Cluster Computing 0 (2000) ?-?

Mixed Data and Task Parallelism with HPF and PVM *

Salvatore Orlando?®, Paolo Palmerini® and Raffaele Perego®

@ Dipartimento di Informatica, Universitd Ca’ Foscari, Venezia, Italy
b Istituto CNUCE, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

We present a framework to design efficient and portable HPF applications which exploit a mixture of task and
data parallelism. According to the framework proposed, data parallelism is restricted within HPF modules, and task
parallelism is achieved by the concurrent execution of several data—parallel modules cooperating through COLTypr, a
coordination layer implemented on top of PVM. COLTspr can be used independently of the HPF compilation system
exploited, and it allows instances of cooperating HPF tasks to be created either statically or at run-time. We claim that
COLTwpr can be exploited by means of a simple skeleton—based coordination language and associated compiler to easily
express mixed data and task parallel applications runnable on either multicomputers or cluster of workstations. We used
a physics application as a test case of our approach for mixing task and data parallelism, and we present the results of

several experiments conducted on a cluster of Linux SMPs.

1. Introduction

Many applications belonging to important applica-
tion fields exhibit a large amount of potential paral-
lelism that can be exploited at both the data and the
task level. The exploitation of data parallelism requires
the same computations to be applied to different data,
while task parallelism entails splitting the application
into several parts, which are executed in parallel on dif-
ferent (groups of) processors. These parts then com-
municate and synchronize with each other by means of
message passing or other mechanisms. Data parallelism
is generally easier to exploit due to the simpler compu-
tational model involved. In addition, data—parallel lan-
guages are available which substantially help the pro-
grammer to develop data-parallel programs. High Per-
formance Fortran (HPF) is the most notable example
of such languages [14]. Unfortunately, data—parallelism
alone does not allow many potentially parallel appli-
cations to be dealt with efficiently. Task parallelism
is in fact often needed to reflect the natural struc-
ture of the application algorithm or to efficiently imple-
ment applications that exhibit only a limited amount
of data parallelism. Many multidisciplinary applica-
tions (e.g. global climate modeling), as well as many
applications belonging to various fields (e.g computer
vision, real-time signal processing) do not allow effi-
cient data—parallel solutions to be devised, but can be
efficiently structured as ensembles of sequential and/or
data-parallel tasks which cooperate according to a few
common patterns [3,7,12]. The capability of integrat-
ing task and data parallelism into a single framework
is the subject of many proposals since it allows the

* This work has been partially supported by HPPC/SEA contract
number EU1063.

number of addressable applications to be considerably
enlarged [11,22,10,8,6,15]. Also the latest version of
the HPF standard, HPF 2.0, provides extensions which
allows restricted forms of task parallelism to be ex-
ploited [16]. Unfortunately, the extensions are not suit-
able for expressing complex interactions among asyn-
chronous tasks as required by multidisciplinary applica-
tions. Moreover, communication among tasks can oc-
cur only implicitly at the subroutine boundaries, and
non-deterministic communication patterns cannot be
expressed. A different approach regards the design of
an HPF binding for a standard message-passing library
such as MPI [10]. Low-level message passing primitives
are provided which allow the exchange of distributed
data among concurrent HPF tasks. The integration
of task and data parallelism has also been proposed
within an object-oriented coordination language such
as Opus [8]. By using a syntax similar to that of HPF,
Opus programmers can define classes of objects which
encapsulate distributed data and data—parallel meth-
ods.

In this paper we present COLTgpr (COordination
Layer for Tasks expressed in HPF), a portable coordi-
nation/communication layer for HPF tasks. COLTypr
is implemented on top of PVM and provides suitable
mechanisms for starting, even at run—time, instances of
data-parallel tasks on disjoint groups of (PVM virtual)
processors, along with optimized primitives for inter-
task communication where data to be exchanged may
be distributed among the processors according to user-
specified HPF directives.

There are many possible uses of the COLTypr layer.
Its interface can be used directly by programmers to
write their applications as a flat collection of interacting
data-parallel tasks. This low—level approach to HPF

2 S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM

task parallelism has already been proposed by Foster
et al. for the above mentioned HPF-MPI binding [10].
With respect to this proposal, COLTgpr introduces new
and important features, namely its complete portability
among distinct compilation systems, and the run-time
management of HPF tasks.

Indeed, in our view the best use of COLTgpr is
through a compiler of a high-level coordination lan-
guage aimed at facilitating programmers in structuring
their data-parallel tasks according to compositions of
common forms of task-parallelism such as pipelines, pro-
cessor farms, and master-slave paradigms [13,17]. Such
a coordination language and the associated skeleton-
based compiler have been proposed elsewhere [20]. The
previous version of COLTgpr used MPI as a message
transport layer among HPF tasks. The exploitation of
MPI, however, requires slight modifications to the HPF
run—time, thus preventing the use of commercial HPF
compilers. Here on the other hand, we discuss the use
of PVM, whose features allowed us to overcome this
limitation of the previous proposal, and also to sup-
port a dynamic task model where HPF tasks can be
created/managed at run—time. As a consequence, the
PVM version of COLTypr can be used to program het-
erogeneous networks of computers/workstations as well,
where pure HPF approaches cannot be efficiently used
due to the large and often unpredictable variations in
the load and power of the computational resources avail-
able. HPF compilers in fact currently decide both data
distribution and computation scheduling at compile-
time, and perform static optimizations based upon the
knowledge of the uniform communication and computa-
tion costs assumed for the target system [19,18]. Most
of these static optimizations fail when processors have
different capacities and when communication costs vary.
The possibility of exploiting an additional level of paral-
lelism with respect to HPF, should allow this limitation
to be partially overcome if we treat a heterogeneous en-
vironment as a collection of several homogeneous sub-
systems. A profitable “metacomputing” approach [24]
can be thus adopted which tries to map the data-parallel
parts of a complex application (i.e. the HPF tasks) onto
the various homogeneous sub-systems on the basis of
“affinity” evaluations. Inter-task communications im-
plemented by means of COLTypr mechanisms are, on
the other hand, much less sensitive to high and varying
latencies, and can take place between these homoge-
neous clusters.

This paper aims to investigate this solution, by dis-
cussing the exploitation of COLTypr on a cluster of Sym-
metric Multi-Processor (SMP) Linux PCs. In particu-
lar, we used a physics application as a test case for
our approach, while the testbed system was a cluster
of Linux 2-way SMPs, interconnected by a 100BaseT
switched Ethernet, where each SMP was equipped with
two Pentium II - 233 MHz processors and 128 MB of

main memory. The HPF compiler used was pghpf from
the Portland Group Inc., version 3.0-4.

The paper is organized as follows. Section 2 dis-
cusses the coordination model behind our proposal for
integrating task and data parallelism, and the main im-
plementation issues. Section 3 introduces the design
and functionalities of COLTgpr, and describes its imple-
mentation on top of the PVM communication layer. In
Section 4 a sample application used to validate our ap-
proach is presented, and two different COLTgpr mixed
task and data parallel implementations are described.
The results of the experiments conducted on our clus-
ter of SMPs are also reported and discussed in depth.
Finally, Section 5 draws some conclusions and outlines
future work.

