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Abstract

In this paper we review the Apriori class of Data Mining algorithms for solving the Frequent Set

Counting problem, and propose DCP, a new algorithm which makes several improvements on the

classic Apriori. Our goal was to optimize the most time consuming phases of Apriori algorithms for

problems characterized by short or medium length frequent patterns. For these problems, the initial

iterations of the algorithm, during which small sets of items (itemsets) are counted, are the most

expensive. The main enhancements introduced by DCP are the use of an innovative method for

storing candidate itemsets and counting their support, and the exploitation of e�ective pruning tech-

niques which signi�cantly reduce the size of the dataset as execution progresses. We implemented and

engineered several algorithms belonging to the Apriori class, and conducted in-depth experimental

evaluations to compare them, by taking into account not only execution time, but also virtual mem-

ory usage and I/O activity. When possible, locality of data and pointer dereferencing were optimized

due to their importance with respect to developments in computer architectures. The results con�rm

that our new algorithm, DCP, signi�cantly outperforms the others previously proposed. Our test

bed was a Pentium-based Linux workstation, while the datasets used for the tests were synthetically

generated.

1 Introduction

The Frequent Set Counting (FSC) [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 17, 19] problem has been extensively

studied as a method of unsupervised Data Mining [9, 10, 16] for discovering all the subsets of items (or

attributes) that frequently occur in the transactions of a given database. Knowledge of the frequent sets is

generally used to extractAssociation Rules stating how a subset of items in
uences the presence of another

itemset in the transaction database. The process of generating association rules (Association Mining)

has historically been adopted for market-basket analysis, where transactions are records representing

point-of-sale data, while items represent products.

In this paper we focus on the FSC problem, which is the most time-consuming phase of the Association

Mining process. An itemset is frequent if it appears in at least s% of all the n transactions of the database

D. The set of these transactions constitutes the support of the itemset. In this case we say that the

itemset has a minimum support, i.e. it appears in at least min sup transactions, where min sup = s% n.

When D and the number of items included in the transactions are huge, and we are looking for itemsets

with small support, the number of frequent itemsets becomes very large, and the FSC problem very

expensive to solve, both in time and space.

Apriori [5] is one of the most popular FSC algorithms. Although a number of other solutions have been

proposed, it is still the most commonly recognized reference to evaluate FSC algorithm performances.

Apriori iteratively searches frequent itemsets: at each iteration k, Fk, the set of all the frequent itemsets

of k items (k-itemsets), is identi�ed. In order to generate Fk, a candidate set Ck of potentially frequent

itemsets is �rst built. By construction, Ck is a superset of Fk , and thus to discover frequent k-itemsets

the support of all candidate sets is computed by scanning the entire transaction database D. All the

candidates with minimum support are then included in Fk, and the next iteration started. The algorithm

terminates when Fk becomes empty, i.e. when no frequent set of k or more items is present in the

database.
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It is worth considering that the computational cost of the k-th iteration of Apriori strictly depends

on both the cardinality of Ck and the size of D. In fact, the number of possible candidates is, in principle,

exponential in the number m of items appearing in the various transactions of D. Apriori considerably

reduces the number of candidate sets on the basis of a simple but very e�ective observation: a k-itemset

can be frequent only if all its subsets of k� 1 items are frequent. Ck is thus built at each iteration as the

set of all k-itemsets whose subsets of k � 1 items are all included in Fk�1. Conversely, k-itemsets that

contain at least one infrequent (k � 1)-itemset are not included in Ck.

An important algorithmic problem addressed by Apriori is to eÆciently count the support of the

candidate itemsets. During iteration k, all the k-subsets of each transaction t 2 D must be determined

and their presence in Ck be checked. To reduce the complexity of this phase, Apriori stores the various

candidate itemsets in the leaves of a hash-tree, while suitable hash tables are placed in the internal nodes

of the tree to direct the search of k-itemsets within Ck. The performance, however, only improves if the

hash-tree splits Ck into several small disjointed partitions stored in the leaves of the tree. Unfortunately

this does not happen for small values of k since the depth of the tree and thus the number of its leaves

depends on k. Depending on the particular instance of the problem, itemsets of cardinality lower than

4 can contribute to even more than 90% of the total execution time. In particular, this property is true

for problems where the maximal frequent itemsets are not very long.

The new algorithm proposed in this paper is called DCP (Direct Count of candidates & Pruned

transactions). The algorithm signi�cantly enhances the Apriori family of algorithms, and is aimed at

solving the issues stated above for frequent itemsets of limited length. DCP exploits an innovative

method for storing candidate itemsets and counting their support. The method is a generalization of the

Direct Count technique used by Apriori for counting the support of unary itemsets, and allows the cost

of the initial iterations of the algorithm to be reduced considerably, both in time and space. Moreover,

DCP adopts a simple and e�ective pruning of D, without using the complex hash �lter used by DHP [15].

As an example of the heuristics used to prune D, consider that the items that are not present in any

itemset of Fk are not useful for the subsequent steps of the algorithm, and can thus be removed from

D. Similarly, transactions with less than k items can also be removed from D, since they cannot contain

any k-itemset. In DCP a pruned dataset Dk+1 is thus written to the disk at each iteration k of the

algorithm, and employed at the next iteration.

DCP does not address the issues arising in databases from which very long patterns can be mined [2,

7]. In this case we have an explosion of the candidate number, since all the 2l subsets of each long maximal

frequent itemset of length l have to be produced. More importantly, in these problems the supports of

short frequent k-itemsets are usually very large, thus making the counting process very expensive. In

order to speed up the counting phase of the algorithm, several techniques can be used to deduce that

an itemset is frequent without actually counting its support [2, 7]. This allows the candidate sets to

be pruned. Unfortunately, the exact supports of all the frequent itemsets need to be known in order to

correctly compute the con�dence of the derived association rules.

