counting frequent sets. Instead it exploits
directly accessible data structures, thus avoiding complex and expensive pointer dereferencing.
Finally, DCI exploits high spatial locality in accessing its counting data structures.

Intersecting. The counting of itemset occurrences is limited at early iterations. As soon as the pruned
dataset becomes small enough to fit into the main memory, DCI adaptively changes its behavior,
and adopts an intersection-based approach to determine frequent sets. Note, however, that DCI
continues to have a level-wise behavior, so that the search space is still traversed breadth-first [14].
Our intersection-based approach is very efficient, and requires only a limited (and configurable)
amount of memory. Tidlists are actually represented as vectors of bits accessed with high locality,
and without using expensive comparison and conditional branch instructions. Finally, DCI reuses
most of the intersections previously done by caching them in a fixed-size buffer for future use.
Even if, in the worst case, the lists corresponding to all the k items included in a candidate k-
itemset have to be intersected (k-way intersection), our caching technique is able to highly reduce



the number of intersections. In Section 4 we show that, due to our simple caching technique, the
number of intersections actually carried out is very close to the minimum obtained when a 2-way
intersection approach is adopted. It worth noting, however, that the 2-way intersection approach
requires much more memory to store, at each iteration k, the tidlists associated with all the frequent
(k — 1)-itemsets.

In the following we discuss in depth all these innovative features of DCI, while the pseudo code of
the algorithm is reported and discussed in Appendix A.

3.1 Pruning the dataset

Two different pruning techniques are exploited. Dataset global pruning which transforms a generic trans-
action ¢, read from Dy into a pruned transaction ¢, and Dataset local pruning which further prunes the
transaction, and transforms £ into # before writing it to Dy,. While the former technique is original, the
latter has already been adopted by DHP.

Dataset global pruning. At each iteration k, k > 1, the Dataset global pruning technique is applied
to each t € Dy, to generate £. The technique is based on the following argument: ¢ may contain a frequent
k-itemset I only if all the (k — 1)-subsets of I belong to Fj_1.

Since searching Fj_; for all the (k—1)-subsets of any I C ¢ may be very expensive, a simpler heuristic
technique, whose pruning effect is smaller, was adopted. In this regard, note that the (k — 1)-subsets of
a given k-itemset I C t are exactly k, but each item belonging to ¢ should only appear in k — 1 of these
k itemsets. Therefore, we derive a necessary (but weaker) condition to keep a given item in ¢.

The item t; is retained in t if it appears in at least k — 1 frequent itemsets of Fj_1.

To check the condition above, we simply use a global vector G,_1[ ] that is updated on the basis of Fj,_;.
Each counter of Gy_1[ ] is associated with one of the m items of Dy. For each frequent (k — 1)-itemset
belonging to Fj_1, the global counters associated with the various items appearing in the itemset are
incremented. After all the frequent (k — 1)-itemsets have been scanned, Gy_1[j] = = means that item j
appears in z frequent itemsets of Fj_1.

Counters G_1[ | are thus used at iteration k as follows. An item ¢; € t is copied to the pruned
transaction ¢ only if Gy _1[t;] > k — 1. Then, if |f| < k, the transaction is skipped, because it cannot
possibly contain any frequent k-itemset.

Dataset local pruning. The Dataset local pruning technique is applied to each transaction ¢ during
subset counting. The arguments this pruning technique is based on, are similar to those of its global
counterpart. Transaction ¢ may contain a frequent (k + 1)-itemset I only if all the k-subsets of I belong
to Fj. Unfortunately, F}, is not yet known when our Dataset local pruning technique should be applied.
However, since C}, is a superset of Fy, we can check whether all the k-subsets of any (k + 1)-itemset I C ¢
belong to Cy. This check could be made locally during subset counting of transaction f.

Note that to implement the check above we should have to maintain, for each transaction ¢, information
about the inclusion of all the k-subsets of ¢ in C}. Since storing this information may be expensive, we
adopted the simpler technique already proposed in [19], whose pruning effect is however smaller:

The item t; is retained in t if it appears in at least k candidate itemsets of Cl.

To check the condition above, for each transaction ¢ = {fl, . ,f|5|} to be counted against Cj, we use an
array of |f| counters L[ ], where each Lj[i] is associated with a distinct item #; € . The counter Ly[i] is
incremented every time we find that #; is contained in a k-itemset of ¢ which also belongs to C. At the



end of the counting phase for transaction ¢, we obtain a pruned transaction ¢ by removing from ¢ all the
items #; for which L[i] < k. Transaction # is then written to Dy only if |f| > &k + 1.

This pruning technique works because the presence of counters greater than or equal to k represents
a necessary condition for the existence of a (k + 1)-subset I C # all of whose k-subsets belong to Cy. In
this case, in fact, since all the possible k-subsets of I are exactly k + 1, but each item belonging to I may
only appear in k of these k + 1 subsets, the counters associated with all the items of I should be at least
k.

3.2 Direct count of frequent k—itemsets

As discussed above, for problems characterized by short or medium length patterns, most of the execution
time of Apriori is spent on the first iterations, when the smallest frequent itemsets are searched for. While
Apriori uses an effective direct count technique for k¥ = 1, the hash-tree data structure, used to count
candidate occurrence for the other iterations, is not efficient for small values of k. For example, for k& = 2
or 3, candidate sets C}, are usually very large, and the hash tree used by Apriori splits them into only a
few partitions, since the depth of the hash tree depends on k.

Taking into account these considerations, for k£ > 2 we used a Direct Count technique which is based
on a generalization of the technique exploited for £ = 1. The technique is different for ¥ = 2 and for
k > 2 so we will illustrate the two cases separately.

Counting frequent 2-itemsets. A trivial direct method for counting 2-itemsets can simply exploit a
matrix of m? counters, where only the counters appearing in the upper triangular part of the matrix will
actually be incremented [23]. Unfortunately, for large values of m, this simple technique may waste a lot
of memory. In fact, since |F}| is usually less than m and Cy = Fj X Fy, we have that |Cy| = (II;1|) << m2.

