
Type-based Analysis of Financial APIs ?

(extended abstract)

Matteo Centenaro1 Riccardo Focardi1

Flaminia L. Luccio1 Graham Steel2

1 Università Ca’ Foscari Venezia,
{mcentena,focardi,luccio}@dsi.unive.it

2 LSV, ENS Cachan & CNRS & INRIA, France
graham.steel@lsv.ens-cachan.fr

Abstract. We revise a known attack on the PIN verification framework,
based on a weakness of the underlying security API. We specify this
flawed API in an imperative language with cryptographic primitives and
we show why its type-based verification fails in the type system of Myers,
Sabelfeld and Zdancewic. We propose an improved API, extend the type
system with cryptographic primitives for assuring integrity, and show
our new API to be type-checkable. (for presentation only)

Keywords: Language-based Security, Security APIs, Financial Cryptog-
raphy, PIN Verification.

1 Introduction

In the international ATM (cash machine) network, users’ personal iden-
tification numbers (PINs) have to be sent encrypted from the PIN entry
device (PED) on the terminal to the issuing bank for checking. Issuing
banks cannot expect to securely share secret keys with every cash ma-
chine, and so the PIN is encrypted under various different keys as it passes
through the network. Typically, it will first be encrypted in the PED un-
der a key shared with the server or switch to which the ATM is connected.
The PIN is then decrypted and re-encrypted under the key for an adja-
cent switch, to which it is forwarded. Eventually, the PIN reaches a switch
adjacent to the issuing bank, by which time it may have been decrypted
and re-encrypted several times. The issuing bank has no direct control
over what happens in the intermediate switches, so to establish trust, the
internationally agreed standards ANSI X9.8 and ISO 9564 stipulate the

? Work partially supported by Miur’07 Project SOFT: “Security Oriented Formal
Techniques”. The full version of this extended abstract is available at [5].

use of tamper proof cryptographic hardware security modules (HSMs). In
the switches, these HSMs protect the PIN encryption keys, while in the
issuing banks, they also protect the PIN derivation keys (PDKs) used to
derive the customers PIN from non-secret validation data such as their
personal account number (PANs). All encryption, decryption and check-
ing of PINs is carried out inside the HSMs. To this aim, the HSMs have
a carefully designed API providing functions for translation (i.e., decryp-
tion under one key and encryption under another) and verification (i.e.
PIN correctness checking). The API has to be designed so that even if
an attacker obtains access to the host machine connected to the HSM,
he cannot abuse the API to obtain customer PINs. More specifically, we
assume the attacker can program the host machine, running software and
controlling API calls, but he cannot physically access the device to do,
e.g., power analysis.

In the last few years, several attacks have been published on the APIs
in use in these systems [2, 3, 6, 9]. Very few of these attacks directly reveal
the PIN. Instead, they involve the attacker calling the API commands
repeatedly with slightly different parameter values, and using the results
(which may be error codes) to deduce the value of the PIN. High-profile
instances of many PINs being stolen from a hacked switch has increased
interest in the problem [1]. PIN recovery attacks have been formally anal-
ysed, but previously the approach was to take a particular API configura-
tion and measure its vulnerability to combinations of known attacks [12].
Other researchers have proposed improvements to the system to blunt
the attacks [10], but these suggestions address only some attacks, and are
“intended to stimulate further research” [10, p. 5]. We take a step in that
direction here, proposing a language-based security framework whereby
possible improvements to PIN processing APIs may be formally analysed,
and suggesting some improvements of our own.

We do not describe the operation of the ATM network in detail. Inter-
ested readers are referred to existing literature [6, 10, 12]. In this paper,
we will go straight into a case study on the PIN verification command
(section 2), showing how it can be attacked, how it could be improved,
and how these improvements could be formally analysed. We conclude
with a discussion of next steps in section 3.

2 The Case Study

In the introduction we have observed how PINs travelling along the net-
work have to be decrypted and re-encrypted under a different key, using

Table 1 The PIN verification API.

