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Abstract

We propose a countermeasure for a class of known attacks on the PIN processing API used in the
ATM (cash machine) network. This API controls access to the tamper-resistant Hardware Security
Modules where PIN encryption, decryption and verification takes place. The attacks are differential
attacks, whereby an attacker gains information about the plaintext values of encrypted customer PINs
by making changes to the non-confidential inputs to a command. Our proposed fix adds an integrity
check to the parameters passed to the command. It is novel in that involves very little change to the
existing ATM network infrastructure.

1 Introduction

In the international ATM (cash machine) network, users’ personal identification numbers (PINs) have
to be sent encrypted from the PIN entry device (PED) on the terminal to the issuing bank for checking.
Issuing banks cannot expect to securely share secret keys with every cash machine, and so the PIN
is encrypted under various different keys as it passes through the network. Typically, it will first be
encrypted in the PED under a key shared with the server or switch to which the ATM is connected. The
PIN is then decrypted and re-encrypted under the key for an adjacent switch, to which it is forwarded.
Eventually, the PIN reaches a switch adjacent to the issuing bank, by which time it may have been
decrypted and re-encrypted several times. The issuing bank has no direct control over what happens
in the intermediate switches, so to establish trust, the internationally agreed standards ANSI X9.8 and
ISO 9564 stipulate the use of tamper proof cryptographic hardware security modules (HSMs). In the
switches, these HSMs protect the PIN encryption keys, while in the issuing banks, they also protect
the PIN derivation keys (PDKs) used to derive the customer’s PIN from non-secret validation data such
as their personal account number (PAN). All encryption, decryption and checking of PINs is carried
out inside the HSMs. To this aim, the HSMs have a carefully designed API providing functions for
translation (i.e., decryption under one key and encryption under another) and verification (i.e. PIN
correctness checking). The API has to be designed so that even if an attacker obtains access to the host
machine connected to the HSM, he cannot abuse the API to obtain customer PINs.

In the last few years, several attacks have been published on the APIs in use in these systems [5, 6, 8].
Very few of these attacks directly reveal the PIN. Instead, they involve the attacker calling the API
commands repeatedly with slightly different parameter values, and using the results (which may be error
codes) to deduce the value of the PIN. High-profile instances of many PINs being stolen from a hacked
switch has increased interest in the problem [1]. Recently, a Verizon Data Breach report and a subsequent
article in the press confirmed publicly for the first time that PINs are being extracted from HSMs on a
wide scale [3, 2].

PIN recovery attacks have been formally analysed before, but previously the approach was to take
a particular API configuration and measure its vulnerability to combinations of known attacks [10]. In
recent work, we proposed an extension to language based information flow analysis to take account of
cryptographic primitives designed to assure data integrity, in particular MACs [7]. We showed how PIN
processing APIs could be extended with MACs to counteract differential attacks, and showed how this
revised API type-checked under our framework. However, that work was rather theoretical, and did not
attempt to explain how our proposal could be put into practice. In particular, for our proposal to be
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feasible in the short term, it needs to be adapted to take into account the constraints of the existing ATM
infrastructure. In this paper we outline what we believe to be a practical scheme. We assess its impact on
security and the amount of changes that would be required to the ATM network to put it in to practice.

We will not review the operation of PIN processing APIs in detail here. For understanding the
abstract, it suffices to know that the attacks are caused by an attacker making illegitimate queries to
the API, ‘tweaking’ the bits of the non-confidential parameters such as the customer’s PAN and the
decimalisation table (dectab). Interested readers are referred to existing literature for more details [5, 6,
8, 10].

2 The Fix

In another paper [7], we show how differential attacks can be countered by the use of MACs, which
prevent the intruder from making arbitrary queries to the verification and translation APIs. Only queries
whose parameters match the supplied MAC are processed. However, the infrastructure changes needed
to add full MAC calculation to ATMs and switches are seen as prohibitive by banks [4]. We propose
here a way to implement a weaker version of our scheme whilst minimising changes to the existing
infrastructure. We lose some security, since our MACs now have an entropy of only 5 decimal digits
(216 < 105 < 217). We assess the effect of this change in section 2.4.

2.1 Ideal MAC-based integrity

The idea proposed in our paper [7] is to add a MAC of the non-confidential parameters required for PIN
verification to the input to the PIN verification command. The PIN Verify command checks the MAC
before performing the PIN calculation. If the MAC check fails, the command halts without checking the
PIN. This way we achieve ‘robust declassification’ [9], i.e. we declassify only the result of the legitimate
comparison of the encrypted PIN block with the real PIN, and nothing else.

In our paper, we did not discuss how exactly this MAC should be calculated, and where it should
be stored. Below we propose a way to store a MAC of the non-confidential inputs to the verification
command on the card itself, using an existing mechanism.

