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Abstract such approaches often allow for a careful detection and re-

production of successful attacks, they are inherently con-
This paper presents a novel technique for analyzing se-strained by only taking a finite number of sessions into ac-

curity protocols based on an abstraction of the program se- count, or by restricting the analysis to certain classes of
mantics. This technique is based on a novel structure calledprotocols, or by giving up guaranteed termination. In con-
causal graph which captures the causality among program trast to these approaches, static analysis techniqued base
events within a finite graph. A core property of causal on type systems rely on the identification of some syntactic
graphs is that they abstract away from the multiplicity of patterns that suffice for guaranteeing the property of inter
protocol sessions, hence constituting a concise tool far re est. Furthermore, type systems enjoy guaranteed termina-
soning about an even infinite number of concurrent protocol tion since they work on the syntax of the protocol. The
sessions; deciding security only requires a traversal ef th drawback of these techniques is that for analyzing differ-
causal graph, thus yielding a decidable, and typically very ent security properties one has to identify multiple difer
efficient, approach for security protocol analysis. Adutiti patterns and, consequently, to develop different type sys-
ally, causal graphs allow for dealing with different secu- tems. Furthermore, the aforementioned patterns are some-
rity properties such as secrecy and authenticity in a umifor  times restrictive in that, e.g., ensuring freshness ofeuth
manner. Both the construction of the causal graph from a tication requests presupposes that every authenticat®n s
given protocol description and the analysis have been fully sion is based on a different nonce (an unguessable random
automated and tested on several example protocols from thestring) that is used only in a single protocol session and the
literature. discarded[[23,12]. This rules out some interesting proto-

cols relying on composing multiple authentication session

based on the same nonce, e.g., 5ek [26].

1 Introduction This paper presents a novel technique for analyzing se-
curity protocols based on abstract interpretation of paogr
Proofs of security protocols are known to be error-prone semantics[13]. In particular, this technique abstractayaw
and, owing to the distributed-system aspects of multiple from the multiplicity of protocol sessions while still pre-
interleaved protocol runs, awkward to make for humans. serving the causality among program events. More pre-
In fact, vulnerabilities have accompanied the design of cisely, the unbounded number of execution traces of a proto-
such protocols ever since early authentication protodas |  col generated by running an unbounded number of concur-
Needham-Schroeder [[15.129], over carefully designed de-rent protocol sessions is concisely abstracted into a novel
facto standards like SSL and PKOS][81, 7], up to current structure that we caltausal graph i.e., a finite graph in
widely deployed products like Microsoft Passparti[20]. +or which nodes represent process events and edges express the
mal methods, and in particular language-based techniquesgausality among events. Interestingly, causal graphgvallo
have proved to constitute important tools for dealing with for soundly characterizing which terms abstract messages
such flaws, by helping both to securely design and to an-generated in the same protocol session and which ones may
alyze security protocols. A central intricacy that these ap instead abstract messages generated in different protocol
proaches have to tackle is how to concisely treat the poten-sessions; this information turns out to be crucial in order t
tially unbounded number of concurrent protocol sessions. determine the safety of protocol specifications. In comtras
Techniques based on state-space exploration rely on the into state-space exploration techniques, our analysis gnjoy
spection of (abstractions of) all the unbounded sequenceguaranteed termination. Furthermore, deciding secueity r
of messages exchanged by honest principals, and althougljuires only a traversal of the causal graph, and causal graph



turn out to be of decent size for commonly analyzed secu- Table 1 (Our Dialect of) thep-spi Calculus
rity protocols. Our work improves on existing type-based

approaches in that we do not restrict the class of analyzable Name Process

protocols to the ones adhering to some specific syntactic a = I,J,ABE PQ := new(n).P

patterns; this is possible since our analysis is based on an | nmky | newT(k).P

abstraction of the program semantics. Finally, our apgroac | K | in(M).P

allows for a uniform treatment of different security proper | Kk | out(M).P

ties such as secrecy and two different variants of authentic ~ Term | beginy(AI,M).P

ity, namely non-injective agreement and agreerrient [28]. MN == a | endy(A1,M).P
We can summarize our technique as follows. We first | xyz | AeP

specify the protocol in a dialect of the spi-calculiis [4], | (M,N) | PIQ

a process calculus for modelling cryptographic protocols. I {Mh I !OP

We then construct the corresponding causal graph, which is

proven to be unique for every protocol. The causal graph Notation: u ranges over names and variables.