2. Integrating task and data parallelism

Experience in applicative fields, above all deriving
from the development of multidisciplinary applications,
seems to suggest that the best way to integrate task
and data parallelism is to keep them on two distinct
levels [3]:

e an outer coordination level for task parallelism. Task
parallelism requires languages/programming envi-
ronments that allow concurrent tasks to coordinate
their execution and communicate with each other.
Programmers are responsible for selecting the code
executed by each task, and for expressing the inter-
action among the tasks. Most task parallel program-
ming environments provide a separate address space
for each task, and require programmers to explicitly
insert communication statements in their code.

e an inner computational level for data parallelism.
Data parallelism is considered “easy” to express, at
least for “regular” problems. It is efficiently ex-
ploited on most parallel architectures by means of
SPMD (Single Program Multiple Data) programs.
However, the hand-coding of SPMD programs for
distributed-memory machines is very tedious and
error-prone. Fortunately, high-level languages such
as HPF allow programmers to easily express data
parallel programs in a single, global address space.
The associated compiler, guided by user-provided di-
rectives, produces an SPMD program optimized for
the target machine, and transparently generates the
code for data distribution, communication, and syn-
chronization.

In this paper we show how an existing HPF com-
piler, in our case a commercial compilation system by
the Portland Group Inc. (PGI), can be used to build
the inner “computational” level of the above model. To
this end we devised COLTgpf, a run-time support that
allows HPF tasks to be created either statically or dy-
namically, and provides primitives for the asynchronous

S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM 3

message-passing of scalar and vector data. COLTypr
is thus the basis to construct the “coordination” outer
level required to integrate task and data parallelism.

Note that other coordination mechanisms, besides
message-passing, could be adopted for task parallelism
integration: for example, either Remote Procedure
Calls (or Remote Method Invocations, if object-oriented
wrappers were provided for HPF modules), or a virtual
shared space, such as a Distributed Shared Memory ab-
straction or a Linda tuple-space [5]. We chose a sim-
pler, but more efficient, message-passing abstraction,
where array data are asynchronously sent over com-
munication channels, but at the same time we recog-
nized that message-passing is error-prone and too low
level to express task parallelism in a similar frame-
work. We are thus working to exploit COLTgpr by
means of a high-level skeleton-based coordination lan-
guage [1,20]. The coordination of HPF tasks is ex-
pressed by means of specific language constructs, each
corresponding to a very common paradigm for task par-
allelism, i.e. pipeline, processor farm, master-slave,
acyclic task graph, etc [13,17]. Programmers choose
the best skeleton for their purposes, and for each task
specify the HPF computational code as well as the list of
input/output data exchanged between the tasks. The
skeleton corresponds to the instantiation of the specific
language constructs (i.e. the specific parallel program-
ming paradigm), and is in turn implemented by means
of a set of templates, a sort of “wrappers” for the user-
provided computational codes. The templates encapsu-
late all the control and coordination code needed to im-
plement the associated parallel programming paradigm.
By instantiating the templates provided for each task
making up the skeleton, the compiler produces the HPF
programs implementing the required mixed task and
data parallel application.

COLTgpr is currently binded to HPF only, and is
specifically designed to consider the issues deriving from
the communication of distributed array data. Further
work consists in extending COLTgpr to permit tasks
written with different, also sequential languages such
as Fortran 77, C/C++, and Java, to communicate each
other. This feature will allow us to increase the number
of addressable application fields, and, in particular, will
make the resulting programming environment suitable
for solving emerging multidisciplinary applications. A
first step in this direction has been already made with
the integration of COLTypr within the run-time of SkIE-
CL, a skeleton-based multi-language coordination envi-
ronment [2,26].

2.1. Implementation issues

The integration of task and HPF data parallelism
presents several implementation issues, deriving from
the need to coordinate parallel tasks rather than se-
quential processes. Since most HPF compilers gener-

Parallel
executables
‘
HPFrts T

MPMD program MPMD program

(multiple HPF programs —»_—» (multiple SPMD programs +
+callsto COLT yer) callsto HPF rtsand COLT

iee)

Skeleton-based
HPF program

S—
Template Skeleton-based
Tibrary COMPILER

Figure 1. Structures and relationships of the COLTygpr and HPF
source-to-source compilers integrating task and data-parallelism.

ate an SPMD f90/f77 code containing calls to the HPF
run-time system responsible for data distribution and
communication, a COLTgpr mixed task and data par-
allel program corresponds to an ensemble of distinct
SPMD parallel programs (an MPMD program) coordi-
nated by means of COLTgpr. By exploiting the tem-
plates corresponding to the skeletons specified by pro-
grammers, our skeleton-based compiler thus generates
multiple HPF programs containing calls to the COLTypr
run-time support. Such multiple HPF programs then
have to be compiled with the HPF compiler and linked
with the COLTgpr and HPF libraries. Finally, note that
both COLTgr and HPF run-time supports use some
low-level message-passing middleware. The pghpf com-
piler used exploits RPM, the PGI Real Parallel Machine
system. RPM supports process spawning and commu-
nication among processes mapped onto a group of ho-
mogeneous hosts. In our target architecture, RPM is
implemented with UNIX sockets. RPM is very similar
to PVM, although it is claimed that it offers greater ef-
ficiency and performance. On the other hand, COL Typr
exploits PVM for inter-task communications, which is
in turn implemented on top of UNIX sockets. The
PVM and RPM libraries must thus also be linked to
the MPMD object files in order to obtain the executa-
bles for the target machine.

The overall structure of the hierarchy of compilers
which implement our model for task and data parallel
integration is shown in Figure 1.

Inter-task communications. The primitives to exchange
array data structures constitute one of the main difficul-
ties in implementing COLTgpr. Consider, in fact, that
arrays can be distributed differently on the groups of
processors running the various HPF tasks. Moreover,
since HPF compilers usually produce executable code
in which the degree of parallelism can be established
through suitable command-line parameters, the actual
boundaries of array sections allocated on each proces-
sor executing the HPF task are unknown until run-time.
COLTypr thus has to inspect at run-time the HPF sup-
port to find out on both the sender and receiver sides
the actual mapping of any distributed array exchanged.
All the processes involved in the communication then
have to compute the intersections of their own array
partitions with the ones of the processes belonging to

4 S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM

A (BLOCK, *) B (*, BLOCK)

Proc 0 X\\\ .
Proc 1 X\\\ .
Proc 2

T
Proc 3 \ \

Proc 0 Proc 1
Task 1 Task 2

Figure 2. Point-to-point communications to send a bidimensional
array from one HPF task, mapped on 4 processes, to another HPF
task, mapped on 2 processes. Data distributions on the sender
and the receiver tasks are (BLOCK,*) and (*,BLOCK), respectively.

the partner task. In this way, each sender process will
know which portion of its array section must be sent
to each process of the receiver task, while each process
of the receiver task will know which array portions it
has to receive from any of the sender processes. At the
end of this preliminary phase, the actual comunication
can take place. Note that communicating distributed
data between data-parallel tasks thus entails making
several point-to-point communications, which, in our
case, are PVM communications. A simple example of
the point-to-point communications required to commu-
nicate a distributed array is illustrated in Figure 2.

Low-level communication layer. Another important
implementation choice regards the low-level communi-
cation middleware exploited for inter-task communica-
tions. As mentioned above, in this paper we discuss
the adoption of PVM. On the other hand MPI was
adopted in a previous release of COLTypr [20]. MPI
supports a static SPMD model, according to which the
same program has to be loaded on all the virtual pro-
cessors on which the mixed task and data parallel pro-
gram has to be mapped. However, our MPMD model
of execution was achieved by forcing disjoint groups of
MPI processes to execute distinct HPF subroutines cor-
responding to the various HPF task involved. As a con-
sequence, we had to modify the HPF run-time system
in order to make each SPMD subprogram implementing
an HPF task exploit a distinct communication context
embracing only the corresponding group of MPI pro-
cesses. Note that for the MPI-based version of COL Typr
we had to use a public-domain HPF compiler [4], for
which the source code of the run-time support was avail-
able and modifiable. Moreover, the MPI static task
model prevented the exploitation of “adaptive paral-
lelism” approaches which result to be very effective on
non-traditional parallel architectures such as clusters of
workstations.

