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Abstract. Many critical applications, like intrusion detection or stock market analysis, require a nearly immediate result based
on a continuous and infinite stream of data. In most cases finding an exact solution is not compatible with limited availability
of resources and real time constraints, but an approximation of the exact result is enough for most purposes.

This paper introduces a new algorithm for approximate mining of frequent itemsets from streams of transactions using
a limited amount of memory. The proposed algorithm is based on the computation of frequent itemsets in recent data and
an effective method for inferring the global support of previously infrequent itemsets. Both upper and lower bounds on the
support of each pattern found are returned along with the interpolated support. An extensive experimental evaluation shows that
APstream, the proposed algorithm, yields a good approximation of the exact global result considering both the set of patterns
found and their supports.

1. Introduction

Association Rule Mining (ARM), one of the most popular topic in the KDD field [2,14], regards the
extraction association rules from a database of transactionsD. In this paper we are interested in the most
computationally expensive phase of ARM, i.e., the Frequent Itemset Mining (FIM) one, during which
the setF of all the itemsets that occur in at least a user specified number of transactions is discovered.
Those itemsets are namedFrequent Itemsets.

The computational complexity of the FIM problem derives from the exponential size of its search
spaceP(I), i.e. the power set ofI, whereI is the set of items contained in the various transactions
of D. A way to pruneP(I) is to restrict the search to itemsets whose subsets are all frequent. The
Apriori algorithm [2], and other derived algorithms for non dynamic datasets, exactly exploits this
pruning technique, based on the Apriori anti-monotonic principle.

In a stream setting, new transactions are continuously added to the dataset. The infinite nature of stream
data sources is a serious obstacle to the use of most of the traditional methods, since available computing
resources are limited, whereas the amount of previously happened events is usually overwhelming. Thus,
one of the first effects is the need to process data as they arrive, due to the impossibility of storing them.
The results extracted evolve continuously along with data. In our case, since we adopt a landmark
window model, these results refer to the whole data stream arrived so far, from a given past time (when
we started collecting data) to the current time.

Obviously, an algorithm suitable for stream data should be able to compute the ‘next step’ solution
on-line, starting from the previously known one and the current data, if necessary with some additional
information stored along with the past solution. In our case, this information is the count of a significant

1088-467X/07/$17.00 2007 – IOS Press and the authors. All rights reserved



50 C. Silvestri and S. Orlando / Approximate mining of frequent patterns on streams

part of frequent single items, and a transaction hash table used for improving deterministic bounds on
supports returned by the algorithm.

Unfortunately, even the apparently simple discovery of frequent items in a stream is challenging [5].
Some items, initially frequent, may eventually become infrequent. On the other hand, other items may
appear initially in a sporadic way and then become frequent. Thus the only way to exactly compute the
support of these items is to maintain a counter since the first appearance of each of them. This could be
acceptable when the number of distinct items is reasonably bounded. If the stream contains a large and
potentially unbounded number of spurious items, as in case of data with probabilities of occurrence that
follow a Zipf’s law, like internet traffic data, this approach may lead to a huge waste of memory.

In this paper we discuss astreamalgorithm for approximate mining of frequent itemsets,APstream

(Approximate Partition for Stream), which exploitsDCI [27], a state-of-the-art algorithm for FIM, as
the miner engine for recent data. TheAPstream algorithm uses techniques similar to those that we have
already exploited inAPInterp [34], an algorithm for approximate distributed mining of frequent itemsets.
BothAPstream andAPInterp use a computation method inspired by thePartition algorithm [31].
Partition relies on a horizontally partitioned dataset, and consists in independently computing

local results from each partition, merging the local sets of frequent itemsets, and then recounting each
potentially frequent pattern over the whole dataset to discover theglobal results. In order to extend
this approach to a stream setting, blocks of data received from the stream are used as an infinite set of
partitions.

Others stream association mining algorithms, such as LOSSY COUNT[24] for frequent itemsets, use
a similar approach with some variation. Obviously, all of them avoid recounting potentially frequent
itemsets over the whole dataset, which is not feasible with streaming data.APstream applies the same
heuristic used by the previously introducedAPInterp algorithm. The infinite flow of data block in the
stream is processed pairwise, using past processed data and recent data as two partitions. Upon new data
arrival, as many transactions as possible are buffered and processed in-core. The amount of buffered
transactions obviously depends on their lengths, but also on the size of main memory available. The past
approximate solution is then merged with the frequent pattern set obtained from recent data.

Since a second pass on the whole stream is impossible, we use an approximate support inference
heuristic during the merge phase in order to improve the support accuracy. Along with each interpolated
support value, this method yields a pair of deterministic upper and lower bounds. The proposed inference
heuristic can be easily replaced with a different one, more complex or better fitting a particular application
context. In particular, our method is based on a simple, yet effective, interpolation schema based on the
knowledge of the supports of the sub-patterns of a given infrequent pattern. Despite its simplicity, it
entails good approximation results in experimental evaluation. So we expect that, for specific application
contexts, a more focused inference method also based on domain knowledge would yield even better
results.

In data streams, the underlying data distribution may change. Hence the models built on old data
might become inaccurate. This problem, known as concept drift, complicates the task of interpolating
the count of past occurrences of a given pattern. The method we propose is in some way concept drift
resilient, in particular when the drift concerns only the single item probability distributions and not the
joint distributions. In Section 7, we propose an extension able to deal with this issue in more challenging
cases.

This paper is organized as follows. Section 2 formally introduces the FIM problem on streams. Then
Section 3 describes theAPstream algorithm, and thePartition algorithm that inspiredAPInterp and
APstream. Before presenting and discussing our experimental results in Section 5, we introduce, in
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Section 5.1, some similarity measures that we use in order to evaluate the quality of the approximate
results. Section 6 surveys the main related works in the field. Finally, in Section 7 we discuss some
interesting extensions of the proposed method, and, in Section 8, we draw some conclusions.

2. The problem

In this section we formally define the FIM problem in both non-evolving databases and stream ones.

Definition 1. (TRANSACTION DATASET) Let I = {i1, . . . , im} be a set of items. A non-evolving
transaction datasetD is a collection ofinput setsor transactions:

D = {t| t = (tid, t)},
wheretid is a transaction identifier, andt = {i1, . . . , ik} ⊆ I is a set of distinct items. The size ofD is
the numbern of transactions contained inD, i.e.,n = |D|.

The support of an itemset is a measure of its interestingness as a pattern, and is based on its frequency.

