
Guessing bank PINs by winning a Mastermind game ∗

Riccardo Focardi and Flaminia L. Luccio†

DAIS, Università Ca’ Foscari Venezia

via Torino 155, 30172, Venezia Italy

{focardi,luccio}@dsi.unive.it

Abstract

In this paper we formally prove that the problem of cracking, i.e., correctly guessing, bank
PINs used for accessing Automated Teller Machines and the problem of solving the General-
ized Mastermind Game are strictly related. The Generalized Mastermind Game with N colors
and k pegs is an extension of the well known Mastermind game, played with 6 colors and 4
pegs. The rules are the same, one player has to conceal a sequence of k colored pegs behind
a screen and another player has to guess the exact position and colors of the pegs using the
minimal number of moves. We first introduce a general game, called the Extended Master-
mind Game (EMG), and we then formally prove it includes both the Generalized Mastermind
Game and the PIN cracking Problem. We then present some experimental results that we have
devised using a computer program that optimizes a well known technique presented by Knuth
in 1976 for the standard Mastermind game. We finally show that the program improves the as
state-of-the-art Mastermind solvers as it is able to compute strategies for cases which were not
yet covered. More interestingly, the same solving strategy is adapted also for the solution of
the PIN cracking problem.

Keywords: Security APIs, PIN processing, Hardware Security Modules, Mastermind.

1 Introduction
The Mastermind game was invented in 1970 by the Israeli postmaster and telecommunication
expert Mordecai Meirowitz. It was then brought on the market in 1972 by the English company
Invicta Plastics Ltd.. The game is played as a board game between two players, a codebreaker and
a codemaker (which can be a human or a computer) [22]. The codemaker chooses a linear sequence
∗Work partially supported by the RAS Project “TESLA: Techniques for Enforcing Security in Languages and

Applications”. A preliminary version of this paper has been presented at the 5th International Conference on Fun with
Algorithms (FUN’10)[14].
†Correspondence may be sent to Flaminia L. Luccio, c/o Dipartimento di Scienze Ambientali, Informatica e Statis-

tica (DAIS), Università Ca’ Foscari Venezia, via Torino 155, 30172, Venezia Italy, mail: luccio@dsi.unive.it, phone:
0039/041-2348448, fax: 0039/041-2348419.

Figure 1: Bank network.

of colored pegs and conceals them behind a screen. Duplicates of colored pegs are allowed. The
codebreaker has to guess, in different trials, both the color and the position of the pegs. During
each trial he learns something and based on this he decides the next guess: in particular, a response
consisting of a black marker represents a right guess of the color and the position of a peg (but the
marker does not indicate which one is correct), a response consisting of a white marker represents
only the right guess of a color but at the wrong position.

An apparently completely unrelated problem is the one of protecting a user’s Personal Identi-
fication Number (PIN) when withdrawing some money at an Automated Teller Machine (ATM).
International bank networks are structured in such a way that an access to an ATM implies that the
user’s PIN is sent from the ATM to the issuing bank for the verification. While travelling, the PIN
is decrypted and re-encrypted by special tamper-resistant devices called Hardware Security Mod-
ules (HSMs) which are placed on each traversed network switch, as illustrated in figure 1. The first
PIN encryption is performed by the ATM keypad which is an HSM itself, using a symmetric key
k1 shared with the neighbour acquiring bank. While travelling from node to node, the encrypted
PIN is decrypted and re-encrypted by the HSM located in the switch with another key shared with
the destination node. The final verification and acceptance/refusal of the PIN is done by the issuing
bank.

Although this setting seems to be secure, several API-level attacks have been discovered on
these HSMs in the last years [6, 8, 12]. These attacks work by assuming that the attacker is an
insider gaining access to the HSM at some bank switch and performing subtle sequences of API
calls from which he is able to deduce the value of the PIN. There are many examples of such
attacks, however, in this paper we concentrate only on the so-called decimalization table (dectab)
attack [8]. We will formally illustrate this attack in the next section. Intuitively, the PIN verification
API at the issuing bank verifies the correctness of a PIN by checking the equality between the trial
PIN, i.e., the PIN that arrives encrypted to the bank, and the user PIN. The user PIN is computed by
encrypting the validation data (i.e., some public data which include, e.g., the user Personal Account

Number (PAN)) with the PIN derivation key (stored at the bank) and obtaining a 16 hexadecimal
digit string. A substring of this string is extracted and decimalized via a decimalization table
that maps each hexadecimal digit into a decimal number. Finally, an offset is added. The dectab
attack consists of deducing the PIN digits by modifying some information, e.g., the way numbers
are decimalized and by observing if this affects the result of the verification. The position of
the guessed PIN digits is reconstructed by manipulating the offset of the PIN which is a public
parameter. By combining all this information the attacker is able to reconstruct the whole PIN.

Our contribution. In this paper we formally show how decimalization attacks can be seen as
playing an Extended Mastermind Game. Each API call represents a trial of the codebreaker and the
API return value is the corresponding answer of the codemaker. Modifying the dectab, corresponds
to disclosing the presence of certain digits in the PIN, analogously to the white marker in the
Mastermind Game. On the other hand, manipulating the dectab and the offset together is similar
to asking the codemaker to disclose both the color and the position of one PIN digit, in case the
guess is correct, similarly to what happens with a black marker of the game.

The observation that the Mastermind game and the problem of extracting PIN digits via dectab
attacks are closely related is not entirely new, as it is briefly mentioned in [7]. However, in the
following we formalize the above intuition by showing how PIN cracking and Mastermind can
be seen as instances of a more general problem, or game, the Extended Mastermind Game. We
also suggest a new way of improving the dectab attack: The idea is to allow the codebreaker (i.e,
the attacker) to ask for sets of colors (i.e., digits), instead of just single colors, for each position.
This, in fact, can be implemented in the PIN cracking setting by modifying multiple entries of the
dectab, as we will show in detail.

To this aim, we develop a computer program that optimizes a well known technique presented
by Knuth in [19] for the standard Mastermind game and extend it to our more general setting. We
perform experiments showing that the program is almost as precise as state-of-the-art Mastermind
solvers [17] but faster, being it able to compute strategies for cases not yet covered. More interest-
ingly, the very same solving strategy can be adapted to the solution of the PIN cracking problem.
We have also noticed that this algorithm can be further refined using a few heuristics that use more
sophisticated guesses only when the algorithm is not able to reduce the solution space. This leads
to new interesting upper bounds on the number of average API calls for performing the attacks on
PINs of length 4 and 5.

Paper structure. In section 1.1 we briefly summarize the related literature. In section 2 we
formally define the two problems, i.e., the Generalized Mastermind Problem and the PIN Cracking
Problem. In section 3 we introduce the Extended Mastermind Problem, i.e., a general problem
whose instances are the above mentioned problems. In section 4 we expose some experimental
results, and we conclude in section 5.

