
Boosting the Performance of Web Search
Engines: Caching and Prefetching Query
Results by Exploiting Historical Usage Data

TIZIANO FAGNI, RAFFAELE PEREGO, and FABRIZIO SILVESTRI

Consiglio Nazionale delle Ricerche (CNR)

and

SALVATORE ORLANDO

Università Ca’ Foscari di Venezia

This article discusses efficiency and effectiveness issues in caching the results of queries submitted
to a Web search engine (WSE). We propose SDC (Static Dynamic Cache), a new caching strategy
aimed to efficiently exploit the temporal and spatial locality present in the stream of processed
queries. SDC extracts from historical usage data the results of the most frequently submitted
queries and stores them in a static, read-only portion of the cache. The remaining entries of the
cache are dynamically managed according to a given replacement policy and are used for those
queries that cannot be satisfied by the static portion. Moreover, we improve the hit ratio of SDC by
using an adaptive prefetching strategy, which anticipates future requests by introducing a limited
overhead over the back-end WSE. We experimentally demonstrate the superiority of SDC over
purely static and dynamic policies by measuring the hit ratio achieved on three large query logs by
varying the cache parameters and the replacement policy used for managing the dynamic part of
the cache. Finally, we deploy and measure the throughput achieved by a concurrent version of our
caching system. Our tests show how the SDC cache can be efficiently exploited by many threads
that concurrently serve the queries of different users.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems, Performance evaluation (efficiency and effectiveness)

General Terms: Design, Performance, Experimentation

Additional Key Words and Phrases: Caching, multithreading, Web search engines

We acknowledge the financial support of the project Enhanced Content Delivery, funded by the
Ministero Italiano dell’Università e della Ricerca.
Authors’ addresses: T. Fagni, R. Perego, and F. Silvestri, Istituto ISTI A. Faedo, Consiglio Nazionale
delle Ricerche (CNR), via Moruzzi 1, I-56100, Pisa, Italy; email: {tiziano.fagni,raffaele.perego,
fabrizio.silvestri}@isti.cnr.it; S. Orlando, Dipartimento di Informatica, Università Ca’
Foscari di Venezia, via Torino 155, I-30172 Mestre (VE), Italy; email: orlando@dsi.unive.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1046-8188/06/0100-0051 $5.00

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006, Pages 51–78.



52 • T. Fagni et al.

1. INTRODUCTION

Caching is an effective technique to make scalable a service that distributes
data to a multitude of clients. As suggested by Xie and O’Hallaron [2002],
Markatos [2000], Saraiva et al. [2001], Lempel and Moran [2003], and Silvestri
[2004], caching query results is an effective way to enhance the performance of
a Web search engine (WSE). This is motivated by the high locality present in
the stream of queries submitted by users. WSE query results caching, as Web
page caching, can occur at several places, for example, on the client side, on
a proxy, or on the server side. Independently of its placement, the presence of
a cache has the effect of enhancing WSE responsiveness, since many queries
can directly be solved by the cache itself, without actually querying the WSE.
Moreover, cache hits save WSE resources used to compute the page of rele-
vant results returned to the user. Consider that, in order to answer a query
in presence of a cache miss, a WSE has to perform many relatively expensive
operations such as accessing the disk-resident index to retrieve the inverted
lists associated with query keywords, intersecting them, ranking the results
obtained on the basis of their relevance [Witten et al. 1999], retrieving URLs
and snippets for each returned result, and, finally, building the HTML page
returned to the user [Barroso et al. 2003]. With respect to these costs, the few
microseconds spent for a lookup operation on an in-core cache (cache hit) can
be considered negligible.

In this article, we are interested in studying the design and implementation
of a server-side cache of query results to be deployed on the front-end of a
high-performance parallel (and distributed) WSE. Starting from the analysis
of the content of three real query logs, we propose a novel caching strategy
called SDC (Static and Dynamic Cache.) SDC is a caching policy driven by
statistical usage. The results of the most frequently accessed queries are then
stored within a fixed-size set of statically locked cache entries. This is rebuilt at
fixed time intervals using statistical data coming from WSE query logs. Each
query is matched first against the static set of cache entries. If the request cannot
be satisfied by the static set, it competes for the use of a dynamic set of cache
entries. The management of the dynamic set adopts a fully associative mapping
of queries to cache entries, and can exploit, in principle, any replacement policy.
We experimentally evaluated SDC by measuring the hit ratio achieved on real
query logs by varying the size of the cache, the percentage of cache entries of
the static set, and the replacement policy used for managing the dynamic set.
In all the tests performed, SDC outperformed either purely static or dynamic
caching policies. Since the hit ratio achieved by the static set may suffer from
the aging of the statistical information gathered from usage data, we analyzed
how such information gets old as time progresses.

Moreover, we show that WSE query logs exhibit not only temporal local-
ity, but also a limited spatial locality, due to requests for subsequent pages
of results. To take advantage of spatial locality, our caching system adopts an
adaptive prefetching strategy that, differently from other proposals [Lempel and
Moran 2003], tries to maintain a low overhead on the underlying WSE Core.
In fact, while server-side caching surely reduces the load over the core query

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 53

service of a WSE, and improves its throughput, prefetching aims to increase
the cache hit ratio and thus the responsiveness (from the point of view of each
single user) of the WSE, but may cause overhead on the same core query service.

Finally, the presence of a static portion of the cache simplifies the design of
a high-throughput concurrent SDC caching system, since the read-only static
entries can be accessed without synchronization by many threads serving the
user queries. We measured average hit and miss time, and tentatively assessed
the throughput of our concurrent caching system (i.e., the number of queries
resolved per time unit) with respect to the number of threads concurrently
serving distinct user queries.

The rest of the article is organized as follows. Related work is presented
and discussed in Section 2. Section 3 analyzes the query logs used for the tests,
while Section 4 discusses our novel caching policy. Section 5 shows the results of
various simulations performed on the different query logs. Section 6 presents
the architecture and the test results of our concurrent SDC caching system.
Finally, Section 7 draws some conclusions and discusses future work.

2. RELATED WORK

Caching is routinely used in the Web since it allows the bandwidth consump-
tion to be reduced, and the user-perceived quality of service to be improved.
It is exploited at the client side, where the browser application temporarily
stores accessed Web objects. It is used at the proxy level, where Web documents
requested by one client may be cached for later retrieval by another client. Fi-
nally, caches can be placed at the server-side to reduce the number of requests
that the server must actually handle [Podlipnig and Boszormenyi 2003]. In this
article, we propose a novel server-side caching system which stores the results
of the queries submitted by a multitude of users to a WSE. As noted by Xie and
O’Hallaron [2002] and confirmed by our analysis of query logs, many popular
queries are shared by different users. This level of sharing justifies the choice of
exploiting a server-side WSE caching system. One of the issues in designing a
server-side cache is the scarcity of resources usually available on the server, in
particular the random-access memory needed to store cache entries. However,
the architecture of a scalable, large-scale WSE is very complex and includes sev-
eral interconnected machines that take care of the various subtasks involved in
the processing of user queries [Orlando et al. 2001; Barroso et al. 2003]. Figure 1
shows the architecture of a typical large-scale WSE placed behind an HTTP
server. It is a distributed architecture composed of a farm of identical machines
running multiple WSE core modules, each of which is responsible for searching
a partition of the whole (inverted file) index. When each subindex is relative
to a disjoint subcollection of documents, we have a local or document parti-
tioning index organization, while when the whole index is horizontally split,
so that different partitions refer to a subset of the distinct terms contained in
all the documents, we have a global or term partitioning index organization. In
both cases, in front of these searcher machines we have an additional machine
hosting the broker, which has the task of scheduling the queries to the various
searchers, and collecting the results returned back. The broker then merges

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



54 • T. Fagni et al.