Definition 2. (SUPPORT OF AN ITEMSET) Let p ⊆ I be an itemset. Thesupportσ(p) of itemsetp in
datasetD is defined as

σ(p) = |{(tid, t) ∈ D | p ⊆ t}|
i.e., the number of transactions inD that contain patternp. The relative supportsup(p) of patternp is
instead expressed as a fraction of the total number of transactions:

sup(p) =
σ(p)
|D|

Even if a transaction represents a set of items, with no particular order, it is convenient to assume that
there exists some kind of total orderR among them. Such order makes unequivocal the way in which an
itemset is written, e.g., if we adopt an alphanumeric order we cannot write{B,A} since the correct way
is {A,B}.

Definition 3. (FREQUENT ITEMSET MINING) Let minsup be a user chosen threshold. An itemsetp is
frequent inD if its supportσ(p) is not less thanσmin = minsup · |D|, i.e., if sup(p) � minsup. A
k-itemset is a pattern composed ofk items,Fk is the set of all frequent k-itemsets, andF is the set of all
frequent itemsets.

TheFrequent Itemset Mining(FIM) problem consists in discoveringF in D.
In a stream setting, since new transactions are continuously added to the dataset, we need a notation

for indicating that a particular dataset or result refers to a particular part of the stream. To this end, we
write the interval as a subscript after the entity.

Definition 4. (TRANSACTION STREAM DATASET) Let I = {i1, . . . , im} be a set of items. A transaction
data streamD is an infinite sequence ofinput setsor transactions:

D = {t| t = (bid, tid, t)}
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wheret = {i1, . . . , ik} ⊆ I is a set of distinct items, whiletid andbid are monotonically increasing
identifiers, which are respectively associated with single transactions and blocks. The block identifier
bid is chosen at reception time. In particular, all the transactions labeled with the samebid = i arrived
before all the transactions labeled withbid = i+ 1. The transactions in thei th block, denoted asDi, are
processed at the same time. The notationD [i,j), i < j, identifies the part of the stream containing only
the transactions whosebids are included in the interval[i, j), i.e.,i � bid < j.

ThusD[1,j] denotes the part of the stream from the starting block until blockj. If the j th block is the
current one, and the notation is not ambiguous, we will just writeD instead ofD [1,j].

Due do the continuous evolution of stream datasets, a solution to the FIM problem must be tied to a
part of the stream, indicated as a block intervalD[i,j]. Depending on the part of stream involved, the
problem presents different challenges, and is named differently. In particular, thelandmark model[22,
24] considers the entire stream, thesliding window model[7] refers to its most recent part, and, finally,
the tilted-time window model[17], is obtained by composing several distinct sliding windows, in order
to maintain multiple time-granularities. In this paper we discuss an algorithm for the solution of the FIM
in the landmark model. We formally introduce this problem in the following.

Definition 5. (FREQUENTITEMSET MINING IN DATA STREAMS) Let minsupbe a user chosen threshold.
An itemsetp is frequent inD[1,i] if its supportσ[1,i](p) is not less thanσmin[1,i]

= minsup · |D[1,i]|. A
k-itemsetis a pattern composed ofk items,Fk[1,i]

is the set of all frequent k-itemsets, andF[1,i] is the set
of all frequent itemsets.

The problem ofFrequent Itemset Mining(FIM) in Data Streamsconsists in discoveringF [1,i] in D[1,i],
for increasing values ofi.

3. The Partition algorithm and its extensions

The APstream (Approximate Partition for Stream) algorithm uses a technique similar to the one that
we have introduced with our algorithmAPInterp [34] for approximate mining of frequent itemsets in a
distributed setting. Both algorithms are inspired byPartition [31], a sequential algorithm which
divides the dataset into several partitions processed independently, and then merges thelocal solutions
to producethe global result. In this paper we will also use the terms local and global, as referred to
stream input data or associated results. Local indicates something just concerning a contiguous part of
the stream, hereinafter called a block of transactions, whereas global indicates something pertaining to
the whole stream seen so far.

In this section we will describe thePartition algorithm and its näıve distributed and streaming
versions, which we have used as a starting point for designing our approximate algorithms.

3.1. The originalPartition algorithm

The basic idea exploited byPartition is the following: if the dataset is divided into several
partitions, then eachglobally frequent itemset must belocally frequent in at least one partition. This
guarantees that the union of all local solutions is a superset of the global solution.Partition
sequentially reads the dataset, one partition at a time. For each partition it extracts the locally frequent
itemset, and adds them to a set of potential globally frequent itemsets. After this phase, the result set
contains every globally frequent itemset, mixed with several infrequent ones (false positives). Thus the
dataset is read again, counting the exact occurrences of each candidate pattern, i.e., the ones that turned
out to be frequent in only a proper subset of all the dataset partitions. At the end of the second scan all
the infrequent patterns are removed, so that the result set only contains the FIM problem solution.
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3.2. TheDistributed algorithm

Obviously,Partition can be straightforwardly implemented in a distributed setting with a mas-
ter/slave paradigm [26]. Each slave becomes responsible of a local partition, while the master performs
the sum-reduction of local counters (first phase) and orchestrates the slaves for computing the missing
local supports for potential globally frequent patterns (second phase) to remove patterns having global
support less than minsup (false positive patterns collected during the first phase).

While the Distributed algorithm gives the exact values for supports, it has pros and cons
with respect to other distributed algorithms. Thepros are related to the number of communi-
cations/synchronizations: other methods like count-distribution [19,38] require several communica-
tions/synchronizations, while theDistributed algorithm only requires two communications from
the slaves to the master, a single message from the master to the slaves and synchronization after the first
scan. Theconsconcern the size of the messages exchanged, and the possible additional computation
performed by the slaves when the first phase of the algorithm produces many false positives. Consider
that, when low absolute minimum supports are used, it is likely to produce a lot of false positives due to
data skew present in the various dataset partitions [30]. This has a large impact also on the cost of the
second phase of the algorithm: most of the slaves will participate in counting the local supports of these
false positives, thus wasting a lot of time.

A näıve technique to work around this problem is to stopDistributed after the first-pass. We
call the algorithm that adopts this simple techniqueDistributed One-pass Partition. So, in
Distributed One-pass Partition, each slave independently computes locally frequent pat-
terns and sends them to the master which sum-reduces the support for each pattern, and writes in the result
set only the patterns having the sum of the known supports not less thanminsup · |D|. Distributed
One-pass Partition has obvious performance advantages overDistributed. On the other
hand, it yields a result which may be approximate, since it is possible that some globally frequent
pattern occur in a partition where it resulted to be locally infrequent, so that its local support count is
unknown. In several cases this may cause the erroneous omission of globally frequent patterns. However,
Distributed One-pass Partition ensures that at least the number of occurrences reported
for each returned pattern exists.