then allows for analyzing the intended security properties

Since causal graphs are of finite size, the analysis is atsure

to terminate. Finally, the safety of the causal graph ingplie informal “graphical” descriptions, which only depict sent

the safety of the protocol and, more precisely, the safetyand received messages without giving a precise semantics

of the possibly unbounded number of protocol execution on how messages are parsed and constructed.

traces. As usual for static analysis and due to the undecid-

ability of the original problem, failures in the verificatio 2.1 Syntax

may be caused by either a flaw in the protocol or a non-

sufficient preCiSion of the analySiS I‘uling out safe prOtSCO The forma| Syntax of our dialect Of thﬁ_sp| Calcu'us
Fina”y, the analySiS is amenable to full automation. We is depicted in TablEll. We presuppose a countable set of

have implemented a tool for automating the analysis, andnamespartitioned into the set of identitie&D, the set of

we have applied the tool to a number of common protocols messagesit, including the set of shared keys, and the

[18] the analyses terminated within a few seconds and prO'Set Of pub“c and private keﬁq:_ The Set[@, ranged over

vided safety proofs for the correct versions of the protecol by | andJ, is further partitioned into the two sets fisted

while fa|l|ng to validate the flawed versions. Remarkably, principa's I@T, ranged over bﬁ andB, andenemieg@Z,

attacks are often easily derivable by an inspection of the ranged over bf. The setX is composed of keyls; shared

causal graph. The only human effort required is to capture petweerl andJ. The setX* is partitioned into public and

the protocol in the dialect of the spi-calculus which is ofte  private keys, noted(* and X, respectively.’s key-pair

Straightforwardly derivable from the pl’OtOCOl deSCI‘iptiO iS Composed of a pub“c keMJr and a private ke}(r, re-

Outline of the paper. Sectior® introduces a dialect of the lated symbolically byk;. The setXz contains the keys of

spi-calculus used for modeling security protocols. Sectio malicious parties, i.e., the ones where sdfe IDx occurs

B introduces causal graphs. Sectidn 4 defines the abstracis subscript. For convenience, we syntactically bind keys t

interpretation framework and states the soundness resultstheir owners, thus assuming that keys are already diséibut

Section[d presents the safety results. Sedflon 6 discusseamong protocol participants. Notice that this simplifioati

further related work and Secti@h 7 concludes. is not restrictive since, if needed, processes can exchange
keys thus modelling session-key distribution. Finallynie
2 p-spi Calculus can be paired or encrypted with other terfhs.

Processegor protocolg, ranged over by’ andQ, be-
have as follows:new(n).P generates a fresh namdocal
to P while new™ (k) generates a fresh key-pair focom-
posed ofk" andk . We presuppose a unique unnamed
public channel, the network, from/to which all principals,
including intruders, read and send messages. Similarly to
Lysa our input primitive may atomically test part of the
read message, by employing pattern-matching. If the input
term matches the input pattern, then the variables ocagurrin
d_in the pattern are bound to the remaining sub-part of the

Thep-spi calculusi[1i 12] derives from the spi calculus [4]
and inherits many of the features lofsa[8], a dialect of
the spi calculus specifically tailored to the analysis of au-
thentication protocols. Thg-spi calculus differs from both
calculi in several respects: it associates principal idiest
to processes; it syntactically binds keys to their ownenrd; a
it provides new authentication-specific constructs. I thi
paper, we consider a novel dialectm§pi in which encryp-
tions and decryptions are performed on-the-fly when sen

ing f’ind re_CeiVing messages_,_res_pectively. This dialect in" 1ro the sake of readability, in the rest of the paper we onaitkets:
particular links protocol specifications more tightly teih for instance, the nested pdifa, b), k) is written asa, b, k.