1.1 Related literature
Mastermind. In [19] Donald Knuth considered the standard Mastermind game, played using
pegs of 6 different colors, in a sequence of length 4. The codebreaker has to uncover a secret
sequence selected from 64 = 1296 elements. Knuth showed how the codebreaker can find the
pattern in five moves or fewer, using an algorithm that progressively reduces the number of possible
patterns. Each guess is made so that it minimizes the maximum number of remaining possibilities.
The expected number of guesses is 4.478. In 1993 Kenji Koyama and Tony W. Lai proposed a full
enumeration technique based on recursive backtracking methods that uses at most 6 guesses but
decreases the expected number to 4.340 or to 4.341 if only 5 guesses are allowed [20]. The idea is
to reduce the search space by considering only one of the so-called case-equivalent combinations.
Other different approaches for the solution of the standard Mastermind problem have also been
presented, as genetic algorithms [5, 18] and an evolutionary technique [4].

For the Generalized Mastermind Game with N colors and sequences of length k some solutions
have been presented. In [10] the authors propose a bound related to the one for finding a hidden
code by asking questions. They also show that

⌈
k
N

⌉
+ 2NlogN + 2N + 2 guesses are sufficient to

solve the problem. In [17] the authors present some new bounds for this generalized game. Using
a computer program they compute some new exact values of maximum number of guesses. They
also provide theoretical bounds for the case of sequences of length 2, 3 and 4, and for the general
case of N colors and length k.

Finally, different variants of the game have been proposed, e.g, in [11], Chvatal mentions a
problem, suggested by Pierre Duchet, called the static Mastermind. This problem consists of
finding the minimum number of guesses made all at once (i.e., without waiting for the responses),
that are required to determine the secret sequence. The Mastermind Satisfiability Problem (MSP),
based on this static version, has been proved to be NP-complete [22].

PIN cracking. API-level attacks on PINs have recently attracted attention from the media [1, 3].
This has increased the interest in studying formal methods for analysing PIN recovery attacks and
API-level attacks in general [21]. In particular, different models have been proposed, e.g., in [8]
the authors prove that in average 16.5 API calls are required to reconstruct the PIN and this bound
was decreased to 16.145 in [21]. In [9] we have presented, together with other authors, a language-
based setting for analysing PIN processing API via a type-system. We have formally modelled
existing attacks, proposed some fixes and proved them correct via type-checking. These fixes
typically require to reduce and modify the HSM functionality by, e.g., sticking on a single format
of the transmitted PIN or adding MACs for the integrity of user data. Notice, in fact, that the above
mentioned attack is based on the absence of integrity on public user data such as the dectab and
the offset. As upgrading the bank network HSMs worldwide is complex and very expensive in [13]
we have also have proposed a low-impact, easily implementable fix that adds an integrity check
to the parameters passed to the PIN processing API that controls access to the tamper-resistant
HSMs where PIN encryption, decryption and verification takes place. This fix involves very little
change to the existing ATM network infrastructure and makes attacks 50000 times slower, but yet
not impossible.

2 The two problems
In this section we give a formal definition of the two problems we will be relating. We first
define the Generalized Mastermind Problem (GMP), i.e., the problem of solving a Generalized
Mastermind Game, and we then present the problem of attacking a PIN using the decimalization
table, and we call it the PIN Cracking Problem (PCP).

It is convenient to give here some general notions: both problems aim at guessing a secret s,
picked from a set S. When placing a guess g, from the set of possible guesses G, the player obtains
an answer as(g) ∈ A, that is determined by the placed guess g and the (unknown) secret s. This
allows the player to deduce that the secret s is in the set {v ∈ S | av(g) = as(g)} of surviving
candidates, i.e., the set of all values in S that give the same answer as the one just received, when
placing guess g. Notice that this set can be computed without knowing s, once as(g) is known.

Definition 1 (Guessing game). A guessing game is a triple 〈S,G, a〉 with a : S × G → A. A play
is a sequence 〈g1,S1〉, . . . , 〈gl,Sl〉, where Si = {v ∈ S | av(gi) = as(gi)} , {s} 6= S1 ∩ . . . ∩ Sl−1
and {s} = S1 ∩ . . . ∩ Sl.

Intuitively, 〈gi,Si〉, represents the guess gi at step i and the set Si of surviving candidates
computed from gi and the answer as(gi). The constraints {s} 6= S1 ∩ . . . ∩ Sl−1 and {s} =
S1 ∩ . . . ∩ Sl implies that the last guess gl is exatcly the one that reveals the secret s.

A (deterministic) strategy is a way of computing the next guess g ∈ S, given a sequence
〈g1,S1〉, . . . , 〈gi,Si〉 of previous guesses. A strategy can give rather different outcomes when
varying the secret since this, of course, affects the answers and the relative surviving candidates. It
is thus interesting to look for strategies that are minimal. A strategy is

w-minimal if it minimizes the number of guesses in the worst-case;

a-minimal if it minimizes the number of guesses in the average-case, assuming that secrets are
uniformly picked from S.

For the sake of simplicity, in the following we will use the term minimal in order to indicate either
a w-minimal or an a-minimal strategy.

2.1 The Generalized Mastermind Game
The Generalized Mastermind Problem is a game that is played between a player (the “code-
breaker”) and a computer or another human (the “codemaker”). The codemaker chooses a linear
sequence of k colored pegs (duplicates are allowed), which we call secret and conceals them be-
hind a screen. The colors range in a set {0, 1, . . . , N−1}. The codebreaker has to guess the secret,
i.e., both the color of the pegs and their exact position. The game is played in steps, each of which
consists of a guess of the codebreaker and a response of the codemaker. The response can be empty
(nothing has been correctly guessed), can contain a black or a white marker, i.e., is a sequence of
at most k markers chosen in the set {B,W}. The black marker represents a correct guess both of
the color and the position of a peg, there is no indication however of its position, the white marker
only represents the correct guess of the color.

Figure 2: An example of a Mastermind game.

As we have previously pointed out, in the standard Mastermind game the set of all possible
solutions has size 64, in the Generalized Mastermind Game, however, the size explodes toNk, thus
running plain exhaustive search techniques might become problematic when N and k increase too
much.

An example of the standard Mastermind game, played with N = 6 colors and k = 4 pegs,
is shown in figure 2 taken from [2]. In this example black markers are depicted in red. We have
added numbers to identify different colors. At the first step the codebreaker only finds a right color,
i.e., a cyan peg (2), in a wrong position, thus the response is a white marker W . At the next step he
correctly guesses a red peg (3) in the right position and a purple peg (4) in a wrong position, thus
the response is a black B and a white W peg, an so on. At the last step the response is a sequence
of 4 black markers, i.e., B,B,B,B.