Fig. 1. Architecture of a large-scale, distributed WSE hosting a cache of query results.

and orders the results received on the basis of their relevance, and produces a
ranked vector of document identifiers (DocIDs), for example, a vector composed
of 10 DocIDs. These DocIDs are then used to get from the Urls/Snippets Server
(i.e., the server storing the original documents downloaded by the Web) the as-
sociated URLs and page snippets to include in the HTML page returned to the
user through the HTTP server [Barroso et al. 2003]. Note that multithreading
is exploited extensively by all these modules in order to process concurrently
distinct queries. Within this architecture the random-access memory is a very
precious resource for the machines that host the WSE core, which perform well
only if the mostly accessed sections of their huge indexes can be buffered into the
main memory. Conversely, the random-access memory is a less critical resource
for the machine that hosts the broker. This machine can thus be considered as
an ideal candidate to host a server-side cache. The performance improvement
which may derive from the exploitation of query results caching at this level is
remarkable. Queries resulting in cache hits can be in fact promptly served, thus
enhancing WSE throughput, but also those resulting in cache misses should
benefit substantially, since the miss penalty should be reduced due to the lower
load on the WSE and the consequent lower contention for the I/O, network, and
computational resources exploited by the WSE back-end.

Depending on the memory available on the broker, we could devise a cache
whose blocks stores the complete HTML pages returned to users (HTML cache),
or a cache that simply stores the DocID vectors (DocID cache). Note that, given
a fixed memory size, the DocID cache could include a larger amount of blocks
than an HTML cache, since in that case each block is a small vector of integer
identifiers. Conversely, a hit in a DocID cache only returns a vector of DocIDs,
while the HTML page to be delivered to the user has still to be prepared. Inde-
pendently of the kind of the cache (DocID or HTML), in this article we will call
page of results the content of a cache block.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 55

Many works have studied the behavior of WSE users by analyzing usage
data. One of the first articles analyzing the possible ways of exploiting user
feedback was authored by Raghavan and Sever [1995]. Their article proposed
the use of a query base, built on the basis of a set of persistent optimal queries
submitted in the past. This query base is exploited to improve the retrieval
effectiveness for the queries which appear to be similar to the ones in the query
base according to given similarity measures. Even though the main focus of
this work was not on caching, it represented one of the first attempts of reusing
past knowledge about usage in order to enhance the retrieval process.

Höelscher [1998] analyzed the query log of the Fireball German search en-
gine. The log contains about 16 millions of queries submitted on July 1996.
The article focused on the analysis of features of the queries. The most inter-
esting result was that a large part of the users (about 59%) just looked at the
first page of results, while 79% of them looked at no more than three pages of
results.

Silverstein et al. [1999] analyzed a large query log of the Alta Vista search
engine containing about a billion queries submitted in a period of 42 days.
The exhaustive analysis presented by the authors pointed out some interesting
results. Tests conducted included the analysis of the query sessions for each
user, and of the correlations among the terms of the queries. Similarly to other
work, their results showed that the majority of the users (in this case about
85%) visit the first page of results only. They also showed that 77% of the users’
sessions end up just after the first query.

Spink et al. [2001] deeply analyzed the Excite query log, the one used also in
our tests. They showed many different characteristics of the queries contained
within the log, and also of the users search session. Similarly to us, they dis-
covered that Web queries are, on average, short and quite simple in structure.
Few users uses advanced search features, and when they do half of them are
mistakes. Finally, Web users, usually, view just the first page of results. Even
though with different goals in mind, the main findings of their work do not dif-
fer too much from the results of our log analysis. Indeed, the differences regard
topics that are not useful for the justification of our main results about Web
query caching policies.

Beitzel et al. [2004] analyzed a very large Web query log of America On Line
containing the queries submitted during a whole week. The queries came from
a population of tens of millions of users searching the Web for a wide variety of
topics. Differently from the analysis presented in Silverstein et al. [1999], they
partitioned the query log into groups of queries submitted in different hours
of the day. The analysis, then, tried to highlight the changes in popularity and
uniqueness of topically categorized queries within the different groups. Query
repetition rate was observed to be nearly constant throughout the day, although
each frequent query did not appear often during an hour. Another interesting
finding was that the queries submitted during peak hours were more similar to
each other than their nonpeak hour counterparts. An interesting supposition of
the authors was that it is possible to devise predictive functions able to estimate
the likelihood of a query being repeated. This last point, in particular, is very
important for caching. The capability of estimating in advance queries that are

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



56 • T. Fagni et al.

likely to be or not to be repeated in the future may be profitably exploited by
the cache replacement policy.

Markatos [2000, 2001] analyzed a million queries contained in a log of the
Excite WSE. The experiments showed the existence of temporal locality in the
submission of the queries to the WSE. In particular, nearly a third of the sub-
mitted queries were successively resubmitted by either the same or other users.

Finally, Lempel and Moran [2003] presented an analysis of a query log con-
taining around 7.2 millions queries submitted to the Alta Vista search engine in
the summer of 2001. They discovered that about 63.5% of the views regarded the
first page of results only. On the other hand, the views accounted for the second
page of results were about 11.7% of the total. Another important statistical fact
discovered by Lempel and Moran regarded topic popularity, that is, the number
of times a particular query was requested. They showed that this popularity
followed an inverse power-law distribution. Practically speaking, most queries
were requested only once, while only a few of them were requested multiple
times. We confirmed that our query logs also followed the same distribution.

Only a few of the works evaluating the features of WSE query logs also pro-
posed effective techniques to exploit the locality present in the stream of queries.
Although it is virtually certain that some commercial Web search companies
adopted query results caching from the beginning of their existence, the first
scientific article that proposed caching as a means to reduce the response time
of a WSE appeared in 2000 [Markatos 2000, 2001]. In this article, Markatos
described different state-of-the-art caching policies and compared the hit ratio
obtained on a log composed of queries submitted to Excite. Nevertheless, he did
not propose any policy tailored to specific statistical properties of the Excite log,
and did not consider the possibility of exploiting a prefetching strategy in order
to prepare the cache to answer possible requests for following pages.

The second article describing a WSE caching system is the one by Saraiva
et al. [2001]. In their work, the authors proposed a two-level caching system
that aims to enhance the responsiveness of a hierarchically-structured search
engine (very similar to the one sketched in Figure 1). The first-level cache
stores query results and exploits an LRU policy. The second-level cache stores
the posting list of the terms contained in the query string. For example, for
the query “caching system” the second-level cache will separately store the
posting lists of the terms caching, and system. The interesting point is that the
authors experimented with their cache by measuring the overall throughput
when either a two-level cache was, or was not, adopted. Even though the second-
level cache did not produce any increment in the throughput for low request
rates, when the request rate increased, the second-level effectively helped the
disk in serving the requests, thus increasing the overall throughput.