On the other hand, the PVM-based version of
COLTypr discussed in this paper supports a dynamic
task model, according to which any HPF task (compiled

Host alpha Host beta Host gamma Host eta

T

: colt_daemon
:pvmd daemon

: processes involved in the cooperating HPF tasks

: enroll into PVM and obtain the PVM TID
: send to colt_deamon both PVYM_TID and COLT_TID
: broadcasting of the mapping table

Figure 3. Interactions with colt_daemon needed to statically start
two HPF tasks, each exploiting two processors.

as a separate executable) can be started on demand at
run-time and participate in the COLTypr application.
This allows the set of running HPF tasks to be enlarged
or restricted dynamically in order to adapt the running
application to varying conditions of the computing en-
vironment used. Moreover, since we do not need to
modify the HPF run-time system, a commercial compi-
lation system like the PGI one can be employed.

3. COLTypr implementation

In this section we describe the implementation of the
COLTypr layer on top of PVM. First of all we specify the
mechanisms which allow multiple HPF tasks to be exe-
cuted concurrently onto disjoint groups of PVM virtual
processors. We then discuss the techniques used to es-
tablish communication channels between data-parallel
tasks, and the primitives devised to exchange simple
and structured data through these channels.

To obtain portability among different HPF compila-
tion systems, COLTypr exploits HPF standard features
alone and does not rely on compiler specific features.
Its HPF interface consists of a library of HPF_LOCAL
EXTRINSIC subroutines [14]. This means that when
a COLTypr primitive is invoked by an HPF task, all
the processors executing the task switch from the sin-
gle thread of the control model supplied by HPF to a
true SPMD style of execution. In other words, through
a LOCAL routine programmers can get the SPMD pro-
gram generated by the HPF compiler under their con-
trol. Depending on the language definition, HPF_LOCAL
subroutines have to be written in a restricted HPF lan-
guage where, for example, data stored on remote pro-
cesses cannot be accessed transparently, but each pro-
cess can only access its own section of any distributed
array.

S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM 5

3.1. Task loading

In order to exploit task parallelism on top of PVM,
our approach entails distinct HPF tasks being run con-
currently onto disjoint groups of virtual processors of
the same PVM machine. The advantages of exploit-
ing PVM as a communication layer are related to the
dynamic process model supported by the PVM abstrac-
tion. According to this model, any process can enroll
itself in the PVM machine at run-time. We exploited
the dynamic features of PVM to support a dynamic
HPF task model as well: COLTypr tasks, which are
built as separate executable programs linked with the
COLTypr and PVM libraries, enroll themselves in the
COLTgpr application at run-time, and can ask for other
HPF tasks to be created dynamically.

The first main issue is thus the mechanism by which
the various HPF tasks are loaded and start their execu-
tion. HPF executables exploit at this purpose compiler-
dependent loading mechanisms, with which decisions
about the degree of parallelism and processor mapping
can be postponed until the launching time. For exam-
ple, the pghpf compiler from the Portland Group Inc.
produces an executable that accepts specific command-
line parameters!.

Hence, while HPF tasks are launched and mapped on
the target system by exploiting their proprietary mecha-
nisms, all the processes running each task (i.e., the pro-
cesses partecipating in the corresponding SPMD sub-
program generated by the HPF compiler) have to start
executing by enrolling themselves into the PVM ma-
chine. To this end, the COLTgpr initialization primitive,
colt_init (), invokes the PVM primitive pvmfmytid (),
through which all these processes not only enroll them-
selves into the PVM machine, but also receive their
PVM identifiers (hereafter pvm_tids). Note that in
order to exploit the PVM communication layer, the
COLTypr support needs to know the pvm_tids of all
the processes created and their relationship with the
corresponding HPF tasks, each of which is identified
within COLTgpr by a distinct task identifier (hereafter
colt_tid). It worth considering, in fact, that COLTypr
communication primitives use colt_tids to name HPF
tasks (e.g. the colt_tid of the receiver task in a send
primitive), while the implementation of the primitives
exploits the pvm_tids of the processes running the HPF
tasks involved. The COLTypr support stores all the in-
formation about the correspondence between the vari-
ous colt_tids identifying each HPF task, and the set of
pvm_tids corresponding to the group of processes (PVM
virtual processors) running the task, within a replicated
data structure, called mapping table.

In order to gather information about the colt_tids
of the other running tasks and the associated sets

L' We cannot use the PVM spawn primitive for creating sequential
tasks, since we have to create data-parallel tasks.

of pvm_tids, the COLTypr initialization primitive in-
teracts with a specific COLTgpr daemon, hereafter
colt_daemon. We introduced the colt_daemon not only
to centralize all the information about task registration,
but also to manage static and, above all, dynamic task
creation.

Static task creation is performed by the colt_daemon
on the basis of a user-provided configuration file. This
file stores, for each task to be started at launching time,
(a) the name of the associated HPF ezecutable module,
(b) the degree of parallelism for the task, (c) the list
of PVM hosts onto which the task has to be executed,
and (d) the colt_tid to be assigned to it. As soon as
the colt_daemon starts, it performs the following steps
(see Figure 3):

1. enrolls itself into the PVM virtual machine, and ob-
tains its own PVM TID, hereafter daemon_pvm_tid;

2. reads the configuration file (and performs error
checking);

3. starts, by means of the mechanisms provided by the
OS and the specific HPF compilation system used,
the HPF tasks on the specified hosts. Furthermore,
it supplies to each launched executable module (as-
sociated with an HPF task) the daemon_pvm_tid
and its unique colt_tid as command-line argu-
ments. As soon as the spawned processes start exe-
cuting, they call subroutine colt_init (), to enroll
themselves into the PVM machine and exchange in-
formation with colt_daemon.

4. receives from each spawned process the pair (pvm_tid,
colt_tid). This allows colt_daemon to know the
pvm_tids of all the started processes as well as their
HPF task ownership.

5. stores the information received in its mapping ta-
ble, and broadcasts the table to all the processes
running the spawned HPF tasks.

Once all these steps have been completed, all the
HPF tasks specified in the configuration file will run
concurrently with the desired degree of parallelism.
Moreover, each process running the COLTypr applica-
tion is enrolled into the PVM virtual machine, and
knows the identifier of the HPF task to which it be-
longs as well as the pvm tids of all the processes in-
volved in the various HPF tasks that have been stat-
ically started. Each process also knows the PVM
tid of the colt_-daemon. Further interactions with
the colt_daemon are in fact needed to: (1) manage
task termination by means of a call to subroutine
colt_exit ()2, and (2), ask the colt_daemon for the
dynamic creation of new HPF tasks. Any HPF task,
during its execution and through a specific COLTgpr

2 colt_daemon terminates after the termination of all the created
HPF tasks.