PIN_V(pan ,epb ,len ,offset ,vdata ,dectab) {

// deriving user PIN with IBM 3624 PIN calculation method

x1 = encrypt(pdk , vdata); // encrypts vdata with PDK

x2 = left(len , x1); // takes len leftmost digits

x3 = dectab(x2); // decimalizes

x4 = sum_mod10(x3,offset); // sums the offset

// recovering the trial PIN

x5 = decrypt(k, epb); // decrypts the EPB with k

x6 = f_check(x5,pan); // extracts formatted PIN

if (x6 == FAIL)

return("format error"); // format was wrong

// if passes the check , x6 contains the trial PIN

// checks the trial PIN versus the actual user PIN

if (x4 == x6)

return("PIN is correct");

else

return("PIN is wrong");

}

a translation API. Then, when the PIN reaches the issuing bank, its cor-
respondence with the validation data3 is checked via a verification API.
We focus on this latter API that we call PIN V and specify as in Table 1.

PIN V checks the equality of the actual user PIN and the trial PIN
inserted at the ATM and returns the result of the verification or an error
code. The former PIN is derived through the PIN derivation key pdk from
the public data offset, vdata, dectab (described below), while the latter
comes encrypted under key k as Encrypted PIN Block (EPB), passed as
parameter epb. Note that the two keys are pre-loaded in the HSM and
are never exposed to the untrusted external environment. In general, the
HSM may have to manage several encryptions and PIN derivation keys,
but for the purposes of this example we will assume only one key of each
type is used. More specifically, the API behaves as follows:

– the user PIN of length len is obtained by encrypting validation data
vdata with key pdk (x1), getting the first len hexadecimal digits (x2),
decimalising through dectab (x3), and digit-wise summing modulo 10

3 The value of this parameter is up to the issuing bank. It is usually a combination
of the user PAN with other public data, such as the card expiration date or the
customer name.

the offset (x4). More precisely, the outcome of the encryption x1 is
a 16 hexadecimal digit string and dectab is a function that associates
to each possible hexadecimal digit a decimal one. The obtained deci-
malized value x3 is the ‘natural’ PIN assigned by the issuing bank to
the user. Whenever the user wants to choose her own PIN, an offset
is calculated by digit-wise subtracting (modulo 10) the natural PIN
from the user-selected one. Thus, to get the user PIN the offset is
summed to the user natural PIN, giving x4.

– the trial PIN is recovered by decrypting epb with k (x5), and by
checking the format (x6). This last operation is more elaborated than
a simple check: once the format is recognised, the PIN is ‘extracted’
from the formatted 16-digit hexadecimal number; for some formats
the Personal Account Number (PAN), passed as parameter pan, is
required for the extraction. For the analysis we develop here, we do
not require any more detail on formats. Interested readers are referred
to the literature [6, 8].

– the equality of the user PIN (x4) and the trial PIN (x6) is returned.

We now present a numerical example to illustrate the PIN V execution.

Example 1. Let len=4, offset=4732, dectab=9753108642543210, this
last parameter encoding the following mapping:

0 1 2 3 4 5 6 7 8 9 A B C D E F
9 7 5 3 1 0 8 6 4 2 5 4 3 2 1 0

Let also x1 = encrypt(pdk,vdata) = A47295FDE32A48B1. Then,

x2 = left(4, A47295FDE32A48B1) = A472
x3 = dectab(A472) = 5165
x4 = sum mod10(5165,4732) = 9897

This completes the user PIN recovery part. Let now f 9897 denote PIN
9897 correctly formatted (recall that we are omitting details about PIN
formats) and let us assume that epb = Ek(f 9897). We thus have:

x5 = decrypt(k, Ek(f 9897)) = f 9897
x6 = f check(f 9897, pan) = 9897

Since x6 is different from FAIL and x4=x6 the API returns "PIN is
correct" and this completes the example.