According to the distributed architecture of Figure 1, other levels of caching
can be added without interfering with the effectiveness of a query-result caching
system like the one proposed in this article. The responsiveness and the over-
all throughput of the WSE can improve if a postings cache on the machines
which store the index and resolve queries, or a Url/Document cache on the
Urls/Snippets Server, are added which effectively reduce the latency of opera-
tions performed remotely from the point of view of the broker.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 57

The work presented by Long and Suel [2005] goes in this direction and
presents a caching system structured according to three different levels. The
intermediate level contains frequently occurring pairs of terms and stores inter-
sections of projections of the corresponding inverted lists. The authors proposed
and studied both off-line and on-line caching algorithms. The experimental eval-
uation, based on a large Web crawl and a real search engine query log, showed
significant performance improvements for the intermediate caching level, both
in isolation and in combination with the other caching levels.

Lempel and Moran [2003], besides analyzing query log features, also pre-
sented PDC (Probabilistic Driven Caching), a new WSE query results caching
policy. The idea behind PDC is to associate a probability distribution with all
the possible queries that can be submitted to a WSE. The distribution is built
over statistics computed on the previously submitted queries. For all the queries
that have not previously seen, the distribution function evaluates to zero. This
probability distribution is used to compute a priority value that is exploited
to order the entries of the cache: highly probable queries are highly ranked,
and have a low probability to be evicted from the cache. Indeed, a replacement
policy based on this probability distribution is only used for queries regard-
ing pages subsequent to the first one. For queries regarding the first page of
results, an SLRU policy is used. SLRU [Karedla et al. 1994] maintains two
LRU segments, a protected segment and a probationary segment. Pages are
first placed in the probationary segment; if requested again, they are moved to
the protected segment. In regard to evictions, pages evicted from the protected
segment are moved to the probationary segment, while pages evicted from the
probationary segment are removed from the cache.

PDC also adopts prefetching to anticipate user requests. To this purpose,
PDC exploits a model of user behavior. A user session starts with a query for
the first page of results, and can proceed with one or more followup queries
(i.e., queries requesting successive page of results). When no followup queries
are received within τ seconds, the session is considered finished. This model is
exploited in PDC by demoting the priorities of the entries of the cache referring
to queries submitted more than τ seconds ago. To keep track of query priorities,
a priority queue is used. PDC results measured on a query log of Alta Vista were
very promising. With a cache of 256, 000 elements and prefetching 10 (i.e., nine
further pages of results are always requested along with the first one), the
authors measured a hit ratio of about 53.5%. Unfortunately the PDC policy is
expensive from the computational point of view: its amortized complexity is
logarithmic in the size of the priority queue.

3. ANALYSIS OF THE QUERY LOGS

In order to evaluate the behavior of different caching strategies, we used three
real query logs. In particular we used Tiscali, a trace of queries submitted to the
Tiscali WSE (www.janas.it) in April 2002, Excite, a publicly available trace of
the queries submitted to the Excite WSE (www.excite.com) on September 16th
1997, and Alta Vista, a query log containing queries submitted to Alta Vista
(www.altavista.com) in the summer of 2001. The Excite log is the same as the

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



58 • T. Fagni et al.

Table I. Main Characteristics of the Query Logs Used

Query Log Queries Distinct Queries Date
Excite 2,475,684 1,598,908 September 16th, 1997
Tiscali 3,278,211 1,538,934 April 2002
Alta Vista 7,175,648 2,657,410 Summer of 2001

one used by Markatos [2000] and by Spink et al. [2001], while the Alta Vista log
was also used by Lempel and Moran [2003]. Each record of a query log refers to a
single query submitted to the WSE for requesting a page of results, where each
page contains a fixed amount of URLs ordered according to a given rank. All
query logs were preliminarily cleaned by converting query words to lowercase.
In order to unify the different formats of the logs, we also removed useless
fields such as, for example, the timestamps and client identifiers in the Excite
log. We further normalized the query log entries by removing those referring
to requests of more than 10 results per page.1 Finally, it is worth noting that
we didn’t remove stopwords (except in the Excite case discussed below), and
we didn’t reorder query words. Thus, similarly to real-world search engines
like Google, we considered the queries “new york” and “NEW YORK” the same
query, which is different from both the query “york new” and “the new york.” At
the end of this preprocessing phase, each entry in each one of our query logs has
the form (keywords, page no), where keywords corresponds to the list of words
searched for, and page no determines which page of results is requested.

Table I shows the main characteristics of the query logs used. While about
46% of the total number of queries appearing in the relatively recent Tiscali
and Alta Vista logs are distinct, this percentage increases to 64% in the Excite
log. Therefore, only looking at the numbers of distinct queries appearing in the
three logs, we could deduce that locality in the Excite log, that is, the oldest one,
is lower than those present in the other two logs, since only 36% (about 54% in
the Tiscali and Alta Vista logs) of all its queries corresponds to resubmissions
of previously submitted queries.

3.1 Temporal Locality

The plots reported in Figure 2 assess the temporal locality present in the query
logs using a log-log scale. In particular Figure 2(a) plots the number of occur-
rences of the most popular queries within each log, where query identifiers have
been assigned in decreasing order of frequency. Note that query popularity fol-
lows an inverse power-law distribution in all the three logs. Since the number
of occurrences of a given query is a measure that might depend on the total
number of records contained in the logs, we also analyzed the distance between
successive submissions of the same query. The rationale of this analysis is that
if queries are repeatedly submitted within small time intervals, we can expect
to be able to retrieve their results even from a cache of small size. Figure 2(b)
reports the results of this analysis. For each query log we plotted the cumula-
tive number of resubmissions of identical queries as a function of the distance

1Since our cache stores fixed-size blocks, in the tests conducted we always added the number of
pruned queries requesting more than 10 results to the number of cache misses.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 59

Fig. 2. (a) Number of submissions of the most popular queries contained in the three query logs
(log-log scale). (b) Distances (in number of queries) between subsequent submissions of the same
query.

between them. The distance is measured in number of queries. In particular, for
each distance d, we plotted the cumulative number of repeated queries occur-
ring at a distance less than or equal to d . The results were encouraging: in more
than 350,000 cases the distance between successive submissions of the same
query was less than 100 in the Tiscali log; this distance is slightly smaller in

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



60 • T. Fagni et al.

Table II. Percentage of Queries in the Logs as a Function of the Index of the Page Requested

Query Log 1 2 3 4 5 6 7 8 9 10
Excite 77.59 8.92 3.98 2.37 1.54 1.09 0.78 0.60 0.45 0.37
Tiscali 83.20 5.50 2.86 1.74 1.23 0.74 0.54 0.41 0.32 0.26
Alta Vista 64.76 10.25 5.68 3.41 2.54 1.83 1.42 1.16 0.94 0.88

the Alta Vista log, but it is still less than 100 in more than 150,000 cases. In the
Excite log, we encountered a lower temporal locality. However, also in this log in
more than 10,000 cases some queries were repeated at a distance smaller than
100. We think that the lower locality present in the Excite log was mainly due
to its older age. It contains many long queries expressed in natural language
like “Where can I find information on Michael Jordan.” In the above query, the
first terms are very general and thus of poor significance, while only the last
two words really discriminate results. Such kinds of queries can be considered
a symptom of the poor capacity of the users to interact with a WSE more than
8 years ago. In order to address the locality issues deriving from the age of the
Excite log, we cleaned its queries by removing a small set of stopwords, that is,
by eliminating meaningless terms like articles, adverbs, and conjunctions.