Before detailing the technique, note that at each iteration k we can simply identify Mj, the set that
only contains the significant items that have not been pruned by the Dataset global pruning technique
at iteration k. Let Ty, = |M}|, where M, < m. In particular, for k = 2 we have that M> = Fi, so that
my = |F1.

Our technique for counting frequent 2-itemsets is thus based upon the adoption of vector COUNTS][ ],
which contains |Ca| = (72) = (1) counters (see Figure 1.(a)). The counters are used to accumulate
the frequencies of all the possible itemsets in C in order to obtain F5. It is possible to devise a perfect
hash function to directly access the counters in COUNTS[ ]. Let 72 be a strictly monotonous increasing
function Ty : My — {1,...,M2}. A generic itemset ¢ € Cy, ¢ = {1, 2}, where 1 < ¢; < ¢3 < m, can thus
be transformed into a pair {z1,z2}, where 1 = T2(c1) and z2 = Ta(cz), so that 1 < 1 < 23 < 2. The
entry of COUNTS] ] corresponding to a generic candidate 2-itemset ¢ = {c1,c2} can thus be accessed
directly by means of the following order preserving, minimal perfect hash function:

z1-1
Ag(er,e0) = F3(wn,m0) = D (M2 —i) + (w2 —21) = Mplay —1) - w +x3 — 71, (1)
i=1
where 1 = T2(c1) and 2 = T2(c2). Equation (1) can easily be derived by considering how the counters
associated with the various 2-itemsets are stored in vector COUNTS[ ]. We assume, in fact, that the
counters relative to the various pairs {1,22}, 2 < x93 < Ty are stored in the first (M2 — 1) positions
of vector COUNTS, while the counters corresponding to the various pairs {2,232}, 3 < 22 < T, are
stored in the next (M2 — 2) positions, and so on. Moreover, the pair of counters relative to {z1,z2} and
{z1,22 + 1}, where 1 < 27 < 29 <y — 1, are stored in contiguous positions of COUNTS] ].

Counting frequent k-itemsets. The technique above cannot be generalized to count the frequencies
of k-itemsets when k > 2. In fact, although M, decreases with &, the amount of memory needed to store
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Figure 1: Data structures used to count (a) 2-itemsets and (b) k > 2-itemsets.
(™*) counters might be huge, and in general (}*) >> |Cy|.

Before detailing the technique exploited by DCI for & > 2, remember that, at step k, for every trans-
action ¢, we have to check whether any of its (‘}zl) k-subsets belong to Cy. Adopting a naive approach,
one could generate all the possible k-subsets of ¢ and check each of them against all candidates in Cy.
The hash tree used by Apriori is aimed at limiting this check to only a subset of all the candidates. A
prefiz tree is another data structure that can be used for the same purpose [17]. In DCI we adopted a
limited and directly accessible prefiz tree to select subsets of candidates sharing a given prefix, the first
two items of the k-itemset. Since Cy is lexicographically ordered, all the candidates sharing a common
2-item prefix are stored in a contiguous section of Cy. To efficiently implement our prefiz tree, a vector
PREFIX,[ ] of size (™) is thus allocated (see Figure 1.(b)). Each location in PREFIXy][ ] is associated
with a distinct 2-item prefix, and contains the pointer to the first candidate in C}, characterized by the
prefix. More specifically, PREFIX;[A(c1, ¢2)] contains the starting position in C}, of the segment of can-
didates whose prefix is {c1,c2}. As for the case k = 2, in order to specify Ag(c1,c2), we need to exploit a
strictly monotonous increasing function 7y, : My, — {1,...,m}. Ag(c1,c2) can be thus defined as follows:

Ak(cl7c2) = f;nk(m17$2)

where 2, = T;,(c1) and 22 = Tx(c2), while the hash function F,"* is that defined by Equation (1).

DCI exploits PREFIX}[ ] as follows. In order to count the support of the candidates in Cj, we
select all the possible prefixes of length 2 of the various k-subsets of each transaction t = {t1,...,#4}.
Since items within transactions are ordered, once a prefix {t;,,ti, }, ti, < ti,, is selected, the possible
completions of this prefix needed to build a k-subsets of ¢ can only be found in {ti,11,ti,42,..-,%¢}-
The contiguous section of Cj which must be visited is thus delimited by PREFIX[A(t;,,t:,)] and
PREFIX;[Ag(ti,,ti,) + 1]. Note that this counting technique exploits high spatial locality. In fact,
during subset counting relative to a given transaction, subsequent memory references are directed to
contiguous addresses within CY,.

We highly optimized the code to check whether each candidate itemset, selected through the prefix
tree above, is included or not in ¢t = {t1,...,t;}. Our technique requires at most k¥ comparisons. The
algorithmic trick used is based on the knowledge of the number and the range of all the possible items
appearing in each transaction ¢ and in each candidate k-itemset c. In fact, this allows us to build a vector
POS|[1...m], storing information about which items actually appear in t. More specifically, for each item
t; of t, POS|[t;] stores the position of ¢; in ¢, zero otherwise. The possible positions thus range from 1 to
|t|. Therefore, given a candidate ¢ = {c1,...,ck}, ¢ is not included in ¢ if there exists at least one item ¢;



such that POS|¢;] = 0. Moreover, since both ¢ and ¢ are ordered, we can deduce that ¢ is not a subset
of t without checking all the items occurring in c¢. In particular, given a candidate ¢ = {¢1,...,¢x} to be
checked against ¢, we can derive that ¢ ¢ ¢, even if ¢; actually appears in t, i.e. POS[¢;] # 0. Suppose
that the position of ¢; within ¢, i.e. POS|¢;], is such that

(|t| = POS[ci])) < (k—1)

If the disequation above holds, then ¢ ¢ ¢ because ¢ contains other (k —i) items greater than ¢;, but such
items in ¢ are only (|t| — POS[ci]), (|t| — POS[ci]) < (k —i).