The given specification is an abstraction and a simplification of real ones.
In particular, PIN V corresponds to Encrypted PIN Verify of [8] simpli-
fied by omitting some parameters for alternative PIN extraction methods

HL

LL

LH

HH

Fig. 1. Confidentiality/Integrity security lattice

and, as mentioned above, some details on formats and key management.
Notice that we only model the IBM 3624 PIN calculation method with
offset; however this is not limiting as the other PIN calculation methods
can be similarly specified and analysed.

2.1 Typing: a first unsuccessful attempt

In order to analyse the security of the previously described API we try
to adopt the type-based approach proposed by Myers, Sabelfeld and
Zdancewic (MSZ) [11]. The idea is to have two distinct security levels `C
and `I , the former for confidentiality and the latter for integrity. For our
case study we can limit our attention to two levels: high (H) and low (L).
For any given confidentiality (integrity) levels `1, `2, we write `1 vC `2
(`1 vI `2) to denote that `1 is less restrictive than `2. In particular, low-
confidentiality data may be used more liberally than high-confidentiality
ones, thus in this case L vC H; dually low-integrity data must be treated
more carefully than high-integrity ones, giving the counter-variant re-
lation H vI L. The lattice corresponding to the product of the above
described confidentiality and integrity lattices is depicted in Figure 1.

The property proposed by MSZ, called robust declassification, aims
at verifying that attackers cannot influence the secret information down-
graded or declassified by a program C. In our case, PIN V returns the cor-
rectness of the PIN typed which is a one-bit information about a secret
datum. Thus, the API is intended to declassify some secret information,
but we would like to check that attackers cannot abuse such a declassi-
fication and gain more information than intended. The core idea of the
MSZ type-system is to check that declassification only occurs on high
integrity variables and in high integrity contexts, so to ensure that the
attacker cannot manipulate what is declassified and when declassification
happens. In such a case, declassification is proved to be robust.

We now assign each parameter and variable a security level. Intu-
itively, what happens ‘outside’ the API is considered untrusted, thus each

parameter can be modeled as a global variable4 of level LL; internal vari-
ables are in general highly-confidential: a security API may be thought as
a black-box taking some parameters and returning some results, without
revealing intermediate calculations. In particular, notice that all variables
x1, . . ., x6 contain sensitive information that should never be leaked.

As far as integrity is concerned, we have that variables x1, . . ., x4 are
all low-integrity, since they are calculated starting from the parameters
and through operations that do not provide any integrity check. Variables
x5 and x6 are low-integrity, too: the decryption might, in principle, per-
form an integrity check, guaranteeing that the obtained value was indeed
encrypted with the expected, trusted, key and thus not manipulated by
the attacker, but in this application there is no such a feature.

The format check performed for x6 might increase the confidence in
the integrity of the value in x5: if the format is recognized this should
give evidence that the decryption was successful. Unfortunately, formats
have not been designed to give integrity guarantees and there are well
documented attacks based on format confusion [6, §3.5.4]. Moreover, de-
classifying information about the correctness of the format of x5, which
is a highly confidential variable, should be robust but this is not the case,
given the low integrity of the same variable and of the other parameter
(pan): there are, in fact, known attacks based on PAN manipulation that
allow an attacker to deduce information about the PIN digits [6, §3.5.3].

Finally, given that x4 and x6 are high-confidentiality but low-integrity,
the declassification of their equality is not robust. In the next section, we
show a concrete example of attack based on the above mentioned lack of
integrity.

2.2 Attacking the PIN V API

In this section we show how the lack of integrity presented in section 2.1
is exploited to mount a real attack on the PIN V API.

As we have previously mentioned, all the parameters of the PIN V
API do not provide any integrity check. Let us now concentrate on two
specific ones, the dectab and the offset, which are used to calculate the
values of x3 and x4, respectively. A possible attack on the system works
by iterating the following two steps, until the whole PIN is recovered [3]:

1. The attacker picks a decimal digit d, changes the dectab function
so that values previously mapped to d now map to d + 1 mod 10,

4 This makes sense as the sematics adopted here and by MSZ is single-threaded, so
global variables are not going to be changed in between API computations.

and then checks whether the system still returns "PIN is correct".
Depending on this, the attacker discovers whether or not digit d is
present in the user ‘natural’ PIN contained in x3, thus extracting
information on the user PIN digits;

2. when a certain digit is discovered in the previous step by a "PIN is
wrong" output, the attacker also changes the offset until the API
returns again that the PIN is correct. This allows the attacker to
locate the position of the deduced PIN digit.