term; otherwise the term is not read at all. This mecha- The begin assertion says thatonfirms the reception from
nism is also used to decrypt received messages on-the-flyB of messagenin a protocol session based on nonand,
and thus constitutes an important novelty compared to thesimilarly, the end assertion says tiatuthenticates re-
p-spi calculus; of course, in order to immediately match a ceivingmin a protocol session based nnThe goal of this
term encrypted with asymmetric cryptography, the correct protocol is to guarantee the secrecynofind the authenti-
decryption key has to be specified in the pattern. For giv- cation ofA with B.
ing the intuition of the semantics, which is formally defined
in SectiorlZP, the procesm(n).P’ tries to read a specific 2.2  Operational semantics
namen from the network and, if such a name can be read,
?oocalgglingr;gi%rlz \?vﬂerne;r?;:stiintTehrzirls l:sg,-ful, E;]'gl'_’ Following [9], the p-spi calculus comes with a trace-

P ) : yptedas chal- 5564 semantics. Each process primitive has an associated
lenge and received back in clear as response. As anothe

| dei P Thi d ON€L ction and we denote witAct the set of all possible ac-
example, consider ({X}kxi)' - thisprocessreads any €l yiqng The dynamics of the calculus is formalized by means

phertext of the forn{a},., decryptsit on the fly, and binds  of 5 transition relation betweeeonfigurations i.e., pairs
all the free occurrences afto a in processP. We remark (s,P), wheres € Act* is a trace andP is a closed process.
that the key specified in the input pattern is theeryption  |n the following, € denotes the empty trace. Each transi-
key since for binding to a the process has to perform a tion (s,P) — (s::t,P’) simulates one computation step in
decryption and thus to know the correct decryption key. For p and records the corresponding actioin the trace. We
easing the presentation, we only consider the instantiatio denote by—* a finite sequence of computation steps. In the
of variables with names: as in[14.127], we assume that mes-ollowing, G ranges over ground terms, namely terms con-
sages are typed so as to distinguish names from the othefaining no variable. Principals do not directly synchraniz
terms like pairs and ciphertexts. with each other. Instead, they may receive from the unique

The beginy(A,B,M) and endy(B,A,M) primitives ex-  channel an arbitrary message known to the environment,
press thecorrespondence assertiof&3] in a nonce hand-  which models the Dolev-Yao intruder]17]: the knowledge
shake betweeA andB. The indexi allows for specifying  of the environment associated withpaspi trace, charac-
which begin assertion should match a specific end assertionterized by the judgemerst G, is formalized by a set of
we assume that the same index is used for at most one begideduction rules stating that the environment knows all the
assertion and one end assertion. The former primitive de-messages sent on the network, every message which is not
clares that\ is starting a protocol session wiB) while the restricted in the trace, all public keys, and enemies’ keys.
latter declares tha is ending a protocol session in which The environment can also construct/destruct pairs and en-
he believes to have correctly authenticated is the nonce  crypt/decrypt ciphertexts if the appropriate key is known.
used in the protocol session alMds the authenticated mes- Formal definitions are postponed to Apperidix A.
sage. FinallyAr P represents princip@ executing process
P; P|Qis the parallel composition & andQ; !P indicates ~ Definition 1 (Traces) The set TP) = {s| 3P s.t. (¢,P)
an arbitrary number of parallel instancesRyfandOis the ~ —* (s,P)} is the set of all the traces generated by a finite
null process that does nothing. In the rest of the paper, wesequence of transitions from the configuratierP).
will often omit O from protocol specifications. . i ) ,

Secrecy and authenticity are defined in termg-spi traces

Example 1 Let us consider a simple protocol wheBe ~ @nd processes.
encrypts messag®, honcen and his own identifier with
A’s public-key andA acknowledges the reception of the first
message by sending back the nonce in clear on the networ
The specification irp-spi calculus is reported below: for

the sake of readability, we depict message exchanges inrpe \weak authenticity property refines the standaod-

Definition 2 (Secrecy) A trace s guarantees secrecy of G
if and only if s¥ G. A process P guarantees secrecy of G if
and only if &# G forallse T(P).

between the corresponding inputs and outputs. injective agreemerpiroperty of [28[3B] by making explicit
the nonce used in the handshake and the index binding the
Resp= Init = begin assertion with the corresponding end assertion.
new(m).new(n).
in({B,xz}).  <{Brmhi—  out({B,nm}y). Definition 3 (Weak Authenticity) A trace s guarantees
begin(A,B,2). weak authenticity if and only ifs s; ::end; (B,A,Gp) s
out(x) —— in(n). implies begi (A,B,Gz) € s1. A process P guarantees
end;;(B,A,m) weak authenticity if and only if s guarantees weak authen-

Prot 2 newT (ka).(B o !Init | A> IResp ticity for all s € T(P).



