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Real-Time Information Flow Analysis
Riccardo Focardi, Roberto Gorrieri, and Fabio Martinelli

Abstract—In previous work, we have studied some nonin-
terference properties for information flow analysis in computer
systems on classic (possibilistic) labeled transition systems. In
this paper, some of these properties, notably bisimulation-based
nondeducibility on compositions (BNDC), are reformulated in
a real-time setting. This is done by first enhancing the Security
Process Algebra proposed by two of the authors with some extra
constructs to model real-time systems (in a discrete time setting),
and then by studying the natural extension of these properties
in this enriched setting. We prove essentially the same results
known for the untimed case: ordering relation among properties,
compositionality aspects, partial model checking techniques.
Finally, we illustrate the approach through two case studies, where
in both cases the untimed specification is secure, while the timed
specification may show up interesting timing covert channels.

Index Terms—Bisimulation, information flow security, partial
mode checking, process algebra, real-time systems, timing covert
channels.

I. INTRODUCTION

I NFORMATION flow analysis is considered one of the main
techniques for studying confidentiality in computer systems.

The aim is to prevent any possible flow from the confidential
(high) level to the public (low) one. Intuitively, an informa-
tion flow from high to low is present when the behavior of the
low part of the system is affected by changes in the behavior
of the high part of the system. Many different formalizations
have been proposed in the literatureTo capture this intuitive
idea of information flow. Some years ago, in [8] and [10], we
have made an effort to classify most of them within the uniform
framework of security process algebra (SPA), a CCS-like [27]
calculus where actions are partitioned into two different levels
of confidentiality. SPA can express only thenondeterministic
(sometimes called possibilistic) behavior of a system. This is
enough to model the functionality of systems and, hence, to be
used as a basis for capturinglogical information flows, e.g., log-
ical covert channels.

As a result of the classification effort of [8]–[10], two of the
authors proposed bisimulation-based nondeducibility on com-
positions (BNDC) as the most natural information flow prop-
erty: a system is BNDC if for every high-level (possibly

Manuscript received April 4, 2002; revised August 20, 2002. This work
was supported in part by MIUR project “Metodi Formali per la Sicurezza”
(MEFISTO), by MIUR project “Strumenti, ambienti ed applicazioni innovative
per la società dell’informazione,” by CSP with the project “SeTAPS,” and in
part by EU under Contract IST-2001-32617 “Models and Types for Security in
Mobile Distributed Systems” (MyThS).

R. Focardi is with the Dipartimento di Informatica, Università Ca’ Foscari di
Venezia, I-30173 Mestre, Italy (e-mail: focardi@dsi.unive.it).

R. Gorrieri is with the Dipartimento di Scienze dell’Informazione, Università
di Bologna, I-40127 Bologna, Italy (e-mail: gorrieri@cs.unibo.it).

F. Martinelli is with the Istituto di Informatica e Telematica, National Re-
search Council (C.N.R.), Pisa, Italy (e-mail: Fabio.Martinelli@iit.cnr.it).

Digital Object Identifier 10.1109/JSAC.2002.806122

hostile) user , the low view of the behavior of is not modi-
fied by the presence of. Technically, BNDC requires that in
parallel with is bisimulation equivalent to in isolation, from
the low-level point-of-view. More recent research [12], [14] has
shown the key role of BNDC as a general property suitable also
for modeling and analyzing various security properties of cryp-
tographic protocols. BNDC, as well as its related approximation
properties bisimulation-based strong nondeterministic noninter-
ference (BSSNI) and strong BSNNI (SBNNI)1 are all nonin-
terference like properties: checking the absence of information
flow is reduced to verifying that the high-level activity may not
interfere with the low-level behavior of the system.

In this paper, we extend the theory of [8]–[10], and related
proof techniques studied in [23] and [24], to a real-time setting
in order to be able to capture, besides logical information flows,
alsotime dependentinformation flows, e.g., timing covert chan-
nels. We will do this by:

• defining a real-time version of SPA, called timed SPA
(tSPA), following one of the many approaches proposed
in the literature to extend process algebras with real-time
features (see, e.g., [5], [19], [29], [31], [37]), and then by

• adapting the noninterference properties of interest to this
enriched setting.

Note that a more concrete specification might show up new in-
formation flows. Even if one starts from an untimed specifica-
tion that shows no logical information flows, after having spec-
ified its timing requirements, some time dependent information
flows may become possible, e.g., if a high user is able to modify
the low-level response time of the system, this could be used as
a code for transmitting information from the high level to the
low one.

The first problem we have to face is the definition of tSPA. As
our aim is a feasibility study, we have decided to follow a simple
approach, where time is discrete, actions are durationless, and
there is one specialtick action to represent the elapsing of time.
These are the features of the so-calledfictitious clockapproach
of, e.g., [5], [19], and [37]. A global clock is supposed to be
updated whenever all the processes of the system agree on this,
by globally synchronizing on actiontick. All the other actions
are assumed to take no time. This is reasonable if we choose a
time unit such that the actual time of an action is negligible with
respect to the time unit. Hence, the computation proceeds in lock
steps: between the two global synchronizations on actiontick
(that represent the elapsing of one time unit), all the processes
proceed asynchronously by performing durationless actions.

Another feature of tSPA is the so-calledmaximal progress
assumption(e.g., see [19], [37]) according to whichtick actions
have lower priority with respect to internalactions: commu-
nications and internal moves prevent time from occurring,

1The long acronyms BNDC, BSNNI and SBSNNI, certainly less than op-
timal, are kept here for homogeneity with the papers [8], [9] where they have
been introduced.
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hence, the clock synchronization ontick takes place only when
all local processes have completed the execution of all the pos-
sible communications in that round. Finally, tSPA offers a con-
struct, called theidling operator, for delaying the execution of
the currently executable actions of its argument process. Once
one has specified the system in SPA, timing constraints can be
added to the specification by simply giving time duration to
actions. For instance, if is a SPA process and we assume
that action lasts two time units, we can represent this in tSPA
as , where is obtained from by applying
this transformation to all actions, according to their assumed
duration.

The second problem is to adapt the security properties studied
for SPA to the new real-time setting of tSPA. The untimed non-
interference like properties advocated in [8] and [9] are based
on the notion of weak bisimulation. To adapt them to the new
real-time setting, we only need to define a suitabletimed bisim-
ulation equivalence notion for tSPA, e.g., the definition of the
timed version of BNDC (tBNDC) is derived by using timed
bisimulation equivalence in place of weak bisimulation.

It is worthwhile noticing that, even if can be BNDC,
may be not tBNDC; this is the case when the addition of con-
crete, implementation-oriented information to the specification
may offer new, time dependent information flows that cannot
be revealed by the more abstract, purely nondeterministic SPA
specification. Two examples in Section IV illustrate this issue.