To validate our algorithm, we conducted in-depth experimental evaluations by taking into account

not only execution times, but also virtual memory usage, I/O activity and their e�ects on the elapsed

time. When possible, locality of data and pointer dereferencing were optimized due to their importance

with respect to the recent developments in computer architectures. The experimental results showed that

our new algorithm, DCP, outperforms the others. Our test bed was a Pentium-based Linux workstation,

while the datasets used for tests were generated synthetically.

The paper is organized as follows. Section 2 introduces DCP, and discusses its features in depth.

Section 3 details the method used to generate the synthetic datasets used in the tests, and reports the

promising results obtained with DCP. In Section 4 we review some of the most recent results in the

FSC �eld, and compare the DCP approach with others. Finally, Section 5 draws some conclusions and

outlines future work. In Table I we report the notations adopted throughout the paper.
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D transaction database

n number of transactions in D

m number of items appearing in the n transactions of D

t a generic transaction in D

ti an item identi�er appearing at position i in transaction t

Fk set of the frequent k-itemsets

Ck set of candidate k-itemsets

c a generic candidate itemset belonging to Ck

ci an item appearing at position i in the candidate itemset c

Dk pruned transaction database read at iteration k (D1 = D)

Mk set of the signi�cant items appearing in the transactions of Dk

mk cardinality of Mk, i.e. mk = jMkj

Table I: Symbols used in the paper.

2 The DCP algorithm

In this section we will discuss our new algorithm, DCP (candidate Direct Count & transaction Pruning),

for solving the FSC problem.

As with the other algorithms of the Apriori class, DCP uses a level-wise, counting-based approach,

according to which at each iteration k all the transactions are counted against a set of candidate k-

itemsets. The database D is horizontally stored, i.e. each record corresponds to a transaction containing

a set of bought items. Records have variable lengths, since only the integer identi�ers, associated with

the items actually belonging to a transaction, are included in the corresponding record. Moreover, we

assume that item identi�ers are stored in sorted order in both transactions and itemsets. Finally, the

sets Ck and Fk, Fk � Ck are stored as lexicographically ordered vectors of k-itemsets.

As in Apriori, at each iteration k, the set Ck of candidate itemsets is built on the basis of Fk�1. In

this construction we exploit the lexicographic order of Fk�1 to �nd pairs of (k � 1)-itemsets sharing a

common (k � 2)-pre�x. Due to this order, the various pairs occur in close positions within the vector

storing Fk�1. The union of each pair is a k-itemset that becomes a candidate c 2 Ck only if all its subsets

are included in Fk�1. Also in this case we can exploit the lexicographic order of Fk�1, thus checking

whether all the subsets of c are included in Fk�1 in logarithmic time.

The main enhancements introduced by DCP regard the exploitation of database pruning techniques,

and the use of an innovative method for storing candidate itemsets and counting their support:

Pruning. DCP prunes the dataset at each iteration. In particular, a pruned dataset Dk+1 is written to

the disk at each iteration k, and employed at the next iteration. Note that this pruning entails a

reduction in I/O activity as the algorithm progresses, since the size of Dk is always smaller than the

size of Dk�1. However, the main bene�ts come from the reduced computation required for subset

counting at each iteration k, due to the reduced number and size of transactions.

Counting. In DCP we do not use a hash tree data structure for counting frequent sets. Instead we base

our algorithm on directly accessible data structures, thus avoiding complex and expensive pointer

dereferencing. Finally, DCP exploits high spatial locality in accessing its counting data structures.

2.1 Pruning the dataset

Two di�erent pruning techniques are exploited. Dataset global pruning which transforms a generic trans-

action t, read from Dk into a pruned transaction t̂, and Dataset local pruning which further prunes the

transaction, and transforms t̂ into �t before writing it to Dk+1. While the former technique is original, the

latter has already been adopted by DHP.

Dataset global pruning. At each iteration k, k > 1, the Dataset global pruning technique is applied

to each t 2 Dk to generate t̂. The technique is based on the following argument: t may contain a frequent
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k-itemset I only if all the (k � 1)-subsets of I belong to Fk�1. Since searching Fk�1 for all the (k � 1)-

subsets of any I � t may be very expensive, a simpler heuristic technique, whose pruning e�ect is smaller,

was adopted. In this regard, note that the (k � 1)-subsets of a given k-itemset I � t are exactly k, but

each item belonging to t should only appear in k�1 of these k itemsets. Therefore, we derive a necessary

(but weaker) condition to keep a given item in t.

The item ti is retained in t̂ if it appears in at least k � 1 frequent itemsets of Fk�1.

To check the condition above, we simply use a global vector Gk�1[ ] that is updated on the basis of Fk�1.

Each counter of Gk�1[ ] is associated with one of the m items of Dk. For each frequent (k � 1)-itemset

belonging to Fk�1, the global counters associated with the various items appearing in the itemset are

incremented. After all (k � 1)-itemsets have been scanned, Gk�1[j] = x means that item j appears in x

frequent itemsets of Fk�1.

Counters Gk�1[ ] are thus used at iteration k as follows. An item ti 2 t is copied to the pruned

transaction t̂ only if Gk�1[ti] � k � 1. Then, if jt̂j < k, the transaction is skipped, because it cannot

possibly contain any frequent k-itemset.

Dataset local pruning. The Dataset local pruning technique is applied to each transaction t̂ during

subset counting. The arguments this pruning technique is based on, are similar to those of its global

counterpart. Transaction t̂ may contain a frequent (k + 1)-itemset I only if all the k-subsets of I belong

to Fk . Unfortunately, Fk is not yet known when our Dataset local pruning technique should be applied.

However, since Ck is a superset of Fk, we can check whether all the k-subsets of any (k+1)-itemset I � t̂

belong to Ck. This check could be made locally during subset counting of transaction t̂.