6 S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM

primitive, colt_spawn(), can in fact ask colt_daemon
for dynamically spawning another HPF task. The input
parameters of this COLTgpr primitive are the pathname
of the executable file, the degree of parallelism of the
task, and the list of PVM hosts. The task identifier
colt_tid is an output parameter of the primitive. It is
univocally chosen by colt_daemon and returned to the
requesting HPF task. In more detail, at the reception of
a spawn request from a given HPF task identified by a
colt_tid T, colt_daemon performs the following steps:

1. chooses a unique colt_tid Ty, and assigns it to
the new task;

2. spawns the task as in the static case;

3. receives from all the processes running the newly
created task their pvm_tids, updates accordingly
its mapping table, and broadcasts its contents to
all the processes executing task T'pe.. In this way,
the new HPF task is informed about all the HPF
tasks participating in the COLTygpr application. A
portion of this table, i.e. the row containing infor-
mation about the new task Ty, is also sent to the
requesting task 7.

Other running tasks may clearly need to find out
whether a given task is running or not. To this end,
through a call to routine colt_info() they can ask
colt_daemon for the status of the running application.
In particular, the routine allows the existence of a given
HPF task to be probed for. If the task is running, its
pvm_tids are returned to the COLTypr run-time system
of the caller task. In this way also the HPF tasks which
did not create the new task can become aware of its
existence and cooperate with it.

Figure 4 shows the overheads incurred by COLTypr
on our testbed system for dynamically spawning an
HPF task as a function of the degree of parallelism
of both the spawner and the spawned tasks on our
testbed system. The times reported also include the
time needed to establish a COLTgpr communication
channel between the spawner task and the spawned one
(see Section 3). The plot on the left-hand reports re-
sults referred to experiments where the spawner and
the spawned tasks are mapped onto different SMP ma-
chines, while the plot on the right-hand refers to exper-
iments conducted on a single SMP machine. In both
cases, the colt_daemon shares the workstation with the
spawner task. Almost independently of the parallelism
degree of the spawner task, the time needed for start-
ing at run-time a two processor HPF task is about 0.30
s if the host onto which the task is spawned is differ-
ent from the one running the spawner task, while it is
about 0.22 s when the same SMP is used for running
both the tasks. Only a small fraction of these over-
heads, however, are due to COLTypr. Most of this time
is in fact spent by the operating system for actually
launching the executable file (several processes have to

Inter-SMP spawning times

0.4 T T
4 proc. HPF task ~ +
2 proc. HPF task =
1 proc. HPF task ~ *
0.35 B
+ + + +
% *
* X
S 03} . ¥ % 1
o
[
(2]
£
g o2 | 1
£
0.2 4
0.15 L L L L
0 1 2 3 5
parallelism degree of the spawner task
Intra-SMP spawning times
0.4 T T T
4 proc. HPF task ~ +
2 proc. HPF task x
1 proc. HPF task ~ *
0.35 4
1%2)
T o3t .
o
Q
2]
£
£ o025} . A
= + + +
X x X
¥ * * *
0.2 B
0.15

2 3
parallelism degree of the spawner task

Figure 4. Times required to spawn at run-time a new HPF task.

be created), and for starting the relative HPF run-time
support, within each process.

3.2. Channel initialization and data transmission

COLTgpr supplies primitives to exchange both arrays
and scalars between tasks. The exchange of scalar val-
ues is straightforward, even if the non-deterministic re-
ception of such messages entails some implementation
issues: in fact, to ensure correctness, we have to guar-
antee that the same non-deterministic choice is glob-
ally made by all the processes executing the receiving
task [20]. These non-deterministic primitives are used
to implement forms of parallelism where jobs are sched-
uled dynamically to reduce load imbalance problems.

On the other hand, communicating distributed data
between data-parallel tasks is much more complex, since
it entails making several point-to-point communications
and, when the data and processor layouts of the sender
and receiver tasks differ, it also requires the exchanged
data to be redistributed. We solved the data redistribu-
tion problem by adopting Ramaswamy and Banerjee’s
pitfalls algorithm [21]. Since run-time redistribution
algorithms are quite expensive and the same commu-
nications are usually repeated several times, COLTypr
allows communication schedules to be computed only

S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM 7

once, and to be reused when possible.

To store the communication schedule, COLTypr as-
sociates channel descriptors with both the ends of a
communication channel used to transmit a given dis-
tributed array. The descriptors store information on
the size and distribution of the array transmitted over
a given channel, as well as an optimized communication
schedule which is used to transfer the array contents
from the various processors of the source HPF task to
the processors of the destination task. To fill the de-
scriptors, COLTgpr provides suitable primitives to be
invoked both by the sender and receiver tasks.

When a send primitive is invoked to transmit a dis-

tributed structure, array data are packed by each pro-
cessor of the sender group on the basis of the infor-
mation stored in the channel descriptor, and sent to
the processors of the receiver task. In the worst case
each processor of the sender task may need to com-
municate with all the processors of the receiver group.
However, the channel descriptor contains all the infor-
mation needed, so that the processors involved carry
out the “minimum” number of point-to-point commu-
nications needed to complete the task-to-task commu-
nication. Data are sent by means of asynchronous PVM
send primitives.
When the corresponding COLTgpr receive primitive is
invoked on the receiver task, all the processors of the
corresponding group wait for messages from processors
of the sender task and read them FIFO. They use the
information stored in the descriptor to find out both
the number of messages to be received and the relative
sources, and to unpack received data.

Figure 5 shows the times required on our cluster
of SMPs to exchange a distributed array between two
data-parallel tasks as a function of the size of the ar-
ray. The plot on the left-hand of the Figure regards
ping-pong tests between two HPF tasks allocated onto
two distinct SMP machines, while the other regards two
HPF tasks mapped onto the same 2-way SMP. Each
curve refers to a communication test between tasks with
different degrees of parallelism, so that a curve with la-
bel N-N corresponds to a test regarding two tasks both
mapped onto N logical HPF processors. The arrays ex-
changed are square matrixes of REAL*4, whose distribu-
tion on the two communicating partners is also specified
in the labels associated with each curve. Note that if
the array exchanged is distributed (*, BLOCK) on both
tasks, and both tasks are mapped on a pair of pro-
cessors, the communication is carried out by COLTypr
with only two PVM messages. On the other hand, if
one array is distributed (BLOCK, *), while the other is
(*, CYCLIC), each processor of the sender task has to
communicate with all the processors of the destination
task to accomplish the communication. Thus, if both
tasks are mapped on two processors, four PVM mes-
sages are needed to transfer the array.

Inter-SMP communication times
100

1-1, (BLOCK,*)-(*,CYCLIC) ——
2-2, (BLOCK *)-(*.CYCLIC) -~
2-2, (* BLOCK)-(* BLOCK) -
12}
=}
c .|
o
o
(7]
12}
=
[
£]
£
0.001 ‘ ‘ ‘
1 10 100 1000 10000
KBytes
Intra-SMP communication times
10 ‘ : ‘
1-1, (BLOCK,*)-(*,CYCLIC) ——
2-2, (BLOCK *)-(*,CYCLIC)
2-3, (*BLOCK)-(*BLOCK) -
1 . 4
1%2)
T o1 E
(5]
Q
2]
£
g ool 1
E
0.001 |- 1
0.0001 ‘ ‘ ‘
1 10 100 1000 10000
KBytes

Figure 5. Inter-task communication times as a function of the
dimension and distribution of arrays exchanged.