Like BNDC, also tBNDC is difficult to check in practice
because it contains a universal quantification over all possible
interacting high-level users. It turns out that the timed ver-
sion of the approximations of BNDC (namely tBSNNI and
tSBSNNI) are also reasonable approximations for tBNDC.
Finally, we prove that the techniques developed in [23] and
[24] for analyzing BNDC-like properties in a logical manner
can be extended to cope with real-time tSPA processes. As a
side consequence, we obtain that some particular tBNDC-like
properties are all decidable over finite-statetSPAprocesses.

The paper is organized as follows. Section II introduces tSPA
and timed weak bisimulation. Section III is devoted to the nonin-
terference properties tBNDC, tBSNNI, and tSBSNNI; in partic-
ular, we prove that and that
tSBSNNI is compositional (while tBNDC is not). In Section IV,
two case studies are presented. Section V extends the partial
model checking technique of [23], [24] to tBNDC. Finally, some
conclusive remarks are given in Section VI. The proofs of some
propositions are postponed to the Appendix.

II. SIMPLE REAL-TIME MODEL

In this section, we introduce the tSPA, a real-time extension
of the SPA, that was used in [8], [9] for the description of se-
curity properties in an untimed setting. In SPA, it is only pos-
sible to express qualitative temporal orderings among events,
while quantitative time aspects cannot be expressed. Thus, we
extend the SPA language with operators that permit to express
the elapsing of time, following the approach of [19].

First, we formally introduce the syntax and semantics of our
timed language tSPA. We have a set, ranged over by, of vis-
ible actions. is where is the set of
input actions and of output actions. A special
action models an internal computation, i.e., it is not visible by

an external observer. We also have a complementation function
, such that . To reflect different

levels of secrecy, the set of visible actions is partitioned into
two setsActH (or simply ) andActL, closed by complementa-
tion. Let tick be the special action used to model time elapsing
and let , ranged over by , while

is, with abuse of notation, ranged over by . We
now describe the syntax for tSPA terms

where , and is a process constant that must
be associated with a definition . As usual, we assume
that constants areguarded[27], i.e., they must be in the scope
of some prefix operator . The set of tSPA processes, i.e.,
of terms with guarded constants, is denoted with , ranged
over by We will often use some usual syntactic
simplifications, e.g., omission of trailing’s, as well as omis-
sion of brackets on restriction on a single action.

We give an informal overview oftSPAoperators.
• is a process that does nothing.
• is a process that can perform anaction and then

behaves as ; in particular represents a process
willing to let one time unit pass.

• (choice) represents the nondeterministic choice
between the two processes and ; when both are able
to perform atick action, then can perform this
action and reach a configuration where both summand
derivatives can still be chosen.

• (parallel) is the parallel composition of processes
that can proceed in an asynchronous way but they must
synchronize on complementary actions to make a com-
munication, represented by an internal action. This is
the core operator for time: both components must agree
on performing atick action, but this can be done only if no
communications are possible. This enforces the so-called
maximal communication progressassumption, i.e., when
a communication is possible, then it cannot be delayed.

• (restriction) is the process when actions in
are prevented.

• (idling) allows process to wait indefinitely. At
every instant of time, if process performs an action,
then the whole system proceeds in this state, while drop-
ping the idling operator.

The formal semantics of tSPA processes is described by the
labeled transition system(LTS) ,
where is the least relation between tSPA processes
induced by the axioms and the inference rules of Fig. 1. Such
a relation is well-defined even if negative premises2 occur in
the rules for the parallel operator and for the idling operator,
because the relation isstrictly stratifiable[18].

Let us consider the following relations between tSPA terms:
(or ) if (where is the re-

flexive and transitive closure of the relation); for ,
if . Let be the set of deriva-

tives of , i.e., the set of processes that can be reached through

2A negative premise is a premise of a rule of the formE 6�!, meaning that
there is noE such thatE�!E .
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Fig. 1. Operational semantics for timed SPA.

the transition relations. Let be the set of actions inAct
syntactically occurring in .

First of all, we state two peculiarities of tSPA. The first one
is time determinacywhich requires that the time elapsing never
moves a process to two different states (i.e., it istick-determin-
istic); the second one is themaximal progressassumption, re-
quiring that internal actions have precedence on the elapsing
of time. The proof of the following lemma can be easily given
by inspecting the operational rules. In particular, the first two
rules of the idling operator are the key rules enforcing time de-
terminacy, while the rule fortick synchronization and the first
rule of the idling operator are the key rules enforcing maximal
progress.

Lemma 1: For every tSPA process, we have:

1) if and then ;
2) if then .
Three simple examples follow to clarify some aspects of

tSPA. The first one is a timed communication between two
processes, the second one is a timeout construct and the third
one shows two peculiar timed processes.

Example 1: Consider a simple system, with a senderand a
receiver . When starts, it emits an actionstartand then tries
to communicate on the channelcom. The receiver waits for
a communication on the channelstopand then emits the action
stop. Hence, in the standard, untimed SPA, we could write such
a system as

We restrict the composition on the channelcomin order to force
the synchronization on this channel. In this way, we are not able
to say how much time the communication betweenand
takes. Let us model the same situation in tSPA. First of all, even

though we assume that actions take no time, we can still model
activities which involve the elapsing of time. For example, sup-
pose that a communication oncomtakes two units of time, then,
we can refine the systemSysin the following way:

In general, if we assume that actiontakes units of time we
can replace every subterm in a process by ,
where simply denotes the concatenation of actions.
Thus, by looking at the operational semantics we note that the
system can perform only the following sequence of ac-
tions:

As expected the communication takes two time units.
Example 2: We can easily model timeout constructs in tSPA.

Assume and define the process

first performs a sequence of
actions; then, the system may perform actions,
unless resolves the choice by performing an action; instead if

does nothing, after time units, via the execution of a, the
process is forced to act as.

Example 3: In tSPA there are processes, such as, that do
not allow time to proceed, i.e., they have no reachabletick la-
beled transitions. Process, in particular, is both functionally
terminated and time blocked. Moreover, as the operational rule
for parallel composition forces a global synchronization ontick
actions, the effect of composing a processwith is to prevent
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from letting time pass. In other words,acts as a time annihi-
lator for its parallel context. On the contrary, is process that,
even if functionally terminated, let time to proceed indefinitely.
Hence, acts as a neutral element for parallel composition, as
it does not influence the possible executions of processes com-
posed in parallel with it.

In the following, it is useful to consider the class of processes
that do allow time to proceed, the so-calledweakly time alive
processes.

Definition 1: A process is directly weakly time alive iff
, while it is weakly time alive iff for all , we

have is directly weakly time alive.
Since implies , it directly fol-

lows that if is weakly time alive, then any derivate of is
weakly time alive as well. Moreover, it is worthwhile noticing
that the above property is preserved by the parallel composition.

As any other process algebra, also tSPA comes equipped with
suitable notions of behavioral equivalences, that equate pro-
cesses if they are indistinguishable by external observers, ac-
cording to some assumptions on the observational power of the
observers. The behavioral relations we consider are the timed
versions of trace equivalence and weak bisimulation [27], re-
spectively. These equivalences permit, in a different way, to ab-
stract to some extent from the internal behavior of the systems,
represented by the invisibleactions.3

Definition 2: Let . The set of timed traces for
is . The timed

trace preorder, denoted with , is defined as follows:
iff . and are trace equivalent, denoted
with , if .