Note that to implement the check above we should have to maintain, for each transaction t̂, information

about the inclusion of all the k-subsets of t̂ in Ck. Since storing this information may be expensive, we

adopted the simpler technique already proposed in [15], whose pruning e�ect is however smaller:

The item t̂i is retained in �t if it appears in at least k candidate itemsets of Ck.

To check the condition above, for each transaction t̂ = ft̂1; : : : ; t̂jt̂jg to be counted against Ck, we use an

array of jt̂j counters Lk[ ], where each Lk[i] is associated with a distinct item t̂i 2 t̂. The counter Lk[i] is

incremented every time we �nd that t̂i is contained in a k-itemset of t̂ which also belongs to Ck. At the

end of the counting phase for transaction t̂, we obtain a pruned transaction �t by removing from t̂ all the

items t̂i for which Lk[i] < k. Transaction �t is then written to Dk+1 only if j�tj � k + 1.

This pruning technique works because the presence of counters greater than or equal to k represents

a necessary condition for the existence of a (k + 1)-subset I � t̂ all of whose k-subsets belong to Ck. In

this case, in fact, since all the possible k-subsets of I are exactly k+1, but each item belonging to I may

only appear in k of these k+1 subsets, the counters associated with all the items of I should be at least

k.

2.2 Direct count of frequent k�itemsets

As discussed above, for problems characterized by short or medium length patterns, most of the execution

time of Apriori is spent on the �rst iterations, when the smallest frequent itemsets are searched for. While

Apriori uses an e�ective direct count technique for k = 1, the hash-tree data structure, used to count

candidate occurrence for the other iterations, is not eÆcient for small values of k. For example, for k = 2

or 3, candidate sets Ck are usually very large, and the hash tree used by Apriori splits them into only a

few partitions, since the depth of the hash tree depends on k.

Taking into account these considerations, for k � 2 we used a Direct Count technique which is based

on a generalization of the technique exploited for k = 1. The technique is di�erent for k = 2 and for

k > 2 so we will illustrate the two cases separately.
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Figure 1: Data structures used to count (a) 2-itemsets and (b) k > 2-itemsets.

Counting frequent 2-itemsets. A trivial direct method for counting 2-itemsets can simply exploit a

matrix of m2 counters, where only the counters appearing in the upper triangular part of the matrix will

actually be incremented [19]. Unfortunately, for large values of m, this simple technique may waste a lot

of memory. In fact, since jF1j is usually less than m and C2 = F1�F1, we have that jC2j =
�
jF1j

2

�
<< m

2.

Before detailing the technique, note that at each iteration k we can simply identify Mk, the set that

only contains the signi�cant items that have not been pruned by the Dataset global pruning technique

at iteration k. Let mk = jMkj, where mk < m. In particular, for k = 2 we have that M2 = F1, so that

m2 = jF1j.

Our technique for counting frequent 2-itemsets is thus based upon the adoption of vector COUNTS[ ],

which contains jC2j =
�
m2

2

�
=

�
jF1j

2

�
counters (see Figure 1.(a)). The counters are used to accumulate the

frequencies of all the possible itemsets in C2 in order to obtain F2.

It is possible to devise a perfect hash function to directly access the counters in COUNTS[ ]. Let T2 be

a strictly monotonous increasing function T2 :M2 ! f1; : : : ;m2g. A generic itemset c 2 C2, c = fc1; c2g,

where 1 � c1 < c2 � m, can thus be transformed into a pair fx1; x2g, where x1 = T2(c1) and x2 = T2(c2),

so that 1 � x1 < x2 � m2.

The entry of COUNTS[ ] corresponding to a generic candidate 2-itemset c = fc1; c2g can thus be

accessed directly by means of the following order preserving, minimal perfect hash function:

�2(c1; c2) = F
m2
2 (x1; x2) =

x1�1X

i=1

(m2 � i) + (x2 � x1) = m2(x1 � 1)�
x1(x1 � 1)

2
+ x2 � x1; (1)

where x1 = T2(c1) and x2 = T2(c2). Equation (1) can easily be derived by considering how the counters

associated with the various 2-itemsets are stored in vector COUNTS[ ]. We assume, in fact, that the

counters relative to the various pairs f1; x2g, 2 � x2 � m2 are stored in the �rst (m2 � 1) positions

of vector COUNTS, while the counters corresponding to the various pairs f2; x2g, 3 � x2 � m2, are

stored in the next (m2 � 2) positions, and so on. Moreover, the pair of counters relative to fx1; x2g and

fx1; x2 + 1g, where 1 � x1 < x2 � m2 � 1, are stored in contiguous positions of COUNTS[ ].

Counting frequent k-itemsets. The technique above cannot be generalized to count the frequencies

of k-itemsets when k > 2. In fact, although mk decreases with k, the amount of memory needed to store�
m

k

k

�
counters might be huge, since in general

�
m

k

k

�
>> jCkj.

Before detailing the technique exploited by DCP for k > 2, remember that, at step k, for every

transaction t, we have to check whether any of its
�
jtj

k

�
k-subsets belong to Ck. Adopting a naive

approach, one could generate all the possible k-subsets of t and check each of them against all candidates

in Ck. The hash tree used by Apriori is aimed at limiting this check to only a subset of all the candidates.