3.2 Spatial Locality

Although different in some assumptions and in some conclusions, the works
surveyed in Section 2 show that WSE users in most cases submit short queries
and only visit a few pages of results. Estimations reported in these works differ,
in some cases, remarkably. Depending on the query log analyzed, percentages
ranging from 28% to 85% of user searches only require the first page of results,
so that we can expect that from 15% up to 72% of user searches retrieve two
or more pages of results for the same query. We consider this behavior as the
presence of a limited spatial locality in the stream of queries processed by a
WSE. At the memory cache level, spatial locality means that, if an instruction
accesses a particular memory location, often nearby memory locations will be
soon accessed. In our case, spatial locality means that, given a query requesting
a page of relevant results, often the WSE will receive a request for one of the
following pages within a small time interval. To validate this consideration,
we measured the amount of spatial locality present in our query logs. Table II
and Figure 3 report the results of this analysis. In particular, Table II shows
the percentage of queries in each log file as a function of the index of the re-
quested page. As expected, most queries required the first page of results only.
On the other hand, while there was a huge difference between the number of
queries requesting the first and the second page, this difference becomes less
remarkable when we consider the second and the third page, the third and the
fourth, and so on. To highlight this behavior, Figure 3 plots the probability of
the occurrence of a request for the ith page, given a previous request for the
(i − 1)th page for the same topic. As can be seen from Figure 3, this probability
is low for i = 2, whereas it increases remarkably for higher values of i. This
may reflect different usages of the WSE. When one submits a focused search,
the relevant result is usually found on the first page. Otherwise, when a generic

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 61

Fig. 3. Probability of the occurrence of a request for the ith page given a previous request for page
(i − 1).

query is submitted, it is necessary to browse many pages in order to find the
relevant information.

3.3 Theoretical Upper Bounds on the Cache Hit Ratio

From the data reported in Table I it is easy to devise the theoretical upper
bounds on the hit ratios achievable on the three query logs when prefetching is
not used. To this end, let us suppose the availability of a cache of infinite size,
so that only compulsory misses have to be taken into account, that is, cache
misses corresponding to the first reference to each distinct query. The rate of
compulsory misses is thus

m = D
Q

, (1)

where D is the number of distinct queries, and Q is the total number of queries
in the log. The value m is the minimum miss ratio, while the maximum hit
ratio, H, is obviously given by

H = 1 − m = 1 − D
Q

. (2)

The analysis becomes a little more complicated when we introduce prefetch-
ing [Lempel and Moran 2003]. It is worth recalling that a general user query has
the form (keywords, page no), and that, for this analysis, we are interested in
considering queries characterized by identical keywords and distinct page no.
In particular, if we retrieve each time k successive pages of results starting from
the one requested by the user (hereinafter we will call k the prefetching factor),
we have to distinguish among queries requesting pages in the first block of k
pages (1 ≤ page no ≤ k), in the second block of k pages (k+1 ≤ page no ≤ 2 · k),

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



62 • T. Fagni et al.

Table III. Hit-Ratio Upper Bounds for Each Query Log as
a Function of the Number of Pages of Results Prefetched

Query Log

Pages Prefetched Excite Tiscali Alta Vista
No prefetching 35.41 53.05 56.97

2 45.43 56.65 60.89
3 47.23 56.86 61.72
4 47.49 56.97 62.08
5 47.54 56.99 62.28
6 47.56 56.99 62.40
7 47.57 57.00 62.49
8 47.57 57.00 62.57
9 47.57 57.00 62.64

10 47.57 57.00 62.72
15 47.58 57.00 62.96
20 47.58 57.00 63.17

and so on. Therefore, for all the user queries characterized by identical keywords
and asking for pages belonging to the ith block of pages, we can thus count a
single compulsory miss, since this miss will cause all the k pages of the block to
be uploaded in the cache due to the prefetching strategy. Note that this reduces
the fraction of compulsory misses, that is, the minimum miss ratio m, while
the maximum hit ratio H is increased accordingly. Table III shows the results
computed on the three query logs.

As can be seen from the values reported in the table, increasing the prefetch-
ing factor does not always result in a corresponding increase to hit ratio bounds.
In particular, for prefetching factors greater than 4, the variations are very
small. We also note that the highest differences in the hit ratios attainable with
and without prefetching are measured on the Excite log (prefetching increases
of more than 10% the hit ratio bound). Once more, this fact seems related to the
peculiarities of Excite. Its log contains poorly expressed queries and the results
returned were perhaps not effective. As a result, users had to browse more than
one page of results in order to satisfy their needs.

4. THE SDC POLICY

SDC is a hybrid caching system which makes use of two different sets of cache
entries. The first level contains the static set, a set of statically locked cache en-
tries filled with the most frequent queries appearing in the past. The static set
is periodically refreshed on the basis of the WSE usage data. The second level
contains the dynamic set, a set of cache entries managed by a given replace-
ment policy. The behavior of SDC in the presence of a query q is very simple.
First it looks for q in the static set, and then in the dynamic set. If q is present
(cache hit), it returns the associated page of results back to the user; otherwise
(cache miss) SDC asks the WSE for the requested page of results, which pos-
sibly replaces an entry of the dynamic set according to the replacement policy
adopted.

The rationale of introducing a static set, where the contents of the cache
entries are statically decided, relies on the observation that query popularity

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 63

follows an inverse power-law distribution [Lempel and Moran 2003], and that
the most popular queries submitted to WSEs do not change very frequently.
Note that the idea of using a statically locked cache was already proposed by
Markatos [2000], where a purely static caching policy for WSE results was
proposed and compared with purely dynamic ones. On the other hand, some
queries are popular only within relatively short time intervals, or may become
suddenly popular due to, for example, unforeseen events (e.g., the September 11,
2001, attacks). Since these queries clearly cannot profit from a static cache, we
introduced the dynamic set. The advantages deriving from this novel hybrid
caching strategy are twofold: the results of the most popular queries can be
retrieved from the static set even if some of these queries might be not requested
for relatively long time intervals, and, on the other hand, the dynamic set of
the cache can adequately cover sudden interests of users. Furthermore, the
presence of the static set has a positive impact on the throughput of the cache
system and thus of the WSE, since the static entries of the cache can be safely
accessed without synchronization by all the concurrent threads which serve the
queries of the users.

4.1 Static Set

The static cache has to be initialized offline, that is, with the results of the most
frequent queries computed on the basis of a previously collected query log. These
queries and corresponding results are statically mapped to cache entries of the
static set using a completely associative mapping function. The implementation
of the first level of our caching system is thus very simple. It basically consists
of a lookup data structure that allows to efficiently access a set of fstatic · N
entries, where N is the total number of entries of the whole cache, and fstatic
is the factor of locked entries over the total. In our implementation, fstatic is a
parameter, given at start time, whose admissible values ranges between 0 (a
fully dynamic cache) and 1 (a fully static cache).

Each time a query is received, SDC first tries to retrieve the corresponding
results from the static set. On a cache hit, the requested page of results is
promptly returned. On a cache miss, we also look for the query results in the
dynamic set.