Definition 3: A relation is a timed weak
simulation iff for every , we have

• if , then there exists s.t. and
;

• if , then there exists s.t. and
.

A timed weak bisimulation is a relation s.t. both and
are timed weak simulations. We represent withthe union of
all the timed weak bisimulations.

As widely agreed upon in concurrency theory, trace equiva-
lence is not always adequate for reactive systems, as it forgets
about the points of choice and so it is not able to detect poten-
tial deadlocks. Moreover, bisimulation is equipped with a very

3Other equivalences are in between trace and bisimulation semantics. We do
not intend to discuss here their relative merits. The interested reader can consult
[15] for an overview (in the untimed setting).

powerful proof technique; indeed, in order to prove that two pro-
cesses , are timed weakly bisimilar , we only need
to provide a timed weak bisimulation that contains them. For in-
stance, we can prove that process
is timed weakly bisimilar to by checking that the relation at
the bottom of the page is a weak simulation for them. An inter-
esting feature of is that given two finite-state tSPA processes,
we can decide in polynomial time whether they belong toor
not.

III. SECURITY PROPERTIES IN AREAL-TIME SETTING

In this section, we present some information flow security
properties. In particular, we recast thenoninterferencetheory
proposed in [8], [9] in a real-time framework. Hence, we are
also able now to detect time effects of the activity of potential
enemies.

The central property is the so-called nondeducibility on com-
position (NDC). Its underlying idea is that the system behavior
must be invariant with respect to the composition with every
high user. This means that the low-level users cannot tell any-
thing about the high-level activity since, for them, the system is
always the same. Indeed, there is no possibility of establishing a
communication (i.e., sending information). Generally, the NDC
idea can be represented as follows:

High users with respect to Low users

where stands for the composition operator andfor an equiv-
alence relation. This property can be instantiated by assuming
different notions of composition and equivalence. Let

be the set of High users. In terms
of SPA parallel composition operator andbisimulationequiva-
lence [27] (denoted with ), we have the following (recall that

is a shorthand notation for ).
Definition 4: if and only if , we have

.
It is worthwhile noticing that the underlying idea of NDC

is very natural for describing security properties. In the last
few years, a generalization of this idea (GNDC [14]) has been
shown to be a general method for describing properties of cryp-
tographic protocols. Indeed, several existing security properties
(e.g., authentication, message authentication, secrecy, nonrepu-
diation, etc.) can be easily encoded in this scheme [12]–[14].
This opens the way to apply tools for the analysis of nonInter-
ference also to the analysis of security protocols [6], [9]. We will
come back to this issue in the conclusions.
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A. Timed Trace-Based Security Properties

We restate some information flow security properties, as
studied in [8]–[10], in the tSPA language.

1) Timed Nondeducibility on Compositions:The most inter-
esting property is timed NDC (tNDC) which is the natural exten-
sion of NDC to a timed setting. Before formally introducing it,
we need to discuss briefly on the nature of the admissible High
users. Contrary to SPA, in the tSPA model, we cannot consider
all high processes for the interaction with the systems. Indeed,
we must restrict ourselves toweakly time aliveprocesses that
can perform only action in . We call the
set of such processes. The reason is the following: A process

that is not weakly time alive may prevent time from elapsing
when composed in parallel with some system. Indeed, in a
compound process, time can pass iff all components let it pass.
Hence, a high user which is not weakly time alive could block
the time flow also for the low users and we certainly want to
avoid this unrealistic (and undesirable) possibility. The tNDC
property in tSPA can be, thus, defined as follows.

Definition 5: if and only if , we have
.

Due to the presence of the universal quantification, tNDC is
not very easy to check. For SPA, we proved in [8] and [9] that
NDC is equivalent to SNNI, an easierly checkable property dis-
cussed in the next section. We will show that such an equiva-
lence result does not hold for tSPA; more precisely, tNDC is
stronger than tSNNI.

2) Timed SNNI: Intuitively, is strong nondeterministic
noninterference (SNNI) if , where no high-level activity
is allowed, behaves like system where all the high-level
activities arehidden(i.e., transformed into internal actions).
To express this second system, we have to introduce thehiding
operator , where is an arbitrary subset of . In the
untimed case, it is defined by means of the following rules:

(1)

Now we are ready to define the property for SPA as follows:
if and only if, we have , where is

trace equivalence.
We show an interesting property of this operator in the un-

timed SPA language. Consider the process in SPA, i.e.,
the process that can repeatedly perform every action inActH. It
is defined as

(where is the -ary generalization of the binary operator).
We can see that for every process of
SPA. Roughly, hiding is the same as enabling every high action.
Actually, this could be considered as a good defining equation
for the hiding operator.

Due to the maximal progress assumption, the above equality
for the hiding operator does not hold in the timed language, even
if considering the appropriate process

that can also let time pass arbitrarily. Indeed, consider process
. By using the rules in (1) for hiding and consid-

ering , we obtain that and, at the same time,

. On the contrary, cannot performtick,
because the operational rules for the parallel operator correctly
implements the maximal progress assumption. Thus we need
to slightly modify the operational rules for the hiding operator

as follows:

(2)

With these new rules, we avoid the possibility that process
performs atick action if, at the same time, it can perform an
action in , hence preventing the problem outlined above.
Now, the following proposition states that for every process
its composition with (restricted on the high actions) is
equivalent to even for the finer timed bisimulation equiv-
alence, i.e., that hiding corresponds to enabling every high-level
action.

Proposition 1: For every tSPA process , we have that
.

Property tSNNI requires intuitively that process, where
high-level actions are forbidden, has the same low observable
behavior of where the high-level actions can be freely exe-
cuted. This intuition can be now formally stated as follows.

Definition 6: iff .
As previously announced, this is a weaker approximation of

tNDC. Indeed, tNDC is at least as strong as tSNNI.
Proposition 2: .

Proof: We observe that belongs to and so the
thesis follows.

Example 4: To see that the previous inclusion is strict con-
sider the timed process . Process

is tSNNI since .
But, if we consider the process we get that

cannot perform any trace beginning withtick and
ending with the low action.

In SPA, properties SNNI and NDC do coincide because of
following two results: first, is the top element of the trace
preorder (as well as is the least element); second, the trace
preorder is a precongruence with respect to parallel composition
(cf. [8]). On the contrary, fortSPAwe still have that is
the top element of the timed trace preorder, but such a preorder
is not a precongruence, as illustrated by the following example.

Example 5: Let us consider and .
Clearly, . Now, consider . It is easy to see
that , while

is composed only of the four traces ,
because the maximal progress assumption does not let time pro-
ceed as a synchronization onis possible. The same two pro-
cesses above show that the timed trace preorder is not a precon-
gruence for the hiding operator too.