3.3 Tidlist intersections

DCI starts using its intersection-based method when the vertical representation of the pruned dataset
Dy, may entirely fit into the main memory. Since Dy, is stored in horizontal form, it has to be transformed
first into its vertical counterpart. DCI starts checking whether the vertical dataset may fit into main
memory at the third iteration. When the pruned dataset is small enough, its vertical representation
is built on the fly, while the transactions are read to count the support of candidate itemsets. More
specifically, DCI builds and uses an in-core vertical layout dataset, with fixed length records stored as
bit vectors. The whole dataset is thus stored as a bidimensional bit-array VD[ ][ ], whose rows correspond
to records (tidlists), each associated with a not pruned item. Given the set of not pruned items M}, and
the set of not pruned transactions T, let be 7y, = |M}| and iy, = |Tk|. The amount of memory required
to store VD[ ][ ] is thus iy, - Ty, bits.

At each iteration £ > 3, DCI computes my, - Ty, in order to decide whether the vertical dataset
VD[] [7k] can fit into the main memory. If this holds, DCI allocates and assigns VD[my|[R]. This
construction occurs while the various transactions belonging to Dy are processed for subset counting.
More specifically, for every item 4 included in each transaction TID, the bit VD[T (¢)][Hi(TID)] is set,
where T, () : My — {1,...,m} and Hp() : Tk — {1,...,7x} are two strictly monotonous increasing
functions. Starting from the following iteration, DCI starts using the vertical database VD to determine
the support of each candidate itemset ¢. First the candidates are generated and stored in Cj. Then,
for each candidate k-itemset ¢ € Cy, DCI and-intersects the k associated bit vectors and computes the
support of ¢ by counting the number of bits set in the resulting tidlist.

At first glance, the strategy above might seem inefficient. If we had enough memory to maintain the
tidlists associated with all the frequent (k — 1)-itemsets, we could build the tidlist of any k-itemset ¢
by intersecting only two tidlists, i.e. those associated with a pair of frequent (k — 1)-itemsets whose set
union is exactly ¢. In other words, we might exploit 2-way intersections instead of more expensive k-way
ones. Unfortunately maintaining the tidlists of all frequent (k — 1)-itemsets poses strong constraints on
the applicability of the 2-way approach, due to the huge amount of memory required. Nevertheless, a
number of effective optimizations can still be applied to our k-way intersection method in order to save
work, and speed up the overall computation:

1. all the intermediate intersections that have been computed to determine the support of each can-
didate itemset ¢ € Cy are “cached”, by storing them in a bidimensional bit-array V[ ][ ] of size
(k —2) -mg. More specifically, the bit vector V[j][1 : 7x], 2 < j < (k—1), is used to store the results
of the intersections relative to the first j items of c. Since itemsets in C} are lexicographically
ordered, with high probability two consecutive candidates, e.g. ¢ and ¢', share a common prefix. If
we have to determine the support of ¢/, and ¢ and ¢’ share a common prefix of length h > 2, we
save work by reusing the intermediate result stored in V'[h][1 : ;). This simple optimization only
requires additional (k — 2) - 71y, bits, and results in a consistent saving in the number of intersections
actually executed.



2. bit vectors are generally sparse and characterized by long runs of 0’s intermixed by few 1’s. More-
over, any and-intersection operation produces a vector with fewer 1’s. This property can be ex-
ploited to speedup intersections as follows. While we compute the intersection of the bit vectors
relative to the first two items ¢; and ¢y of a generic candidate itemset ¢ = {c1,¢2,...,¢}, we
maintain information about the positions of the 1’s in the resulting bit vector V[2][1 : Ti]. Further
intersections performed for processing itemset ¢ (as well as other itemsets sharing the same 2-item
prefix) skip the runs of 0’s, so that only vector segments which may contain 1’s are actually inter-
sected. Note that this optimization results to be very effective, since the positions of V[2][1 : 7ix]
containing runs of 0’s are computed only once, and the same information reused many times.

3. dataset transaction pruning is important also for vertical databases due to the consequent reduction
in the length of the bit vectors, and thus in the intersection costs. A transaction, i.e. a column of
VD, can be removed from the vertical database when no one of its items is included in Fj. In this
case the column of VD to be removed contain only 0’s in correspondence of all the items included
in Fy. To determine prunable columns (transactions), we initialize a bit vector ToPrune| ] to zero
at each iteration k. Then, each time we find that a given candidate itemset is frequent, its resulting
bit vector is or-ed with T'oPrune. To save work, also in this case the or operation only regards the
non zero segments of vector V[2][1 : Tx]. At the end of iteration k, when the construction of F}, has
been completed, ToPrune is used to remove from VD all the columns ¢ for which ToPrune[i] = 0
holds.

Further optimizations. Further effective optimizations have been introduced in the intersection-based
part of DCI. The first one consists in reassigning item identifiers when the vertical dataset is built in
memory. At this purpose, before building V D, Mj, is sorted in increasing order of item support, and new
consecutive integer identifiers {1,...,7y} are assigned to the ordered items. The effect of this reordering
is twofold. From one hand, since only the items with the highest supports can presumably belong to
largest frequent itemsets, we can expect that as the iteration index k increases, most DCI references
concentrate on tidlists associated with items with high supports (i.e., high integer identifiers). The
section of V' D actually accessed thus shrinks progressively, and spatial locality is consequently enhanced.
On the other hand, since candidate itemsets are lexicographically ordered, and intersections are carried
out respecting this order, tidlists with less 1’s are intersected first, with obvious repercussions on the
second optimization discussed above.

An ordering step is also performed during pruning. When V D is pruned, its columns are reordered
with the purpose of increasing the length of the runs of 0’s and 1’s present in the various raws. The
goal is once more making the second optimization discussed above even more effective. To reorder V D
columns, the first item 4; belonging to M}, (i.e. the least frequent one) is considered first, and the columns
(transactions) that contain it are moved in front of i;’s tidlist, thus obtaining a single initial run of 1’s
followed by all 0’s. The second less frequent item i, is then considered, and the columns (transactions)
containing i» but not 7; are grouped in the same way. This process proceeds until the last column of VD
is reached and no other column can be moved in front.