More formally, let C = {0, 1, . . . , N − 1} be the set of colors, and let S = G = Ck, i.e., both
the secret s ∈ S and guesses g ∈ G are tuples of k colors respectively noted (cs1, c

s
2, . . . , c

s
k) and

(cg1, c
g
2, . . . , c

g
k). Answers as(g) are pairs (bs(g), ws(g)) where bs(g) and ws(g) are respectively the

number of black and white markers, as defined below.

Definition 2 (Black markers). The number of black markers is bs(g) = |{i ∈ [1, k] | csi = cgi }|.

The number of white markers, instead, is the number of matching colors between the secret
and the guess which are not in the same position, i.e., we exclude black markers. To formalize
this we first compute the number of occurrences of a color j ∈ C in the secret code as pj = |{i ∈
[1, k] | j = csi}|, and in the guess as qj = |{i ∈ [1, k] | j = cgi }|. Now, min(pj, qj) represents the
number of matching pegs of color j. If we sum over all the colors we obtain the overall number of
matching pegs. From this we need to subtract the ones giving black markers.

Definition 3 (White markers). The number of white markers is ws(g) =
∑N

j=1min(pj, qj)−bs(g).

Let us illustrate the above definitions with a simple example

Example 1. Let N = 6, s = (cs1, c
s
2, c

s
3, c

s
4) = (1, 2, 3, 1) be the secret and g = (cg1, c

g
2, c

g
3, c

g
4) =

(1, 3, 1, 3) be the guess. We compute bs(g) = |{i ∈ [1, k] | csi = cgi }| = |{1}| = 1. In fact only the
first ‘1’ is in the right position, giving a black marker. Then we have

p0 = |{}| = 0 q0 = |{}| = 0
p1 = |{1, 4}| = 2 q1 = |{1, 3}| = 2
p2 = |{2}| = 1 q2 = |{}| = 0
p3 = |{3}| = 1 q3 = |{2, 4}| = 2
p4 = |{}| = 0 q4 = |{}| = 0
p5 = |{}| = 0 q5 = |{}| = 0

Now
∑N

j=1min(pj, qj) = 3 meaning there are 3 matching pegs (the two 1’s and one of the 3), but
one of them is already counted as a black. Thus we obtain ws(g) = 3− bs(g) = 2. Notice that the
two 3’s in the guess are counted just once, as only one 3 appears in the secret code. This is why
we need to take min(pj, qj).

The Generalized Mastermind Problem (GMP) consists of devising a minimal strategy for the
Generalized Mastermind Game played on N colors and k pegs. Formally:

Definition 4 (The Generalized Mastermind Problem - GMP). Devise a minimal strategy for the
game 〈Ck, Ck, a〉 with as(g) = (bs(g), ws(g)).

2.2 API-level attacks in bank networks
In this section we show in detail a real API-level attack to the bank PINs. As we have mentioned in
the introduction, a PIN travelling along the network has to be decrypted and re-encrypted under a
different key, and this is done using a so called translation API. While the PIN reaches the issuing
bank, its correspondence with the validation data, i.e., a value that is typically an encoding of the
user Personal Account Number (PAN) and possibly other ‘public’ data, such as the card expiration
date or the customer name, is checked via a verification API (PIN V for short). We focus our
attention on PIN V and we report its code in table 1. PIN V checks the equality of the actual user
PIN, derived through the PIN derivation key pdk , from the public data offset , vdata, dectab, and
the trial PIN inserted at the ATM. This latter PIN arrives encrypted under key k as EPB (Encrypted
PIN block).

The API returns the result of the verification or an error code.

PIN V behaves as follows:

• The user PIN of length len is computed by first encrypting validation data vdata with the
PIN derivation key pdk (x1) and obtaining a 16 hexadecimal digit string. Then, the first
len hexadecimal digits are chosen (x2), and decimalized through dectab (x3), obtaining the
‘natural’ PIN assigned by the issuing bank to the user. decimalize is a function that associates
to each possible hexadecimal digit (of its second input) a decimal one as specified by its first
parameter (dectab). Finally, if the user wants to choose her own PIN, an offset is calculated
by digit-wise subtracting (modulo 10) the natural PIN from the user-selected one (x4).

PIN V(PAN ,EPB , len, offset , vdata, dectab) {
x1 := encpdk(vdata);
x2 := left(len, x1);
x3 := decimalize(dectab, x2);
x4 := sum mod10(x3 , offset);
x5 := deck(EPB);
x6 := fcheck(x5);
if (x6 =⊥) then return(′′format wrong ′′);
if (x4 = x6) then return(′′PIN correct′′);

else return(′′PIN wrong′′)}

Table 1: The verification API.

• To recover the trial PIN EPB is first decrypted with key k (x5), then the PIN is extracted
by the formatted decrypted message (x6). This last operation depends on the specific PIN
format adopted by the bank. In some cases, for example, the PIN is padded with random
digits so to make its encryption immune from codebook attacks. In this case, extracting the
PIN involves removing this random padding.

• Finally, if x6 fails (⊥ represents failure) 1 then a message is returned, moreover the equality
between the user PIN and the trial PIN is verified.

An API attack on PIN V. We now illustrate a real attack on PIN V first reported in [8]. The
attack works by iterating the following two steps, until the whole PIN is recovered:

1. To discover whether or not a decimal digit d is present in the user ‘natural’ PIN contained in
x3 the intruder picks digit d, changes the dectab function so that values previously mapped to
d now map to d+1 mod 10, and then checks whether the system still returns ‘PIN correct’.
If this is the case d is not contained in the ‘natural’ PIN.

2. To locate the position of the digit previously discovered by a ‘PIN wrong’ output the intruder
also changes the offset , position by position, until the API returns again that the PIN is
correct.

We illustrate the attack through a simple example 2.