Finally, we want to emphasize that, even if tNDC seems
quite a reasonable noninterference property, we actually need
to move toward its counterpart tBNDC based on the finer
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notion of equivalence of weak bisimulation. The main reasons
are the following.

• As real-time systems are reactive systems, it is funda-
mental to be able to observe the choice points; for instance,
we would like to distinguish the two low-level processes

and as only for the former process
there is a state where bothand are executable.

• From a technical point of view, bisimulation is equipped
with simple proof techniques; this is also true when con-
sidering tBNDC where we will be able to prove that a
system is tBNDC just by providing a suitable bisimula-
tion relation (see the proof of Proposition 5).

B. Timed Bisimulation-Based Security Properties

Here, we simply rephrase the properties above to the timed
bisimulation setting. Besides tBNDC and tBSNNI, we will also
introduce strong tBSNNI (tSBSNNI) as a stronger, more easily
checkable, approximation of tBNDC.

1) tBNDC and tBSNNI:By replacing timed trace equiva-
lence by timed weak bisimulation in Definition 5, we get the
definition of tBNDC.

Definition 7: if and only if we have
.

Due to the presence of the universal quantification, tBNDC
is not very easy to check. In Section V, we directly face this
problem by using partial model checking techniques. Here, in-
stead, we address the problem by defining suitable approxima-
tions of tBNDC, following the line of [8] and [9]. We define two
other properties, namely tBSNNI and tSBSNNI. These approx-
imate tBNDC from above and below, respectively, and corre-
spond to BSNNI and SBSNNI as defined in [8]–[10].

Property tBSNNI requires intuitively that processwhere
high-level actions are forbidden has the same low observable
behavior of where the high-level actions can be freely exe-
cuted. This intuition can be now formally stated as follows.

Definition 8: .
As previously announced, this is an approximation of

tBNDC, as it is at least as strong as tBSNNI.
Proposition 3: .

Proof: We observe that belongs to and so the
thesis follows.

By using an example similar to one in [8], we can also prove
that the previous inclusion is strict. Consider the following (un-
timed) process . This process is tBSNNI since

and
but, if we consider the process , we get that

.
Finally, as an example of a process that is tNDC but not

tBNDC, let us simply consider the following (untimed) process
. is tNDC because, whatever high-level process

one considers, the traces of and are only .
On the contrary, when using bisimulation and by choosing

, but no bisimilar state can be
reached from .

2) tSBSNNI Property:An approximation for tBNDC that is
stronger than tBNDC can be defined as follows.

Definition 9: iff we have
.

This requires that the system is tBSNNI in every derivative.
Since implies , it directly follows
the following.

Lemma 2: Let be tSBSNNI. Then for all ,
is also tSBSNNI.

We prove the following two propositions (as usual, proofs in
the Appendix), the first stating that tSBSNNI is at least as strong
as tBNDC, the second offering a distinguishing element.

Proposition 4: .
Proposition 5: The (untimed) process

is tBNDC but not tSBSNNI.

C. Compositionality of Properties

One of the most interesting features of SBSNNI is that it is
compositional. The proposition below states that also the timed
extension of this property has this nice feature.

Proposition 6: Whenever , , then also
.

By checking tSBSNNI over the parallel subcomponents of
a system (as done in [9]), it is thus possible to alleviate the
so-calledstate-explosionproblem caused by the interleaving of
all the possible executions of parallel processes. As a matter of
fact, when checking , one first checks and separately;
if the check is successful, then is secure. However, it might
be the case that or are not tSBSNNI, while is so; in
such a case, the compositionality property does not help. Unfor-
tunately, for tBNDC, as for BNDC (see [24, Prop. 1]), we have
the following negative result.

Proposition 7: tBNDC is not compositional.

D. Timed Versus Untimed

Consider a timed process which enjoys a timed information
flow security property. Then, if we ignore the observation of
timing information (i.e., thetick actions are considered asac-
tions), then what we obtain is a process that is secure in the un-
timed setting.

To be more formal, we define an additional operator of
tSPA, which transformstick actions into internal, or externally
invisible, actions

For each tSPA process, we have that is not able to per-
form tickactions. Thus, its semantics could be originated by one
SPA process. With the notation is -secure ( -secure) we
mean that , where ranges over BSNNI,
BNDC, and SBSNNI. The following result trivially holds.

Lemma 3: If is -secure, then is -se-
cure, where ranges over BSNNI, BNDC, and SBSNNI.

IV. TWO CASE STUDIES

In this section, we will present two examples of processes that
are secure, when the specification is untimed, but that are inse-
cure only when some timing information is added to the spec-
ification. The first example is a very simple case of a manager
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that implements ano write-down/no read-uppolicy on an ob-
ject, that can only be read by high-level users and only be written
by low-level users. The second case study is about an attack on
web privacy. In our tSPA approach, we formalize this case study,
originally introduced in [7].

A. Object Manager

We consider a process that has to manage, following a mutual
exclusion policy, the accesses to a shared variable (see also [24,
Ex. 3]). It implements theno-write-down/no-read-uppolicy (see
[16]) as follows: High users can only read the variable and low
users can only write it. Hence, the information should only flow
from low-level users to high-level users. Nevertheless, it could
be possible to construct somecovert channels, i.e., indirect ways
of communicating information. We want to check this using the
BNDC/tBNDC properties. A very preliminary, untimed descrip-
tion of the manager is the following:

where the set of high actions is and actions
, and represent the (abstractions of)

high-level read requests, high-level read operations, low-level
write requests, and low-level write operations, respectively. In
particular, an access request can be done by either a high-level
user (for reading) or by a low level one (for writing). After such
a request the corresponding access operation is performed and
finally the monitor process returns to its initial state. In this
first specification, we are abstracting from time; hence, we can
try to verify the manager by checking the BNDC property. It
is easy to see that is not BNDC since the high-level process

can block the monitor process and this is revealed
by bisimulation equivalence.

It is possible to prove that these potential high-level deadlocks
may be exploited for constructing covert channels, as reported
in [10]. This problem can be solved by introducing a (logical)
timeout mechanism which unblocks the system if the high-level
reading is not performed. Hence, the improved, still untimed,
specification is the process below

Now it can be formally verified that this system isBNDC, since
it is actually SBSNNI and such a verification can be automated
by using the CoSeC tool [9]. Indeed, the (logical) timeout has
resolved the deadlock problem but, if we refine the model by
introducingtickactions, it is possible to have some timing covert
channels. For example, suppose to refine ,
and the (which models timeout) by adding onetick for every
such action. We also allow the system to idle for actions
(hence, giving implicitly priority to the high request of reading
with respect to time), obtaining the following system.

This system is not tBNDC; as a matter of fact, consider the fol-
lowing high process:

It is now easy to see that and

, while is not able to sim-
ulate these sequences. The problem is that the high users can
decide how much time to spend in the critical section. Hence,
low users can detect the presence of high-level activity by
observing the passage of time, and even worst they can detect
how much time this activity takes. In this way, high-level users
have a lot of possibilities to transmit some information, e.g., by
assuming that the timeout is set tounits of time, if a high user
spends time units in the critical section then this could
be considered as a way of transmitting the integer.