However, we verified that transaction reordering and the whole pruning process are effective only when
many (and long) frequent patterns are discovered in the database. Pruning and reordering overheads
otherwise overwhelm the advantages of dealing with shorter and ordered tidlists. A simple and effective
heuristic was thus introduced in DCI that starts pruning and transaction reordering at the end of each
intersection-based iteration k only if |Cy| >> my.
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4 Performance evaluation

To evaluate DCI performances we conducted several experiments with different FSC level-wise algo-
rithms. Table II reports the main characteristics of the algorithms tested. Aprioripp refers to a version
of the classic Apriori algorithm enhanced with the dataset pruning technique introduced in DCI. DCP
(Direct Count of candidates & Pruning transactions) [18] is an implementation of DCI that continues
to adopt a counting-based approach for all the algorithm iterations, and thus does not switch to an
intersection-based approach for the last iterations.

Table II: Main characteristics of the algorithms tested.

Algorithm | FSC approach | FSC data structure | Dataset pruning ||
Apriori counting itemset occurrences hash tree no
Aprioripp counting itemset occurrences hash tree yes
DHP counting itemset occurrences hash tree yes
DCP counting itemset occurrences prefix tree yes
DCI hybrid: counting & intersect | prefix tree & tidvectors yes

The test bed architecture was a Linux-based workstation, equipped with a Pentium III processor
running at 450MHz, 512MB RAM, and an Ultra2 SCSI disk. The experiments were conducted by
varying the minimum support threshold s and the characteristics of the transaction databases. The
datasets we used in our experiments were created with one of the most commonly adopted synthetic
dataset generator [5], and are characterized by the parameters reported in Table III, where T' indicates
the average transaction size, P the size of the maximal potentially frequent itemset, n the number of
transactions, m the number of items, and L the number of potentially frequent itemsets.

Table III: Values for parameters of the synthetic datasets used in the experiments.

| Dataset |T[P] n | m | L | Size (MB) |
200k_t20_p4_m1k 20 [ 4 | 200k | 1k | 2000 18
400k_t10_p8_m1k 10| 8 | 400k | 1k | 2000 18
400k_t10_p8_m100k | 10 | & | 400k | 100k | 2000 18
400k_t30_p8_m1k 30 | 8 | 400k | 1k | 2000 50
400k_t30_pl6_mlk | 30 | 16 | 400k | 1k | 2000 50
800k_t30_p8_m1k 30 | 8 | 800k | 1k | 2000 100
5000k_t20_p8_m1k | 20 | 8 | 5000k | 1k | 2000 438
10k_t25_p10_m1k 25 | 10 | 10k 1k | 2000 1

DCI computational costs We analytically analyzed the advantages of adopting an intersection-based
approach, which is used by DCI after a few iterations, over the exploitation of the same counting-based
approach for all the iterations of the algorithm. To this end, we compared the costs of the last iterations
of DCI and DCP. The computational costs of each DCP iteration is dominated by subset counting. At
most k — 2 comparisons are necessary in order to check whether a given candidate k-itemset is included
into a transaction ¢ or not. Hence, the number of operations actually performed by DCP at iteration &
is approximately:

Ncs -k (2)

where N¢g is the total number of candidates actually visited for counting the supports of all the trans-
actions in Dy. On the other hand, the computational cost of each DCI iteration is proportional to the
number of and operations needed to determine the supports of all candidate itemsets. The number of
and depends on both the average length of tidlists and the number of candidates itemsets. In addition,
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DCI performs or operations to prepare the subsequent pruning of the vertical dataset. Therefore, the
number of operations actually performed by DCI at iteration k is approximately:

(Nanp + Nor) - Nvp (3)

where Nynyp and Nog are, respectively, the total numbers of tidlist pairs which are actually and-ed or
or-ed, while Ny p is the average number of operations needed for and-ing or or-ing a pair of tidlists. In
principle we can say that Nyp depends on the average length of tidlists, but we have to consider that
DCI exploits several optimizations aimed at reducing the number of operations actually performed (see
Section 3.3).

This simple analysis is confirmed by our experimental evaluation. In Figure 2 the measured per-
iteration execution times, i.e. Tpcp and Tpci, are plotted against their analytic estimates above, i.e.
Equations (2) and (3), as a function of the iteration index k. The dataset considered was 400k _t10_p8_m1k,
with minimum support s = 0.25%. The actual values of Nocs, Nanp, Nor and Ny p were determined by
profiling the executions of the two programs. These experimental results confirm that the intersection-
based method performs better than its counting-based counterpart. This is only partially due to its in-core
behavior, since the vertical-layout dataset is entirely stored in the main memory. More importantly, we
have proved that the intersection-based approach is computationally more efficient than the counting-
based one.

Operations and Execution Time. 400k_t10_p8 m1ik, s=.25
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Figure 2: DCI and DCP theoretical and measured computational costs on dataset 400k_t10_p8_m1lk
(s = 0.25%). Times Tpcr and Tpcp are measured in seconds according to the scale on the right hand y
axis. Millions of operations are instead reported on the left hand y axis.

Caching of intersection results In Section 3.3 we discussed DCI intersection method, and described
the technique used to cache the results of previous and intersections, thus reducing the cost for determining
the candidate support. To evaluate the effectiveness of our caching policy, we counted the actual number
of intersections carried out by DCI on the dataset 400k_t10_p8_mlk, with s = 0.25%. We compared
this number with the number of intersections performed by two alternative techniques. The former one
consists in adopting a 2-way intersection approach, which is only possible if we can fully cache the tidlists
associated with all the frequent (k — 1)-itemsets. The latter technique regards the adoption of a pure
k-way intersection method, i.e. a method that does not exploit caching at all, and determines the support
of a candidate k-itemset by intersecting the tidlists associated with all the k items.

Figure 3.(a) plots the results of this analysis. The caching policy of DCI turns out to be very effective,
since the actual number of intersections performed results to be very close to the minimum obtained when
a 2-way intersection approach is adopted. Moreover, memory requirements for the three approaches are
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plotted in Figure 3.(b). As expected, DCI requires orders of magnitude less memory than a pure 2-way

intersection approach, thus better exploiting memory hierarchies.
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Figure 3: Per iteration number of tidlist intersections performed (a), and memory requirements (b), for
DCI, and the pure 2-way and k-way intersection-based approaches.