We illustrate the attack through a simple example.

Example 2. Recall that in Example 1 we assumed len=4, offset=4732,
dectab=9753108642543210, x1 = A47295FDE32A48B1, EPB = Ek(f 9897).
With these parameters the API returns "PIN is correct".

Assume the attacker chooses the new dectab’=9753118642543211,
where the two 0’s have been replaced by 1’s. The aim is to discover
whether or not 0 appears in x3. If we invoke the API with dectab’ we
obtain the same intermediate and final values, since dectab’(A472) =
dectab(A472) = 5165. This means that 0 does not appear in x3.

The attacker now proceeds by removing from the dectab the next
decimal digit until the API fails: with dectab’’=9753208642543220, i.e.,
by replacing digit 1 with digit 2, we obtain that dectab(A472) = 5165 6=
5265 = dectab’’(A472), reflecting the presence of 1 in the original value
of x3. Then, x4=9997 instead of 9897 thus returning "PIN is wrong".

The attacker now knows that digit 1 occurs is in x3. To discover
its position and multiplicity, he now tries variations of the offset so to
‘compensate’ the modification of the dectab. In particular, he tries to
decrement each offset digit by 1. For example, testing the position of one
occurrence of one digit amounts to trying the following offset variations:
3732, 4632, 4722, 4731. Notice that, in this specific case, offset value
4632 makes the API return again "PIN is correct". In fact:

x3 = dectab(A472) = 5165 x3 = dectab’’(A472) = 5265

x4 = sum mod10(5165,4732) = 9897 x4 = sum mod10(5265,4632) = 9897

Notice, in particular, that the value of x4 is the same. The attacker now
knows that the second digit of x3 is 1. Given that the offset is public,
he also calculates the second digit of the user PIN as 1 + 7 mod 10 = 8.

2.3 MAC-based integrity: towards a type-checkable API

In this section we discuss a MAC-based improvement of PIN V, called
PIN V M, which prevents the previously discussed attack, and several oth-

Table 2 The new API with MAC-based integrity.

PIN_V_M(pan ,epb ,len ,offset ,vdata ,dectab ,MAC) {

// checking the MAC

if (mac(ak,pan ,epb ,len ,offset ,vdata ,dectab) == MAC)

// if integrity test is passed , invokes the original API

return(PIN_V(pan ,epb ,len ,offset ,vdata ,dectab));

else

return("integrity violation"); // MACs do not correspond

}

ers from the literature. We claim PIN V M is type-checkable using an ex-
tension with cryptography of the MSZ type-system. However, although
type-checkable, the proposed API is not completely satisfactory for dif-
ferent reasons that will be discussed in the next section.

To simplify the analysis, we do not consider the cases in which users,
by mistake, type a wrong PIN. This is because an attacker equipped
with several EPBs for the same PAN, only one of which contains the
correct PIN, can always violate robustness: he can try all the EPBs until
he identifies the one containing the correct PIN, meaning that he has
influenced the declassification of data. We do not try to capture this
attacker behaviour in our first attempt at defining a type system. Instead,
we assume the attacker has only one EPB containing the correct PIN. This
is of course strictly more secure than the real situation, but we will show
how security in this model eliminates a wide class of attacks.

We consider a new authentication key ak. Our fix contains a unique
MAC of all the parameters which is checked at the very beginning. The
code is reported in Table 2. Intuitively, the MAC check gives guarantees
about the fact that the parameters have not been arbitrarily manipulated.
However, care is needed since some form of ‘legal’ manipulation is always
possible: an attacker can get a different set of parameters, e.g., eaves-
dropped in a previous PIN verification and referring to a different PAN,
and can call the API with these parameters. This cannot be prevented,
as those parameters will have a correct MAC validating their integrity.
So, what the MAC prevents is changing a subset of the parameters.