3.3. TheStream Partition algorithm

The infinite sequence of blocks of data that arrive from the data stream can be considered as an infinite
set of partitions. This allows us to adopt theDistributed approach also in a stream setting. Since
the stream is infinite, however, it is impossible to collect and merge the results obtained from the various
blocks. Thus the partial results must be merged repeatedly, and each time the result set needs to be
updated. A block of data is processed as soon as “enough” transactions are available, and the local result
set of the current block is merged with the previous approximate result set, which refers to the past part
of the stream. Unfortunately, due to memory constraints, in the stream case only recent raw data – i.e.,
the last block of transactions – can be maintained available for processing. Thus, in this case we can
perform a second scan of them to check the support count of frequent patterns that resulted to be frequent
in the past, but that are locally infrequent in the current block.

Only the partial results extracted so far from previous blocks of the stream, plus some other additional
information, can be available for determining the global result set, i.e. the frequent itemsets and their
supports. Therefore, in the stream case it is impossible to perform a second scan on the past data to check
the support count of a pattern that is locally frequent in the current blockDj , but that resulted infrequent
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in the past streamD[1,j). A näıve technique to work-around this problem is to keep in the global result
set only those patterns having the sum of the known supports not less thanminsup · |D [1,j]|. We call
the algorithm that adopts this simple techniqueStream Partition. The known support counts are
only the ones corresponding to those blocks in which the patterns resulted to be locally frequent. The
first time an itemsetx is reported, its support count corresponds to the support computed in the current
block. In case it appeared previously, this means introducing an error. IfD i is the first block wherex is
frequent, then this error can be at most

∑
b∈[1,i)(σminb

− 1).

4. The AP algorithm family

The two näıve algorithms discussed above for distributed and stream settings, both inspired by
Partition, have serious shortcomings. In particular, the weakness ofStream Partition is
common to several other stream FIM algorithms. When a previously ignored pattern becomes interest-
ing, its exact support is largely underestimated. In order to overcome this issue, we propose a general
framework that corrects the known supports of itemsets that result frequent in the current block of trans-
actions, by using an interpolation schema based on other knowledge gathered from past data. The kind
of interpolation used can be substituted seamlessly, in order to better fit the particular application context.
In this article and in our previous works [34] we have used a really simple, yet effective, interpolation
based on the reduction factor with respect to the supports of the subsets of the considered pattern.

TheAPstream algorithm is derived from the distributed algorithmAPInterp [34], using a method similar
to the one used to buildStream Partition from Distributed.

In the following subsection we will quickly describeAPInterp, than we will introduce theAPstream

algorithm.

4.1. TheAPInterp algorithm

One of the most evident issues inDistributed is the generation of several false positives, which
in turn cause an increment of both resource utilization and execution time, especially when data skew
between data partitions is high. TheAPInterp algorithm addresses this issue by means of global pruning
based on good approximate knowledge of the globalF2: each locally frequentk-pattern which contains a
globally non-frequent 2-pattern will be locally removed from the set of frequents patterns before sending
it to the master, and generating the nextk + 1-candidate patterns.

On the other hand,Distributed One-pass Partition uses a very conservative estimate for
the support of patterns, since it always chooses the lower bounds (known support counts) to approximate
the results. This causes underestimated support values, but also several false negatives, often for those
patterns whose global supports are close to the threshold. The data skew, indeed, might cause a globally
frequentk-patternx to result infrequent on a given partitionDi only. In other words, sinceσi(x) <
minsup·|Di|,xwill not be returned as a frequent pattern by theith slave. As a consequence, the master of
Distributed One-pass Partition cannot count on the knowledge ofσi(x), and thus cannot
exactly compute the global support ofx. Unfortunately, inDistributed One-pass Partition,
the master might also deduce thatx is not globally frequent, because

∑
j,j �=i σj(x) < minsup · |D|.

In order to limit this issue, inAPInterp the master infers an approximate value for this unknownσi(x) by
exploiting aninterpolation method. The master bases its interpolation reasoning on the knowledge of:

– the exact support ofsingle itemsin each partition;
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Fig. 1. APInterp overview.

– the reduction factorr(x) with respect to the known supports of the items and subsets contained in
the considered patternx.

Note that the support of some subset ofx in a partition could be unknown too. This mean that it
has been interpolated and discarded because globally infrequent during thek− 1 iteration, otherwise an
approximation of its support would be known. In this casex can be discarded as well.

The master can thus deduce theunknownsupportσ i(x) on the basis ofr(x), in turn derived from the
supports ofx in those partitionsDi wherex resulted to be frequent. Figure 1 shows an overview of the
data flows in the distributedAPInterp algorithm.

When the number of distributed dataset partitions is really high, the computation cost for collecting
and merging the local solutions could become considerable, since the complexity of the merge operation
is linear in the amount of input data. To limit this issue, the nodes can be organized in a hierarchy, where
each node fetches and merges the results of its direct descendant, and returns the result of the merge to
the parent node.

4.2. TheAPstream algorithm

The streaming algorithm we propose in this paper,APstream, tries to overcome some of the problems
encountered byStream Partition and other similar algorithms for association mining on streams,
when the data skew between different incoming blocks is high.

This skew might cause a globally frequent itemsetx to result infrequent on a given data blockD i. In
other words, sinceσi(x) < minsup · |Di|, x will not be found as a frequent itemset in theith block. As
a consequence, we will not be able to count on the knowledge ofσ i(x), and thus exactly compute the
support ofx. Unfortunately,Stream Partition might also deduce thatx is not globally frequent,
because

∑
j,j �=i σj(x) < minsup · |D|.

APstream addresses this issue in different ways, as summarized in Table 1. In particular, the table shows
all the possible cases regarding the knowledge ofσ(x) on the current blockD i and the previous part of
the streamD[1,i).
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Table 1
APstream: Computing the support ofx in the whole data streamD[1,i]

σ[1,i)(x) σi(x) Action
Known Known σ[1,i](x) = σ[1,i)(x) + σi(x).
Known Unknown Recount supportσi(x) on recent, still available, data.

Thenσ[1,i](x) = σ[1,i)(x) + σi(x).
Unknown Known Interpolate past supportσinterp

[1,i)
(x).

Thenσ[1,i](x) = σinterp
[1,i)

(x) + σi(x).

The first case is the simplest to handle: the new supportσ [1,i](x) will be the sum ofσ[1,i)(x) and
σi(x). The second one is similar, except that we need to look at recent data for computingσ i(x).
The key difference withStream Partition is the handling of the last case.APstream, instead of
supposing thatx never appeared in the past, tries to interpolateσ [1,i)(x). The interpolation is based on
the knowledge of:

– the exact support of eachitemin D[1,i) (or, optionally, just the approximate support of a fixed number
of the most frequent items);

– the reduction factorsr(x) of the support count of subsets ofx in the current block with respect to
its interpolated support over the past part of the stream.