Pruning effectiveness. An important characteristic of FSC level-wise algorithms is their ability of
trimming dataset size as execution progresses. DHP is the most effective algorithm in this regard. It
prunes both the candidates and the dataset using an expensive hash filtering technique [19]. The plot
reported in Figure 4.(a) quantifies the effectiveness of DHP dataset pruning. The Figure plots, for
s = 0.25% and various datasets, the size of Dg11 as a function of the iteration index k. As it can be seen,
the reduction in the size of the processed dataset is notable even with this low support threshold. For
the same datasets and support, Figure 4.(b) shows the effectiveness of our simpler pruning technique.
We can see that DHP prunes slightly more the dataset in early iterations, but the differences becomes

rapidly neglectable.
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Figure 4: DHP (a) and DCI (b) dataset pruning efficacy for s = 0.25% and various datasets.

Dataset pruning has important implications on performances. Even if the size of the transaction
database is initially huge, we can forecast that after few iterations the pruned dataset may entirely fit
into the main memory. If this is the case, the original out-of-core algorithm could become in-core. Note
that this transformation is automatically achieved by modern OSs that exploit the main memory left
unused by the kernel and the processes as a buffer cache for virtualizing accesses to block devices such as
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disks [6, 8]. In order to evaluate the impact of the OS caching policy on FSC level-wise algorithms which
exploits dataset pruning, we conducted synthetic tests on our test bed architecture. The benchmark
used for these tests simulates the data access pattern of FSC level-wise algorithms. Specifically, at each
iteration k = {1,...,17}, it reads the dataset in blocks of 4KB, performs some computation on each
block read, and write back to the disk only part of these blocks. The size of the original dataset was 505
MB. For this dataset and for a given s, we first measured the effect of the DHP pruning technique, i.e.
the actual reduction in the dataset size at each iteration. Our benchmark reduces the dataset size using
the same rate measured for DHP. In the benchmark, however, the computational granularity - i.e. the
per-block computation time - can artificially be varied in order to study its effect on the total elapsed
time. The difference between the total elapsed time and the process CPU time can be considered as
an approximated measure of the I/O cost. Figure 5 shows the result of this test, where the per-block
computation time was varied from 0 to 0.9 ms. The z and y axes report the total CPU and elapsed time,
respectively. Note that an approximated measure of the actual I/O cost paid for repeatedly reading and
writing the dataset can be deduced from the value plotted for x = 0, i.e. null per-block CPU time. From
the curves plotted in Figure 5, we can observe that the total elapsed time increases slowly when small
computational grains are considered, since the elapsed time is dominated by I/O time, and this time
cannot be overlapped with useful computation. For larger computational grains, corresponding to real
FSC problem instances with low supports, the actual I/O cost becomes a constant, which turns out to
only be a few percent of the total elapsed time.
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Figure 5: Elapsed time vs. computational granularity for a 505MB dataset iteratively elaborated and
pruned.

Per-iteration Execution Times. The plots reported in Figure 6 show the per-iteration execution
times of DCI, DCP, Apriori, Aprioripp and DHP. The plots refer to tests conducted on different
datasets, for various values of s. The most evident result is that, for ¥ = 2 and ¥ = 3, DCI and DCP
always outperform Apriori, Aprioripp and DHP of at least one order of magnitude. This is due to the
different counting technique exploited, which results to be much more efficient than the one based on a
hash tree. By looking at DCP curves, slighter improvements due to our counting method can be noted
also for larger values of k.

The other interesting result is that DCI remarkably outperforms the other implementations. On
datasets characterized by medium/long patterns, and for several iterations, DCI achieves a performance
gain over the counting-based algorithms of even two order of magnitude, thus demonstrating the lower
complexity of the intersection-based approach.
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Figure 6: Per-iteration execution times of DHP, DCP, Apriori, Aprioripp, and DCI for different datasets
and supports.
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Figure 7: Total execution times for Apriori, DHP, Aprioripp, and DCI on various datasets as a function

of the support value.
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Total Execution Times. Figure 7 reports the total execution times obtained running Apriori, DHP,
Aprioripp, DCP, and DCI on various datasets as a function of s. In all the tests conducted DCI
remarkably outperforms the other implementations. Improvements of more than one order of magnitude
were achieved for small values of support. Moreover, DCP performance resulted always better than DHP
and Aprioripp ones, thus demonstrating the efficiency of our counting approach. The low execution times
obtained with DCT are therefore due to both the efficiency of the counting method exploited during early
iterations, and the effectiveness of the intersection-based approach used when the pruned vertical dataset
fits into the main memory. Finally, it is worth noting that for very small supports (s = 0.25%) some tests
with DHP and Aprioripp were not able to allocate all the memory needed. DCI and DCP on the other
hand, require less memory than their competitors, which exploit a hash tree for counting candidates. In
this regard, Figure 8 plots the maximum amount of memory allocated by the various algorithms during

the tests on two different datasets.

Dataset = 400k_t30_p8_mik Dataset = 400k_t30_p8 m100k
262144 62144 7
131072 10 7 T —
65536 65536
x 32768 e
é 32768 ; ?!; e
B £ 16334
2 16384 e It I S—
X e X 8192 |-
8192 APdp s 006 [ APdp ]
e DHP oo e DHP -eeekeeeee
4096 DCP - ] 2048 ¥~ DCP —--x-emv 4
DCl —— DCl ——
2048 ! 1024 )
1 0.75 0.5 0.25 1 0.75 0.5 0.25
Support Support
(a) b

Figure 8: Maximal sizes of physical memory allocated during the execution for Apriori, DHP, Aprioripp,
and DCI on dataset 400k_t30_m1k (a), 400k_t10_-m100k (b) for different supports.
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Figure 9: Relative execution times on datasets t20_p8_mlk (s = .25%) with varying number of transac-

tions.