Since inter-SMP communications occur over a shared
media®, we cannot profit by the potential parallelism
offered by COLTgpr in transmitting distributed arrays
between data—parallel tasks, differently from other ex-
periments we conducted on an SGI/Cray T3E [20]. The
sustained communication bandwidth measured ranges
between 5 and 8 Mb/s. Communication times increase
almost linearly with the dimension of the data trans-
ferred due to message fragmentation and related over-
heads incurred by low-level protocols. Communication
latencies are slightly smaller when the HPF array dis-
tribution is the same on both the sender and receiver
sides, and thus the COLTypr support transfers the array
with less PVM messages. Of course, intra-SMP com-
munication performances, reported in the plot on the
right-hand of Figure 5, are almost an order of magni-
tude better than the inter-SMP counterparts. Even in
this case, however, we have lower latencies when arrays
have the same distributions and are thus transmitted
with less PVM messages.

3 Though we employed a switched Ethernet, each SMP was
equipped with a single network interface card, so that multi-
ple communications coming from the same SMP are serialized
when crossing the network.

8 S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM

do NPAR
call Init()
do NEXT
do DELTAT
call Evolve()
call Energy()
enddo DELTAT
do NINT
call Evolve()
enddo NINT
enddo NEXT
call Collect_Results()
enddo NPAR
call Average()

Figure 6. Pseudo-code of the simulation algorithm

4. A case study from physics

The test-case application chosen to show the benefits
of our mixed task and data-parallel approach is the sim-
ulation of a Fermi-Pasta-Ulam (FPU) chain of N oscil-
lators, coupled with unharmonic terms [9,23]. The char-
acterization of the way such Hamiltonian systems reach
their asymptotic equilibrium state has important impli-
cations in understanding the dynamic properties of sys-
tems with many degrees of freedom. The pseudo-code
of the algorithm is shown in Figure 6. The algorithm
basically consists of a main loop (on NEXT) which sim-
ulates the temporal evolution of the system initialized
with energy not equally distributed among the normal
modes. A symplectic algorithm of integration for the
equation of motion is applied to simulate system evolu-
tion and is implemented within routine Evolve. As the
system evolves, energy distribution is measured until
equipartition is observed. Energy distribution is mea-
sured by routine Energy which implements the most
computational expensive part of the simulation: it in-
volves two one-dimensional Fourier transforms and a re-
duction operation. To speed up the simulation, energy
is not measured at each time step, but the temporal
loop (on NEXT) includes two nested loops. The former
computes both evolution and energy distribution during
a time-window of width DELTAT. The latter only simu-
lates the evolution of the system during NINT time steps.
The use of a DELTAT-wide time-window arises from the
need of obtaining a measure of energy distribution av-
eraged over more consecutive time-steps. Finally, since
the evolution of the system depends on the sequence
of random numbers used to generate initial conditions,
the global simulation (i.e. the loop on NEXT) is repeated
for NPAR times in order to average over some executions.
The results of the NPAR simulations are thus collected by
routine Collect Results, while routine Average per-
forms a statistical analysis.

Scientists are particularly interested in the behavior
of such systems for low energies, for which relaxation
to equilibrium is extremely slow. A number of time-

steps of the order of 10'° have to be therefore simulated
before reaching energy equipartition. The number N of
oscillators simulated is also very important. In principle
we would have to let N — oo. A scaling analysis can
however show that N = 1024 or N = 2048 give a good
enough approximation of such a limit.

The HPF implementation of the simulation code was
not particularly difficult. The original Fortran 77 se-
quential code was slightly modified in order to remove
the dependencies preventing the exploitation of inde-
pendent loops, while data structures, above all one-
dimensional arrays, were BLOCK distributed. More-
over, some subroutine calls were expanded to reduce
overheads.

As already explained, most computation time is
spent within routines Evolve and Energy which sim-
ulate the evolution of the system and measure energy
distribution, respectively. Figure 7 shows the execution
times of these HPF subroutines on our test-bed archi-
tecture as a function of the number of processors used.
The execution times of routines Init, Collect Results
and Average are not plotted, since they are negligi-
ble with respect to the times of the subroutines above.
Plots refer to the execution of a few time steps of the
simulation of two FPU chains with 1024 and 2048 os-
cillators, respectively. To take into account possible
changes in the system workload, we executed the same
tests several times and only report the best results ob-
tained.

As can be seen, the two time—consuming routines,
Energy and Evolve, behave very differently when the
number of processors is increased. Execution times of
routine Energy scale very well and in some cases, due to
the exploitation of the memory hierarchy, exhibit super-
linear speedups with respect to the execution on a single
processor. On the other hand, execution times of rou-
tine Evolve do not scale at all, since they increase as
more processors are used for the execution. This behav-
ior is due to stencil array references, whose implementa-
tion is very inefficient on our target platform. Further
tests have shown that routine Evolve starts scaling only
when the size of the problem (i.e. the number of oscil-
lators simulated) is increased by at least one order of
magnitude. Unfortunately, computing the energy equi-
librium for such large systems is a computationally in-
tractable problem, and would not increase significantly
the numerical accuracy of the simulation.

The consequence of this behavior is that to choose
the best number of processors to execute the simula-
tion we have to trade off the need to exploit high paral-
lelism to reduce execution time of routine Energy, with
the inefficiencies introduced by the corresponding in-
crease in the execution time of routine Evolve. Al-
though the pure HPF implementation allows the total
completion time to be reduced, the benefits of paral-
lelism are not particularly satisfactory. As we will show

S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM 9

HPF Execution Times (N=1024)

Enérgy() —
Evolve() --—->---

Time in seconds
N N
o o

=
(4]

0 | | | |

3 4
Number of processors

HPF Execution Times (N=2048)

Enérgy() —
Evolve() -

Time in seconds
©
o

(=2}
o

40

3 4
Number of processors

Figure 7. Execution times (in seconds) on a cluster of Linux 2-way
SMPs for the HPF subroutines Evolve and Energy as a function of
the number of processors. Plots refer to a few hundred simulation
steps of FPU chains with 1024 and 2048 oscillators, respectively.

in the next section, the COLTgpr approach allowed us
to overcome the limits of the pure data—parallel imple-
mentation. The introduction of task parallelism, in fact,
will allow the number of processors executing routines
Evolve and Energy to be chosen independently, thus al-
lowing the global performance of the whole application
to be optimized.

4.1. The COLTgpr solutions

Mixed task and data parallelism has been exploited
by structuring the HPF code of the sample applica-
tion according to two common forms of task paral-
lelism: pipeline and master-slave. In order to obtain
the actual implementations, the templates implement-
ing the pipeline and master-slave skeletons provided by
the high-level coordination language were instantiated
with the application source code, as well as with the
calls to the COL Typr primitives which initialize the com-
munication channels and exchange data between the
data-parallel tasks. A template can be considered as
the “wrapper” for the computational code of an HPF
task which cooperates with other tasks according to a
fixed interaction pattern [20]. For our purposes we thus

Stage;
do NPAR
call Init(Q)
do NEXT
do DELTAT
call Evolve()
send to STAGE 2
enddo DELTAT
do NINT
call Evolve()
enddo NINT
enddo NEXT
enddo NPAR

Stage,
do NPAR
do NEXT
do DELTAT
recv from STAGE 1
call Energy()
enddo DELTAT

enddo NEXT
send to STAGE 3
enddo NPAR
Stages
do NPAR

recv from STAGE 2
call Collect_Results()
enddo NPAR
call Average()

Figure 8. COLTwpr pseudo-code implementing the case study

application as a three stage pipeline.

instantiated the templates which implement the first,
middle and last stages of the pipeline skeleton, and the
master and the slave task of the master-slave structure.
The set of instantiated templates were then compiled
and linked with the COLTypr and PVM libraries to ob-
tain the application executables (see Figure 1). Below
we describe the two different implementations and dis-
cuss in detail the results of the experiments conducted
on our SMP cluster.