A pre�x tree is another data structure that can be used for the same purpose [14]. In DCP we adopted

a limited and directly accessible pre�x tree to select subsets of candidates sharing a given pre�x, the
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�rst two items of the k-itemset. Note that, since the various k-itemsets of Ck are stored in a vector in

lexicographic order, all the candidates sharing a common 2-item pre�x are stored in a contiguous section

of this vector. To eÆciently implement our pre�x tree, a directly accessible vector PREFIXk[ ] of size�
m

k

2

�
is thus allocated (see Figure 1.(b)). Each location in PREFIXk[ ] is associated with a distinct 2-item

pre�x, and contains the pointer to the �rst candidate in Ck characterized by the pre�x. More speci�cally,

PREFIXk[�k(c1; c2)] contains the starting position in Ck of the segment of candidates whose pre�x is

fc1; c2g. As for the case k = 2, in order to specify �k(c1; c2), we need to exploit a strictly monotonous

increasing function Tk : Mk ! f1; : : : ;mkg. �k(c1; c2) can be thus de�ned as follows:

�k(c1; c2) = Fm
k

2 (x1; x2)

where x1 = Tk(c1) and x2 = Tk(c2), while the hash function Fm
k

2 is that de�ned by Equation (1).

DCP exploits PREFIXk[ ] as follows. In order to count the support of the candidates in Ck, we

select all the possible pre�xes of length 2 of the various k-subsets of each transaction t = ft1; : : : ; tjtjg.

Since items within transactions are ordered, once a pre�x fti1 ; ti2g, ti1 < ti2 , is selected, the possible

completions of this pre�x needed to build a k-subsets of t can only be found in fti2+1; ti2+2; : : : ; tjtjg.

The contiguous section of Ck which must be visited is thus delimited by both PREFIXk[�k(ti1 ; ti2)] and

PREFIXk[�k(ti1 ; ti2) + 1]. Note that this counting technique exploits high spatial locality. In fact,

during subset counting relative to a given transaction, subsequent memory references are directed to

contiguous addresses of the various sections of Ck.

We highly optimized the code to check whether each candidate itemset, selected through the pre�x

tree above, is included or not in t = ft1; : : : ; tjtjg. Our technique requires at most k comparisons. The

algorithmic trick used is based on the knowledge of the number and the range of all the possible items

appearing in each transaction t and in each candidate k-itemset c. In fact, this allows us to build a vector

POS[1 : : :m], storing information about which items actually appear in t. More speci�cally, for each

item ti of t, POS[ti] stores the position of ti in t, zero otherwise. The possible positions thus range from

1 to jtj. Therefore, given a candidate c = fc1; : : : ; ckg, c is not included in t if there exists at least one

item ci such that POS[ci] = 0.

Moreover, since both c and t are ordered, we can deduce that c is not a subset of t without checking

all the items occurring in c. In particular, given a candidate c = fc1; : : : ; ckg to be checked against t, we

can derive that c * t, even if ci actually appears in t, i.e. POS[ci] 6= 0. Suppose that the position of ci
within t, i.e. POS[ci], is such that

(jtj � POS[ci]) < (k � i)

If the disequation above holds, then c * t because c contains other (k� i) items greater than ci, but such

items in t are only (jtj � POS[ci]), (jtj � POS[ci]) < (k � i).

Remarks. Our technique is based on a directly accessible, limited pre�x tree, and is particularly eÆcient

for small values of k, where it really reduces the search space within Ck. Moreover, the technique adopted

enhances spatial locality exploitation.

The counting technique is still e�ective for larger values of k. We have experimentally veri�ed that,

for each transaction t, most of the candidate k-itemsets that are scanned turn out to be set-included

in t. Note that this e�ectiveness in selecting candidates to be checked against a t is also due to our

pruning technique, which removes unimportant items from t. Finally, it is worth considering that our

set inclusion check, which is based on the vector POS[ ], permits the number of comparisons to be

considerably reduced when a given candidate is not a subset of t.

2.3 Pseudo code of DCP.

The �rst iteration of DCP, during which the database is scanned to �nd frequent items, is the same as

the Apriori one. F1 is optimally built by counting all the occurrences of each item i 2 f1; : : : ;mg in

every t 2 D.
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1: global counter(G1; F1)

2: k 2

3: m2  jF1j

4: for all i 2 [1;m2] do

5: COUNTS[i]  0

6: end for

7: D3  ;

8: for all t 2 D do

9: t̂ = global pruning(t; G1; 2)

10: if jt̂j � 2 then

11: for all ft̂i1 ; t̂i2g � t̂ j 1 � i1 < i2 � jt̂j do

12: � = �2(t̂i1 ; t̂i2 )

13: COUNTS[�]  COUNTS[�] + 1

14: end for

15: end if

16: if jt̂j � 3 then

17: D3  D3 [ t̂

18: end if

19: end for

20:

21: F2 = fc1; c2 2 C2 j COUNTS[�2(c1; c2)] � min supg

22: k 3

Figure 2: Pseudo code of the second iteration of DCP.

Figure 2 shows the pseudo code of the second iteration of DCP, which exploits the direct count

technique discussed in Section 2.2. We �rst update the counters used for the global pruning (line 1). The

pseudo-code for subroutine global counter(Gk; Fk) is not reported. The subroutine handles a vector of

m counters Gk[ ], and simply increments the counter Gk[i] each time an item i is included in a frequent

k-itemset of Fk. For each transaction read from the dataset, we prune all the items whose associated

global counters are lower than 1 (line 9). Note that, since during the �rst iteration of the algorithm the

dataset cannot be pruned, we still read transactions from D. Then we generate all the 2-itemsets of the

pruned transaction and increment the corresponding counters (lines 11-14). At step 2 it is not possible to

apply the local pruning technique, since all the 2-itemsets of t̂ are included in C2 = F1�F1 by de�nition.

Therefore we just add the transactions t̂ to the pruned dataset D3 (line 17).