Dependent integrity types We refine integrity levels by introducing
the notion of dependent domains used to track integrity dependencies
among variables. Dependent domains are denoted D : D̃ where D ∈ Dom
is a domain name. Intuitively, the values of domain D : D̃ are determined
by the values in the set of domains D̃. For example, PIN : PAN can be read

[: I]

[: D]
~

L

H

[: I,J]

[: J]

~
[: D]

[]

[:]Dom

~
[: D]

2 n
[D : D] [D : D][D : D]

1

~ ~ ~

2

1

Fig. 2. New integrity levels: D̃1 ⊆ D̃2 and Dom = {D1, . . . ,Dn}.

as ‘the value of PIN is fixed relative to the account number PAN’: when
the PAN is fixed, the value of the PIN is also fixed. A domain D : ∅, also
written D, whose integrity does not depend on other domains, is called
an integrity representative and it can be used as a reference for checking
the integrity of other domains. In fact, integrity representatives cannot
be modified by programs and their values remain constant at run-time.
We assume only one integrity representative for each domain.

For example, a natural integrity representative candidate is the PAN,
given that it uniquely identifies the user account and, as a consequence, all
the user data len, offset, vdata, dectab. We can say that, after the
MAC has been checked, the values of the former parameters are promoted
to the four dependent domains LEN : PAN, OFF : PAN, VD : PAN and
DEC : PAN, meaning that their integrity depend on PAN integrity.

The integrity level associated to a dependent domain D : D̃ is written
[D : D̃], and is at a higher integrity level than H, i.e., [D : D̃] vI H. In
some cases, e.g., in arithmetic operations, we necessarily loose information
about the precise resulting domain and we only record the fact the value is
determined by domains D̃, written [• : D̃]. In this case we know the value
is determined by at most variables of domains D̃, but we have no precise
information on its domain. For example, if we perform an arithmetic
operation on len and offset the result would be of level [• : PAN]. We

have the following ordering of integrity levels:

[D : D̃1] v [• : D̃1] vI [• : D̃2] vI H vI L

with D̃1 ⊆ D̃2. Intuitively, [• : D̃1] is less restrictive than [• : D̃2] given that
the fewer are the dependencies, the fewer are the integrity representatives
needed inside the MAC to check the integrity of the corresponding value.
For example, [• : I, J] requires that both integrity representatives of level
[I] and [J] are in the MAC to check the integrity of the corresponding
value. We obtain the lattice of Figure 2.

Promotion to these high integrity types is achieved by adding new
assignments, guarded by the MAC check, to fresh variables whose types
τ1, . . . , τn are derived from the MAC key type mK([D], τ1, . . . , τn). In par-
ticular, [D] is the integrity representative and τ1, . . . , τn are required to
depend at most on [D] like, e.g., in mK([PAN], [OFF : PAN]) (notice that
from now on we only show integrity types and omit confidentiality ones).
More formally, our typing rule for the MAC has the following shape:

Γ ` k : mK([D], τ1, . . . , τn) Γ ` v : [D]
Γ ` e1, . . . , en, e : L Γ, z1 : τ1, . . . , zn : τn ` C1 Γ ` C2

Γ ` if (mac(k, v, e1, . . . , en) == e)
{z1 = e1; . . . zn = en; C1} else C2

Intuitively, checking MAC e, with integrity representative v, allows a
programmer to assign low integrity expressions e1 . . . en to high integrity
fresh variables z1 . . . zn of type τ1, . . . , τn, as specified by the MAC key
type. Notice that L is the top integrity type (see Figure 2), thus every
well-typed expression can be given such a type via standard subtyping.