Scale up. Finally, we tested the behavior of the algorithms when the amount of data processed is
increased, keeping everything else constant. In Figure 9 we plotted the execution times of the various
implementations obtained by varying the number of transactions, and keeping their lengths fixed, for
s = .25%. The times reported are normalized with respect to the execution time of DCI on dataset
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100k_t20_p8_mlk. All the algorithms show the same qualitative behavior: we can see that there is a
gradual increase in the execution time as the dataset size is increased, and DCI always outperforms the
other algorithms.

5 Related work

The algorithms of the Apriori class [4, 5, 12, 19] adopt a level-wise, counting-based approach, according
to which, at each iteration k, the occurrences of candidate k-itemsets set-included in each transaction are
counted. The approach involves multiple scans of a horizontal database, and a hash tree is used to speedup
the counting phase. An alternative approach, used by several other algorithms, is the intersection-based
one [21, 9, 23]. In this case the database is stored in a vertical layout, where each record is associated with
a distinct item and stores information about the transactions containing the item itself. Partition, an
intersection-based algorithm that solves several FSC local problems on distinct partitions of the dataset
is discussed in [21]. Dataset partitions are chosen which are small enough to fit in the main memory, so
that all these local FSC problem can be solved with a single dataset scan, by hopefully using an efficient
2-way intersection method. While, during the first scan, the algorithm identifies a superset of all the
frequent itemsets, a second scan is needed to compute the actual global support of all the itemsets. This
algorithm, despite the small I/O costs due to the reduced number of database scans, may generate a
superset of all the frequent itemsets which is too large due to data skew, thus making the next iteration
of the algorithm very expensive in terms of time and space. In [16] some methods to reduce the effects
of this problem are discussed.

Dataset sampling [24, 22] as a method of reducing computation and I/O costs has also been proposed.
Unfortunately, the FSC results obtained from a sampled dataset may not be accurate since data patterns
are not precisely represented due to the sampling process.

Since algorithms that reduce dataset scans [21, 16, 22] increase the amount of work carried out at
each iteration, we argue that further work has to be done to quantitatively analyze advantages and
disadvantages of adopting these algorithms rather than level-wise ones. This is particularly true if we
consider that techniques for database pruning like ours are able to highly reduce the dataset size and the
related I/O costs.

Recently, some new algorithms for solving the FSC problem have also been proposed [23]. Like
Partition, they use an intersection-based approach by dynamically building a vertical layout database.
While the Partition algorithm addresses these issues by relying on a blind subdivision of the dataset,
Zaki’s algorithms exploit clever dataset partitioning techniques that rely on a lattice-theoretic approach
for decomposing the search space. For example, in the Eclat algorithm each subproblem is concerned
with finding all the frequent itemsets which share a common prefix, which is in turn a frequent itemset.
On the basis of the common prefix it is possible to determine a partition of the dataset, which will
be composed of only those transactions which are included in the support of the prefix itemset. By
recursively applying Eclat’s search space decomposition we can thus obtain subproblems which can fit
entirely into the main memory. However, Zaki obtains the best computational times with algorithms that
only mine the maximal frequent itemsets (e.g. MazEclat, MazCliqgue). While it is simple to derive all
the frequent itemsets from the maximal ones, the same does not hold for their supports, which require
a further counting step. Remember that the exact supports of all the frequent itemsets are needed to
easily compute association rule confidences.

In [7] the Max-Miner algorithm is presented, which aims to find maximal frequent sets by looking ahead
throughout the search space. This algorithm is explicitly devised to work well for problems characterized
by long patterns. When the algorithm is able to quickly find a long frequent itemset and its support, it
prunes the search space and saves the work to count the support of all the subsets of this long frequent
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itemset. Moreover, it uses clever lower bound techniques to determine whether an itemset is frequent
without accessing the database and actually counting its support. Hence, in this case too the method is
not able to exactly determine the support of all frequent itemsets.

FP-growth [13], a very interesting algorithm that is able to find frequent itemsets in a database
without candidate generation, has been recently presented. The idea is to build in memory a compact
representation of the dataset where repeated patterns are represented once along with the associated
repetition counters. The data structure used to store the dataset is called frequent pattern tree, or FP-
tree for short. The algorithm is recursive. It starts by identifying paths on the original tree which share a
common prefix. These paths are intersected by considering the associated counters. During its first steps,
the algorithm determines long frequent patterns. Then it recursively identify the subsets of these long
frequent patterns which share a common prefix. Moreover, the algorithm can also exactly compute the
support of all the frequent patterns discovered. The authors only present results for datasets where the
maximal frequent itemsets are long enough. We believe that for problems where the maximal frequent
sets are not so long, the resulting FP-tree should not be so compact, and the cost of its construction
would significantly affect the final execution time. A problem that has been recognized for FP-growth
is the need to maintain the tree in memory. Solutions based on a partition of the database, in order to
permit problem scalability, are also illustrated.

Finally we discuss Tree Projection [1], a counting-based algorithm which, like DCP (and DCI during
the its first iterations), prunes the transactions before counting the support of candidate itemsets. The
pruning technique exploited by DCP takes into account global properties regarding the frequent itemsets
currently found, and produces a new pruned dataset at each iteration. Tree Projection, on the other hand,
prunes (or projects) each transaction in a different way for each specific group of candidates. To this
end, candidates are subdivided into groups, where each group shares a common prefix. To determine the
various projections of a transaction at level k, the transaction has to be compared with each frequent
itemset at level k — 2. These itemsets exactly determine the common prefix of a given group of candidates
of length k. This projection phase is thus the most expensive part of the algorithm. Once each projection
has been determined, counting is very fast, since it only requires to access a small matrix of counters.
The counting method used by DCP (and by DCI when the counting-based approach is adopted) is
different from Tree Projection). For each transcation we need to access different groups of candidates
(and associated counters) which share a common 2-item prefix. However, we do not need to scan all the
possible 2-item prefixes. On the other hand, for each pair of items occurring in each pruned transaction
t, we look up a directly accessible prefix table of C}, and then sequentially scan the group of candidates
to determine their inclusion in ¢. Note that the cost of this scan, due to the pruning operated on ¢, and
the technique used to check the inclusion of each candidate in ¢, is very low. We verified experimentally
that a large part of the candidates checked by DCP against ¢ turn out to be actually included in ¢. In
other words, DCP is able to optimally select the candidates to be checked against .