Example 2. Assume that dectab = 0123456789012345, as
1Note that there are attacks, not addressed in this paper, that rely on change of format in the message. Thus, x6

fails given that the arrived EPB, once decrypted, has a format that is different from the expected one.
2For simplicity we consider the “standard” decimalisation table, in practice the mapping is much more complicated.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

and that EPB = {|5997, r|}k , and len=4, offset =4732.
Given x1 = encpdk(vdata) = BC6595FDE32BA101 the correct solution, unknown to the intruder,
is the following.

x2 = left(4, BC6595FDE32BA101) = BC65
x3 = decimalize(dectab, BC65) = 1265
x4 = sum mod10(1265, 4732) = 5997
x5 = deck({|5997, r|}k) = (5997, r)
x6 = fcheck(5997, r) = 5997
x6 6=⊥
x4 = x6 return(′′PIN correct′′)

The attacker, unaware of the value of the PIN, first tries to discover whether or not 0 appears in x3,
so it changes the dectab, which is a public parameter, as

dectab ′ = 1123456789112345,

i.e., it replaces the two 0’s by 1’s. Invoking the API with dectab ′ he obtains

decimalize(dectab ′, BC65) = decimalize(dectab, BC65) = BC65,

that is x3 remains unchanged and 0 does not appear in it. The attacker proceeds by replacing the
1’s of dectab by 2’s: with

dectab ′′ = 0223456789022345,

he has

x3 = decimalize(dectab ′′, BC65) = 2265 6= 1265
x4 = sum mod10(2265, 4732) = 6997 6= 5997
x5 = deck({|5997, r|}k) = (5997, r)
x6 = fcheck(5997, r) = 5997
x6 6=⊥
x4 6= x6 return(′′PIN wrong′′)

The intruder now knows that digit 1 occurs in x3, and to discover its position and multiplicity,
he now varies the offset so to ‘compensate’ for the modification of the dectab. In particular, he
tries to decrement each offset digit by 1. For example, testing the position of one occurrence of
one digit amounts to trying the following offset variations:

3732, 4632, 4722, 4731.

Notice that, in this specific case, offset value 3732 makes the API return again ‘PIN correct’.
The attacker now knows that the first digit of x3 is 1. Given that the offset is public, he also

calculates the first digit of the user PIN as 1 + 4 mod 10 = 5. He then proceeds using the same
technique to discover the other PIN digits.

We can now formulate our problem. Let S = [0, 9]k, i.e., the secret s ∈ S is a tuple of
k digits (ds1, d

s
2, . . . , d

s
k), analogously to the Generalized Mastermind played with 10 colors, i.e.,

with N = 10. Guesses G instead are malicious calls to the API. As we focus on dectab-based
attacks, we only consider the value of the dectab and the offset. Moreover, we only consider
changes of dectab that preserve equal mappings, i.e., if the original dectab mapped d1 and d2 to the
same decimal value, even the modified dectab will do it. The reason is that we are not interested
in deducing the hexadecimal digits but just the decimal ones. We will more precisely discuss this
issue when we will compare PIN cracking with Mastermind.

Let dectab be the original dectab. We call T the set of functions dectab ′ : [0, 15] 7→ [0, 9] such
that dectab(d1) = dectab(d2) implies dectab ′(d1) = dectab ′(d2). Since an offset is a tuple of k
digits, we let G = T × [0, 9]k. The answer as(g) is the one given by the PIN verification API,
called with all the original parameters (noted), except for the dectab and offeset which are the
ones included in the guess g.

Definition 5 (The PIN Cracking Problem - PCP). Devise a minimal strategy for the game
〈[0, 9]k, T × [0, 9]k, a〉 where as(dectab ′, offset ′) = PIN V(, , , offset ′, , dectab ′).

Notice that, since we do not change the encrypted PIN, the only possible answers are “PIN
correct” and “PIN wrong”. The wrong format error, in fact, can only happen if the EPB, once
decrypted, is not in the expected format.

3 Extended Mastermind
In this section we extend the Generalized Mastermind Problem previously presented, by allowing
the codebreaker to pose an extended guess composed of k sets of colored pegs, instead of just k
pegs. Intuitively, the sets represent alternative guesses, i.e., it is sufficient that one of the pegs in
the set is correct to get a black or a white marker. E.g., given N = 6 colors, k = 4 positions,
(1, 5, 3, 1) the secret and ({1}, {3, 4, 5}, {1, 2}, {0}) the guess, then the result is two black markers
for the first two positions of the guess, i.e., B,B, and one white marker for the third position of the
guess, i.e., W . We show the correspondence between the values of the secret and the values in the
guess as underlined values in the guess, i.e., ({1}, {3, 4, 5}, {1, 2}, {0}).

As for the Generalized Mastermind, let C = {0, 1, . . . , N − 1} be the set of colors, and let
S = Ck, i.e., the secret s ∈ S be a tuple of k colors, noted (cs1, c

s
2, . . . , c

s
k). The set of guesses,

instead, is now G = (2C)k. In fact, a guess g is a tuple of k sets of colors noted (Cg
1 , C

g
2 , . . . , C

g
k),

with Cg
1 , . . . , C

g
k ⊆ C.

In this new extended game, the number of black markers represents the number of colors in the
secret that belongs to the corresponding (i.e., in the same position) set of colors in the guess, i.e.,
the matching condition csi = cgi of Definition 2 is changed into csi ∈ C

g
i .

Definition 6 (Black markers). The number of black markers is b̂s(g) = |{i ∈ [1, k] | csi ∈ C
g
i }|.

The number of white markers is computed similarly to Definition 3 as

ŵs(g) =
N∑
j=1

min(pj, qj)− b̂s(g),

where qj now reflects the existence of the extended guesses, thus: qj = |{i ∈ [1, k] | j ∈ Cg
i }|.

Example 3. Consider again N = 6, and secret (cs1, c
s
2, c

s
3, c

s
4) = (1, 2, 3, 1) as in Example 1. We

have shown that the guess (1, 3, 1, 3) gives 1 black (the 1 in the first position) and 2 whites (one
of the 3’s and the 1 in the third position). Consider now the extended guess (Cg

1 , C
g
2 , C

g
3 , C

g
4) =

({1}, {3}, {1}, {1, 3}) which includes set {1, 3} in the last position. In this case we have b̂s(g) =
|{i ∈ [1, k] | csi ∈ C

g
i }| = |{1, 4}| = 2, as the first and the fourth pegs belong to the corresponding

sets {1} and {1, 3} in the guess.
The computation of pj is the same as the one of Example 1, while qj differs for what concerns

color 1, i.e., q1 = |{1, 3, 4}| = 3. In fact, color 1 now also appears in the set {1, 3}, in the fourth
position. This however does not affect the computation of

∑N
j=1min(pj, qj) since p1 = 2 and we

still get
∑N

j=1min(pj, qj) = 3. Intuitively, there are still 3 matching pegs (two of the 1’s and one
of the 3’s). The number of white markers, however, differs as we now have two black markers to
subtract, giving ŵs(g) = 3 − b̂s(g) = 1. Color 3 in the second position of the guess is the only
matching peg in the wrong position since the first and the fourth 1s in the secret are computed as
black markers.

We can now define the Extended Mastermind problem played on N colors and k pegs.

Definition 7 (The Extended Mastermind Problem - EMP). Devise a minimal strategy for the game
〈Ck, (2C)k, a〉 with as(g) = (b̂s(g), ŵs(g)).