The algorithm will thus infer theunknownsupportσ[1,i)(x) of itemsetx on the part of the stream
preceding theith block as follows:

σinterp
[1,i) (x) = σi(x) · r(x)

where

r(x) = min
item∈x

(
min

(
σ[1,i)(item)
σi(item)

,
σ[1,i)(x� item)
σi(x� item)

))
(1)

The rationale of Eq. (1) is that, given two itemsetsx andx′, x′ ⊂ x, if the exact value ofσ[1,i)(x) is

unknown, its interpolated valueσ interp
[1,i) (x) is approximated by using the following proportion:

σi(x) : σi(x′) = σinterp
[1,i) (x) : σ[1,i)(x

′)

so that

σinterp
[1,i) (x) = σi(x) · σ[1,i)(x′)

σi(x′)

Note that alsoσ[1,i)(x′) might be an approximate value previously interpolated.
Given ak-itemsetx, the reduction factorr(x) defined by Eq. (1) is thus computed by considering all

x′, x′ ⊂ x, such thatx′ is either one of the single items belonging tox, or ak − 1-itemset set-included
in x. Finally, the value chosen forr(x) is the minimum one.

Note that, since the merge of the results is performed level-wise starting first from shorter itemsets,
when we try to approximateσinterp

[1,i) (x), the exact or approximate value ofσ[1,i)(x � item) must surely
be known or already interpolated, for allitem ∈ x. This is because all thek − 1-itemsets included inx
must be globally frequent. Otherwise,x could not be a valid candidate.

Figure 2 shows an overview of the data flows in theAPstream algorithm.
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Table 2
Sample supports and reduction ratios

x σi(x) σ[1,i)(x)
σ[1,i)(x)

σi(x)

{A,B,C} 6 ?
{A,B } 8 50 6.2
{A,C } 12 30 2.5
{B,C } 10 100 10
{A } 17 160 9.4
{B } 14 140 10
{C } 18 160 8.9
{} 40 400 −

Fig. 2. APstream overview.

Example of interpolation. Suppose that we have received 440 transactions so far, and that 40 of these
are in the current blockDi. The itemsetx = {A,B,C}, briefly indicated asABC, is locally frequent,
whereas it was infrequent in previous data. Table 2 reports the support of every subset involved in the
computation. The first columns contains the itemsets, the second and third columns contain the known
supports of the patterns in the current blockDi and in the past part of the streamD[1,i). Finally, the last
column shows the reduction factor implied by each pattern.

According to Eq. (1), the algorithm chooses the reduction factorr(x) forx = {A,B,C} by considering

all the itemsetsx′, x′ ⊂ x, of size one and two. In this case the chosen minimum ratio
σ[1,i)(x

′)
σi(x′) is 2.5,

corresponding to the subsetx′ = {A,C}. Since inDi the support ofx = {A,B,C} is σi(x) = 6, the
interpolated support will beσinterp

[1,i) (x) = 6· 2.5= 15.
It is worth remarking that this method works if the support of larger itemsets decreases similarly in

most parts of the stream, so that a reduction factor (different for each itemset) can be used to interpolate
unknown values. Finally note that, as regards the interpolated value above, we expect that the following
inequality should hold:σinterp

[1,i) (x) < minsup · |D[1,i)|. So, if we obtain it is not satisfied, this interpolated
result should not be accepted. If it was true, the exact valueσ [1,i)(x) should have already been found.
Hence, in those few cases where the above inequality does not hold, the interpolated value will be:
σinterp

[1,i) (x) = (minsup · |D[1,i)|) − 1.
Implementation. We can finally introduce the pseudo-codeofAP stream. As inStream Partition

the transactions are received and buffered.DCI, the algorithm used for the local computations, exactly
knows the amount of transactions that can be processed in-core.
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Fig. 3. APstream pseudo-code.

Thus we can use this knowledge in order to maximize the size of each block of transactions processed
at a time. Since frequent itemsets are processed sequentially and can be offloaded to disk, we can ignore
the memory occupied by the mined results.

Figure 3 contains the pseudo-code ofAPstream. For the sake of simplicity we will neglect the quite
obvious main loop with code related to buffering, and concentrate our attention on the processing of each
data block. The interpolation formula has been omitted too for the same reason.

Each block is processed, visiting the search space level-wise, for discovering frequent itemsets. In this
way itemsets are sorted according to their length and the interpolated support for frequent subpatterns is
always available when required. The processing of itemsets of lengthk is performed in two steps. First
frequent itemsets are computed in the current block, and then the actual insertion into the past set of
frequent itemsets is carried out. When a pattern is found to be frequent in the current block, its support on
past data is immediately checked: if it was already known then the local support is summed to previous
support and previous bounds. Otherwise a support and a pair of bounds are inferred for past data, and
summed to the support in the current block. In both cases, if the resulting support passes the support test,
the pattern is queued for insertion. After every locally frequent itemset of lengthk has been processed,
the support of every previously known itemset which, on the other hand, resulted to be locally infrequent
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must be computed on recent data. Itemsets passing the support test are queued for insertion too. Then
the pre-inserted itemsets in the queue are sorted and the actual insertion takes place.

4.3. Tighter bounds

As a consequence of using an interpolation method to guess an approximate support value in the past
part of the stream, it is very important to establish some bounds on the support found for each pattern. In
the previous subsection we have already indicated a pair of really loose bounds: each support cannot be
negative, and if a pattern was found infrequent in the past dataD [1,i), then its interpolated support should
be less thanminsup · |D[1,i)|. This criteria is completely true for a non-evolving distributed dataset
(distributed frequent pattern mining). In the stream case, however, the results are approximate and may
be affected by false negatives. When a pattern is erroneously discarded as infrequent, its future upper
bounds might be underestimated. Anyhow, this issue concerns just a limited number of patterns and,
also in these cases, the bounds represent a useful approximation of the exact ones.

4.3.1. Bounds based on pattern subset
The first bounds that interpolated supports should obey, derive from theApriori property: no set

can have a support greater than those of any of its subset. Since recent results are merged level-wise
with previously known ones, the interpolation can exploit already interpolated subset support. When a
subpattern is missing during interpolation, it means that it has been examined during a previous level and
discarded. In this case all of its superset may be discarded as well. The computed bound is thus affected
by the approximation of past results: an itemset with an erroneous support will affect the bounds for each
of its superset. To avoid this issue it is possible to compute the upper bound for an itemsetx using the
upper bounds of its sub-patterns instead of their support. In this way the upper bounds will be weaker,
but there will be less false negatives due to erroneous bounds enforcement.

4.3.2. Bounds based on transaction hash
In order to address the issue of error propagation in support bounds we need to devise some other kind

of bounds, which are computed exclusively from received data, and thus are independent of any previous
results. Such bounds can be obtained using inverted transaction hashes. The technique discussed below
was first introduced in the algorithm IHP [21], an association mining algorithm, where it is used for
finding an upper bound for the support of candidates in order to prune infrequent ones. As we will show,
this method can also be used for lower bounds.