6 Conclusions

In this paper we have reviewed the Apriori class of algorithms proposed for solving the FSC problem.
These algorithms have often been criticized because of their level-wise behavior, which requires a number
of scans of the database equal to the cardinality of the largest frequent itemset discovered. However we
have shown that, in many practical cases, Apriori-like algorithms are not I/O-bound. When this occurs,
the computational granularity becomes large enough to take advantage of the features of modern OSs,
which allow computation and I/O to be overlapped. To speed up these compute-bound algorithms, the
only solution is to make their most expensive computational part, i.e. the subset counting step, more
efficient.
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Moreover, as the DHP algorithm demonstrates, counting the number of dataset scans as a measure of
the complexity of the Apriori algorithms does not take into account that very effective dataset pruning
techniques can be devised. These pruning techniques can rapidly reduce the size of the dataset until it
fits into the main memory. Nevertheless, our results showed that the efforts to reduce the size of the
dataset and the number of candidates are of little use, if the subset counting procedure is inefficient.

Unfortunately, for problem datasets from which long patterns can be mined, we have an explosion of
the number of candidate and frequent itemsets, since all the 2! subsets of each long maximal frequent
itemset of length [ have to be produced. In this case, the counting-based approach becomes very expensive,
since the supports of frequent itemsets become very large, and the various candidates turn out to be set-
included in a lot of transactions. Possible solutions to reduce the burden of the counting-based approach
are to use lower bound techniques to determine whether an itemset is frequent without actually counting
its exact support, or to find maximal frequent sets by looking ahead throughout the search space [7, 2].
While it is simple to derive all the frequent itemsets from the maximal ones, the same does not hold for
their supports, which require a further counting step. An alternative solution to speed up the counting
of the exact support for long frequent patterns regards instead the adoption of a intersection-based
approach.

Our ideas to design DCI, a new hybrid algorithm for solving the FSC problem, originate from all the
above considerations. While a counting-based approach is used during the first iterations, DCI uses an
efficient intersection-based technique to determine the support of longer patterns.

During its counting-based phase, DCI uses effective database pruning techniques which, differently
from DHP, introduce only a limited overhead, and exploits an innovative method for storing candidate
itemsets and counting their support. Our counting technique exploits spatial locality in accessing the
data structures that store candidates and associated counters. It also avoids complex and expensive
pointer dereferencing. A possible enhancement to DCI is to adopt a blocking technique [1] to improve
temporal locality as well. In fact, for each transaction ¢, DCI explores specific sections of a vector storing
Cy in order to count the support of candidates. Instead of for single transactions, we could explore Cy,
for blocks of transactions, thus increasing the probability of repeated and close (in time) accesses to the
same sections of candidates and associated counters.

DCI starts using its intersection-based method when the vertical representation of the pruned dataset
may entirely fit into the main memory. Tidlists are actually represented as vectors of bits accessed with
high locality, and can efficiently be and-intersected without using expensive comparison and conditional
branch instructions. To reduce the complexity of intersection, DCI reuses most of the intersections
previously done by caching them in a fixed-size buffer for future use.

As a result of its optimized design, DCI significantly outperforms other level-wise algorithms. For
many datasets the performance improvement is even more than one order of magnitude. More impor-
tantly, due to its well-balanced use of system resources, DCI can be used to efficiently find frequent
itemsets with very low supports in databases characterized by the presence of both short and long pat-

terns.
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A Pseudo code of DCI

The first iteration of DCI, during which the database is scanned to find frequent items, is the same as
the Apriori one. Fj is optimally built by counting all the occurrences of each item i € {1,...,m} in
every t € D.

Figure 10 shows the pseudo code of the second iteration of DCI, which exploits the direct count
technique discussed in Section 3.2. We first update the counters used for the global pruning (line 1). The
pseudo-code for subroutine global_counter(Gy, Fy) is not reported. The subroutine handles a vector of
m counters Gy[ ], and simply increments the counter G[i] each time an item i is included in a frequent
k-itemset of F}. For each transaction read from the dataset, we prune all the items whose associated
global counters are lower than k — 1 (line 9). Note that, since during the first iteration of the algorithm
the dataset cannot be pruned, we still read transactions from D. Then we generate all the 2-itemsets
of the pruned transaction and increment the corresponding counters (lines 11-14). At step 2 it is not
possible to apply the local pruning technique, since all the 2-itemsets of { are included in Cy = Fy x F}
by definition. Therefore we just add the transactions ¢ to the pruned dataset D3 (line 17).

: set_global_counters(G1, F1)

k<2

T o |F1‘

: for all i € [1, ()] do

COUNTS[i] «+ 0

end for

D3 «+ 1]

: for allt € D do

t = global_pruning(t,G1,k)

10:  if [{/ > 2 then

11: for all {t;,,t;,} Cf| 1<i1 <i2 <|f| do
12: A= AZ(til ,tig)

13: COUNTS[A] «+ COUNTS[A] + 1
14: end for

15:  end if

16:  if |{| > 3 then

17: D3+ D3UE

18: end if

19: end for

20: Fy = {i1,i2} € C2 | COUNTS[A2(41,12)] > min_sup}
21: kK« 3

LRI w2

Figure 10: Pseudo code of the second iteration of DCI.