Intuitively, this guarantees that wheneBauthenticates\ 3 Causal Graphs
and the messag@; in an handshake with the non€g,
thenA engaged in a protocol session with noi@efor au-
thenticatingG, with B. Similarly to theagreemenproperty
of [28, [33], the notion of strong authenticity requires the

freshness of authentication requests.

A causal graph@ = (A(,E) is a finite directed graph
with nodes/’ and edge<. In the following, we will of-
ten write node$%’) to denote the set of nodes #i and
edge$?) to denote the set of edges# Nodes represent
abstractions of process events, while edges track theleausa
ity among process events. In the following, we discuss and
formalize each of these components.

Definition 4 (Strong Authenticity) A trace s guaran-
tees strong authenticity if and only if whenever=s
S encbl(B,A,Gz) s, we have that s= s =
begirtl(A, B,G2) i1 and § :: ] i s, guarantees strong
authenticity. A process P guarantees strong authenti€ity i
and only s guarantees strong authenticity for adt 3 (P).

3.1 Nodes and edges

Nodes also referred to as abstract processes and ranged
over byP andQ, arep-spi processes built upgrspi names

. . and the following new name categories:
2.3 Notational conventions

e message’ abstracting messages generated by the en-

. ) ) ) vironment, identities, public-keys and attackers’ keys;
For easing the presentation of the static analysis tech-

nigue, we use a number of notational conventions. The mes-
sage restrictiomew(n).P is a binder for the messagethe
key-pair restrictiomew™ (k ).P is a binder fork/™ andk; ",
namely the key-pair based &n and the input primitive is a
binder for the variables occurring in the input term with the
exception of the decryption keys. In all cases the scope of
the binders is the continuation process. Similarg(n) is

a binder for messageandnewr (k) is a binder for the key-

pair based ork; and their scope is the continuation trace.
The names and variables occurring free and bound in pro-
cesses and traces are defined as usual. As in companion
transition systems, e.g.[_[10], we implicitly identify pro-
cesses up to renaming of bound variables and names, i.e.,
up toa-equivalence. To simplify the definition of the static

e labelled names,), which are semantically equivalent

to names but allow for tracking variable instantiation.
As an example, the instantiation i of the variable

x by the namen yields P[n,,/x]. In fact, labelling is
local to sequential processes and does not propagate

through concurrent threads.

indexed namesa©'t(¢)-P) where out(G).P is the
node outputting andi the positional index o4 in G:

they only occur within the environment’s knowledge
and give a precise characterization of which names
have been used by the environment to construct a cer-
tain term and, notably, the place (i.e., node and posi-
tion) in which they are sent on the network.

analysis and followind18], we discipline tleerenaming of
bound names. We stipulate that for each messathere
is acanonical representativenoted|| n ||, and we demand
that two messages apeconvertible only when they have

For distinguishing-spi terms from the ones used in causal
graphs, we write the latter byanserif fonts. In the fol-
lowing, we refer to the set of possibly labelled and indexed
names as abstract names. Furthermore, wé tahge over

the same canonical representative. Similar assumption anground termsM,N over terms possibly containing vari-

notation applies to key-pairs and variables. We wiji¢||
to denote the process obtained by replacing each name an
variable inP by the corresponding canonical representative.

For convenience, we also require that keys, both symmet-

ric and asymmetric ones, having the same canonical repre
sentative depend on the same identifiers, i.e., they have th
same subscripts. We assume that thelgtof names gen-
erated by the environment (cf. ruleN& in Table[T) has a
canonical representative which is different from the orfes o

ablesy over abstract names pver abstract names and vari-
gbles and; over ground term sets.