The key idea is to use a numberH of arrays of item counters where each array is associated with
a disjoint set of input transactions. When a transactiont = (bid, tid, t) is processed, we only modify
the counters in thehth array, whereh is the result of a hash function applied totid. Sincetids are
consecutive integer numbers, a trivial hash function, likehf(tid) = tid mod H, will guarantee an
equal distribution of transactions among all hash bins. Thus, when the transactiont = (bid, tid, t) is
processed, we update the array associated with the currenttid

(∀item ∈ t) Counth[item] + +

whereh = tid mod H.
Let H = 1, i.e., a single array of counters is used. Let A and B be two items, andCount0[A] and

Count0[B] the associated counters, i.e.Count0[A] andCount0[B] are the number of occurrences of
itemsA andB in the whole dataset. According to the Apriori principle

σ({A,B}) � min(Count0[A], Count0[B])
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Furthermore we are able to indicate a lower bound for the same support. Letn be the total number of
transactionsn. We know from the inclusion/exclusion principle that

σ({A,B}) � max(0, Count0[A] + Count0[B] − n)

In fact, if n − Count0[A] transactions does not contain the itemA, then at leastCount0[B] − (n −
Count0[A]) of the Count0[B] transactions containingB will also containA. Suppose thatn =
30, Count0[A] = 18, Count0[B] = 18. If we represent with anX each transaction supporting a
pattern, and with a dot any other transaction, we obtain the following diagrams:

Best case(ub(AB)= 18) Worst case(lb(AB)=6)
A: XXXXXXXXXX XXXXXXXX.. .......... XXXXXXXXXX XXXXXXXX.. ..........
B: XXXXXXXXXX XXXXXXXX.. .......... .......... ..XXXXXXXX XXXXXXXXXX
AB: XXXXXXXXXX XXXXXXXX.. .......... .......... ..XXXXXX.. ..........
supp 18 6

Then no more than 18 transactions will contain bothA andB. At the same time at least 18+ 18−30= 6
transactions will satisfy that constraint. Since each counter represents a set of transaction, this operation
is equivalent to the computation of the minimal and maximal intersections of the tid-lists associated with
the single items.

Usually, however,H > 1. In this case, for each transactiontid, we will increment the counter array
Counth[], whereh = tid mod H. The bounds for the support of an itemsetx are:

σ(x)upper =
H−1∑
h=0

min
item∈x

(Counth[item])

σ(x)lower =
H−1∑
h=0

max

(
0, nh −

∑
item∈x

(nh − Counth[item])

)

wherenh is the total number of transactions associated with thehth hash value.
Consider the same example discussed above, i.e. 30 transactions including itemsA andB, where

σ(A) = 18 andσ(B) = 18. Let H = 3. Thereforenh = 10, for eachh = 0,1,2. Suppose that
Count0[A] = 8,Count0[B] = 7,Count1[A] = 4,Count1[B] = 5,Count2[A] = 6, andCount2[B] =
6. Using the same notation previously introduced we obtain:

h=0 h=1 h=2
Best case Worst case Best case Worst case Best case Worst case

A: XXXXXXXX.. XXXXXXXX.. A: XXXX...... XXXX...... A: XXXXXX.... XXXXXX....
B: XXXXXXX... ...XXXXXXX B: XXXXX..... .....XXXXX B: XXXXXX.... ....XXXXXX
AB: XXXXXXX... ...XXXXX.. AB: XXXX...... .......... AB: XXXXXX.... ....XX....
supp 7 5 supp 4 0 supp 6 2

Each pair of columns, which corresponds to a distincth = 0, 1, 2, represents the transactions having a
tid mapped into the corresponding location by the hash function. Note that the lower and upper bounds
for σ({A,B}) are, respectively,5 + 0 + 2 = 7 and7 + 4 + 6 = 17. Note that these two bounds are
stricter than8 and18, i.e., the ones obtained forH = 1.

Both lower bound and upper bound computations can be extended recursively to larger itemsets. This
is possible since the reasoning previously explained still holds if we considers the occurrences of itemsets
instead of those of single items.

The lower bound computed in this way will be often equal to zero in sparse datasets. Conversely, on
dense datasets this method did prove to be effective in narrowing the two bounds.
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5. Experimental evaluation

In this section we study the behavior of the proposed method. We run theAP stream algorithm on several
datasets using different parameters. The goal of these tests is to understand how similarities of the results
vary as the stream length increases, how the hash based pruning is effective, and, in general, how dataset
peculiarities and invocation parameters affect the accuracy of the results. Furthermore, we want to study
how execution time evolves when the stream length increases.

5.1. Assessing accuracy

The method we are proposing yields approximate results. In particularAPstream computes itemset
supports which may be slightly different from the exact ones. Thus the result set may miss some frequent
itemset (false negatives), or include some infrequent itemset (false positives).

5.1.1. Similarity measure
In order to evaluate the accuracy of the results, we need a measure of similarity between two pattern

sets. A widely used one has been introduced in [30], and is based on support difference.

Definition 6. (Similarity) Let A and B respectively be the reference (correct) result set and the ap-
proximate result set.supA(x) ∈ [0, 1] andsupB(y) ∈ [0, 1], wherex ∈ A andy ∈ B, correspond
to the relative support found in A and B respectively. Note that sinceB corresponds to the frequent
itemsets found by the approximate algorithm under observation,A − B thus corresponds to the set of
false negatives, whileB −A are thefalse positives.

The Similarity is thus computed as

Simα(A, B) =
∑

x∈A∩B max{0, 1− α ∗ |supA(x) − supB(x)|}
|A ∪ B|

whereα � 1 is a scaling parameter, which increase the effect of the support dissimilarity. Moreover,1
α

indicates the maximum allowable error on (relative) itemset supports. We will use the notationSim()
to indicate the default case forα, i.e.α = 1.

This measure of similarity is thus the sum of at most|A ∩ B| values in the range[0, 1], divided by
|A ∪B|. Since|A ∩B| � |A ∪B|, similarity lies in[0, 1] too.

When an itemset appears in both sets and the difference between the two supports is greater than1
α ,

it does not improve similarity, otherwise similarity is increased according to the scaled difference. If
α = 20, then the maximum allowable error in the relative support is 1/20= 0.05= 5%. Supposing
that the support difference for a particular itemset is 4%, the numerator of the similarity measure will be
increased by a small quantity:1 − (20 ∗ 0.04) = 0.2. Whenα is 1 (default value), only itemsets whose
support difference is at most 100% contribute to increase similarity. On the other hand, when we setα
to a very high value, only itemsets with a very similar supports in both the approximate and reference
sets will contribute to increase the similarity measure.