4.2 Dynamic Set

Also for the dynamic set we adopt a completely associative mapping method.
Differently from the static set, it has to rely on a replacement policy for choosing
which pages of query results should be evicted as a consequence of a cache miss
when the dynamic set is completely full. The literature on caching proposes
many replacement policies which, in order to maximize the hit ratio, try to take
the largest advantage possible from information about recency and frequency of
references. SDC surely simplifies the choice of the replacement policy to adopt.
The presence of a static read-only cache, which permanently stores the pages
most frequently referred in the past, makes in fact recency the most important
parameter to consider. Currently, our caching system supports the following
replacement policies: LRU, LRU/2 [O’Neil et al. 1993], which applies an LRU

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



64 • T. Fagni et al.

policy to the penultimate reference; FBR [Robinson and Devarakonda 1990];
SLRU [Karedla et al. 1994]; 2Q [Johnson and Shasha 1994]; and PDC [Lempel
and Moran 2003].

The replacement policy to be used is chosen at the startup time, and clearly
affects only the management of the (1−fstatic) · N dynamic entries of our caching
system.

Hereinafter we will use the notation SDC-rs to indicate a configuration of
SDC with replacement policy r, and fstatic = 1 − s. For example, SDC-LRU0.4
means that we are referring to SDC using LRU as the replacement policy for
the dynamic set of the cache whose size is 40% of the total size of the cache.

5. EXPERIMENTS

All the experiments were conducted on a Linux PC equipped with a 2-GHz
Pentium Xeon processor and 1 GB of random-access memory. All the tests dis-
cussed in this section were performed by running a single process that reads
the queries from the log and manage the cache. Concurrency issues and the
tests performed in a multithreaded environment are discussed in Section 6.

Since SDC requires the blocks of the static section of the cache to be preven-
tively filled, we partitioned each query log into two parts: a training set, which
contains two-thirds of the queries of the log, and a test set, which contains the
remaining queries used in the experiments. The N most frequent queries of
the training set were then used to fill the cache blocks: the first fstatic · N most
frequent queries (and corresponding results) were used to fill the static portion
of the cache, while the following (1 − fstatic) · N queries were used to fill the dy-
namic one. Note that, according to the scheme above, before starting the tests
not only the static blocks but also the dynamic ones are filled, and this holds
even when a pure dynamic cache (fstatic = 0) is adopted. In this way, we always
started the experiments from the same initial warm cache, and we can fairly
compare different configurations of SDC.

5.1 SDC Without Prefetching

The plots on the top sides of Figures 4, 5, and 6 show the cache hit ratios
obtained by SDC on the Tiscali, Excite, and Alta Vista query logs by varying
the ratio fstatic between the sizes of the static and dynamic sets. Each curve
corresponds to tests conducted by adopting a different replacement policy for
the dynamic portion of the cache. The value of fstatic was varied between 0 (a
fully dynamic cache) and 1 (a fully static cache), while the replacement policies
exploited were LRU, FBR [Robinson and Devarakonda 1990], SLRU [Karedla
et al. 1994], 2Q [Johnson and Shasha 1994], and PDC [Lempel and Moran
2003]. The total size of the cache was fixed at 256,000 blocks. The plots reveal
some interesting things. First, we note that the hit ratios achieved are in some
cases impressive, although the curves corresponding to different query logs
have different peak values and shapes, thus indicating different amounts and
kinds of locality in the query logs analyzed. Second, and more importantly,
we see that SDC remarkably outperformed in all the tests either purely static
(fstatic = 1) or purely dynamic caching (fstatic = 0) policies. The best value for

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 65

Fig. 4. Hit ratios achieved on the Tiscali query log for different replacement policies and varying
values of fstatic, and for different sizes of the cache.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



66 • T. Fagni et al.

Fig. 5. Hit ratios achieved on the Alta Vista query log for different replacement policies and varying
values of fstatic, and for different sizes of the cache.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 67

Fig. 6. Hit ratios achieved on the Excite query log for different replacement policies and varying
values of fstatic, and for different sizes of the cache.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



68 • T. Fagni et al.

Table IV. Average Miss and Hit Times (in Microseconds) for Different
Sizes of an SDC-LRU0.5 Cache

Cache size Hit time, static set Hit time, dynamic set Miss time
32,000 10.00 13.79 61.01
64,000 10.25 14.07 60.54

128,000 10.72 14.15 61.45
256,000 11.29 14.48 60.92
512,000 12.62 14.71 61.07

fstatic depends on the query log considered: the maximum hit ratio was achieved
for values of fstatic equal to 0.4, 0.8, and 0.3 in the case of the Tiscali, Alta Vista,
and Excite query logs respectively. However, since differences in the hit ratio
were slight when fstatic ranged between 0.3 and 0.8, setting it to 0.7 can be
considered a good compromise for all the logs considered. Moreover, a higher
value for fstatic resulted in a larger read-only portion of the cache. In the case
of a multithread cache system, the read-only section allowed software lockout
effects to be reduced and the throughput of the WSE to be remarkably enhanced.

Finally, we can see that the different replacement policies for the dynamic
set behaved similarly with respect to the SDC hit ratio. For example, on the
Alta Vista log, all the curves but that for FBR almost completely overlapped.
This behavior seems to suggest that the most popular queries were satisfied by
the static set. Thus, the dynamic set was only exploited by those queries which
we can define as burst queries, that is, those which appeared frequently just for
a brief period of time. For these queries, the small variations in the hit-ratio
figures seem not to justify the adoption of a complex replacement policy rather
than a simple LRU one.

To measure the sensitivity of SDC with respect to the size of the cache, the
plots in the bottom graphs of Figures 4, 5, and 6 show the hit ratios achieved
on our query logs as a function of the number of blocks of the cache for different
values of fstatic. As expected, when the size of the cache was increased, the hit
ratios increased correspondingly. In the case of the Alta Vista log, the highest hit
ratio achieved with a cache of 50,000 blocks was about 29%, and with a cache
of 256,000 was about 36%. For all the sizes tested, our strategy remarkably
outperformed either purely static (fstatic = 1) or dynamic (fstatic = 0) caching
policies.

Since our logs are not huge, we did not test caches of larger sizes. To make
the comparison with related works easier, similarly to Markatos [2000], Saraiva
et al. [2001], and Lempel and Moran [2003], we used a cache of 256,000 pages
in most of the tests. Note that the actual memory requirements were limited:
a cache of 256,000 blocks storing uncompressed HTML pages of 4 kB each
requires about 1 GB of random-access memory.

In regard to cache management costs, Table IV shows the average times
spent by our implementation to manage hits and misses as a function of the
size of the cache. The tests were conducted on the Alta Vista query log with a
single thread accessing an SDC-LRU0.5 cache. Miss times reported in the table
include only the times spent for managing the cache in the case of a miss—that
is, the time needed for the choice of the page to be evicted, the replacement

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 69

Fig. 7. Hit ratios obtained on the Alta Vista query log with different replacement policies and
different prefetching factors. The tests performed were referred to a cache of 256,000 entries.

of the cache block, and the update of the priority queue—and do not take into
account the times required by the WSE back-end to retrieve the requested page
of results. As it can be seen, cache management times are very low, and almost
independent of the size of the cache when an O(1) replacement policy like LRU
is used.