The pipeline implementation The simulation algo-
rithm described in the previous section, can be struc-
tured by means of COLTgpr as a pipeline of three stages,
where each stage is implemented by a distinct HPF pro-
gram. The HPF codes executed by the three stages are
illustrated in Figure 8. The first stage (Stage;) takes
care of the initialization of the system (routine Init)
and of its temporal evolution (routine Evolve). The
second stage (Stages) computes energy equipartition
(routine Energy) at given time instants on the basis of
data coming from the previous stage. The third stage
(Stages) is responsible for collecting the results (rou-
tine Collect Results) and for performing the statisti-
cal analysis (routine Average). We made this subdivi-
sion after a careful analysis of the data-flow dependen-
cies among the various subroutines called from within
the external loop over NPAR in the original code (see Fig-

10 S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM

ure 6). Each call to routine Energy has to follow the
corresponding call to routine Evolve performed within
the inner loop over DELTAT. Moreover, the computation
of Energy also depends on the completion of all the
calls to Evolve carried out during previous iterations
of the loop over NEXT. On the other hand, Evolve does
not depend on any data computed by Energy. Stage;
thus sends a copy of the system state to Stages, at each
iteration of the inner loop over DELTAT, and Stages re-
ceives the data and evaluates the energy equilibrium on
the received data. On the other hand, Stage, sends its
results to Stages only NPAR times exactly at the end
of the two nested loops identified by NEXT and DELTAT.
The dimension of the elements of the data stream flow-
ing in the pipeline is quite small. The system status
exchanged between Stage; and Stages consists of two
arrays of NV REAL*8 values, where N is the number of
oscillators simulated. On the other hand, Stages trans-
mits to Stages only an array of NEXT REAL*8 values at
each iteration of the loop over NPAR.

The overall throughput of a pipeline can be improved
by increasing the bandwidth of each pipeline stage, i.e.
by reducing the time required to process each stream el-
ement, and at the same time by maintaining the band-
widths of all the stages balanced. The bandwidth of
each data-parallel stage can be increased in two ways:
either by adding processors for its data-parallel execu-
tion, or by replicating the stage into several copies [25].
Replication, however, can only be exploited if the com-
putation performed by the stage does not depend on
its internal “state”. Moreover, replication may entail
modifying the ordering of the stream elements sent from
the copies of the replicated stage to the next pipeline
stage. This may happen because distinct elements of
the stream may have different execution times, or be-
cause the capacities of the processors executing the
replicas of the stage may be different or may change
due to variations in workstation loads.

As regards the templates adopted to implement
a pipeline where a stage S; is replicated, the pre-
ceding stage S;_; dynamically dispatches its outcom-
ing stream elements to the copies of S; to balance
the workload, while S;4;1 receives the results from all
S;’s non-deterministically. In particular we adopted
a self-scheduling policy, according to which each copy
of §; signals its availability to receive further work
(i.e., a new stream element) to S;_;, while S;_; non-
deterministically receives these signals from all the
copies of S;. Moreover, S;—; exploits a prefetching
strategy to prevent replicas from waiting idly for a new
stream item.

Returning to our test-case application, experiments
showed that the middle stage, Stages, is the slowest
one. Fortunately, Stages can be replicated since it is
stateless, and the correctness of the computation per-
formed by Stages is preserved independently of the re-

ception order of data from Stages. Furthermore, Fig-
ure 7 clearly shows that the efficiency of routine Energy
is at its maximum when it is executed on only two pro-
cessors, that is within a single 2-way SMP. In particular,
the speedup observed in this case is superlinear due to
a better exploitation of the memory hierarchies.

From the observations above we deduce that if m
2-way SMPs are available for executing Stageo, it is
more profitable to replicate the stage into m copies,
each running on a single SMP, rather than exploiting
all the 2 - m processors to execute a single instance of
Stages. Moreover, since we noted that when a single
instance of Stage. runs on a 2-way dedicated SMP, the
computational bandwidth of the SMP is not completely
saturated, two replicas of the second stage can be prof-
itably mapped onto each SMP to optimize the overall
throughput, i.e. the number of Energy computations
completed within the unit of time.

Table 1 compares the execution times obtained with
the COLTgpr pipeline and the pure HPF implementa-
tions of our case study application. The results reported
refer to a few hundred iterations of the simulation run
by fixing the problem size to 1024 and 2048 oscillators,
respectively. All the experiments were conducted when
no other user was logged in the machines. As regards
the COLTgpr implementation, the tests were performed
by varying both the number of processors used, and the
“organization” of the three-stage pipeline implement-
ing the application (i.e. the degree of parallelism of
each stage and number of replicas of the middle stage).
The columns labeled Structure in the table indicate the
mappings used for the corresponding test. For exam-
ple, in the rows that refer to the tests conducted with
six processors, [1 (2,2) 1] means that one processor was
used for both the first and last stages of the pipeline,
while each of the two replicas of the middle stage were
run on two distinct processors. On the other hand,
in the rows that refer to the experiments conducted on
three processors, [+ (2) 1] means that the corresponding
test was executed by mapping both Stage; and Stages
on the same processor, and Stages on two other pro-
cessors. Finally, in the rows referring to experiments
conducted on six processors, [1 (£, 2,2, 2) 1] means that
the corresponding test was executed by exploiting four
replicas of Stages, each pair of replicas sharing the same
2-way SMP, so that each istance of Stages had 2 half-
processors (i.e., 2 processors) available.

The degree of parallelism exploited for Stage; and
Stages was fixed to one for all the tests conducted,
because of the increase in execution times of routine
Evolve when run on several processors (see Figure 7)
and the slight computational cost of the third stage of
the pipeline.

The execution times measured with the COLTgpr im-
plementations were always better than the HPF ones.
The performance improvements obtained are quite im-

S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM 11

Table 1
Completion times (in seconds) obtained by the COLTupr pipeline
and the pure HPF implementations of the case study application.

Problem Size=1024

HPF COLTypr
(pipeline)
00
= ’@\
O O H O O
Q/

Procs sec. Structure sec. Ratio
1 34.6 - - -
2 38.2 - - -
3 36.4 (3 (2 3] 15.6 2.33
4 41.7 [1(2)1] 14.7 2.84
5 35.3 (2 (2,2) &] 7.7 4.57

2(3222)%] 76 4.64
6 34.0 [1(4)1] 9.9 3.43
[1(2,2) 1] 7.6 4.47
1(3,222)1] 75 4.53
Problem Size=2048
HPF COLTypr
(pipeline)
00
o0 Q\
14
O O H O O
0/

Procs sec. Structure sec. Ratio
1 148.0 - - -
2 87.2 - - -
3 70.4 (3 (2 3] 56.0 1.26
4 69.3 [1(2) 1] 55.8 1.25
5 55.2 (1 (2,2) £] 31.0 1.78

3 (3.3.3.3) 5] 278 1.98

6 52.1 [1(4)1] 32.6 1.59
[1(2,2) 1] 30.2 1.72

[1(3.533) 1 268 1.96

pressive and range from 25% to 353%. If we consider
the results in terms of absolute speedup over the exe-
cution on a single processor®, the COLTypr implemen-
tation with the problem size fixed to 1024, obtained
speedups of 2.2 and 4.6 on three and six processors,
respectively. On the tests conducted with 2048 oscil-
lators, the speedups were 2.6 on three processors and
5.5 on six. As expected, due to the behavior of rou-
tine Energy discussed above, it turned out to be more

4 The sequential executable was obtained by compiling the HPF
program with the PGI £90 compiler.

profitable to execute Stages on two processors and to
replicate the stage, rather than using all the available
processors for its data-parallel implementation. There
was also a slight performance increase from running two
replicas of Stages on each 2-way SMP in order to satu-
rate SMP computational bandwidth.