The pseudo-code for the following iterations k � 3 is shown in Figure 3. First we set the global

counters on the basis of Fk�1 (line 2). Then candidates are generated adopting the same procedure as

in Apriori (line 3). Once the candidates have been generated, the limited pre�x tree described in the

above section is built (line 7). Then the various transactions are processed. After applying the global

pruning technique (line 10), we start scanning the candidates to count how many of them are contained

in any k-subset of t̂ (lines 11-24). For this purpose, we generate all the possible pre�xes of two items

from the elements of t̂, and we store the addresses of the �rst and the last candidates of Ck sharing

this common pre�x in variables start and end (lines 14-17). Then the subroutine count candidates()

(line 18) is invoked. It scans the contiguous section of Ck identi�ed by start and end against t̂. The set

inclusion check of the various candidates against t̂ employs the vector POS[ ], which is initialized with the

positions of all the items included in t̂ (line 13). Note that subroutine count candidates() also updates

Lk[ ], the per-transaction vector of counters exploited by the local pruning technique (line 20). Lk[ ] is

zeroed for each new transaction read from the dataset (line 12). Finally, Figure 4 shows the pseudo-code

for subroutine count candidates(), which exploits the technique previously discussed.

3 Performance evaluation

The results we present in this section were obtained running our implementations of Apriori, DHP, and

DCP. Besides Apriori, we also comparedDCP with DHP, since DHP is particularly eÆcient for problems

characterized by short patterns, and it also adopts a database pruning technique. In addition, we also
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1: while Fk�1 6= ; do

2: global counter(Gk�1; Fk�1)

3: Ck = apriori gen(Fk�1)

4: if Ck = ; then

5: return

6: end if

7: PREFIXk[ ] = init candidates(k;Ck)

8: Dk+1  ;

9: for all t 2 Dk do

10: t̂ = global pruning(t; Gk�1; k)

11: if jt̂j � k then

12: Initialize local counters Lk[ ]

13: POS[ ] = init positions(t̂)

14: for all fti1 ; ti2g � t̂ j 1 � i1 < i2 � jt̂j � k + 2 do

15: � = �k(ti1 ; ti2)

16: start = PREFIXk[�]

17: end = PREFIXk[� + 1] - 1

18: count candidates(jt̂j; k; Ck; POS; start; end; Lk)

19: end for

20: �t = local pruning(t̂; Lk)

21: if j�tj � (k + 1) then

22: Dk+1  Dk+1 [ �t

23: end if

24: end if

25: end for

26: Fk = fc 2 Ck j c:COUNTS � min suppg

27: k  k + 1

28: end while

Figure 3: Pseudo code of a generic iteration of DCP for k � 3.

tested a version of Apriori, called AprioriDP , which enhances Apriori by employing the same dataset

pruning technique introduced in DCP�.

For the tests we used several synthetic datasets obtained with one of the most commonly adopted

dataset generator [5]. The datasets we used in our experiments are characterized by the parameters

reported in Table II, where T indicates the average transaction size, p the size of the maximal potentially

frequent itemset, n the number of transactions, m the number of items, and L the number of maximal

potentially frequent itemsets.

Database T p n m L Size (MB)

200k t10 p4 m1k 20 4 200k 1k 2000 10

400k t10 p8 m1k 10 8 400k 1k 2000 18

400k t10 p8 m100k 10 8 400k 100k 2000 18

400k t30 p8 m1k 30 8 400k 1k 2000 50

400k t30 p8 m100k 30 8 400k 100k 2000 50

800k t30 p8 m1k 30 8 800k 1k 2000 100

2000k t20 p4 m1k 20 4 2000k 1k 2000 180

5000k t20 p8 m1k 20 8 5000k 1k 2000 438

Table II: Values for parameters of the synthetic datasets used in the experiments

The test bed architecture used in our experiments was a Linux-based workstation, equipped with a

Pentium III running at 450MHz, 512MB RAM, and an Ultra2 SCSI disk.

Pruning. We �rst compared our pruning technique with the one used by DHP for two di�erent datasets

(Table III.(a) and III.(b)). The �elds Number of transactions and Dataset size appearing in a generic

row k of the two tables both refer to the dataset written at iteration k, i.e. to the dataset Dk+1 read at

the next iteration. The dataset generated at each iteration by DCP is bigger than the one generated by

�In all the plots, the label identifying the classic Apriori will be AP, while the label identifying AprioriDP will be APdp.

8



Subroutine count candidates(jt̂j; k; Ck; POS; start; end; Lk)

1: for all c = fc1; : : : ; ckg j Ck[start] � c � Ck[end] do

2: // c is included in the ordered segment of candidates
3: // comprised between Ck[start] and Ck[end]
4: found  True

5: i 3

6: while ( (i � k) AND found ) do

7: if ( (POS[ci] = 0) OR (jt̂j � POS[ci] < k � i) ) then

8: found  False

9: else

10: i i+ 1

11: end if

12: end while

13: if found then

14: c:COUNTS c:COUNTS + 1

15: for all ci 2 c do

16: Lk[ci] Lk[ci] + 1

17: end for

18: end if

19: end for

end Subroutine

Figure 4: Pseudo code of the subroutine count candidates().

DHP. However, due to the global dataset pruning technique, DCP further reduces the size of the various

transactions as soon as they are read from Dk. Finally, the two tables highlight that, after a certain

dimension of the candidate set (k = 12 in both cases), the e�ects of the two dataset pruning techniques

are exactly the same.

I/O costs. Since in several instances of the FSC problem, input datasets are larger than main memory

and are accessed repeatedly, these datasets must be maintained on disks and accessed in blocks by

using an out-of-core technique. It is however possible to exploit modern OS features such as caching

and prefetching [6], thus limiting I/O overheads. In particular, if a �le is accessed sequentially, the OS

prefetches the next block while the current one is being elaborated. Moreover, the OS stores blocks in

the bu�er cache, i.e. in the main memory, for possible future reuse.