We solve these problems as follows. First, we impose a disci-
pline of accessing the variable that forces high users to spend a
fixed amount of time in the critical section; next, we show how
to masquerade the high-level activity to low-level users. Hence,
to tackle the first point, we differently model the timeout as

We added a processTimerwhich is indeed an abstraction of a
timer. When a high-level request is accepted, the timer is started
by means of an actiongo and then the read must be performed
before thestopaction is issued. TheManagerprocess can be
proved to be weakly bisimilar to ; therefore, also theManager
is SBSNNI, hence BNDC. However, it is certainly important
to see if, when timing information is added, it still generates
timing covert channels. As before, we refine the specification
as follows (we set the timer to one unit of time):

Now, high users must spend exactly one unit of time in the crit-
ical section and then they must leave it. Indeed, the manager in
parallel with has no more the computation , but it
still has the following one:

which cannot be performed by process ; thus, this
system is not tBNDC. Time elapses when a high-level access
is performed and this is observable by low-level users that
have to wait until the high-level request is terminated before
obtaining access to the variable. This is a typical situation
that can be exploited to build a timing covert channel, where
the unavailability of a shared resource for a certain amount
of time (in this example, the amount at which the timer is
set, i.e., one unit) can be encoded as zero or one in order to
transmit data. As anticipated above, in order to obtain a secure
manager, the second step is to mask the high-level activity to
low-level users. A solution to this problem could be to split
the execution time of the into two slots of fixed
length. Then, in one slot only the high-level users are served
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Fig. 2. The behavior of the processManager , represented by a labeled
transition system.

and, similarly, in the other one only the low-level accesses are
performed. This makes it impossible to discover if a high-level
user is doing something since the same fixed amount of time is
dedicated to high users, even if they are doing nothing. Here,
for simplicity, we consider an abstraction of this mechanism.
We just introduce a busy-waiting cycle which nondetermin-
istically stops the process for exactly two ticks.
This is an abstraction of the possibility of allocating a slot
to high users which, however, will do nothing in such a slot.
Now, the low-level users cannot distinguish between high-level
accesses and these busy-waiting cycles, thus deducing nothing
about high-level activity. The new system is, then,
specified as follows:

where a branch has been added in (now ).
See Fig. 2 for theLTS of .

Remark 1: It is worthwhile noticing that, in principle, we
could masquerade the high-level activity in the systemas we
did in the system . As a matter of fact, by adding two
cycles, i.e., and to we obtain that
the resulting system is tBNDC. However, this solution is less
than optimal when we consider a timeout with hundreds of time
units. Furthermore, we feel that is a more realistic
implementation.

Remark 2: The technique of masquerading high-level activ-
ities has a drawback: there is no guarantee of liveness. As a
matter of fact, can be forever engaged in the mas-
querading branch , hence, in a (timed) livelock.
Moreover, it may be not obvious how to use this technique when
further implementation details are added to the specification.
For instance, if each branch of system is taken ac-
cording to some probability value, then, one may show that a

Fig. 3. A graphical explanation oftBNDCmembership ofManager .

probabilistic covert channel is still possible. Preliminary results
on a possible extension of the noninterference theory of [8] and
[10] to a probabilistic setting is reported in [1].

We can directly prove that . The idea
is to build a timed weak bisimulation that contains

for every high user . This is one of the advantages of
considering timed (weak) bisimulation as an equivalence rela-
tion between our systems. Indeed, this kind of equivalence has a
nice proof technique. We can prove that two processes are equiv-
alent by simply providing a bisimulation relation that contains
them. In our specific case, this is very interesting since at the
same time we are able to prove an infinite number of equiva-
lences (as BNDC membership requires)! Consider Fig. 3. For
the sake of simplicity, in Fig. 3, we use natural numbers to rep-
resent derivatives instead of terms. The dashed lines represent
pairs of a function from derivatives of to derivatives
of ; e.g., . Hence, we have the following
relation :

The proof that is a timed weak bisimulation follows by in-
spection of the possible cases. As an example, we show the proof
for the pair ; we have the following possibili-
ties to consider:

• If , hence, and . In

this case, and .

• If , then , but since
we have completed.

• If , then but also in this case
we have .

• If , we have two possibilities. If then
. Now, since must be weakly

time alive, we have ,
and . The other possibility is that

and also in this case since must be weakly
time alive, we have and

.
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B. Cache Attack on Web Privacy

We formalize in our framework the example reported in [7].
The attack compromises the privacy of user’s web-browsing his-
tories by allowing a malicious web site to determine whether or
not the user has recently visited some other, unrelated, web page

. A Java applet is embedded in the malicious web site and,
when a user surfs on it, the applet is downloaded and run by the
user’s browser. The applet first performs a request to access web
page , and then it performs a new request to the originating
malicious site. So, assuming that the network delay is somehow
constant in a short period of time (this assumption is perhaps not
too realistic), the malicious site can measure the time elapsed
between the two requests which it receives from the user, and, if
such a time is under a certain bound, it infers thatwas in the
cache of the browser of the user, thus implying thathas been
recently visited by the user. This shows how some information
about the cache of web browsers might be leaked to the external
world. In particular, it could be possible to detect whether or not
a web browser has recently accessed a particular web page.

In this context, the high-level component is the cache. The
low-level processes must not deduce anything about the cache.
Thus, the low-level view of the system must be the same for
whatever cache is present. Unfortunately, this is not the case.
Consider the following description of the system under investi-
gation:

System works as follows. We assume that there is an applet
in the system which requests the web page. The system allows
the applet to perform a request (denoted by the action) to
the original malicious site, which may answer, by performing
action . Then, the applet requests a particular web page, i.e.,
the web page it wants to know whether or not it is in the cache.
We have two different possibilities depending on the presence
of this page in the cache. If so, the system may again perform a
request to the site, in at most two units of time; otherwise, the
system will access the web and the new request to the web site

cannot be performed before 100 units of time. Therefore, we
can simply check that the cache may be exploited to leak some
information since the low-level view of the system depends on
the status of the cache.

Let . We can show that is not tBSNNI, i.e.,

. In particular, note that ,
while is not able to perform such a computation. As a
matter of fact, represents a system where no ac-
tion is possible. This models an empty cache. While rep-
resents a system whose cache is accessible, in particular page

, as is a high action. Summing up, we have thatis
not tBSNNI and consequently that is not tBNDC.

V. PARTIAL MODEL CHECKING

In [23]–[26], a generalization of the NDC idea for the defini-
tion of security properties has been proposed and studied within

a logical framework. The idea is to express security properties
as follows:

hostile environment (3)

where is the system under investigation,is a parallel compo-
sition operator, is a logical formula and is the truth relation.
(Essentially we write whenever the process satisfies
the property denoted by the formula). Thus, if we assume that

expresses a desired property (e.g., the system has no informa-
tion leaks, etc.), then the above property ensures that this prop-
erty is granted by the system against every possible enemy (ma-
licious user, environment etc.), that may try to interfere, modify
or capture some information from the system.