The master-slave implementation In the master-slave
implementation of our test-case application, the master
takes care of the initialization of the system (routine
Init) and of its temporal evolution (routine Evolve).
Moreover, it is responsible for collecting the results
(routine Collect Results) and for performing the sta-
tistical analysis (routine Average). In other words,
the master performs the job that was done by Stage;
and Stages in the pipeline implementation discussed
above. Each slave computes energy equipartition (rou-
tine Energy) on the data coming from the master, and
returns the results to the master itself. Similarly to the
pipeline implementation, where the first stage dynami-
cally dispatches jobs to the replicas of the second stage,
in this case too the master dynamically dispatches jobs
to the slave tasks according to the same self-scheduling
policy.

In the pipeline implementation, all HPF tasks were
created statically. Also the degree of parallellism for
the data-parallel stages, and the number of replicas for
the second stage were chosen before starting the exe-
cution. The only dynamic feature exploited was the
scheduling policy, which may be very effective when the
execution time of the replicated stages is non-uniform.
Unfortunately, it does not eliminate all the load balance
problems which may arise due to the SMP time-sharing
environment which may introduce unpredictable varia-
tions in the load of the machines used.

The COLTypr templates implementing the master-
slave skeleton use another dynamic strategy in order
to improve the handling of unpredictable variations in
the processor capacities occurring at run—time. In fact.
only the master and one slave are started at the be-
ginning. Further slaves are created dynamically by
the master if its bandwidth is higher than the aggre-
gate bandwidth of all the slaves currently running. To
this end, the master profiles the execution and mea-
sures the aggregate bandwidth of the slaves Bgjqpes as
well as its own bandwidth B,,uste-. While disequation
Bsiaves > Bmaster + T, with T a fixed threshold, is
satisfied and other processors are available, the mas-
ter spawns other slave tasks. The configuration of the
master-slave application is thus tuned dynamically, by
chosing the best number of slave tasks on the basis of
an accurate run-time estimate which considers not only
the algorithmic features of the application, but also the
actual capacities of the machines involved.

Table 2 compares the execution times obtained with
5 physical processors with the COLTypr master-slave
and the pure HPF implementations of our case study

12 S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM

Table 2
Completion times (in seconds) obtained by the COLTypr master-
slave and the HPF implementations of the case study application.

Problem Size=2048

HPF COLTyper
(master-slave)
O O 00

0o
Procs sec. Structure sec. Ratio
5 55.2 [1(2,2)] 31.4 1.75
1(3,3,3,3)] 264 2.09

Table 3

Dynamic vs. Static master-slave (M-S) by varying the load on
the master machine. Master allocated on a dedicated 2-way SMP,
and up to 4 slaves mapped on other two dedicated 2-way SMPs.

Problem Size=2048

Static M-S Dynamic M-S
Load no. of slaves sec. no. of slaves sec.
0 4 26.4 4 27.1
2 4 31.1 3 30.1
3 4 35.6 2 34.5
4 4 46.2 2 43.2

application. The results reported refer to experiments
conducted by fixing the problem size to 2048. As can
be seen, the completion times measured are very sim-
ilar to those obtained with the pipeline version of the
application (see Table 1). This means that the master
bandwidth is high enough to dispatch the work to two
slave tasks and to perform all the computations previ-
ously done by the first and last stage of the pipeline.
To evaluate the effectiveness of the strategy exploited
to dynamically tune the number of slave tasks as a func-
tion of the bandwidth of the master and slaves, we
introduced varying artificial workloads onto the SMP
running the master task. In particular, up to four cpu-
bound processes were executed concurrently with the
master task. Table 3 reports the results obtained and
compares them with those obtained by disabling dy-
namic task creation and always exploiting four slave
tasks (Static master-slave). The Table highlights that
in the absence of external workloads the static imple-
mentation is slightly more efficient. However, as the
load on the SMP running the master task increases, the
dynamic master-slave implementation adapts itself by
starting less slave tasks and outperforms the static one.
For example, when four cpu-bound processes share the
same 2-way SMP with the master task, the COLTypr
dynamic master-slave implementation becomes aware
of the master’s lower bandwidth and only starts two

slave tasks. On the other hand, in the static case the
number of slave tasks is fixed to four (the optimum con-
figuration on an unloaded system) and the master pays
additional overheads for initializing the COLTgpr com-
munication channels and for scheduling and managing
the slave tasks whose aggregate bandwidth is signifi-
cantly higher than the master one. Moreover, the dy-
namic strategy implemented ensures that the minimum
number of slave tasks needed to maximize the overall
throughput is exploited, thus minimizing resource us-
age.

We also conducted tests to evaluate the effects of
the presence of external loads on the SMPs running the
slave tasks. We observed that even in this case, at least
as regards the performance of our test-case application,
it is always profitable to start up two slaves on each
SMP. Of course, the presence of other cpu-bound pro-
cesses on these machines reduces the SMP’s capacities
accordingly, and thus causes an increase in the comple-
tion time of our application. Thus, we did not gain any
advantages from the dynamic creations of slave tasks,
provided that in both implementations, i.e. in the static
and the dynamic one, the same machines and the same
maximum number of slaves were considered. The only
advantage of the dynamic master-slave skeleton is its
ability to select the most unloaded machine on which
to start new slave tasks.

5. Conclusions

We have presented COLTgpr, a coordination layer
for HPF tasks, which exploits PVM to implement op-
timized inter-task communications. COLTypr allows a
mixed task and data-parallel approach to be adopted,
where data-parallel tasks can be started either stat-
ically (at loading-time) or dynamically (on demand).
It worth remarking that, differently from other related
proposals [8,11,6,22], our framework for integrating task
and data parallelism is not based on the adoption of an
experimental HPF compilation system. An optimized
commercial product such as the PGI pghpf compiler,
now available for different platforms and also for clus-
ters of Linux PCs, can be instead employed.

An important features of the coordination model
proposed in this paper is the adoption of a high-level
skeleton-based coordination language, whose associated
compiler generates HPF tasks with calls to the COLTgpp
support on the basis of pre-packaged templates associ-
ated with the task-parallel skeletons chosen by program-
mers, e.g. pipeline, processor farm, and master-slave
skeletons.

Mixed task and data parallel approach has several
benefits over a pure data-parallel one. Pure HPF only
allows to choose whether loops have to be executed in
parallel or sequentially. If a loop is parallel, it is sched-
uled among all the processors involved in the execu-

S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM 13

tion. Unfortunately, distinct parts of the application
often scale differently, and some of them may also show
an increase in the completion time as more processors
are used for the parallel execution. This behavior can
be frequently observed on our testbed architecture, a
cluster of SMP machines connected by a high-latency
communication network.

On the other hand, our mixed task and data-parallel
approach allows performances to be optimized on a
global basis by independently choosing the best degree
of parallelism for the various parts of the application,
each implemented by a different HPF task. In addition,
effective mapping strategies can be exploited, which
map tightly-coupled HPF tasks onto single SMPs, so
that only intra-task COLTgpr communications occur
over the high-latency network. Although COLTgpr en-
sures the minimization of the number of communica-
tions needed to transfer distributed data between two
data-parallel tasks, these communications are charac-
terized by high latencies, mainly due to the TCP/IP
protocol used. However, intra-task communications are
generally less critical than inter-task HPF-related ones,
because they do not require tight synchronization be-
tween the processes.