3.1 Connecting the games
We now show that the first two games, GMP and PCP, are instances of EMP, i.e., can be played
as a restricted version of the Extended Mastermind Problem. In a sense, this proves that EMP is a
super-game of the other two.

Definition 8. A game 〈S,G, a〉 with a : S × G → A is an instance of another game 〈S,G ′, a′〉
with a′ : S × G ′ → A′, iff there exist two functions α : G → G ′ and β : A′ → A such that
β(a′s(α(g))) = as(g), for all s ∈ S.

Intuitively, α maps a guess of the first game into a guess of the second game and β maps the
answer of the second game back into an answer for the first game. If this coincides with the actual
answer in the first game, we have that we can use an instance of the second game to solve the first
one, as stated in the following proposition.

Proposition 1. Let 〈S,G, a〉 be an instance of 〈S,G ′, a′〉, Ĝ = img(α) and âs(ĝ) = β(a′s(ĝ)), for
all ĝ ∈ Ĝ. Then, the problem of devising a minimal strategy for 〈S,G, a〉 is equivalent to the one
of devising a minimal strategy for 〈S, Ĝ, â〉.

Proof. We prove the proposition for both w-minimal and a-minimal strategies. Strategies for the
games 〈S,G, a〉 and 〈S, Ĝ, â〉 are formalized as family of functions σi : (G × 2S)i → G and
σ̂i : (Ĝ × 2S)i → Ĝ, respectively. In fact, they take sequences in the form 〈g1,S1〉, . . . , 〈gi,Si〉 and

〈ĝ1,S1〉, . . . , 〈ĝi,Si〉, and respectively return the next guesses gi+1 and ĝi+1. We now define how
to construct a strategy σ̂i from σi and viceversa.

σ̂i(〈ĝ1,S1〉, . . . , 〈ĝi,Si〉) = α(σi(〈α−1(ĝ1),S1〉, . . . , 〈α−1(ĝi),Si〉)) (1)
σi(〈g1,S1〉, . . . , 〈gi,Si〉) = α−1(σ̂i(〈α(g1),S1〉, . . . , 〈α(gi),Si〉)) (2)

for some α−1 : Ĝ → G such that ∀ĝ ∈ Ĝ, α(α−1(ĝ)) = ĝ.
From now on, we will write σ̂i = α(σi) and σi = α−1(σ̂i) as shortcuts for equations 1 and

2 above. We now prove that any play in game 〈S, Ĝ, â〉 following σ̂i can be naturally mapped
into a play of the same length, in game 〈S,G, a〉 following α−1(σ̂i). More specifically, consider
〈ĝ1,S1〉, . . . , 〈ĝl,Sl〉 such that ĝi+1 = σ̂i(〈ĝ1,S1〉, . . . , 〈ĝi,Si〉), for 1 ≤ i ≤ l.

Let us now show that the corresponding play following σi = α−1(σ̂i) in the first game is
exactly 〈α−1(ĝ1),S1〉, . . . , 〈α−1(ĝl),Sl〉. We first show that when playing ĝi and α−1(ĝi) in games
〈S, Ĝ, â〉 and 〈S,G, a〉, we obtain the same set of surviving candidates Si. In the former game
we have Si = {v ∈ S | âv(ĝi) = âs(ĝi)} = {v ∈ S | β(a′v(ĝi)) = β(a′s(ĝi))}. In the latter
game, instead, the set is computed as {v ∈ S | av(α−1(ĝi)) = as(α

−1(ĝi))}. Notice now that
ĝi = α(α−1(ĝi)) and, by Definition 8, we have β(a′s(ĝi)) = as(α

−1(ĝi)) for all s ∈ S, thus
{v ∈ S | av(α−1(ĝi)) = as(α

−1(ĝi))} = {v ∈ S | β(a′v(ĝi)) = β(a′s(ĝi))} = Si.
We now proceed by induction on index i of gi. The base case is i = 1. By equation 2 we have

σ0() = α−1(σ̂0()) = α−1(ĝ1). Assume now the thesis for i ≥ 0 and consider σi(〈α−1(ĝ1),S1〉,
. . . , 〈α−1(ĝi),Si〉) = α−1(σ̂i(〈ĝ1,S1〉, . . . , 〈ĝi,Si〉)) = α−1(ĝi+1).

Similarly, we can prove that any play 〈g1,S1〉, . . . , 〈gl,Sl〉 following σi is naturally mapped into
the play 〈α(g1),S1〉, . . . , 〈α(gl),Sl〉 following α(σi). Thus, transforming strategies via equations 1
and 2 preserves the length of the plays and so even the worst and average cases, when playing with
different secrets s picked from S.

Let now σ̂i be a minimal strategy for 〈S, Ĝ, â〉 and assume, by contradiction, that σi = α−1(σ̂i)
is not the minimal strategy for 〈S,G, a〉 since there exist a better strategy σ′i. By applying α we
obtain that α(σ′i) produces plays of the same length as σ′i and is thus better than σ̂i, giving a
contradiction. The same reasoning can be followed to show that if σi is minimal for 〈S,G, a〉 then
α(σi) is minimal for 〈S, Ĝ, â〉 .

Proposition 2. GMP is an instance of EMP.

Proof. Recall that GMP is defined as 〈Ck, Ck, a〉 with as(g) = (bs(g), ws(g)) while EMP is the
game 〈Ck, (2C)k, a′〉 with a′s(g) = (b̂s(g), ŵs(g)). Notice that we have the same set S = Ck. We
now consider the following α(c1, . . . , ck) = ({c1}, . . . , {ck}) and β(b, w) = (b, w). Intuitively, a
guess in GMP is mapped into a guess in EMP of singleton sets, while the answer is just mapped
back as it is. We now show that β(a′s(α(g))) = as(g). Since β is the identity function we just
prove that a′s(α(g)) = as(g), i.e., a′s({c1}, . . . , {ck}) = as(c1, . . . , ck). This amounts to prove that
b̂s({c1}, . . . , {ck}) = bs(c1, . . . , ck) and ŵs({c1}, . . . , {ck}) = ws(c1, . . . , ck). These are easily
proved by observing that requiring csi ∈ C

g
i is trivially equivalent to csi = cgi whenever Cg

i = {cgi },
which is in fact the case here.

Thus, by Proposition 1 we have that GMP is equivalent to EMP when guesses are restricted
to tuples of singletons. In fact, in the proof we use α(c1, . . . , ck) = ({c1}, . . . , {ck}) and img(α)

is exactly the set of all tuples of k singleton sets of colors. This is somehow expected, as EMP
generalizes GMP by using sets instead of single colors.

More interestingly, we prove that the PIN cracking problem is also an instance of EMP.