5.2 SDC and Prefetching

The spatial locality present in a stream of queries submitted to a WSE can
be exploited by anticipating the requests for the following pages of results. In
other words, when the cache receives a query of the form (keywords, page no),
and the corresponding page of results is not found in the cache, an expanded
query (keywords, page no, k) requesting k consecutive pages starting from page
page no, where k ≥ 1 is the prefetching factor, might be forwarded to the core
WSE query service. Note that, according to this notation, k = 1 means that
prefetching is not activated.

When the results of the expanded queries are returned to the caching system,
the retrieved pages which are not already in cache are stored into k distinct
blocks of the dynamic part of the cache, while only the first page is returned
to the requesting user. In this way, if a query for a following page is received
within a small time interval, its results can surely be found in the cache.

Figure 7 shows the results of the tests conducted on the Alta Vista query log
with SDC and prefetching. In particular, we tested SDC with either LRU or PDC
as the replacement policy for the dynamic set, with no prefetching (subscript
of the curve label = 1), and with a prefetching factor k = 5, 10. The tests on

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



70 • T. Fagni et al.

Fig. 8. Hit ratio measured on the Excite query log with an LRU cache of 32,000 elements as a
function of the prefetching factor.

the other logs gave similar results and the corresponding plots are thus not
reported.

As expected, prefetching increased the hit ratio achieved. For example, on the
Alta Vista query log with an SDC-LRU cache of 256,000 entries, we obtained a
maximum hit ratio of 54.20 when 10 pages of results were prefetched (k = 10),
versus a hit ratio of 35.76 when no pages were prefetched. In this case, the
adoption of prefetching increased the hit ratio by about 50%. Unfortunately the
prefetching factor k cannot grow indefinitely. In fact, all the prefetched pages
of results have to be inserted in the cache by likely evicting from it an equal
number of entries according to the replacement policy adopted. Obviously, the
hit ratio increases only if the probability of accessing the prefetched pages is
greater than the evicted ones. On the Alta Vista query log, we measured that
with an SDC-LRU0.1 cache of 256,000 entries and a prefetching factor of 5,
only 11.71% of the prefetched pages were actually referred to by the following
queries.

Particularly for caches of small size, prefetching might negatively affect the
effectiveness of the cache replacement policy adopted. In this regard, Figure 8
plots the results of the test conducted with an LRU cache of 32,000 entries on
the Excite query log. As can be seen, with this small cache the hit ratio started
decreasing when a prefetching factor greater than 3 was used.

Moreover, prefetching increases the load on the WSE back-end and may
degrade its throughput. Although the cost of resolving a query is not linearly
proportional to the number of results retrieved [Witten et al. 1999; Moffat and
Zobel 2004], some additional costs must be paid.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 71

Table V. Behavior of SDC with Adaptive Prefetching

n = requested page no Hit/Miss Cache Action
n = 1 Hit Return page 1

Miss Submit query (keywords, 1, 2)
n = 2 Hit Return page 2 and submit query (keywords, 3, K)

Miss Submit query (keywords, 2, K)
n > 2 Hit Return page n

Miss Submit query (keywords, n, K)

In order to choose a strategy that maximizes the benefits of prefetching, that
is, that maximizes the responsiveness of the system, and, at the same time,
limits the additional load on the WSE back-end, we can take advantage of the
characterization of the spatial locality as presented in Section 3. Figure 3(b)
shows that, given a request for the ith page of results, the probability of having
a request for page (i + 1) in the future is about 0.1 for i = 1, but becomes
approximately 0.5 or greater for i > 1.

Therefore, it seems profitable to prefetch a limited number of additional
pages only when the cache miss has been caused by a request for a page differ-
ent from the first one. In this way, since the prefetched pages will be actually
accessed with sufficiently high probability, we avoid filling the cache with pages
that are accessed only rarely and, at the same time, we reduce the additional
load on the core query service of the WSE. Our caching system thus adopts this
simple prefetching heuristic. Given a query (keywords, page n), our cache sys-
tem behaves in the way specified in Table V, where K represents the maximum
number of pages prefetched by the cache.

In practice, the heuristic is very simple: whenever the first page is requested
and it is not in the cache, we expand the query by asking the WSE for the
first and the second pages, which are both inserted into the cache. When the
second page is requested, it is promptly returned to the user, but the underly-
ing WSE is asked for the successive K pages of results. In this way, we grant
responsiveness and hit ratios roughly equal to those obtained by adopting a
static prefetching factor K + 1, but we pay most of the cost of prefetching only
when the probability of having references to the prefetched pages in the near
future is about 0.5 or greater. Whenever this adaptive prefetching heuristic
is adopted, the percentage of prefetched pages actually referred increases re-
markably. In the case considered above (the Alta Vista query log and an SDC-
LRU0.1 cache of 256,000 entries, with K = 5), the percentage of prefetched
pages actually referred grew from 11.71% to 30.3%. We can thus assert that
the proposed heuristic constitutes a good tradeoff between the maximization
of the benefits of prefetching and the reduction of the additional load on the
WSE.

5.3 Freshness of the Static Set

Caching policies like SDC and PDC, which are driven by statistical data, may
suffer from performance degradation due to problems concerning the fresh-
ness of the data from which the statistics have been drawn. Some interesting

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



72 • T. Fagni et al.

Fig. 9. Schema of the training process for the static set: the training set grows on the right, thus
reducing the size of the test set.

questions arise in this regard:

—How frequently should the static set of the cache be refreshed? Does the hit
ratio achieved by the static set degrade constantly as time goes by?

—Do time-of-day patterns exist in the query stream?

To answer these questions, we analyzed the Alta Vista log to measure how
the frequent queries, used to fill the static set, were referred to in terms of time.

The log contained 7,175,648 queries spanning a period of about 4.7 days.
We partitioned the log into two distinct sets: the training set, and the test set
(see Figure 9). From the training set we extracted the S most frequent queries,
where S is the size of the static set. For these experiments, we fixed S to 128,000
elements.

By varying the time on which the static set is trained (as shown in Figure 9),
we measured the static set hit ratio for the remaining part of the log (i.e., for
the test set), and we plotted it at regular time intervals. The results of the
experiment are shown in Figure 10. Each curve represents the trend of the
hit-ratio value as a function of the time for a different training window.

5.3.1 Static Set Refresh Rate. When trained with the queries submitted to
Alta Vista during 1 h only, the hit ratio on the static set was initially very high,
but degraded rapidly to very low values (below 8%). As we increased the training
period, the curves became higher and flatter since the hit ratio degraded less
remarkably as time progressed. For example, when the static set was trained
with the queries of 1 day, the hit ratio achieved on the remaining test set of
about 3 days ranged from 19% to 17%, with a slow progressive degradation.

Finally, when trained for 2 days, the performance improved further. In this
case, however, the remaining portion of the log used as test set was too small
to allow us to draw strong conclusions.

Some observations can be made on the basis of the above results. First, the
freshness of the static set does not appear to be a big issue. When statistics are
drawn over a relatively long period of time, the degradation rate of the hit ratio
in the static set is quite slow. Thus, a static set refreshed daily should grant
good and quite stable performances for a relatively extended period. Moreover,
from the high initial value and fast degradation rate of the curve relative to
the shortest training time in the experiment, we can deduce that some queries
appear relatively frequently but just for a brief period of time. Thus, their par-
ticular kind of locality is difficult to exploit with a static cache. SDC successfully

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 73

Fig. 10. Static set hit ratio on the Alta Vista query log as a function of time. The size of the static
set has been set to 128,000 elements, while the training time was varied between 1 h and 2 days.

exploits also the locality of these “burst” queries due to the presence of its dy-
namic set.