Table 3 reports the code of the new API with type declarations and
high integrity variables. More specifically, we have:

Γ ` epb,len,offset,vdata,dectab,MAC : L
Γ ` pan : [PAN]
Γ ` ak : mK([PAN], enc1

[•:PAN], [LEN:PAN], [OFF:PAN], enc2
[•:PAN], [DEC:PAN])

Type enc1
[•:PAN] represents a ciphertext of level [•:PAN] encrypted using

a key of type cK1([PIN:PAN], ...), i.e., the encryption key k. Notice that
the superscript 1 links the types enc and cK and that the type of the
key is not completely specified as we are omitting details about EPB
formats. The other encrypted term is vdata. In fact, in order to model
PIN derivation we adopt a small trick: we write vdata = {n}pdk, where
n is the expected results of the encryption of vdata, which can now
be modelled as a decryption x1 = decrypt(pdk, vdata). The reason

Table 3 The new API with type declarations and high integrity variables.

PIN_V_M(pan ,epb ,len ,offset ,vdata ,dectab ,MAC) {

// types of parameters

L epb , len , offset , vdata , dectab , MAC;

// the integrity representative is of type [PAN]

[PAN] pan;

// authentication keys type

mK([PAN], enc^1_[*: PAN], [LEN:PAN], [OFF:PAN],

enc^2_[*: PAN], [DEC:PAN]) ak;

// encryption keys

cK_1([PIN:PAN], ...) k;

cK_2([HEX:PAN]) pdk;

// checking the MAC

if (mac(ak,pan ,epb ,len ,offset ,vdata ,dectab) == MAC) {

epb’=epb; l’=len; offset ’=offset; vdata’=vdata;

dectab ’=dectab;

// invokes the original API with high integrity variables

return(PIN_V(pan ,epb’,l’,offset ’,vdata ’,dectab ’));

} else

return("integrity violation"); // MACs do not correspond

}

for this is that we have a symbolic model for encryption that does not
produce any low level bit-string encrypted data.

Now, if

Γ,
epb’ : enc1

[•:PAN],

l’ : [LEN:PAN],
offset’ : [OFF:PAN]
vdata’ : enc2

[•:PAN],

dectab’ : [DEC:PAN],
` return(PIN V(pan,epb’,l’,offset’,vdata’,dectab’));

Γ ` return("integrity violation");

Then
Γ ` if (mac(ak,pan,epb,len,offset,vdata,dectab) == MAC)

epb’=epb; l’=len; offset’=offset; vdata’=vdata;

dectab’=dectab;

return(PIN V(pan,epb’,l’,offset’,vdata’,dectab’));

} else

return("integrity violation");

In order to type the two return commands we observe the following:

1. return("integrity violation") is easily typed as it outputs a low confi-
dentiality value and the guard of the if statement is low-confidentiality
too. Low confidentiality outputs are, in fact, critical if they are per-
formed inside if statements with high-confidentiality guards as, e.g.,

if (h==h’) then

return(true);

else

return(false);

Here, the MAC values are low-confidentiality, thus there is no security
restriction on low-level outputs.

2. return(PIN V(pan,epb’,l’,offset’,vdata’,dectab’)) is more interesting,
as it calls the original API in which the integrity level of the pa-
rameters has been rised as explained above. Given that all of the
calculations of variables x1 . . . x6 are done starting from [D : PAN]
variables, by subtyping (Figure 2) they can all be typed at integrity
level [•: PAN]. As a conclusion, the equality of x4 and x6 is calculated
between [• : PAN] variables and we can thus say its declassification is
robust with respect to the PAN.

Robustness with respect to integrity representatives We finally
discuss the role of integrity representatives in the robustness notion and,
thus, in the security property guaranteed by the typed API. We have
explained that integrity representatives never change their values at run-
time. This is fundamental to avoid that their value is changed after a
MAC-based integrity check. Consider, for example, the case in which the
PAN is changed after the MAC has been checked. If this happens, all
of the variables at level [•: PAN] would loose their high integrity nature
with respect to the integrity representative, which has been modified.
More formally, the original notion of robustness of MSZ can be expressed
as follows: Program C has robustness if ∀M1,M2, A,A

′ we have

〈M1, A[C]〉 ' 〈M2, A[C]〉 ⇒ 〈M1, A
′[C]〉 ' 〈M2, A

′[C]〉

where M1 and M2 are two memories, A and A′ are two fair attackers,
i.e., attackers that do not violate integrity and confidentiality directly,5

〈M,A[C]〉 denotes the execution of program C under attack A starting
from memory M . The property expresses the fact that ‘what cannot be
leaked to one attacker, cannot be leaked to any other attacker’. In other
words, attackers cannot influence what is being declassified by program
5 These attackers should not read high-confidentiality or write high-integrity variables.