For analyzing similar properties we still have the problem of
the universal quantification on every hostile environment. But,
we note that the above problem is somewhat similar to well
studied problems in logic, i.e., validity problems. In these prob-
lems, we study whether every model satisfies a certain formula.
Actually, the situation is slightly different, since we quantify
over an unbounded number of processes, but we check if the
composition of these processes together with a processsatis-
fies a certain formula.

The key idea applied in [23] to tackle verification problems
like (3) is to develop and suitably apply partial model checking
techniques [3] in order to reduce them to validity problems.
These techniques permit us to project the property that a com-
pound system must satisfy into a property that one of the two
components must enjoy.4 In our case, we can indeed check
if the property obtained by projecting the propertyon the
second process is satisfied by every hostile process. By using
this approach, it has been possible to analyze noninterference
properties such as BNDC-like ones and also properties of cryp-
tographic protocols e.g., secrecy [24], [25] and authentication
[22].

In this section, we show the flexibility of the methodology
proposed in [23] and [25] by applying similar steps to the anal-
ysis of NDC-like properties in a real-time setting. We need to
tackle the following points:

1) Reducing tBNDC-like properties to properties in the form
(3). This point can be solved by resorting to the concept
of characteristic formula for the timed equivalence. A for-
mula is characteristic for a processand a relation
whenever , . Hence, it is possible to express
relationships between processes in a logical way (for cer-
tain relationships). Furthermore, we can note that timed
weak bisimulation is similar to observational equivalence
and, hence, we can apply the results for characteristic
formulas of observational equivalence developed in [28],
[33].

2) Reducing properties of the form(3) to validity problems.
This point may be solved by suitably exploiting the results
in [23] which extend the theory of partial model checking
[3] to deal also with operators whose semantics rules use
negative premises (e.g., the timed parallel operator).

4Sometimes partial model checking is also called partial evaluation since
there has been the evaluation of a part of the system.
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3) Studying the decidability of the validity problem for the
formulas obtained after the partial model checking with
respect to specific classes of models.This is the most dif-
ficult step. The models for the formulas of our logic are
actually LTSs. But, we have that some (finite-state)LTS

is not the semantics of any tSPA process. (This does not
happen with SPA processes). We overcame this problem
by considering a bigger set of High users and, hence, by
analyzing slightly stronger properties than tBNDC.

In the following, we introduce the logical language for
expressing the properties of the systems, the partial model
checking techniques for real time systems and their use in the
analysis ofnoninterferenceproperties.

A. Equational —Calculus

As a logic for expressing properties of processes we use the
equational —calculus, a variant of —calculus, which is very
suitable for partial model checking (see [3]). Letbe inActand

be a variable ranging over a finite set of variablesVars. Equa-
tional —calculus is based on fixpoint equations that permit to
define recursively the properties of systems. A minimal (max-
imal) fixpoint equation is , where is an
assertion, i.e., a simple modal formula without recursion oper-
ators. The syntax of the assertions and of the lists of
equations is given by the following grammar:

Roughly, the semantics of the list of equations is the
solution of the system of equations corresponding to.5 This
solution is basically a function which assigns a set of processes
to each variable on the left-hand of the equations in. We de-
note the value of the variable with . We will write

as a notation for . We give only
an intuitive idea of the operators of this logic. For example we
may expresses the fact that a processis able to perform an
action, by requiring that (possibility operator). We
can also require that after performing an actionthe process
must satisfy a property , by (necessity operators).
The equation expresses the fact that through a
finite sequence of actionsit is possible to reach a state which
enjoys . The equation asserts that in every
state reachable by means of a sequence ofactions the formula

holds.

B. Partial Model Checking for the Timed Parallel Operator

Partial model checking techniques have been developed for
the compositional analysis of concurrent systems (processes).
(Here, we follow [3].) The intuitive idea is the following: Sup-
pose to have a system which is the parallel composition of
two processes , , and we wonder whether this process sat-
isfies a formula or not. Now, it is possible to find a reduced
formula s.t.

iff

5See Appendix or [3] for the formal semantics of the equational�—calculus.

TABLE I
PARTIAL EVALUATION FUNCTION FORPARALLEL OPERATORk OF TIMED SPA

Hence, by means of this technique, we can project the property
that must be verified by the composition of two processes in a
property that must be verified by only one. Note that the reduced
formula only depends on the formulaand the process.
No information is required on the process. In our scenario,
represents the possible enemies. Thus, given a certain system,
we can find the property that the enemies must satisfy in order
to perform a successful attack on the system. It is very inter-
esting to point out that partial model checking functions can be
inferred automatically from the operational semantics rules of
the language, when these are represented in the structured oper-
ational semantics (SOS) style (see [3]) and the logical language
is the equational —calculus. Unfortunately, tSPA semantics
contains also rules with negative premises (e.g., parallel com-
position), and those techniques cannot be directly applied. But
in [23] a slight extension to the theory of Andersen has been pro-
posed in such a way that is also possible to deal with semantic
rules with negative premises (actually with a subset of GSOS
rules). Thus, by suitably applying the results of [23], we can au-
tomatically derive the partial evaluation function for the
timed parallel operator and the equational—calculus. This is
given in Table I, where is a tSPA process and an equational
definition. Thus, we can state the following.

Lemma 4: Given two processes , ( finite-state) and
an equational specification , we have

iff

Example 6: Let us see an example of partial evaluation. Con-
sider the process . We want to find the necessary and
sufficient conditions on a process s.t.

By applying the rules in Table I, we find out that
is equal to . Roughly, it requires that is able
to do atick action, but no actions. Indeed, for themaximal
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progress assumption, thetick action is not executable if can
communicate with through .

C. Analyzing BNDC-Like Properties

First of all, it is useful to parameterize the definition of NDC
with respect to the set of high users that are composed with
the system when it is checked (as done in [24]). Indeed, under
certain constraints on the set, we can provide a method for
reducing the verification of membership to a validity
problem in equational —calculus.