To prove the bene�ts of I/O prefetching, we conducted some synthetic tests whose results are plotted

in Figure 5. In these tests, we read a �le of 256 MB in blocks of 4KB, and used an SCSI Linux workstation

with 256 MB of RAM. Before running the tests, the bu�er cache did not contain any blocks of the �le. We

arti�cially varied the per-block computation time, and measured the total elapsed time. The di�erence

between the elapsed time and the CPU time actually used to elaborate all the blocks corresponds to the

combination of CPU idle time and time spent on I/O activity. The plots in Figure 5.(a) correspond to

tests where the �le is read and elaborated only once, and the x-axis reports the total CPU time needed

to elaborate all the blocks of the �le. Note that an approximated measure of the I/O cost for reading

the �le can be deduced for null per-block CPU time (x = 0): in this case the measured I/O bandwidth

is about 10MB/sec. As we increase the per-block CPU time, the total execution time does not increase

proportionally, but remains constant up to a certain limit. After this limit, the computational grain of

the program is large enough to allow the OS to overlap the computation and I/O.

This means that, when an application is compute-bound, there is a quasi complete overlapping between

I/O activity and useful computation. In our case, an Apriori algorithm turns out to be compute-bound

when counting candidates is very expensive. This often happens for instances of the FSC problem with

small supports. Therefore, we argue that the performance problems observed in Apriori are often due

to the extremely high computational cost of candidate counting, more than to the I/O cost of multiple

dataset scans.

We repeated the experiment above by introducing disk writing, and also by iterating the elaboration

performed on the dataset. Speci�cally, we only wrote half of the blocks read each time, thus reproducing
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N. Trans D. Size (bytes)

k DCP DHP DCP DHP

1 399979 399979 52401548 52401548

2 399979 399979 51358952 40981912

3 399973 399153 34139464 9055900

4 387094 200532 6310708 5860728

5 130528 128096 4934708 4934708

6 91845 104152 3241580 3241580

7 64403 64403 2643864 2643864

8 48031 50686 1548384 1548384

9 27332 27332 1224564 1224564

10 20760 20760 361984 361984

11 4381 4381 361984 361984

12 4381 4381 361984 361984

13 4381 4381 361792 361792

14 4378 4378 360500 360500

15 4359 4359 356036 356036

16 4297 4297 341444 341444

17 4105 4105 273924 273924

18 3261 3261 0 0

(a)

N. Trans D. Size (bytes)

k DCP DHP DCP DHP

1 338603 338603 19695500 19695500

2 338388 338399 19432864 9484108

3 334452 229062 5792664 3198796

4 119390 76960 2748736 2464004

5 59367 57135 1943112 1943112

6 40790 43309 1341392 1341392

7 27037 27786 1049884 1049884

8 18651 20666 589696 589696

9 10648 10648 436924 436924

10 7486 7486 164120 164120

11 2259 2259 116800 116800

12 1414 1414 116680 116680

13 1412 1412 116616 116616

14 1411 1411 116208 116208

15 1405 1405 115200 115200

16 1391 1391 109804 109804

17 1320 1320 88284 88284

18 1051 1051 0 0

(b)

Table III: Pruning e�ect in DCP and DHP for (a) dataset 400k t30 p8 m1k and s = 0:75%, and for (b)

dataset 400k t10 p8 m1k and s = 0:25%.
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Figure 5: Total and I/O+idle time versus computational granularity. Dataset size is 256MB. In (a) the

�le is completely read and elaborated once. In (b) we have an iterated elaboration of the dataset, which

is re-written at each step. Only half of the blocks read are however written back on disk and used at the

next iteration.

the dataset pruning, as in DHP and DCP. The dataset read at each iteration is thus the one written

at the previous iteration. Our test is iterated until the dataset becomes empty. Figure 5.(b)) refers to

these tests. Also in this case, the x-axis reports the total CPU time needed to elaborate all the blocks

read, and thus takes into account the iterated elaboration of the pruned dataset. Note that, due to write

activities, the e�ect of I/O overlapping is less e�ective than in the previous test. However, when the

written dataset becomes smaller than the main memory size, it can �t entirely into the bu�er cache so

that blocks can be read without actually accessing the disk. Finally, note that even if blocks are accessed

in the bu�er cache, I/O does not disappear, since blocks written to the cache must be synchronized with

the disk.

Per-iteration Execution Times. From the analysis of the execution times for every step of the three

algorithms studied in this work, we can observe that the behavior of the algorithms strictly depends on

the dataset chosen. Besides the values of parameters which are known statically - such as the number of

transactions, or the number of itemsets - also the internal correlations present in the transactions lead to

signi�cantly di�erent behaviors.

The plots reported in Figure 6 show per-iteration execution times of DCP, AprioriDP and DHP. The

two plots refer to tests conducted on the same dataset, for di�erent values of the support s. First note
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that DCP always outperforms the other algorithms due to its more eÆcient counting technique. The

performance improvement is impressive for small values of k. In particular from Figure 6.(a) we can see

that the second iteration of DCP takes about 21 sec. with respect to 853 and 1321 sec. for DHP and

AprioriDP . Moreover, we can observe that DHP is e�ective only when the number of candidates can

actually be reduced, otherwise the construction of its hash table (see Section 4) introduces unnecessary

overheads. For a larger support (s = 0:75%), in fact, DHP outperforms AprioriDP (see Figure 6.(a)),

since it is able to prune more candidates than AprioriDP . For a lower support (s = 0:50%), since only

a few transactions and items can be pruned, DHP only pays the overhead of constructing the hash table

(see Figure 6.(b)). In other words, for low supports and small values of k, almost all the candidates

selected by AprioriDP are found to be frequent.
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Figure 6: Per-iteration execution times of DHP, AprioriDP , and DCP on dataset 400k t30 p8 m1k with

s = 0:75% (a) and s = 0:50% (b).

Total Execution Times. Figure 7 reports the total execution time obtained running Apriori, DHP,

AprioriDP , and DCP on a dataset containing a small number n of transactions as a function of support

s. Figures 7.(a) and (b) refer to datasets where the average transaction size is 10 and 20, with a �xed n.

Changing the average transaction size has the e�ect of increasing the dataset size. In all the tests DCP

performed better.