We applied our parallelizing strategy to a physics
application, implemented with a pipeline skeleton com-
posed of three different HPF tasks, where we have dis-
cussed in depth the profitability of replicating the mid-
dle stage of the pipeline. We also experimented an al-
ternative, more dynamic, master-slave skeleton to im-
plement the same test-case application.

We conducted several experiments on our testbed
cluster of SMPs. Static optimizations, such as the
choice of the best degree of parallelism for the HPF
tasks, were carried out on the basis of the knowledge of
task scalability. The COLTgpr implementation obtained
encouraging performances, with improvements of up to
353% in the completion time over the pure HPF imple-
mentation. Finally, it is worth noting that the largest
improvements with respect to the pure HPF implemen-
tation were obtained in the tests involving a smaller
dataset. This behavior is particularly interesting be-
cause for many important applications, e.g. in image
and signal processing applications, the size of the data
sets is limited by physical constraints which cannot be
easily overcome [12].

References

[1] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and
M. Vanneschi. P3L: a Structured High-level Parallel Lan-
guage and its Structured Support. Concurrency: Practice
and Ezxperience, 7(3):225-255, 1995.

[2] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi.
SkIE: a heterogeneous environment for HPC applications.
Parallel Computing, 2000. To appear.

[3] H.E. Bal and M. Haines. Approaches for Integrating Task

(11]

[12]

[13]

[14]
[15]
[16]

(17]

18]

[19]

(22]

and Data Parallelism.
July-Spet. 1998.

T. Brandes. ADAPTOR Programmer’s Guide Version 5.0.
Internal Report Adaptor 3, GMD-SCAI, Sankt Augustin,
Germany, April 97.

N. Carriero and D. Gelenter. How to write a parallel pro-
gram: A guide to the perplexed. ACM Computing Surveys,
21(3):323-358, Sept. 1989.

M. Chandy, I. Foster, K. Kennedy, C. Koelbel, and C-W.
Tseng. Integrated Support for Task and Data Parallelism.
The Int. Journal of Supercomputer Applications, 8(2):80-98,
1994.

P. Dinda, T. Gross, D. O’Halloron, E. Segall, E. Stichnoth,
J. Subhlok, J. Webb, and B. Yang. The CMU Task Parallel
Program Suite. Technical Report CMU-CS-94-131, School of
Computer Science, Carnegie Mellon University, March 1994.
B.Chapman et al. Opus: a Coordination Language for Mul-
tidisciplinary Applications. Scientific Programming, 6(2),
April 1997.

E. Fermi, J. Pasta, and S. Ulam. Los Alamos Report LA
1940. In E. Segre’, editor, Collected Papers of Enrico Fermi,
volume 2, page 978. University of Chicago Press, 1965.

Tan Foster, David R. Kohr, Jr., Rakesh Krishnaiyer, and
Alok Choudhary. A Library-Based Approach to Task Paral-
lelism in a Data-Parallel Language. Journal of Parallel and
Distributed Computing, 45(2):148-158, Sept. 1997.

T. Gross, D. O’Hallaron, and J. Subhlok. Task Parallelism
in a High Performance Fortran Framework. IEEE Parallel
and Distributed Technology, 2(2):16-26, 1994.

T. Gross, D. O’Halloron, E. Stichnoth, and J. Subhlok. Ex-
ploiting Task and Data Parallelism on a Multicomputer. In
Proc. ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 13-22, May 1993.
A.J.G. Hey. Experiments in MIMD Parallelism. In Proc. Int.
Conf. PARLE ’89, pages 28-42, Eindhoven, The Nether-
lands, June 1989. LNCS 366 Spinger-Verlag.

High Performance Fortran Forum. HPF Language Specifica-
tion, May 1993. Ver. 1.0.

High Performance Fortran Forum. HPF-2 Scope of Activities
and Motivating Applications, Nov. 1994. Version 0.8.

High Performance Fortran Forum. HPF Language Specifica-
tion, Jan. 1997. Ver. 2.0.

H.T. Kung. Computational Models for Parallel Comput-
ers. In C.A.R. Hoare Series, editor, Scientific applications
of multiprocessors, pages 1-17. Prentice-Hall Int., 1988.

S. Orlando and R. Perego. A Comparison of Implemen-
tation Strategies for Non-Uniform Data Parallel Compu-
tations. Journal of Parallel and Distributed Computing,
52(2):132-149, 1998.

S. Orlando and R. Perego. Scheduling Data-Parallel Compu-
tations on Heterogeneous and Time-Shared Environments.
In Proc. of EUROPAR’98, pages 356-366, Southampton,
UK, Sept. 1998. LNCS 1470, Spinger-Verlag.

S. Orlando and R. Perego. COLTwpr, a Run—Time Support
for the High-Level Coordination of HPF Tasks. Concur-
rency: Practice and Ezperience, 11(8):407-434, 1999.

S. Ramaswamy and P. Banerjee. Automatic generation of ef-
ficient array redistribution routines for distributed memory
multicomputers. In Proc. Frontiers ’95: The Fifth Sympo-
sium on the Frontiers of Massively Parallel Computation,
pages 342-349, Feb. 1995.

S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A Frame-
work for Exploiting Task and Data Parallelism on Dis-
tributed Memory Multicomputers. IEEE Transactions on
Parallel and Distributed Systems, 8(11):1098-1116, Nov.
1997.

Stefano Ruffo. The fput numerical experiment: time scales
for the relaxation to thermodynamical equilibrium. In

IEEE Concurrency, pages 74-84,

14 S. Orlando, P. Palmerini, R. Perego / Mized Data and Task Parallelism with HPF and PVM

D. Bambusi and G. Gaeta, editors, Symmetry and Pertur-
bation Theory, page 188. Quaderni CNR, 1998.

[24] L. Smar and C.E. Catlett. Metacomputing. Comm. of the
ACM, 35(6):45-52, June 1992.

[25] J. Subhlok and G. Vondran. Optimal Latency-Throughput
Tradeoffs for Data Parallel Pipelines. In Proc. Eighth Annual
ACM Symposium on Parallel Algorithms and Architecture
(SPAA), June 1996.

[26] Marco Vanneschi. PQE2000: HPC Tools for industrial appli-
cations. IEEE Concurrency, 6(4), October-December 1998.

Salvatore Orlando received a Laurea de-
gree cum laude and a Ph.D. degree in Com-
puter Science from the University of Pisa in
1985 and 1991, respectively. He is currently
an assistant professor at the Department of
Computer Science of the Ca’ Foscari Univer-
sity of Venice. His research interests include
parallel languages and computational mod-
els, optimizing and parallelizing tools, par-
allel algorithm design and implementation.
E-mail: orlando@unive.it

Paolo Palmerini received a Laurea degree
in Physics from the University of Florence
in 1996. He is currently a researcher at
CNUCE, an Istitute of the Italian National
Research Council (CNR). His research in-
terests are high performance computing and
parallel data mining.

E-mail: paolo.palmerini@cnuce.cnr.it

Raffaele Perego received his Laurea degree
in Computer Science from the University of
Pisa in 1985. He is currently a researcher
at CNUCE, an Istitute of the Italian Na-
tional Research Council (CNR), and a con-
tract professor at the Department of Com-
puter Science of the University of Pisa. His
research interests include design and analy-

f sis of parallel algorithms, parallel languages

e and tools, high performance computing.

E-mail: raffaele.perego@cnuce.cnr.it