Definition 10: if and only if

By using the characteristic formula for of (see
Appendix), we obtain the following characterization6 :

iff

Now, we can apply the partial evaluation function for the re-
striction operator (see [3]) and then the one for timed parallel
operator (see Table I) to the formula by getting a for-
mula . Then the previous problem is equivalent to checking
that every process in satisfies . Indeed, the behavior of
has been evaluated and encoded in the formula. Thus

iff

We expect to have decidability results only if we restrict our-
selves to finite-state systems. Let is finite
be the set offinite-stateprocesses. We also require that the set

of visible actions is finite. If the membership incan be de-
fined by a formula then we obtain that the previous problem
is equivalent to b

iff

Unfortunately, if we consider as , then it is not so easy to
restrict to consider onlyLTSs which are the semantics of pro-
cesses in . TheseLTSs enjoy several properties that can be
handled, in particulartime determinacyand maximal progress.
In fact, we can usetick—deterministic equational—calculus
[23], in order to deal with the transition systems generated by
the semantics oftSPAterms, instead of simple—calculus. The
validity problem for this logic may be shown to be decidable by
using the same proof techniques of [35]. Moreover we can ex-
press with a formula the maximal progress property (since we
consider a finite set of visible actions). But, the semantics for the
choice operator imposes a sort of time persistency that seems not
easily characterizable. As an example, it seems not possible to
find a process s.t. its associatedLTS is the one of Fig. 4. We
avoid this problem by considering the choice operator of high
users as the standard CCS one. (This is obtained by dropping
the third rule for choice in Fig. 1, and by consideringranging
overAct). Then, it is easy to see that for every finite-stateLTS,
we can find a High user whose semantics is thisLTS. Hence,

6Actually, this is true only if we consider finite-state processes. The same
holds for weak bisimulation in CCS.

Fig. 4. Example ofLTS that does not corresponds to the semantics of a
processE.

we consider properties that are stronger than tBNDC.7 We call
the set of finite-state processes, which aretick-determin-

istic, enjoy the maximal progress assumption, are weakly time
alive and whose choice operator has the new semantics. (Actu-
ally, we still suppose to restrict ourselves to considertick-deter-
ministic processes, even though with this choice operator it is
possible to generateLTSs which do not enjoy this property).

We can prove the decidability of tBNDC-like properties when
we only consider finite-state processes .

Proposition 8: Property is decidable for all fi-
nite-state processes.

D. An Example

Now, we show the flexibility of the specification format (3)
and of the partial model checking techniques we developed. In
certain situations, we could be interested to specify and analyze
also weaker properties than tBNDC. For example, we could be
interested to show that a systemcomposed with a set of high
processes simply does not present deadlocks, or else that is
always able to produce a certain action. Let us reconsider the
process . Consider the following equational
definition (please note that is a variable here):

It asserts that a process, in whatever state it reaches by means of
actions, is still able to move in a state where an actioncan be

performed, possibly after a finite sequence ofactions. Hence,
we would like to study properties like

(4)

where . As for the study of tBNDC-like properties,
we can apply the partial evaluation for the parallel operator (see
Table I) and restriction one (see [3] and [23]) and after several
logical simplifications (reported in the Appendix), we obtain
that is

which, roughly, expresses that after performing aaction, the
system reaches a configuration s.t. if it performs aaction then
it is able to perform a finite sequence offollowed by . The
information obtained through partial model checking can also
be used to enforce a security policy which prevents a system
from having certain information leaks (see [26]).

7However, we feel that is possible to suitably change the validity procedure
of [35] in order to consider only LTSs which are the semantics of some tSPA
term. We leave the proof of this conjecture as a future work.
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Suppose to have the following execution policy for high
users: Every high user, when executed in the system, is
equipped with a control process . Hence, we want
to study problems like

(5)

Now, we already know which properties processes must
enjoy, these are exactly . Thus, we may work in a
compositional way and we simply build the reduced formula

which expresses the properties the processes
must enjoy in order to have (5). Now, it is easy to see that

. This means that for every high user
, if we encapsulated it together with the process, then (5) is

satisfied.

VI. CONCLUSIONS ANDFUTURE RESEARCH

We have shown the flexibility of the noninterference theory
of [8]–[10] and [24], by extending it to a discrete time process
algebra. Even if the real-time setting is rather simple, we think
that similar work can be done also for other, more sophisticated
approaches to real-time. As a future work, we plan to extend
the CoSeC tool to manage tSPA specifications, by defining a
mapping from tSPA to the timed language implemented in the
concurrency workbench [4].

The reason of considering more concrete models is that they
give a more detailed, closer to the implementation, description
of a system, that may then reveal indirect information flows
that are not possible in more abstract specifications of the same
system. We think that the results reported here are encouraging
and justify our expectations. Moreover, other aspects of system
behavior can be included in the specification, e.g., probability
(see [17]). Preliminary results about the extension of the nonin-
terference theory to a probabilistic process algebra are reported
in [1].

Related literature includes [20] and [32]. In [32], a CSP based
process algebra, extended with a special event to mark the pas-
sage of time, is used for the analysis of cryptographic protocols.
The semantic model is rather similar (even if maximal progress
is not assumed); we think that, in the line of [30], also the non-
interference theory developed in this paper can be adapted to
that setting. Similarly, the idea in [32] of using a real-time cal-
culus for the analysis of time-dependent properties of crypto-
graphic protocols can be adapted also to our setting, in the line
of [12] and [14]. In [20], the dense-time model of timed au-
tomata [2] is used as a basis for studying information flow prop-
erties, based on trace semantics. The information flow proper-
ties studied there seem to be less restrictive than tBNDC since
they deal on the recognition of given patterns on the execution
of high and low activities.

APPENDIX

A. Semantics of Equational—Calculus

In this section, we give the formal semantics of equational
—calculus (see [3]). It is assumed that variables appear

only once on the left-hand sides of the equations of the list,
the set of these variables will be denoted as . Let

be anLTS extended with an environment

that assigns subsets of to the variables that appear in the
assertions of , but which are not in . The semantics

of an assertion is the following:

and

implies

The semantics of a list of equations, is an environment
that assigns subsets ofto variables in . A list of equa-
tions is closed if every variable that appears in the assertions of
the list is in . We use to represent union of disjoint
environments. Let be in , then represents the

fixpoint of the function in one variable

where

It informally says thatthe solution to is the
fixpoint solution of where the solution to the rest of the
list of equations is used as environment.

B. Characteristic Formula

Given a finite-state process, we present below the defini-
tion of a formula that is characteristic (with respect to timed
weakbisimulation) for this process (see [28]). Let be
a short notation for , where is not free in . (The
semantics of can be found in [36]). Let ,
be . It can be shown that these derived modalities
can be equivalently expressed in an equational form. Let us see
the definition of the characteristic formula.

Definition 11: Given a finite-state process , its charac-
teristic formula (with respect to timed weak bisimulation)

is defined by the following equations for every
, :

Intuitively, for every state of the process there is a variable
that encodes the capabilities of that state. Following [28], [33],
and [34] if is characteristic for (with respect to ) then

Lemma 5:
1) If then .
2) If and is finite-state then .
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C. Technical Proofs

Proposition 1: For every process , we have
.

Proof: For the sake of readability we useTop instead of
. We show that the following relation is a timed weak

bisimulation:

We analyze only the most interesting case (tick move). Assume
that . Then

• , it means that
and, due to themaximal progressassumption, for no
action in , we have . But, in this case also

and .

• , it means that and for no

action in , we have . So, sinceTop
is always capable to let one unit of time pass, i.e.,

, we have also
and .