We also studied the in
uence of the total number m of items present in D. In our synthetic datasets,

as we increase m, and maintain constant sizes of database and transactions, we �nd smaller maximal

frequent itemsets. In other words, the e�ect of increasing m is the reduction of the number of algorithm

iterations. This is con�rmed by our experiments, whose results are reported in Figure 8. In particular, for

m = 100k, and s = 1% or 0:75%, we observed that F2 = ;. This is why DHP particularly underperforms

in this case, since the additional cost of the hash table construction at the second iteration turns out to

be useless.
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Figure 7: Total execution times for Apriori, DHP, AprioriDP , and DCP on datasets 200k t10 p4 m1k

(a), 200k t20 p4 m1k (b) for di�erent supports.
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Figure 8: Total execution times for Apriori, DHP, AprioriDP , and DCP on datasets 400k t10 p8 m1k

(a), 400k t10 p8 m100k (b) for di�erent supports.

Finally, we tested the algorithm behaviors on large datasets (see Figure 9). Speci�cally, dataset

5000k t20 m1k is about as large as the total physical memory available on the workstation used. This

test is important, since the disk bu�er cache could not possibly contain the whole dataset. Thus we cannot

take advantage of the presence in the bu�er cache of blocks of the dataset read at previous iterations. In

most of these tests, DCP execution times are better than the others by about one order of magnitude.

Moreover, for very small supports (0:25%), some tests with the other algorithms were not able to allocate

all the memory needed.
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Figure 9: Total execution times for Apriori, DHP, AprioriDP , and DCP on datasets 2000k t20 p4 m1k

(a), 5000k t20 p8 m1k (b) for di�erent supports.

DCP, on the other hand, requires less memory than its competitors, which exploit a hash tree for

counting candidates. DCP is thus able to handle very low supports, without the explosion of the size of

the data structures used. In this regard, Figure 10 plots the maximum amount of memory allocated by

the various algorithms during the tests on two di�erent datasets.

4 Related work

The algorithms of the Apriori class [4, 5, 11, 15] adopt a a level-wise behavior, which involves a number

of dataset scans equal to the size of the largest frequent itemset. The frequent itemsets are identi�ed by

using a counting-based approach, according to which, for each level k, we count the candidate k-itemsets

that are set-included in each transaction.

An alternative approach, used by several other algorithms, is the intersection-based one [8, 17, 19].

In this case the database is stored in a vertical layout, where each record is associated with a distinct

item and is stored as a list of transaction identi�ers (tid-list). Partition, an intersection-based algorithm

that solves several FSC local problems on distinct partitions of the dataset is discussed in [17]. Dataset

partitions are chosen which are small enough to �t in the main memory, so that all these local FSC
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Figure 10: Maximal sizes of physical memory allocated during the execution for Apriori, DHP, AprioriDP ,

and DCP on datasets 400k t10 p8 m1k (a), 400k t10 p8 m100k (b) for di�erent supports.

problem can be solved with a single dataset scan. While, during the �rst scan, the algorithm identi�es a

superset of all the frequent itemsets, a second scan is needed to compute the actual global support of all

the itemsets. This algorithm, despite the small I/O costs due to the reduced number of database scans,

may generate a superset of all the frequent itemsets which is too large due to data skew, thus making

the next iteration of the algorithm very expensive in terms of time and space. In [13] some methods to

reduce the e�ects of this problem are discussed.

Dataset sampling [18, 20] as a method of reducing computation and I/O costs has also been proposed.

Unfortunately, the FSC results obtained from a sampled dataset may not be accurate since data patterns

are not precisely represented due to the sampling process.

Even though the DHP [15] algorithm is often cited only in terms of its ability to reduce the number of

candidate sets, it also reduces I/O activity without modifying the level-wise behavior of Apriori. DHP,

in fact, at each iteration re-writes a dataset which is smaller in size. The next iteration thus has to cope

with a smaller input dataset than the previous one. The bene�ts are not only in terms of I/O, but also

in terms of reduced computation for subset counting due to the reduced number and size of transactions.

DHP prunes both the candidates and the dataset using a hash �ltering technique. The hash �lter of DHP

requires the construction of a hash table Hk+1 at each iteration k. Hk+1 provides some approximate

knowledge of the actual composition of Fk+1. For some datasets DHP is able to drastically reduce the

di�erence between jCkj and jFkj. This di�erence, however, is usually very high only for small values of

k, e.g. k = 2; 3. Our DCP algorithm exploits a technique for database pruning similar to DHP, though

it does not require the expensive construction of a hash table.

As regards the typical I/O behavior of algorithms for solving the FSC problem, in [6] we observed

that when a dataset is sequentially and repeatedly scanned by reading �xed blocks of data, the OS

prefetching and bu�ering turn out to be very e�ective. More speci�cally, OS prefetching is able to overlap

computation and I/O activity provided that the computation granularity is large enough, while OS

bu�ering is only useful for small datasets. As discussed in Section 3, for some datasets and small supports,

the Apriori family of algorithms becomes compute-bound, so that techniques as those illustrated in [6]

can be e�ectively exploited to overlap I/O time. Since algorithms that reduce dataset scans [13, 17, 18]

increase the amount of work carried out at each iteration, we argue that further work has to be done

to quantitatively analyze the advantages and disadvantages of adopting these algorithms rather than

level-wise ones.

Recently, several new algorithms for solving the FSC problem have also been proposed [19]. Like

Partition, they use an intersection-based approach by dynamically building a vertical layout database.

While the Partition algorithm addresses these issues by relying on a blind subdivision of the dataset,

Zaki's algorithms exploit clever dataset partitioning techniques that rely on a lattice-theoretic approach

for decomposing the search space. For example, in the Eclat algorithm each subproblem is concerned

with �nding all the frequent itemsets which share a common pre�x, which is in turn a frequent itemset.