C and when declassification happens. This is a slight simplification of the
original notion where, for technical reasons that we do not discuss here,
two different behavioural equivalences are adopted. Moreover, MSZ admit
an attacker A to be placed in between the trusted code C, noted C[A]. In
our setting, the attacker can only act before and after the API execution,
which we think is better represented by the ‘dual’ notion A[C].

More importantly, here we require that integrity representatives have
the same values in the two memories M1 and M2:

∀ variable v, Γ ` v : [D]⇒M1[v] = M2[v].

Moreover, we require that programs and attackers cannot change val-
ues of those variables. This is already included in the notion of fair at-
tackers which requires that all the assignments are done to low integrity
variables. As far as APIs are concerned, well-typed ones will only per-
form assignments to high-integrity variables, apart from the special case
of MAC checking discussed above. So, typing will automatically avoid
MAC-unguarded assignments to variables with an integrity level lower
than H, such as [D] or [D : D̃] variables. Finally, memories should respect
integrity types. For example, if we have a MAC key k of type mK([D′],
[D : D′]), a well-formed memory should never contain two MACs such as
mac(k,m,n) and mac(k,m,n’), with n 6= n’, since once m (of level [D′])
is fixed also the last message, of level [D : D′], should be fixed.

To summarize, our robustness with respect to integrity representa-
tives corresponds to the original notion of robustness in which integrity
representatives have the same initial, and consequently run-time, values.
Attacks in which those variables are changed are thus not captured by
our property. Note however that the attack described in section 2.2 is
not based on changing the pan and is thus revealed by our robustness
notion. It is sufficient to consider a memory M1 with the values of all
the parameters as in Example 2 (recall that we model parameters as
global variables) and another memory M2 which differs from M1 for the
value of the PIN encrypted in the epb. Now, consider an attacker A that
changes the dectab so to make verifications on both memories fail. We
have that 〈M1, A[C]〉 ' 〈M2, A[C]〉. Now, if we consider an ‘empty’ at-
tacker A′ which does nothing, we have that verification on M1 succeeds
while verification on M2 fails, given the epb contains a different PIN.
Thus, 〈M1, A

′[C]〉 6' 〈M2, A
′[C]〉. Notice that this happens with the same

constant value for pan in the two memories: in fact the attack is not based
on changing such a value. On the other hand, the attack is provably not
present in the PIN V M API which we have (informally) shown to be ro-

bust with respect to pan. In fact, the change in the epb is immediately
detected by the MAC check thus making 〈M1, A[C]〉 6' 〈M2, A[C]〉.

3 Discussion and Conclusions

We have presented an extension of the language based security framework
with cryptographic primitives for ensuring integrity of data. We have
shown how such an analysis could be applied to the improvements we
suggest to the PIN processing API used in the ATM network. We briefly
discuss in a number of open issues.

We have presented the case study of the verification API. There are
other critical APIs to be analysed in the PIN management protocol, such
as the one used to translate the EPBs into different formats when passing
through the switches. The integrity types presented here can be also used
to check the translate API, since once the MAC for the incoming values
has been checked, our types give enough information to create the new
MAC for the outgoing, reformatted, message [5]. This MAC check would
prevent some known translate attacks [6, §3.5.3].

The fix proposed here has some limitations: (i) it is based on a unique
MAC which is not implementable in practice, since part of the data needs
to be authenticated by the switch forwarding the PIN via the translation
API discussed above. We are studying a solution with two MACs that we
claim to be implementable with not much overhead with respect to the
existing protocols [7]; (ii) we have abstracted away from the PIN format
and the presence, in the HSMs, of different encryption keys, one for each
incoming switch. We are studying how the extend types so to deal with
these aspects. Our idea is to use tagged unions so to have the actual
format being used as a tag for choosing among different types for the
encryption keys; this would allows for different formats circulating under
the same encryption key.