Proposition 4: .
Proof: Let be a process satisfying tSBSNNI. The proof

that is also is performed by showing that the fol-
lowing relation is a timed weak bisimulation (up to)

Then, the thesis follows because , hence, the pairs
for all . The proof proceeds

by inspection of possible cases. Note that if
and then and so this condition of
the relation is always satisfied. Let us consider the pair

. Let us first consider the moves of
.

• If , then
, and also .

• If , then necessarily and

consequently, by Lemma 1 (as well as
for ). The following fact holds: for what-
ever sequence of high actions s.t.

, we have and

. Since,
and , we have that there exists a sequence
of high actions s.t. ,

for no action and ,
with . Thus, if we
consider , then, we may have a sequence

, with s.t. if

then . Now, from the previousfact, it follows that
and so ,

with , since .

This means that . Since
, the thesis follows.

Let us now consider the moves of . (We show only
the most interesting cases.)

• If , with and ,
then . As we have that

; hence, to match the transition above,
there exists such that with

; moreover, also , hence,
. Summing up, we have that

up to weak bisimulation.
• If and , then

and .

Proposition 5: The process is
in tBNDC, but not in tSBSNNI.

Proof: In order to prove that , consider the
following derivative: . This is not tBSNNI because

.
In order to prove that is in tBNDC, we need only to prove

that the relation given below is a timed weak bisimulation.
Let us first split the set into three disjoint sets, depending on
their ability to perform action . Set is formed by the pro-

cesses that cannot performweakly, i.e., . Set con-
tains exactly those processes that have-derivatives in set
(hence, unable to perform), as well as -derivatives that can
perform ; formally: and and

and . Let be , hence containing the
processes that can never reach silently a state wherecannot be
performed weakly.

Relation is defined as follows:

Now, let us see that the above is a timed weak bisimulation.
Consider first the pair , and let us start
with the moves from .

• If , then also

and
(second group).

• If , then, we have three pos-
sible disjoint cases:

— . Then and
,

— . Then and
.

— . Then and
.

When considering the actions performed by it is more
easy to prove the membership inof the respective derivatives.
The only interesting case is when ; in such a

case , with the pair
.
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The proof for the pairs in the second, third, and fourth groups
are omitted because they are trivial.

Next, we consider the fifth group of pairs of the form:
with in . We have the

following three subcases.

• If , then
and the pair (second group).

• If then, since , we
have that with and so

and (fourth
group).

• If then, since , we have that

with and so
and the pair (sixth group).

Finally, we consider pairs like with
.

• If , then also
and . Similarly, if

due to a synchronization, then also
and (second group).

• If , then also
and (second group).

Proposition 8: is decidable for all finite-state
processes .

Proof: Similar to the proof of [24, Prop. 4 ]. In particular,
since we deal withtick-deterministic processes, we usetick-de-
terministic —calculus (see [23] and [35]). Moreover, Lemmas
4 and 5 are used, together with a simple logical characterization
of weakly time alive processes and maximal progress.

Let be the characteristic formula (up to
timed weak bisimulation) for , then:
if and only if , we have

Thus

On the other hand

is finite state

So by using the partial model checking for the parallel op-
erator (Lemma 4) and the partial evaluation for restriction ([3],
[23]), we have

iff

Now, applying the translation from equational —calculus
to standard one (see [23]), we obtain a closed formula

of —calculus. To

reduce the problem to a validity problem ontick-deterministic
—calculus, we use the formula

which characterizes the high processes which are weakly time
alive and enjoy the maximal progress assumption.

We can now reduce the decision problem of mem-
bership to a validity problem on—calculus. Now we have

iff (i.e., is valid. Indeed

is not valid

On the other hand

is not valid

and

calculus enjoys the finite model property

Since ontick-deterministic —calculus the validity problem
is decidable [35], then the result follows. Notice that in [23] a
sound axiomatization oftick-deterministic —calculus is given.
Hence, we can use this axiomatization in oder to prove the va-
lidity of formulas instead of using the validity procedure.

D. Compositionality Results

Lemma 6: .
Proof: The following is a timed weak bisimulation:

We show only two interesting cases

• since and
then also and

.

• since and ,
this means that neither nor can perform actions
in . Hence, we have and

and and
.

Moreover, we have to note that if we consider two processes
and which are timed weakly bisimilar, then is preserved

by parallel composition.
Lemma 7: If then for every we have

.
Proof: The following is a timed weak bisimulation:

We show only the interesting case of thetick action.

• If , then and .
Now, since there exist , , s.t.

and . This implies
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that there exists s.t. and . But,
since we are considering processes which enjoy the
maximal progress assumption (see Lem. 1) and it
must be that . Hence, . Since also ,
we get that for every action , we have that
iff . This implies that ,
and finally, we get .

Proposition 6 : If , then
.

Proof: We have to prove that if and are in ,
then for all of their derivatives and , we have that

, i.e., that . Note
that by Lemma 2, also all of the derivatives of a tSBSNNI
process are in tSBSNNI. Hence, we can actually obtain the
result by showing that the following relation is a timed weak
bisimulation:

We prove this fact by inspection of possible cases. Assume
. Let us consider the possible moves

from . (As usual, we consider only the most interesting
cases).

• , then if ,
with we have and

.

• If , with , then since
there exists s.t.

and , the last equality
holding because is tSBSNNI. Hence, we also have

and we can now prove that
. It is sufficient to note that
and that, by Lemma 7, we

have

So, up to bisimulation, we get .

• If , then and .
Since , it must hold for all

that , and the same is also true for. Hence,
and .

Let us now consider the moves from .

• If , we have that

and . Moreover, we get

and . Since we have
, from which it follows

.
Analogously for , we have

. Finally, we get

;
hence, up to bisimulation, .

Proposition 7: tBNDC is not compositional.

Proof: Let and
. We want to prove that

but is not in . The
fact that both processes are tBNDC can be proved similarly
as in the proof of Proposition 5. To prove that the composi-
tion is not tBNDC, let us consider to be . Then,

can perform weakly an actionby reaching

the . Similarly, .

Now, and no
bisimilar state can be reached from . Indeed, the
only two possible moves are:

• , but then
from which only is possible,

and there exists a (e.g., ), such that no equiva-
lent state can be found from via a move.

• , but then there
exists a (e.g., ) such that may be unable to
perform (when the synchronization takes place between

and the left component ), while will certainly do
that.

E. An Example With Partial Model Checking

The equational definition is the following:

The equational specification obtained from the
partial evaluation is

Since we are considering high users, then, we can freely substi-
tute with in the previous equational definition. Indeed
such processes are not able to satisfy . Moreover, after sev-
eral simplifications (e.g., is equivalent to and this implies
that also is equivalent to ), we obtain

By partially evaluating with respect to the previous equa-
tional definition we obtain the equational definition

which is equivalent to since, is trivially equivalent to
and for every , is equivalent to . (Please



FOCARDI et al.: REAL-TIME INFORMATION FLOW ANALYSIS 35

note there are existing tools that perform similar reductions, e.g.,
see [21] and [25]).
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