5.3.2 Daily Patterns. From Figure 10 we can see that all the curves plotted
have a common behavior: there is a sort of periodicity in the hit ratio that results
in a smooth sinusoidal trend of the curves.

Around each 24 h the hit ratio reaches a local peak and starts to degrade
until a local minimum is reached after about 12 h. We looked at the query log
and we observed that the peak time was around midnight. This particular trend
demonstrates the presence in the log of groups of frequent queries which are
more or less popular in specific hours of each day. The benefits to be derived
from the exploitation of the knowledge of such daily patterns merits further
investigation. One promising source in this regard are the results presented in
Beitzel et al. [2004].

5.4 Effectiveness of the Static Set

The rationale of introducing our hybrid, static and dynamic, cache, relies on the
hypothesis that some popular queries may not be requested for relatively long
time intervals, and might be unprofitably evicted from a purely dynamic cache.
On the other hand, we saw that there are queries that are popular only within
relatively short time intervals, and thus do not benefit from the use of a purely
static cache filled with most popular queries, but can be effectively handled by
the dynamic portion of our cache.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



74 • T. Fagni et al.

Fig. 11. Distances, expressed as the number of distinct queries received, between successive sub-
missions of each one of the 128,000 most popular queries present in the Alta Vista log.

We conducted some tests on the Alta Vista log aimed at estimating how many
times a frequent query q should be evicted from a pure LRU cache because the
distance between two successive requests for q (in terms of distinct queries) is
greater than the size of the cache itself. To this end, we extracted the 128,000
most popular queries present in the log, and we measured the number of dis-
tinct queries received by Alta Vista in the interval between one submission
and the next submission of each of these popular queries. Figure 11 plots the
cumulative number of occurrences of each distance, measured as the number
of distinct queries received by Alta Vista in the interval between two succes-
sive submissions of each frequent query. As expected, many popular queries
were resubmitted after long intervals. These queries would surely cause cache
misses in an LRU cache having a size smaller than the distance plotted on the
x axis. In particular, we measured that 698,852 repetitions of the most pop-
ular queries occurred at distances less than 128,000, while 164,813 occurred
at distances greater than 128,000.2 Thus, the adoption of an LRU cache of
128,000 blocks should surely result in 164,813 misses for these most popu-
lar queries. The distribution of the distances plotted in Figure 11, thus ex-
plains the higher hit ratio achieved by our hybrid caching policy with respect
to a purely dynamic policy like LRU which is based on recency of references
only.

2It is worth noting that due to the log-scale, in Figure 11, the black area corresponding to x ≥
128,000 appears to be very small. It is instead about a quarter of the one corresponding to
x <128,000.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 75

6. CONCURRENCY ISSUES
We designed our caching system to allow many concurrent threads to efficiently
access its blocks. This is motivated by the fact that a WSE has to process many
user queries concurrently, and this is usually achieved by having each query
processed by a distinct thread. The methods exported by our caching system are
thus thread-safe, and also ensure mutual exclusion whenever that is necessary.
In this regard, the advantage of SDC over a pure dynamic cache is related to the
presence of the static set, which is a read-only data structure. Multiple threads
can thus concurrently look up the static set to search for the results of the sub-
mitted query. In case of a hit, the threads can also retrieve the associated page
of results without synchronization. For this reason, our caching system may
sustain linear speedup even in configurations containing a very large number
of threads. Conversely, the dynamic set must be accessed in a critical section.
Note, in fact, that the dynamic set is a read-write data structure: while a cache
miss obviously causes both the associative memory and relative list of pointers
to be modified, a cache hit means the list pointers must be modified in order to
sort the cache entries according to the replacement policy adopted.

Our caching system can easily be integrated into a typical WSE operating
environment. A possible placement is between the HTTP server and the broker,
as shown in Figure 1. In the tests conducted to evaluate the throughput of our
implementation, the behavior of the multithreaded WSE HTTP server, which
forwards user queries to the cache system and waits for query results, was
simulated with a farm of concurrent threads which read the queries from a log
file and called the thread-safe methods exported by our cache implementation.
The WSE core query service, which is invoked to resolve the queries that cause
misses, was instead simulated by putting the thread which manages the query
to sleep. The behavior of each thread is very simple. In the case of a cache
hit, the thread serving the query immediately returns the requested page of
results and gets another query. Conversely, when a query causes a cache miss,
the thread sleeps for δ = 40 ms to simulate the latency of the WSE core in
resolving the query. In these tests we did not activate prefetching; otherwise
the value of δ should be changed accordingly.

The above assumptions are oversimplified, and thus our testing environment
cannot be considered very realistic. On the other hand, a WSE is a complex,
highly nonlinear environment, and a distributed WSE even more. A simulation
approach cannot capture all its aspects and cannot approximate real costs (see
Moffat and Zobel [2004] for an in-depth discussion about the difficulties of per-
formance measurement in this field). Thus, the results of the tests we conducted
to evaluate the throughput of our implementation have to be considered only
a tentative measure of the benefits deriving from the presence of a read-only
part of the cache accessed concurrently by many threads. Performance figures
obtained cannot be used to draw definite conclusions.

Figure 12 reports the results of some of the tests conducted. In particular, the
figure plots, for fstatic = 0.6 and no prefetching, the throughput of our caching
system (i.e., the number of queries answered per second) as a function of the
number of concurrent threads sharing the cache. The two curves show the
throughput of our system when each thread accesses in a critical section either

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



76 • T. Fagni et al.

Fig. 12. Throughput of our caching system (in number of queries served per second) for fstatic =
0.6 as a function of the number of concurrent threads used and different locking policies.

the whole cache or just the dynamic set. Note that locking the whole cache is
exactly the mandatory behavior of threads when accessing a purely dynamic
cache (i.e., fstatic = 0). Throughput was measured by considering that a large
bunch of 500, 000 queries (from the Tiscali log) arrives in a burst. The size of the
cache was 50, 000 blocks, while the replacement policy considered was SLRU.

It is worth noting that in these tests the presence of the static set, which
does not need to be accessed in a critical section, permits the approximate
doubling of the number of queries served per second. Moreover, the caching
system not only provides high throughput but can also sustain a large number
of concurrent queries. Performance starts degrading only when more than 200
queries are served concurrently.

7. CONCLUSIONS

In this article, we have presented SDC, a new strategy for caching the query
results of a WSE. SDC exploits the knowledge about the queries submitted to
the WSE in the past to enhance cache effectiveness. In particular, we maintain
the most popular queries and associated results in a read-only static section of
our cache. Only the queries that cannot be satisfied by the static cache section
compete for the use of a dynamic, second-level cache. The benefits of adopting
SDC were experimentally shown on the basis of tests conducted with three
real query logs. We evaluated the hit ratio achieved by varying the percentage
of static blocks over the total, the size of the cache, as well as the replacement
policy adopted for the dynamic section of our cache. In all the cases, our strategy
remarkably outperformed either purely static or dynamic caching policies. We
showed that WSE query logs also exhibit spatial locality. Users, in fact, often
require subsequent pages of results for the same query. Our caching system

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



Boosting the Performance of Web Search Engines • 77

takes advantage of this locality by exploiting an adaptive prefetching strategy
which constitutes a good tradeoff between the maximization of the benefits of
prefetching and the reduction of the additional load on the WSE. Moreover, we
analyzed the reasons justifying the greater performances of our hybrid policy
with respect to purely static and dynamic ones, and studied how the statistical
data about query frequency, which are used to fill the static portion of the
cache, gets older as time progresses. Since in our tests the degradation was
shown to be slow, our hybrid caching approach was viable and effective. Finally,
we tentatively evaluated the cost and scalability of our cache implementation
when executed in a multithreaded environment. The tests demonstrated that
our SDC implementation is very efficient: measured cache hit and miss times
were very low. Moreover, the presence of the read-only static cache allowed the
number of synchronizations between multiple threads concurrently accessing
the cache to be remarkably reduced.