Figure 11 shows the pseudo-code of the following iterations k, k > 3, which still work on the horizontal
database. This loop terminates when either its is impossible to find larger frequent itemsets, or the
vertical dataset has been built in memory on the fly. The flag Horizontal layout is used to control when
to switch to the intersection-based approach whose pseudo-code is shown in Figure 13. First we set the
global counters on the basis of Fj,_; (line 3), and we build Cy by adopting the same procedure as in Apriori
(line 4). Once the candidates are generated, we decide, on the basis of the values of My and 7;, whether
to allocate the vertical dataset VD[my][7x] or not (lines 8-11). After building the prefix tree discussed in
Section 3.2 (line 12), we start processing each transaction. The global pruning technique is first applied
(line 15). When required, the transaction  is inserted into VD[ ][ ] by subroutine Set_bit_vector() (line
16-18). Then we count the occurrences of candidates in ¢ (lines 19-27). To this purpose, we generate
all the possible prefixes of two items from the elements of ¢, and we store the addresses of the first and
the last candidates of Cj sharing this common prefix in variables start and end (lines 22-25). Then the
subroutine count_candidates() is called (line 26 and Figure 12). It scans the contiguous section of Cj,
identified by start and end. The scanning of the various candidates against £ employs the vector POS[ ],
which has been initialized with the relative positions of the items included in # (line 21). Note that
subroutine count_candidates() also updates L[ ], the per-transaction vector of counters exploited by the
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1: Horizontal layout < T'rue
2: while (Fj,_; #0) .and. Horizontal layout do
3:  set_global_counters(Gy_1,Fr_1)

4 Cy = apriori_gen(Fy_1)

5: if Cx = 0 then

6: return

7:  end if

8 if (my, -ng) < MAX_SZ_VD then

9: Horizontal_layout <— False

10: Allocate a zeroed Vertical Dataset of 7y - My bits: VD[ ][]
11:  end if

12:  PREFIXy|[ | = init_candidates(k, Cy)
13:  Dpy1 « 0
14: for allt € Dy do

15: t = global_pruning(t, Gr_1, k)
16: if not Horizontal_layout then
17: Set _bit_vector (£, VDI[])

18: end if

19: if || > k then

20: Initialize local counters L] |
21: POS|[ ] = init_positions(f)
22: for all {t;,,t;,} Ci|1<i1 <ia<|f|—k+2do
23: A = Ap(tiy,tis)

24: start = PREFIX[A]

25: end = PREFIX;[A 4+ 1] - 1
26: count_candidates(|t|, k, Cy, POS, start, end, Ly,)
27: end for

28: if Horizontal_layout then
29: t = local_pruning(t, Ly)
30: if [{ > (k+ 1) then

31: Diy1 < Dgr1UE

32: end if

33: end if

34: end if

35: end for

36: Fj ={c€ Cx | c.COUNTS > min_supp}
370 k< k+1
38: end while

Figure 11: Pseudo code of the counting-based iterations of DCI (k > 3).

Subroutine count_candidates(|t|, k, Cy, POS, start, end, Ly,)
1: for all ¢ = {i1,...,4;} | Cg[start] < ¢ < Cglend] do

2:  /* cis included in the ordered segment of candidates comprised be-

tween Cy[start] and Cglend] */
found <« True
j<«<3
while ( (j <k) AND found) do
if ((POS[ij]=0) .or. (|f{—POS[i;] < k—j)) then
found <« False
else
j—iji+1
10: end if
11: end while
12:  if found then

13: ¢.COUNTS < ¢.COUNTS + 1
14: for all 4; € cdo

15: Lk[ij] < Ly, [ZJ] +1

16: end for

17:  end if

18: end for

end Subroutine

Figure 12: Pseudo code of the subroutine count_candidates().
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1: while Fy,_1 # 0 do
2: Fr«0

3 Cy, = apriori_gen(Fy_1)

4 if Cx = 0 then

5: return

6: end if

7:  Allocate a zeroed bidimensional bit-array V[k][7]
8:  Allocate a zeroed bit-vector T'oPrune[f]

9
0

/* In the following, we assume that the various itemsets ¢; € Cy,
i=1,...,|Ck|, are stored in lexicographic order. */

12:  COUNT <« compute_support_intersect(1,V[ ][ ],c1, VD[ ][ ])
13:  if COUNT > min_supp then

14: Fr <+ FrUcy

15: ToPrune < ToPrune or V[k|[1: T]

16:  end if

17:  for i =2 to |Cy| do

18: Find the largest h, h < k, s.t. Prefizp(c;—1) = Prefizp(ci)
19: COUNT < compute_support_intersect(h, V[ ][ ],¢;, VD[ ][ ])
20: if COUNT > min_supp then

21: Fi, « FyUc;

22: To_Prune <— To_Prune or V[k][1: i)

23: end if

24:  end for

25:  if |C| >> ™}, then

26: prune_reorder_dataset(VD[ ][ ], To_Prune[ |,ip+1)
27:  end if

28: k<« k+1

29: end while

Figure 13: Pseudo code of the intersection-based iterations of DCI.

local pruning technique.

Figure 13 shows the pseudo-code of DCI final loop, which adopts the intersection-based approach
discussed above. After generating Cj, we allocate V[k][Tix], to store partial intersection results, and
To_Prune[n], used to prune the columns of the vertical dataset VD[ ][] (lines 7-8). The various candidate
k-itemsets ¢; € Cy, are scanned, and their supports are computed by subroutine compute_support _intersect().
The last two parameters of the subroutine are the candidate itemset to be considered, and the vertical
layout dataset VD[ ][ ], respectively. The first parameter h of the subroutine determines whether the
partial intersection results stored in V[ ][ ] can be used to speed up the intersection job. When h is lower
than 2, as when the first candidate ¢; € C}, is considered (line 12), V[][ ] is only used to store intersection
intermediate results. On the other hand, when h is greater than 1 (i.e. ¢; and ¢;_; share a common prefix
of length greater or equal to 2), the partial results previously stored in V[h][1 : ;] are used to speed-up
the intersection job relative to ¢;. The subroutine compute_support_intersect() returns the support of
candidate ¢;. If this number is equal or greater than min_sup, the candidate is added to Fj, and the
resulting vector is or-ed with T'o_prune|[ | (lines 13-16 and 20-23). Finally, if |Cy| >> Ty, the dataset is
pruned and reordered as discussed in Section 3.3, and the new value of Ty, (i.e. the number of non zero
columns of VD[ ][] ) is computed (line 26).
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