Proposition 3. PCP is an instance of EMP played with 10 colors.

Proof. Recall that PCP is defined as 〈[0, 9]k, T × [0, 9]k, a〉 where T is the set of functions
dectab ′ : [0, 15] 7→ [0, 9] such that dectab(d1) = dectab(d2) implies dectab ′(d1) = dectab ′(d2)
and as(dectab ′, offset ′) = PIN V(, , , offset ′, , dectab ′).

Let (cs1, . . . , c
s
k) ∈ [0, 9]k be the secret PIN. We write offset = o1, . . . , ok and dectab =

d0, . . . , d15. Moreover, we let

∆off = (∆off
1 , . . . ,∆off

k) = (o′1 − o1, . . . , o′k − ok) mod 10

∆dec = (∆dec
0 , . . . ,∆dec

15) = (d′0 − d0, . . . , d′15 − d15) mod 10

Intuitively, ∆off and ∆dec are differences (modulo 10) between the new and old offset digits and
dectab mappings. From the condition above, we know that dectab(d1) = dectab(d2) implies
∆dec

d1
= ∆dec

d2
.

We define α(dectab ′, offset ′) = (C1, . . . , Ck) where Ci = {dj + oi mod 10 | j ∈ [0, 15] ∧
∆off

i ≡ −∆dec
j (mod 10)}. Intuitively, Ci contains all PIN digits for which the new dectab and

offset have compensating variations. β(b, w) is as follows:

β(b, w) =

{
“PIN correct” if b = k ∧ w = 0
“PIN wrong” otherwise

Recall that EMP is the game 〈Ck, (2C)k, a′〉 with a′s(g) = (b̂s(g), ŵs(g)). We want to prove that
β(a′s(α(dectab ′, offset ′))) = as(dectab ′, offset ′). We consider the case as(dectab ′, offset ′) =
“PIN correct”. By the code of PIN V of Table 1, we know that x4 = decimalize(dectab ′, x2) +
offset ′ mod 10 and the call returns “PIN correct” if and only if this value is equal to the one com-
puted using the original values of offset and dectab, i.e., decimalize(dectab, x2) + offset mod 10.
Let us focus on an single i-th digit of x4. Using the above notation, obtain as(dectab ′, offset ′) =
“PIN correct” if and only if, for all 1 ≤ i ≤ k we have d′

xi
2

+ o′i ≡ dxi
2

+ oi (mod 10) that is

o′i − oi ≡ dxi
2
− d′

xi
2

(mod 10) or, equivalently, ∆off
i ≡ −∆dec

xi
2

(mod 10).
By definition of α and β we also know that β(a′s(α(dectab ′, offset ′))) = “PIN correct” if

and only if a′s(C1, . . . , Ck) = (k, 0), i.e., if and only if we have k black markers meaning that
b̂s(C1, . . . , Ck) = |{i ∈ [1, k] | csi ∈ Ci}| = k. This happens if and only if csi ∈ Ci for 1 ≤ i ≤ k.
To conclude we need to prove that this holds if and only if ∆off

i ≡ −∆dec
xi
2

(mod 10). Since

csi = dxi
2

+ oi mod 10 we have that ∆off
i ≡ −∆dec

xi
2

(mod 10) implies dxi
2

+ oi mod 10 ∈ Ci

that is csi ∈ Ci. To see the opposite inclusion, assume that csi ∈ Ci. There must exists j such that
csi = dj + oi mod 10 because of ∆off

i ≡ −∆dec
j (mod 10). From csi = dxi

2
+ oi mod 10 = csi =

dj + oi mod 10 we get dxi
2

= dj which we have noticed to imply ∆dec
xi
2

= ∆dec
j from which the

thesis.

Thanks to Proposition 1 we know that we can solve the PIN cracking problem by playing
an extended Mastermind game restricted to guesses in img(α), and only considering answers
containing k black markers (all the other answers are ‘collapsed’ into the same one, i.e., “PIN
wrong”). It is easy to see that img(α) is composed of all extended guesses in which the sets
of colors (or digits) are either disjoint or the same. For example, for k = 4, we might have
({1, 4}, {7, 2}, {5, 8}, {7, 2}). In fact, the intuition behind α, in the proof, is to ‘collect’ in the sets
all the PIN digits for which the modified dectab compensates the change in the offset. These sets
are actually either disjoint or exactly the same, since the modified dectab can either compensate or
not the modification in the offset. Consider again set ({1, 4}, {7, 2}, {5, 8}, {7, 2}), and suppose,
for example, that the original offset is (1, 5, 4, 2) and it is changed into (0, 3, 1, 0), giving a change
of (−1,−2,−3,−2). Now if the dectab changes the mappings producing 1 and 4 of the first set
into 2 and 5 (by adding 1), these two digits will actually fall in the first set of the guess, as this
compensate the -1 variation in the first position of the offset. Notice that 7 and 2 in the second and
fourth guess need to be changed into 9 and 4 (by adding 2) since the offset variation is -2 in both
those positions, and so on.

The example above also illustrates why we extended the Mastermind game to allow for guess-
ing sets of colors. In fact, in order to deal with simultaneous variations of the dectab we need to
be able to place guesses that only deduce partial information on the color in a certain position.
Consequently, it is not possible to map PIN cracking into the Generalized Mastermind. This idea
of simultaneous variations of the dectab is also the key ingredient for the improvements on known
bounds presented in the next section.

Finally, the above proposition is based on the assumption that variations of the dectab preserve
equal mappings. This is necessary to map the PCP problem into EMP with 10 colors. Dropping
this assumption would still allow to prove that PCP is an instance of EMP with 16 colors. Intu-
itively, the proof would follow the above one focusing on guessing the first k digits of variable x2
instead of x4, i.e., the PIN before decimalization and the offset sum.

4 Experimental results
We have devised a program which is an optimized extension of the original program for Master-
mind presented by Knuth in [19]. It works as follows:

1. Try all the possible guesses. For each guess, compute the number of ‘surviving’ solutions
related to each possible outcome of the guess;

2. pick the guess from the previous step which minimizes the maximum number of surviving
solutions among all the possible outcomes and perform the guess:

(a) For each possible outcome, store the corresponding surviving solutions and recursively
call this algorithm;

(b) stop whenever the number of surviving solutions is 0 (impossible outcome) or 1 (guessed
the right sequence).

Colours/Pegs 2 3 4 5 6 7 8 9 10
2 3 4 4 5 6 6 7 7 8
3 4 4 4 4 5 6 6
4 4 4 4 5 6
5 5 5 5
6 5 5 5
7 6 6 6
8 6 6 6
9 7 7 7

10 7 7 8

Table 2: Our optimization of Knuth’s algorithm.