2.2 CVC/CVV Codes

We observe that cards used in the cash machine network already have an integrity checking value: the
card verification code (CVC) or value (CVV) is a 5 (decimal) digit number included on the magnetic
stripe of most cards in use. It is, in effect, a MAC of the customer’s PAN, expiry date of the card and
some other data. The current purpose of the CVV is to make copying cards more difficult, since the CVV
is not printed on the card and does not appear on printed POS receipts1. Below we give the algorithm
for calculating the CVV. This is done at the card issuing facility. CVVs are checked at the verification
facility.

PAN Exp date Service code 0 pad
16 digits max 4 digits 3 digits 9 digits max

Block B1 Block B2

Note the partition of the CVV plaintext field into two blocks, B1 and B2. To construct the CVV, a
two-part DES key is required. Call the two 64-bit parts key K1 and key K2. The hexadecimal CVV root
is constructed as

1The CVV/CVC is not to be confused with the CVC2 or CVV2, which is printed on the back of the card and designed to
counteract ‘customer not present’ fraud when paying over the Internet or by phone.
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CVVhex = enc(K1,dec(K2,enc(K1(enc(K1,B1)⊕B2))))

The 5 digit decimal is constructed using the Visa decimalisation scheme:

1. Extract all decimal digits from CVVhex, preserving their order from left to right.

2. Left justify the result

3. Reduce any remaining digits by 10

4. Left justify the result and append it to the result of 2

5. The CVV is the first 5 digits (from left to right) of the result.

2.3 Packing the MAC into the CVC/CVV

Our proposal is to pack more information into the CVV at issue time, and to use this as a MAC at the
verification facility. In our formal scheme, we included the data of the decimalisation table and card
offset. Observe that with the maximum 16 digits of the PAN being used, we still have 9 digits of zeros
in the final field of block B2. Our idea is to use the CVV calculation method twice, in the manner of
a hashed MAC or HMAC function. We will calculate the CVV of a new set of data, containing the
decimalisation table and offset or PVV and a code for the PIN block format. Then we will insert the
result of the original CVV calculation to produce a final 5-digit MAC.

Our second CVV, which we will call CVV’, contains the following fields:

Dectab Offset/PVV PIN block format original CVV 0 pad
16 digits max 4 digits 1 digit 5 digits 6 digits max

Block B1’ Block B2’

We calculate CVV’ in the same way as the standard CVV. This makes for easy upgrade from the orig-
inal infrastructure, because CVV generation and verification commands are already available in HSMs
so will need minimal changes to the firmware. The PIN Verify command of the HSM must be changed
to check CVV’ before performing a verification test. The PIN test is only performed if the CVV’ of
the inputs matches the supplied CVV’. Of course, the API of the HSM must not make available the
functionality to allow the creation of CVV’s on arbitrary data.

The scheme is practical because ATMs and switches generally already send the CVV from the ATM
to the issuing bank, so can easily be adapted to send CVV’. In fact, many ATMs blindly send all the
‘Track 2 data’ from the magnetic card - this includes the PAN, expiry date, and CVV. Under most
schemes there is still space on the magnetic stripe for a further 5 digit code. Chip based cards should
have no problem storing a further 20 bits of data. So, we could use CVV’ and the original CVV’, thus
allowing CVVs to be checked separately if required.

One could use the same keys for calculating the CVV’ as for the CVV, or one could use different
keys. Either way, the verifying HSM needs access to these keys. The use of different keys could be
motivated by a desire to be able to check CVVs, and so to an extent to verify card authenticity, in ATMs,
without giving them the keys used to create CVV’s.
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2.4 Security of the CVV Based Scheme

In our formal scheme we assume a perfect, collision free scheme. However, in proposing a scheme with
a 5-digit MAC value, we are admitting the possibility of brute-force attacks. To guess the CVV’ for a
given set of parameters should take an average of 50 000 trials. So, an attack like the dectab attack which
previously required 15 calls to the API will now take 750 000 calls. HSMs typically perform something
of the order of 1000 PIN verifications per second, so this change moves the expected attack time for a
single PIN from 0.015 seconds to 750 seconds, or 12.5 minutes, making the ‘lunch hour hack’ scenario
of [6] worth an expected 4 or 5 PAN/PIN pairs.

3 Conclusions

We have described a version of our MAC based scheme for ensuring integrity of queries to PIN process-
ing APIs that is easy to implement and does not require wholesale changes to the ATM infrastructure.
This is at the cost of some security, since the CVV codes can be cracked by brute force, but its implemen-
tation in the short term would make attack scenarios far less profitable. In the medium term we feel that
the full MAC scheme should be used. The cost of this should be weighed against the cost of a complete
overhaul of the way PIN processing is carried out in the ATM network.
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