It is worth noting that the presence of several false positives and negatives in the approximate result set
B contributes to reduce our similarity measure, since this entails an increase inA ∪B (the denominator
of theSimα formula) with respect toA ∩ B. Moreover, if an itemset has an actual support which is
slightly less thanminsup but the approximate support (supB) is slightly greater thanminsup, similarity
is decreased even if the computed support was almost correct.
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Two more classical result approximation measures are Precision and Recall, both originally introduced
in the information retrieval context. The Precision is defined as the fraction of patterns contained in the
solution that are actually frequent, i.e., it is the probability that a generic returned pattern will be actually
frequent. The Recall is defined as the fraction of the total number of frequent pattern that are contained
in the solution, i.e., it is the probability that a generic frequent pattern will be found by the algorithm.
Both, however, does not consider the correctness of the support, but only the presence in the result set.
This may be misleading, in particular when using a high minimum support threshold. On the other hand,
a high similarity value ensure high Precision, high Recall, and limited differences between the actual
support values and the discovered ones.

5.1.2. Average support range
When bounds on the support of each itemset are available, an intrinsic measure of the correctness of

the approximation is the average width of the interval between the upper bound and the lower bound [34].

Definition 7. (Average support range) Let B be the approximate result set,sup(x) the exact support for
itemsetx andsup(x)lower andsup(x)upper the lower and upper bounds onsup(x), respectively. The
average support range is thus defined as:

ASR(B) =
1
|B|

∑
x∈B

sup(x)upper − sup(x)lower

Note that, while this definition can be used for every approximate algorithm, how to compute
sup(x)lower andsup(x)upper is algorithm specific.

5.2. Experimental data

We performed several tests using both real world datasets, mainly from the FIMI’03 contest [18], and
synthetic datasets generated using the IBM generator. We randomly shuffled each dataset and used the
resulting datasets as input streams.

Table 3 illustrates these datasets along with their cardinality. The datasets having the name starting
with T are synthetic datasets, which mimic the behavior of market basket transactions. The sparse dataset
family T20I8N5k has transactions composed, on average, of 20 items, chosen from 5000 distinct items,
and includes maximal itemsets whose average length is 8. The dataset family T30I30N1k was generated
with the parameters briefly indicated in its name. It is a moderately dense dataset, since more than
10,000 frequent itemsets can be extracted even with a minimum support of 30%. A description of all
other datasets can be found in [18]. Kosarak and Retail are really sparse datasets, whereas all other the
real world datasets used in experimental evaluation are dense. Table 3 also indicates, for each dataset, a
short acronym that will be used in our charts for referring to it.

5.3. Experimental Results

For each dataset and several minimum support thresholds, we computed the exact reference solutions
by usingDCI [27], the same FIM algorithm used as a building block for bothAP Interp andAPstream. Then
we ranAPstream for different values of available memory and number of hash entries.

The first test is focused on catching the effect of used memory on the behavior of the algorithm, when
the block of transactions processed at a time is sized dynamically according to the available resources.
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Table 3
Datasets used in experimental evaluation

Dataset Reference #Trans.
accidents A 340183
kosarak K 990002
retail R 88162
pumbs P 49046
pumbs-star PS 49046
connect C 67557
T20I8N5k S2..6 77302..3189338
T25I20N5k S7..11 89611..1433580
T30I30N1k D1..D9 50000..3189338
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Fig. 4. Similarity as a function of available memory.

In this case data are buffered as long as all the item counters, and the representation of the transactions
included in the current block fit the available memory. Note that the size of all frequent itemsets, mined
either locally or globally, is not considered in our resource evaluation, since they can be offloaded to disk
if needed. The second test is somehow related to the previous one. In this case the amount of required
memory is variable, since we determine a-priori the number of transactions to include in a single block,
independently of the stream content. The typical use case forAPstream matches the first test: the user
chooses the support, while the other parameters are chosen adaptively, depending on the available system
memory and data peculiarities. The second test, with this adaptive behavior disabled, has been inserted
for the sake of completeness. Since the datasets used in the tests are quite different, in both cases we
used really different ranges of parameters. Therefore, in order to fit all the datasets in the same plot, the
number reported in the horizontal axis are relative quantities, corresponding to the block sizes actually
used in each test. These relative quantities used in the chart are obtained by dividing the memory/block
size used in the specific test by the smallest one for that dataset. For example, the series 50 KB, 100 KB,
400 KB thus becomes 1, 2, 8.
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Fig. 5. Similarity as a function of the number of transactions per block.

The plot in Fig. 4 shows the results obtained in the fixed memory case, while the plot in Fig. 5
corresponds to the case when the number of transactions per block is fixed. The relative quantities
reported in both plots refer to different base values of either memory or transactions per blocks. These
values are reported in the legend of each plot. In general when we increase the number of transactions
processed at a time, either statically or dynamically on the basis of the memory available, we also
improve the results similarity. Nevertheless the variation is in most cases small, and sometimes there
is also a slightly negative trend, caused by the data dependant relationship between used memory and
transactions per block. Indeed, a different amount of available memory entails a different division of
the stream into blocks, having different sizes and starting points. Occasionally, this could worsen the
similarity, in spite of a larger amount of available memory, as in the case of dataset K in the plot in Fig. 4.
In our test we noted that choosing an excessively low amount of available memory for some datasets
leads to performance degradation, and sometimes also to similarity degradation. The plot in Fig. 7 shows
the effectiveness of the hash-based bounds on reducing the Average Support Range (zero corresponds to
an exact result). As expected, the improvement is evident only on more dense datasets.

The last batch of tests makes use of a family of synthetic datasets, with homogeneous distribution
parameters and varying lengths. Each dataset is obtained from the larger dataset of the series by truncating
it to simulate streams with different lengths. For each truncated dataset we computed the exact result set,
used as reference value in computing the similarity of the corresponding approximate result obtained by
APstream. The chart in Fig. 7 plots both similarity and ASR as the stream length increases. We can see
that similarity remains almost the same, whereas the ASR decreases when an increasing portion of the
stream is processed. Finally, the plot in Fig. 8 shows the evolution of execution time as the stream length
increases. The execution time increases linearly with the length of the stream. Hence, the average time
per transaction is constant if we fix the dataset and the execution parameters.
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6. Related works

The Association Rule Mining (ARM) in transactional databases has been introduced in [2] and is
one of the most popular topics in the KDD field [14,15]. The Frequent Itemset Mining (FIM) is the
most computationally expensive phase of ARM. Most FIM algorithms are based on theApriori [4]
algorithm, which restricts the search to itemsets whose subsets are all frequent.Apriori is a level-wise
algorithm, since it examine thek-patterns only when all the frequent patterns of lengthk − 1 have been
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Fig. 8. Execution time as a function of different stream lengths.

discovered. Several other algorithms based on the Apriori principle have been proposed. Some use the
same level-wise approach, but introduce efficient optimizations, like a hybrid count/intersection support
computation [27], or the reduction of the number of candidates using a hash based technique [29].
Others use a depth-first approach, either class based [38] or projection based [1,20]. Others again use
completely different approaches, based on multiple independent computations on smaller part of the
dataset, like [31], or incremental computation on an adaptive sample of the data [13,30,32,35]. Parallel
(PDM) and distributed (DDM) data-mining are a natural evolution of data-mining technologies, motivated
by the need of scalable and high performance systems. A number of parallel algorithms for solving the
FIM have been proposed in the last years [3,19]. Most of them can be considered parallelizations of the
well-known Apriori algorithm.