Colours/Pegs 2 3 4 5 6 7 8
2 3 3 4 4 5 5 6
3 3 4 4 4 5 5
4 4 4 4 5 5
5 4 5 5 5
6 5 5 5
7 5 6 6
8 6 6 6
9 6 6 7
10 7 7 7

Table 3: Bounds from [17].

In order to reduce the complexity of the exhaustive search over all possible guesses we have imple-
mented an heuristic which starts working on a subset of the colors (the one used up to the current
guess) and adds new colors only when needed by the guesses. This is similar, in the spirit, to what
is done in [17].

By applying the optimized algorithm to the Generalized Mastermind Problem we were able
to find new upper bounds on the minimal number of moves for unknown values (see values in
bold of Table 2). As a matter of fact, as it is mentioned in [16], Knuth’s idea does not define an
optimal strategy, it is however very close to the optimal. In [17] some empirical optimal values
were computed (see Table 3) and some theoretical bounds were presented. Note that our values
differ at most by one from the known exact ones. We were also able to efficiently find bounds on
2 colors and 9 and 10 pegs and 3 colors and 8 pegs, and we also provided the exact sequence of
moves to be followed. As the authors of [17] state, the computation of the above new values would
probably take “many weeks” with their strategy, whereas in our case most computations took just
few seconds, others few minutes.

Our experiments have also been oriented towards the investigation of solution of the PIN crack-
ing problem. We have applied the very same algorithm and in this case we have noticed that using
sets with more than two elements in the guesses did not improve much the solutions. With sets of
size at most two the algorithm performs quite well and in [14, 15] we have been able to improve
the results of [21] for cracking PINs of length 4 from an average number of calls of 16.145 to
14.484.3 The improvement is based on the idea of extended guesses, in which sets of values can
be queried by simultaneously changing their mapping in the dectab of a same quantity. This idea
is new, and extends the attack strategy illustrated in [8] and studied in [21]. Notice that in [8, 21]
special ‘dectab-only’ API calls, where the offset is left untouched, are exploited in order to imme-
diately discover whenever a digit appears as one of the intermediate PIN digits. In our approach,
these calls are generalized to sets by performing guesses (once the offset is subtracted) of the form
(C, . . . , C), with C containing the digits whose presence has to be checked. In [14, 15] we also
found a new bound for PINs of length 5 giving an average of 20.88 calls, but with a running time
of about 10 hours. Moreover, to reduce complexity, we have limited the search to guesses with sets
of size 1.

In this paper we have further refined the algorithm so to better perform on the PIN cracking
problem. We have noticed that the shape of the guesses used in the found strategies is quite regular.
We have thus added a few heuristics that incrementally extend the set of guesses when needed: in
particular we start from the ‘dectab-only’ guesses mentioned above, and we use more sophisticated
guesses only when the algorithm is not able to reduce the solution space. We have parametrized
the code so that the user can choose the size of the sets and can force the program to use all the
guesses after the size of the solution space is below a certain limit. Interestingly, this has improved
the results of [14, 15]. This is mainly due to the fact we have focussed on the ‘most useful’ guesses
and this has allowed us to perform a more complete search on that specific subsets, for example
using guesses with sets of size 3 and 4. Moreover, recall that Knuth’s algorithm is not exhaustive.
Thus, by forcing some apparently non-convenient guesses at the beginning, later on it may happen
that the search tree becomes more balanced.

Table 4 reports the pseudo-code of the algorithm. The full program (written in Python) is
available at http://www.dsi.unive.it/∼focardi/MM PIN/. We have omitted the im-
plementation details and all the output. The recursive function do guess is initially invoked with
the whole S set of possible secrets. It then finds a guess that minimize the maximum number of
surviving solutions on the two possible answers and it recurse on the two sets in which the actual
set is partitioned. The resulting average number of guesses to break PINs of length 4 and 5 are,
respectively, 14.47 and 19.3, improving the 14.48 and 20.88 of [14, 15]. The running times are,
respectively, 18.3 seconds and 18.4 minutes on a Toshiba Portégé Laptop (2Gb RAM) running
Ubuntu Linux 10.04 and Python 2.6.5, which is about 30 times faster than [14, 15]. The choice
of Python is due to the fact that complex data structures such as nested lists and sets are native
in the language and the resulting code is very compact and readable. Re-implementing the code
in more performing languages such as C, the execution time would further reduce. Finally, note

3The values here reported are the correct ones. As it was mentioned during the presentation of [14], the published
values for the PIN cracking problem (PINs of length 4 and 5) are slightly different due to a small error in the code that
sometimes used non disjoint sets for guesses. A corrected version of paper [14] is available at [15].

do_guess(S):
if |S| != 1: # not a single solution yet

min = |S| # starting value, we want to decrease it
rnd = 1 # round 1, for heuristics
guesses = [] # empty list of guesses

while min == |S| and rnd <= 2:
depending on the round and the number of surviving solutions, generates the

guesses
if rnd == 1: # heuristic 1 - dectab only

here we have guesses of the form [[list],....,[list]], the ‘dectab only’
guesses, checking whether or not the PIN digits belong to the given list.
list is the list of all ’survived’ colors
guesses = guesses + < dectab only guesses >

if r==2 or |S| < EXT_LIMIT: # heuristic 2, round 2 or size below a limit
the following guesses are of the form [[list1],[list2],....] with list1
and list2 complementary and no other list occurring in the guess.
list1 and list2 are made of ’survived’ colors
guesses = guesses + < complementary list guesses >

for g in guesses:
M_SOLS= S & surviving(g) # intersect S and surviving solutions for g

n_sol = max(|m_sols|,|S|-|m_sols|) # count matching and not and take the max

if mas < min: # if we got a minimum, let’s store it
min = n_sol
MIN_SOLS = M_SOLS

rnd = rnd+1 # next round (for heuristics)

if min < |S|: # we are decreasing the surviving solution set size
let us perform the guess

do_guess(MIN_SOLS) # guess was right, we explore solutions in MIN_SOLS
do_guess(S - MIN_SOLS) # guess was wrong, we explore solutions in S - MIN_SOLS

else:
FAIL # we are looping

Table 4: Pseudocode of the EMP-based solution of PCP.

that the bound for PINs of length 5 was previously not known in the literature before [14], and our
algorithm can find it in a matter of minutes.

It is finally worth noticing that our results are close to the optimal as it is shown by the follow-
ing:

Theorem 9. The average number of API calls for the solution of the PIN cracking problem is at
least 13.362 for PINs of length 4 and at least 16.689 for PINs of length 5.