Our work suggests some further research directions. We know that a dis-
tributed WSE is is a complex, highly nonlinear environment, where actual
query processing times are characterized by high variance and may be very
hard to predict. Since differences in query execution times can be of one or
more orders of magnitude, it would be interesting to try to exploit the knowl-
edge of such costs in the caching policy. By preferably caching queries that
require large execution times, we could in fact enhance the global throughput
of the WSE, although the hit ratios achieved can be expected to decrease. In
SDC this could be done in two different ways. On the one hand, the frequency-
based policy used to fill the static set could be modified to consider a weighted
contribution of query execution cost so that frequent queries which are also
expensive to process are preferred. On the other hand, the query processing
cost could be also exploited by the replacement policy adopted for managing
page eviction from the dynamic set, which can give a higher priority to cached
queries which are expensive to process.

Finally, the presence in the query stream of time-of-day patterns (see
Section 5.3) merits further investigation. We observed that groups of frequent
queries present in the Alta Vista log are characterized by repetition rates that
vary regularly across the day. We expect that similar time-of-day patterns are
not a peculiarity of the Alta Vista log. The knowledge of such patterns can be
used to construct different instances of the static sets which SDC can schedule
and use during the day in order to better fulfill these patterns.

ACKNOWLEDGMENTS

We acknowledge Ideare S.p.A. for providing us with the Tiscali query log, and
Ronny Lempel for useful discussions and for providing us with the Alta Vista
query log. Finally, we are grateful to the Associate Editor and the anonymous
referees of this journal, who allowed us to improve this article with their helpful
comments.

REFERENCES

BARROSO, L. A., DEAN, J., AND HÖLZE, U. 2003. Web search for a planet: The Google cluster archi-
tecture. IEEE Micro 22, 2 (Mar./Apr.), 22–28.

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.



78 • T. Fagni et al.

BEITZEL, S. M., JENSEN, E. C., CHOWDHURY, A., GROSSMAN, D., AND FRIEDER, O. 2004. Hourly analysis
of a very large topically categorized web query log. In SIGIR ’04: Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM Press, New York, NY, 321–328.

HÖLSCHER, C. 1998. How Internet experts search for information on the Web. In Proceedings of
WebNet 98—World Conference on the WWW and Internet & Intranet (Orlando, FL, Nov. 7–12).

JOHNSON, T. AND SHASHA, D. 1994. 2Q: A low overhead high performance buffer management
replacement algorithm. In VLDB ’94: Proceedings of the 20th International Conference on Very
Large Data Bases. Morgan Kaufmann, San Francisco, CA, 439–450.

KAREDLA, R., LOVE, J., AND WHERRY, B. 1994. Caching strategies to improve disk system perfor-
mance. IEEE Comput. 27, 3, 38–46.

LEMPEL, R. AND MORAN, S. 2003. Predictive caching and prefetching of query results in search
engines. In WWW ’03: Proceedings of the 12th International Conference on World Wide Web. ACM
Press, New York, NY, 19–28.

LONG, X. AND SUEL, T. 2005. Three-level caching for efficient query processing in large Web search
engines. In WWW ’05: Proceedings of the 14th International Conference on World Wide Web. ACM
Press, New York, NY, 257–266.

MARKATOS, E. P. 2000. On caching search engine results. In Proceedings of the 5th Interna-
tional Web Caching and Content Delivery Workshop. Go online to http://www.iwcw.org/2000/

Proceedings/proceedings.html.

MARKATOS, E. P. 2001. On caching search engine results. Comput. Commun. 24, 2, 137–143.
MOFFAT, A. AND ZOBEL, J. 2004. What does it mean to “measure performance”? In Proceedings of

the International Conference on Web Informations Systems, X. Zhou, S. Su, M. P. Papazoglou,
M. E. Owlowska, and K. Jeffrey, Eds. Lecture Notes in Computer Science, vol. 3306. Springer,
Berlin, Germany, 1–12.

O’NEIL, E. J., O’NEIL, P. E., AND WEIKUM, G. 1993. The LRU–KS page replacement algorithm for
database disk buffering. In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data. ACM Press, New York, NY, 297–306.

ORLANDO, S., PEREGO, R., AND SILVESTRI, F. 2001. Design of a parallel and distributed Web search
engine. In ParCo2001: Proceedings of the International Conference Parallel Computing: Advances
and Current Issues. Imperial College Press, London, U.K., 197–204.

PODLIPNIG, S. AND BOSZORMENYI, L. 2003. A survey of web cache replacement strategies. ACM
Comput. Surv. 35, 4, 374–398.

RAGHAVAN, V. V. AND SEVER, H. 1995. On the reuse of past optimal queries. In SIGIR ’95: Proceed-
ings of the 18th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM Press, New York, NY, 344–350.

ROBINSON, J. T. AND DEVARAKONDA, M. V. 1990. Data cache management using frequency-based
replacement. In SIGMETRICS ’90: Proceedings of the 1990 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. ACM Press, New York, NY, 134–142.

SARAIVA, P. C., DE MOURA, E. S., ZIVIANI, N., MEIRA, W., FONSECA, R., AND RIBERIO-NETO, B. 2001.
Rank-preserving two-level caching for scalable search engines. In SIGIR ’01: Proceedings of the
24th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM Press, New York, NY, 51–58.

SILVERSTEIN, C., MARAIS, H., HENZINGER, M., AND MORICZ, M. 1999. Analysis of a very large Web
search engine query log. SIGIR Forum 33, 1, 6–12.

SILVESTRI, F. 2004. High performance issues in Web search engines: Algorithms and techniques.
Ph.D. dissertation. Università degli Studi di Pisa—Facoltà di Informatica, Pisa, Italy.

SPINK, A., WOLFRAM, D., JANSEN, M. B. J., AND SARACEVIC, T. 2001. Searching the Web: The public
and their queries. J. Amer. Soc. Inform. Sci. Tech. 52, 3, 226–234.

WITTEN, I. H., MOFFAT, A., AND BELL, T. C. 1999. Managing Gigabytes—Compressing and Indexing
Documents and Images, 2nd ed. Morgan Kaufmann, San Francisco, CA.

XIE, Y. AND O’HALLARON, D. 2002. Locality in search engine queries and its implications for
caching. In Proceedings of IEEE INFOCOM 2002: The 21st Annual Joint Conference of the IEEE
Computer and Communications Societies.

Received July 2004; revised June 2005, October 2005; accepted October 2005

ACM Transactions on Information Systems, Vol. 24, No. 1, January 2006.