Zaki authored a good survey on ARM algorithms and relative parallelization schemas [37]. Agrawal
et al. [3] proposed a broad taxonomy of the parallelization strategies that can be adopted for Apriori
on distributed-memory architectures. The described approaches constitute a wide spectrum of tradeoffs
between computation, communication, memory usage, synchronization, and the use of problem-specific
information. The Count Distribution (CD) approach adopts the data-parallel paradigm, according to
which the input transaction database is statically partitioned among the processing nodes, while the
candidate setCk is replicated. Count Distribution is an algorithm that can be realized in a distributed
setting, since it based on a partitioned dataset, and also because the amount of information exchanged
between nodes is limited. The other two methods proposed by Agrawal et al., Data and Candidate
Distribution, require moving the dataset. Unfortunately in a distributed environment such dataset is
usually already partitioned and distributed on distinct sites, and cannot be moved for several reasons, for
example due to the low latency/bandwidth network that connects the sites.

Several DDM FIM algorithms have been proposed, aimed at reducing the amount of communications
involved in the Count Distribution method. FDM [9] constitutes an attempt to reduce the amount of
communication entailed in the sum-reduction of the local counters in the CD parallelization of the
Apriori algorithm. Schuster and Wolff [33] then introduced DDM, whose aim is to reduce the number
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of messages exchanged by FDM that, in presence of non-homogeneity of database partitions, quickly
becomes similar to the number of messages exchanged by CD. The basic idea of DDM is to verify
that an itemset is frequent before collecting its support from every party. The same authors extend
the idea of DDM to a dynamic large scale P2P environment [36], i.e., a system based on utilizing
free computational/storage resources on non-dedicated machines, where nodes can suddenly depart/join
along with the associated database, thus modifying the global result of the computation.

The exact discovery of frequent items in a stream of items may be a highly memory intensive
problem [8]. Several relaxed versions of this problem exist, and some interesting ones were introduced
in [8,12,23]. The techniques used for solving this family of problems can be classified into two large
categories: count-based techniques [12,23–25], sketch-based techniques [8,10,11,24]. The first ones
monitor a limited set of potentially “interesting” items, using a counter for each one of them. In this case
an error arises when an item is erroneously kept out of the set or inserted too late. The second family
provides frequency estimation for every item by using a hash indexed vector of counters. In this case the
risk of completely missing the occurrences of an item is avoided, at the cost of looser guarantees on the
computed frequencies.

The FIM problem on stream of transactions poses additional memory and computational issues due
to the exponential growth of solution size with respect to the corresponding problem on streams of
items. Two representative approximate algorithms are derived respectively from LOSSY COUNT[24] and
FREQUENT [12,23]. The first one is presented in [24], and is an almost straightforward extension of
LOSSY COUNT. The second one is presented in [22], and, even if based on FREQUENT, is significantly
different from it, since a property that ensures the correctness in the item case is no longer valid for
itemsets. Both algorithms are affected by the issues previously described in the discussion ofStream
Partition, i.e., they do not consider the possible support count that a pattern could have, even if it
has been reported as infrequent. LOSSY COUNTmaintains the obvious upper bound that we also used,
but no lower bound is exploited.

7. Extensions

The proposed interpolation framework for frequent pattern mining is based on the merge of partial
results, using interpolation to replace missing data. The framework was originally proposed for dis-
tributed datasets [34], and, in this paper, has been extended to stream datasets. Thanks to the generality
of the proposed approach, it can be easily extended also to other, more challenging, cases, like Frequent
Sequences, Frequent Closed Itemsets, and settings involving multiple distributed streams. Interestingly,
the proposed stream algorithm can be applied, with little modifications, also to a mobile agent setting.
In particular it corresponds to the simple case of a single agent that traverses multiple repositories in
sequence, carrying partial results along with the code. Thus we plan to investigate the use of this frame-
work in more intricate scenarios, involving largely distributed datasets and several cooperating mobile
agents.

In this section we only discuss some of the extensions indicated above, namely the distributed/stream
FSM (Frequent Sequence Mining) problem and the FIM problem for multiple distributed streams.

7.1. Frequent Sequence Mining on distributed/stream data

The methods presented for frequent itemset extraction can easily be extended to another kind of
frequent patterns: the frequent sequences. This only involves minor modifications of the algorithms:
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replacing the interpolation formula with one suitable for sequences, and the FIM algorithm with a FSM
algorithm. CCSM [28] is an efficient level-wise FSM algorithm, able to handle time constraints, and
producing an ordered set of frequent sequences.CCSM is a suitable FSM candidate to be inserted in
our distributed and stream framework. Indeed, sinceCCSM visits level-wise the search space, it extracts
the sequences ordered by length. This feature allowsAPstream and APInterp to merge on-the-fly the
sequence patterns as they arrive. Furthermore the on-the-fly merge reduces both memory requirement
and computational cost.

As the overall framework remains exactly the same, all the improvements and limits that we have
explained for frequent itemsets are still valid. The only problems are those originated by the intrinsic
difference between frequent itemset and frequent sequences, which make the result of FSM potentially
larger and more likely to be affected by combinatorial explosion.

7.2. Frequent Itemset Mining on distributed stream data

The proposed merge/interpolation framework can be extended seamlessly to manage distributed
streams in several ways. The most straightforward one is based on the composition ofAP Interp, fol-
lowed byAPstream. Each slave is responsible for extracting frequent itemsets from its local streams. The
results of each processed block are sent to the master and merged, first among them by usingAP Interp,
and then with the past combined results by usingAPstream. The schema on the left of Fig. 9 illustrates
this framework.Resnode,i is the FIM result on theith block of thenode stream, whereasResi is the
result of the merge of all localith results, andHist Resi is the historical global result, i.e., from the
beginning to theith block.

A first improvement on this base idea could be the replacement of the two cascaded merge phases, one
distribution related and the other stream related, with a single one. This would allow for better accuracy
of results and stricter bounds, thanks to the reduction of cumulated errors. Clearly, the recount step,
used inAPstream for assessing the support of recently infrequent itemsets that were frequent in past data,
is impossible in both cases. Since the merge is performed in the master node, only the received locally
frequent patterns are available. However, this step proved to be effective in our preliminary tests on
APstream, particularly for dense datasets.