We have assumed that the user will never insert the wrong PIN at
the ATM, as this would by itself break robustness. It would be important
to remove this assumption and we are investigating the possibility of
picking the EPB as integrity representative, instead of PAN. This makes
sense only if collisions on EPBs happen with negligible probability, as
having equals EPBs referring to different data would make it impossible
to type those data as [D : EPB]. Such a type requires that data are fixed
once EPB is fixed, which would not be the case if collisions are considered.
This solution requires a careful analysis of PIN formats: there are PIN
formats with no randomized padding which produce colliding EPBs with

high probability and, in some cases, just when the PIN is the same. The
standards forbid these formats for online PIN verification, but they are
often still supported by HSM APIs for local use, and so could in theory
be exploited by an attacker. For lack of space, in this paper we have
mainly focussed on integrity issues. However, it is worth noticing, that
the above mentioned analysis of PIN formats is also important for being
able to type EPBs as low-confidentiality. In fact, poor formats might by
themselves compromise the confidentiality of encrypted PINs.

In the full version of this paper [5], we have extended in a non-trivial
way the semantic model of MSZ with cryptography by adopting some
known techniques [4]. In particular, we have extended the notion of low-
equivalent memories in the presence of MACs and, in general, any crypto-
graphic operation which is not randomized, e.g., via confounders. In fact,
when cryptography is assumed to be randomized, the underlying notion of
low-equivalence is simplified via the assumption that a new encryption is
different from any other previous encryption. Finally, we have formalized
the new dependent integrity types described in this paper. To the best of
our knowledge, in the literature there are no similar type-based analyses
of integrity, confidentiality and declassification in the same setting.

References

1. Hackers crack cash machine PIN codes to steal millions. The Times online. http:
//www.timesonline.co.uk/tol/money/consumer_affairs/article4259009.ece.

2. O. Berkman and O. M. Ostrovsky. The unbearable lightness of PIN cracking.
In Springer LNCS vol.4886/2008, editor, 11th International Conference, Financial
Cryptography and Data Security (FC 2007), Scarborough, Trinidad and Tobago,
pages 224–238, February 12-16 2007.

3. M. Bond and P. Zielinski. Decimalization table attacks for PIN cracking, 2003.
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf.

4. M. Centenaro and R. Focardi. Information flow security of multi-threaded dis-
tributed programs. In Proceedings of the 3rd ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security (PLAS), 2008.

5. M. Centenaro, R. Focardi, F. L. Luccio, and G. Steel. Type-based Analy-
sis of Financial APIs (Full Paper). Submitted for publication. Available at
http://www.dsi.unive.it/∼focardi/Articoli/CFLS-PIN09-full.pdf.

6. J. Clulow. The design and analysis of cryptographic APIs for security devices.
Master’s thesis, University of Natal, Durban, 2003.

7. R. Focardi, F. L. Luccio, and G. Steel. Improving PIN Security. Forthcoming.
8. IBM Inc. CCA Basic Services Reference and Guide for the IBM 4758 PCI and

IBM 4764 PCI-X Cryptographic Coprocessors, 2006. Releases 2.53–3.27.
9. D. Longley and S. Rigby. An automatic search for security flaws in key management

schemes. Computers and Security, 11(1):75–89, March 1992.
10. M. Mannan and P. van Oorschot. Weighing Down The Unbearable Lightness

of PIN Cracking. In Springer LNCS vol.5143/2008, editor, 12th International

Conference, Financial Cryptography and Data Security (FC 2008), Cozumel,
Mexico, pages 176–181, January 28-31 2008. Extended version available at
http://www.scs.carleton.ca/research/tech reports/.

11. A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and
qualified robustness. Journal of Computer Security, 14(2):157–196, 2006.

12. G. Steel. Formal Analysis of PIN Block Attacks. Theoretical Computer Science,
367(1-2):257–270, November 2006.