On the basis of the common pre�x it is possible to determine a partition of the dataset, which will

be composed of only those transactions which are included in the support of the pre�x itemset. By
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recursively applying Eclat's search space decomposition we can thus obtain subproblems which can �t

entirely into the main memory. However, Zaki obtains the best computational times with algorithms

which mine only the maximal frequent itemsets (e.g. MaxEclat, MaxClique). While it is simple to derive

all the frequent itemsets from the maximal ones, the same does not hold for their supports, which require

a further counting step. Remember that the exact supports of all the frequent itemsets are needed to

correctly compute association rule con�dences.

In [7] the Max-Miner algorithm is presented, which aims to �nd maximal frequent sets by looking ahead

throughout the search space. This algorithm is explicitly devised to work well for problems characterized

by long patterns. When the algorithm is able to quickly �nd a long frequent itemset and its support, it

prunes the search space and saves the work to count the support of all the subsets of this long frequent

itemset. Moreover, it uses clever lower bound techniques to determine whether an itemset is frequent

without accessing the database and actually counting its support. Hence, in this case too the method is

not able to exactly determine the support of all frequent itemsets.

FP-growth [12], a very interesting algorithm able to �nd frequent itemsets in a database without can-

didate generation, has been recently presented. The idea is to build in memory a compact representation

of the dataset where repeated patterns are represented once along with the associated repetition coun-

ters. The data structure used to store the dataset is called frequent pattern tree, or FP-tree for short.

The tree is then explored without using the candidate generation method, which may explode for prob-

lems that have long itemsets. The algorithm is recursive. It starts by identifying paths on the original

tree which share a common pre�x. These paths are intersected by considering the associated counters.

During its �rst steps, the algorithm determines long frequent patterns. Then it recursively identify the

subsets of these long frequent patterns which share a common pre�x. Moreover, the algorithm can also

exactly compute the support of all the frequent patterns discovered. The authors only present results for

datasets where the maximal frequent itemsets are long enough. We believe that for problems where the

maximal frequent sets are not so long, the resulting FP-tree should not be so compact, and the cost of its

construction would signi�cantly a�ect the �nal execution time. A problem that has been recognized for

FP-growth is the need to maintain the tree in memory. Solutions based on a partition of the database, in

order to permit problem scalability, are also illustrated.

Finally we discuss Tree Projection [1], an algorithm which, like DCP prunes the transactions before

counting the support of candidate itemsets, and also adopts a counting-based approach. The pruning

technique exploited byDCP takes into account global properties regarding the frequent itemsets currently

found, and produces a new pruned dataset at each iteration. Tree Projection, on the other hand, prunes

(or projects) each transaction in a di�erent way whenever the support of a speci�c group of candidates has

to be counted. To this end candidates are subdivided into groups, where each group shares a common

pre�x. To determine the various projections of each transaction at level k, the transaction has to be

compared with each frequent itemset at level k � 2. These itemsets determine the common pre�x of

a given group of candidates of length k. This is the most expensive part of the algorithm. Once each

projection has been determined, counting is very fast, since it only requires access to a small matrix

of counters. The counting method used by DCP is di�erent from Tree Projection. We need to access

di�erent groups of candidates (and associated counters) which share a common 2-item pre�x. However,

we do not need to scan all the possible 2-item pre�xes. On the other hand, for each pair of items

occurring in each transaction t we look up a directly accessible pre�x table of Ck, and then scan the

group of candidates to determine their inclusion in t. Note that the cost of this scan, due to the pruning

operated on t, and the technique used to check the inclusion of each candidate in t, is very fast. Finally,

we veri�ed experimentally that a very large part of the candidates checked by DCP against t are actually

included in t. In other words, DCP is able to optimally select the candidates to be checked against t.

5 Conclusions

In this paper we have reviewed the Apriori class of algorithms proposed for solving the FSC problem.

These algorithms have often been criticized because of their level-wise behavior, which requires a number

of scans of the database equal to the cardinality of the largest frequent itemset discovered. However we
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have shown that, in many practical cases, Apriori-like algoritms are not I/O-bound. When this occurs,

the computational granularity is large enough to take advantage of the features of modern OSs, which

allow computation and I/O to be overlapped. To speed up these compute-bound algorithms, the only

solution is to make their most expensive computational part, i.e. the subset counting step, more eÆcient.

Moreover, as the DHP algorithm demonstrates, counting the number of dataset scans as a measure of

the complexity of the Apriori algorithms does not take into account that very e�ective dataset pruning

techniques can be devised. These pruning techniques can rapidly reduce the size of the dataset until it

�ts into the main memory. Nevertheless, our results showed that the e�orts to reduce the size of the

dataset and the number of candidates are of little use if the subset counting procedure is not eÆcient.

Our ideas to design DCP, a new algorithm for solving the FSC problem, originate from all the above

considerations. DCP uses e�ective database pruning techniques which, di�erently from DHP, introduce

only a limited overhead, and exploits an innovative method for storing candidate itemsets and counting

their support. Our counting technique exploits spatial locality in accessing the data structures that

store candidates and associated counters. It also avoids complex and expensive pointer dereferencing. A

possible enhancement to DCP is to adopt a blocking technique [1] to improve temporal locality as well.

In fact, for each transaction t, DCP explores speci�c sections of a vector storing Ck in order to count

the support of candidates. Instead for single transactions, we could explore Ck for blocks of transactions,

thus increasing the probability of repeated and close (in time) accesses to the same sections of candidates

and associated counters.

As a result of its design,DCP signi�cantly outperforms both DHP and Apriori. For many datasets the

performance improvement is even more than one order of magnitude. More importantly, DCP exhibits

better scalability. Consequently, due to its counting eÆciency and low memory requirements, DCP can

be used for �nding low-support frequent itemsets within very large databases.
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