In order to introduce the local recount phase, it is necessary to move the stream merge phase to the
slave nodes. In this way, recent data are still available in the reception buffer, and can be used to improve
the results. Each slave node then sends its local results, related to the whole history of its streams, to the
master node that simply merges them like inAPInterp. Since these results are sent each time a block is
processed, it would be advisable to send only the differences in the results related to the last processed
block. This involves rethinking the central merge phase, but in our opinion it should yield better results.
The schema on the right of Fig. 9 illustrates this framework. The stream of result generated by each
instance ofDCI is directly processed byAPstream, yieldingHist Resnode,i, i.e. the results on the whole
node stream at timei. APInterp collects these results and outputs the final resultHist Resi.

The last aspect to consider is synchronization. Each stream evolves, potentially at a different rate with
respect to other streams. This means that when the stream reception buffer of a node is full other nodes
could be still collecting data. Thus, the collect and merge framework should allow for asynchronous and
incremental result merge, with some kind of forced periodical synchronization, if needed. In this case,
like in APInterp, we are considering a straightforward way of collecting and merging the local results.
However, when the number of distributed streams is really high, a better solution is possible. The nodes
can be organized in a hierarchy, where the master exchanges messages only with the first level, and
intermediate nodes encapsulate their child nodes, returning the result of the merge to the parent node.
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Fig. 9. Distributed stream mining framework. On the left distributed merge followed by stream merge, on the right local stream
merge followed by distributed merge.

7.3. Time granularity

The method proposed in this paper yields the most recent solution to the frequent pattern problem in
a landmark setting, that is, the returned frequent patterns are referred to the whole stream. While this
can be satisfactory in several cases, sometimes the user may be interested in limiting the query time
interval or in comparing the solution for different time intervals to discover changes. Our algorithm
can be straightforwardly adapted to these time constrained queries, since the merge of local results can
be postponed, to enforce the user supplied time constraints. This technique is described in full details
in [17]. Here we summarize its main aspects and explain how to integrate our algorithm in a tilted-time
window framework.

7.3.1. Tilted-time windows
The users are often interested in analyzing recent data at a finer granularity than past data. The design

of tilted-time windows allows for storing in a memory-efficient way the summaries needed to answer
queries on long term data, and fine granularity on more recent data.

Figure 10 shows a tilted-time window based on commonly used time intervals: last 4 quarter of an
hour, last 24 hours, last 31 days, last 12 months, last years, last 2 years, last 4 years. If we keep track of
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Fig. 10. Natural tilted-time windows.

Fig. 11. Logarithmic tilted-time windows.

the support of a pattern for each time interval, we can use such information in order to answer the user
query. It should be noted that only 78 counters are used to represent the past 4 year with high granularity
on recent data, and a few more counters would allow extending the larger time window to over 100 years.
If the available memory is a critical factor, logarithmic tilted-time windows can be used. In this case the
size of every window is larger than the more recent one by a fixed factor. Figure 11 shows a logarithmic
tilted-time window corresponding to a factor 2. If the time unitt is still a quarter of an hour, the first two
intervals on the left represent the last two quarters, the following one the last half-hour and so on. In this
case the same 4 years period would require only�log2(4 × 24 × 365)� + 1 ≈ 19, which is far less than
the number of quarters contained in the same period.

When a time unit elapses, the most recent counter is shifted and replaced by the new support, the
previous one is shifted too and so on, summing the supports when needed (e.g., 24 hours make a day).
Tilted-time windows can be efficiently updated, if we use some extra memory to store the counters that
will replace the current ones while they are incremented. Indeed, the amortized time is O(1) for each
pattern and, in the logarithmic case, only one extra counter is needed for each counter to be maintained.

7.3.2. APstream and tilted-time windows
Simply merging the set of frequent itemsets for different time intervals, as highlighted in theStream

Partition case, leads to an approximation of the support. This is due to the possible occurrence of
patterns in intervals where they are not frequent. To address this issue the authors of [17] are forced to
maintain also several infrequent patterns, in a number increasing with the required maximum error on
the supportε. Since the approach they propose is roughly comparable to a reduction of the minimum
support during local computation, the time needed to process each batch can be unreasonable for dense
datasets. Even moderately sparse datasets with long transactions may be critical, due to the reduction of
the minimum support toε.

Thus, we propose to avoid the support reduction and to use the interpolation based merge proposed
in APstream, instead of simply summing the supports when the counters are shifted. In this case the user
will not be able to specify a maximal error bound. However,APstream will determine the error bounds on
computed patterns, and it will also be able to deal with lower support level, and more complex datasets
than the algorithm proposed in [17].

7.3.3. Dealing with concept drift
In case the models built on old data become inaccurate, due to a data distribution change, using tilted-

time windows can help to avoid the effects of concept drift. Since the pattern frequencies are maintained
at different time granularities, we can simply decide to ignore the summaries of older data when they are
no longer representatives, that is, when the knowledge they provide is not compatible with current data.
However this approach requires being able to decide which part of past data is useful and which is not,
and sometimes this is not easily decidable.
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A simpler approach consists in gradually decreasing the importance of past data [17], using a fading
factor φ, applied each time a counter is shifted or merged. Obviously also the window sizes, which
corresponds to the supports of the empty pattern, are “faded”, so the definition of frequent pattern is
still consistent. The main drawback of this approach is that it is not reversible. Hence, it is impossible
to apply a different fading factor to past data. However, if we apply the fading factor to the already
summarized windows instead of at batch level, we can avoid this issue.

8. Conclusions

In this paper we have discussedAPstream, a new algorithm for approximate frequent itemset mining
on streams.APstream exploits a novel interpolation method to infer the unknown past counts of some
itemsets, which are frequents only on recent data. Since the support values computed by the algorithm
are approximate, we have also proposed a method for establishing a pair of upper and lower bounds for
each interpolated value. These bounds are computed using the knowledge of subpattern frequencies in
past data, and of a hash based compressed representation of past data.

Experimental tests shows that the solution produced byAPstream is a good approximation of the exact
global result. The comparisons with exact results consider both the set of itemsets found and their
support. The metric used in order to assess the quality of the algorithm output is the similarity measure
introduced in [30], used along with the novel false positive aware similarity proposed in [34]. The
interpolation works particularly well for dense dataset, achieving a similarity close to 100% in the best
case. The adaptive behavior ofAPstream allows us to limit the amount of used memory. As expected, we
have found that a larger amount of available memory corresponds to a more accurate result. Furthermore,
as the length of the processed stream increases, the similarity with the exact result remains almost the
same. At the same time, we have observed a decrease in the average difference between upper and lower
bounds, which is an intrinsic measure of result accuracy. Finally the time needed to process a block of
transactions does not depend on the stream length, hence the total execution time is linear with respect
to the stream length.
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