Proof. Recall that the output of each API call is ‘PIN correct’ and ‘PIN wrong’, i.e., there are
just two possible choices. It is well known that given n solutions that have to be placed at the
leaves of a tree, the binary tree that minimizes the average of the sum of the lengths to the leaves
is an almost-balanced binary tree. Thus the base 2 logarithm already gives a theoretical bound to
the optimal average number of moves. In practice, we can compute the average number of moves
on the best almost-balanced binary tree by computing s = n − 2l, with l = blog2 nc, representing

the solutions that exceed the leaves of a perfectly balanced tree of depth l. Now, we have to
accommodate for such leaves using depth l + 1. Notice that, when doing so, we need to use half
of s leaves at level l as parents. The solution is to accommodate for twice s at depth l + 1. In fact
this requires exactly s leaves to become parents. We would have 2l − s at level l and 2s leaves at
level l + 1 for a total of 2l + s = n.

To compute the average number of API calls we can thus use the expression

avg =
(2l − s)l + 2s(l + 1)

n
=

(2l+1 − n)l + (2 n − 2l+1)(l + 1)

n

For lengths of 4 and 5 we have:

avg4 =
(214 − 10000)× 13 + (20000− 214)× 14

10000
= 6384× 13 + 3616× 14 ≈ 13.362

avg5 =
(217 − 100000)× 16 + (200000− 217)× 17

10000
= 31072× 13 + 68928× 14 ≈ 16.689

All the files containing the detailed strategies for Mastermind and PIN cracking can be down-
loaded at http://www.dsi.unive.it/∼focardi/MM PIN/.

5 Conclusion
In this paper we have considered two rather different problems, Mastermind and PIN cracking,
and we have shown how they can be seen as instances of an extended Mastermind game in which
guesses can contain sets of pegs. We have implemented an optimized version of a classic solver for
Mastermind and we have applied it to PIN cracking, improving the known bound on the number of
API calls. The idea of using sets in the guesses has in fact suggested a new attacking strategy that
reduces the number of required calls. By combining ‘standard’ attacks with this new strategy we
have been able to reduce the average number of API calls from the value 16.145 of [21] to 14.484
in [14, 15], and further to 14.47 in this paper. We also found a new bound for PINs of length 5
giving an average number of API calls of first 20.88 in [14, 15], and then 19.3 here. Both average
cases are close to the optimum. As a future work we intend to study the extension of more involved
techniques such as the ones of [17] to the PIN cracking setting.

Acknowledgements. We would like to thank Graham Steel for his helpful comments and sug-
gestions.

References
[1] Hackers crack cash machine PIN codes to steal millions. The Times online.

http://www.timesonline.co.uk/tol/money/consumer_affairs/
article4259009.ece.

[2] Mastermind. http://commons.wikimedia.org/wiki/File:Mastermind.
jpg.

[3] PIN Crackers Nab Holy Grail of Bank Card Security. Wired Magazine Blog ’Threat Level’.
http://blog.wired.com/27bstroke6/2009/04/pins.html.

[4] L. Bento, L. Pereira, and A. Rosa. Mastermind by evolutionary algorithms. In New York
ACM Press, editor, Proc. ACM Symp. Applied Computing, San Antonio, Texas, pages 307–
311, 28 February-2 March 1999.

[5] L. Berghman, D. Goossens, and R. Leus. Efficient solutions for Mastermind using genetic
algorithms. Technical Report KBI 0806, Katholieke Universiteit Leuven, Department of
Decision Sciences and Information Management, 2006.

[6] O. Berkman and O. M. Ostrovsky. The unbearable lightness of PIN cracking. In
Springer LNCS vol. 4886/2008, editor, 11th International Conference, Financial Cryptog-
raphy and Data Security (FC 2007), Scarborough, Trinidad and Tobago, pages 224–238,
February 12-16 2007.

[7] M. Bond and J. Clulow. Extending security protocol analysis: New challenges. Electronic
Notes in Theoretical Computer Science, 125:13–24, March 2005.

[8] M. Bond and P. Zielinski. Decimalization table attacks for pin cracking. Technical Report
UCAM-CL-TR-560, University of Cambridge, Computer Laboratory, 2003. http://www.
cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf.

[9] M. Centenaro, R. Focardi, F. Luccio, and G. Steel. Type-based analysis of PIN processing
APIs. In Springer LNCS vol. 5789/2009, editor, Proceedings of the 14th European Sympo-
sium on Research in Computer Security (ESORICS 09), pages 53–68, 2009.

[10] Z. Chen, C. Cunha, and S. Homer. Finding a hidden code by asking questions. In
Springer LNCS vol. 1090/1996, editor, Computing and Combinatorics Second Annual In-
ternational Conference (COCOON 96) Hong Kong, pages 50–55, June 1719 1996.

[11] V. Chvatal. Mastermind. Combinatorica, 3:325–329, 1983.

[12] J. Clulow. The design and analysis of cryptographic APIs for security devices. Master’s
thesis, University of Natal, Durban, 2003.

[13] R. Focardi, F. Luccio, and G. Steel. Blunting differential attacks on PIN processing APIs. In
Springer LNCS vol. 5838/2009, editor, Proceedings of the 14th Nordic Conference on Secure
IT Systems (NORDSEC 09), pages 88–103, October 2009.

[14] R. Focardi and F.L. Luccio. Cracking bank pins by playing mastermind. In Springer LNCS
vol. 6099/2010, editor, Proc. Fith International Conference Fun with algorithms (FUN 10),
pages 202–213, June 2-4 2010.

[15] R. Focardi and F.L. Luccio. Cracking bank pins by playing mastermind. http://www.
dsi.unive.it/˜focardi/MM_PIN/FUN10corrected.pdf, 2010. Corrected ver-
sion of FUN10.

[16] W. Goddard. Mastermind revisited. J. Combin. Math. Combin. Comput., 51:215–220, 2004.

[17] G. Jäger and M. Pezarski. The number of pessimistic guesses in generalized mastermind.
Information Processing Letters, 109:635–641, 2009.

[18] T. Kalisker and D. Camens. Solving mastermind using genetic algorithms. In Springer LNCS
vol. 2724/2003, editor, Proc. Genetic and Evolutionary Computation Conference (GECCO
03), pages 1590–1591, July 12-16 2003.

[19] D. Knuth. The Computer as a Master Mind. Journal of Recreational Mathematics, 9:1–6,
1976.

[20] M. Koyama and T. Lai. An Optimal Mastermind Strategy. Journal of Recreational Mathe-
matics, 25:251–256, 1993.

[21] G. Steel. Formal Analysis of PIN Block Attacks. Theoretical Computer Science, 367(1-
2):257–270, November 2006.

[22] J. Stuckman and G. Zhang. Mastermind is NP-Complete. INFOCOMP Journal of Computer
Science, 5:25–28, 2006.