Edges connect two nodes, so representing the causality
among such nodes. We discern two kinds of causality,

@amelyintra—threadandinter—thread causality

Intra-thread causality links nodes within the same thread
and is represented by edges of the fétm: Q, linking
P to the proces§ obtained by reducing.

the names bound in the process. Finally, we assume that the

bound names of a process are renamed apart and that theinter-thread causality is due to the synchronization
do not clash with the free names; much in the same way among the proced? inputting G and reducing int®
variables are assumed to be all distinct. For convenience and the nodesut(G;).P; outputting the terms used by
and without loss of generality, we shall reason on protocol the environment to constru@. We call such terms
specifications in which every bound name and variable has integer components since they are not forged by the
a different canonical representative. environment but simply forwarded. They are crucial



for the soundness of our abstraction, which identifies
unbounded protocol sessions into a finite model: the

soundness of the security properties proved on top of

this abstraction requires to determine when different

protocol sessions may be interleaved. This may hap-

pen when the environment exploits terms output in dif-

to denote the term obtained frolh by label erasure, index
erasure, and both label and index erasure, respectively.
Function outmsgout(G).P) yields the term obtained
from G by erasing the labels it and indexing each name
a in G with the pair composed of processt(G).P and the
positional index ofa in G. This function is naturally ex-

ferent protocol sessions to construct a term that is senttended to node sets, thus characterizing the set of output

to a principal engaging in another protocol session:

terms: more formallyputmsgA() = {outmsgout(G).P) |

in fact, messages within the same integer componentout(G).P € A’}. Notice that labels are local and do not
prove to abstract messages belonging to the same propropagate into the environment’s knowledge.

tocol session, while messages in different integer com-

The knowledge of the abstract environmentis formalized

ponents may abstract messages belonging to differenby the judgemeng - G (cf. Tabld® of AppendikB), mean-
protocol sessions. This kind of causality is representeding that the environment can constr@&given the knowl-

by (i) input edgesf the formin(M).P—c]— Q, con-

edge of the terms igy. The environment knows every term

necting the input process with the process obtained byin G and the special nam#, it can construct and destruct

performing the input via the synchronization p;

and(ii) output edgesf the formout(G;i) G—i/ - Q,
one for each integer componet of the input term.
These edges are labelled by the integer component an

connectthe process outputting such a componentto the

process obtained by performing the input via the syn-
chronization poin. A synchronization point links

an input edge to the output edges required to construct

the input term.

Example 2 Let € be a causal graph containing the nodes
out(n).Qq, out({m,n}k;).Qg andin({x,{y,z}kx}kg).Qg,.
Let us define the following indexes; = (out(n).Q1,1),

i2 = out({m,n}k;).Qg,l), i3 = out({m,n}k;).Qz,Z), and
ia = out({m,n}k;\).Qz,3). The environment may com-
bine the two output terms intn't, {m'2, ni3}k;\i4}g, which
matches the input pattefx, {y’z}kf\}kg with substitution
0 = [ny /X, M) /Y, nz)/z]: the substitutions is used to
instantiate the free variables in the procé&gsfollowing
the input pattern. Thug’ contains the following nodes and
edges, wheré = {ny't,{m(,)'2, n(z>'3}k;\i4}g:

in({x{rzh 1) @0 |

out({m,n}k;).Qg

Notice that the synchronization point tracks both the posi-
tional indexes of the names occurring in the input term and
the variable assignment induced by the input pattern.

3.2 Causal graphs as abstraction of p-spi
processes

Before formalizing the causal graph generation, we intro-
duce some useful notations. We writ® |, [M] and [M]

pairs and encrypt and decrypt terms provided that it knows
the encryption and decryption keys, respectively. Forecedu
ing the number of terms known to the environment, we pre-

a/ent the environment from deriving identities, public keys

and enemies’ keys, which abstract the sgvepi terms as

&. Functionbind : (M,G) — (G',0), reported in Tabl&l8
of AppendiX{B, defines the pattern-matching among terms.
This function takes as input a terlsh and a ground terng
and, if the two terms match, yields the teGhobtained by
labellingG according to the variables i and the substitu-
tion o expressing the variable instantiation induced by the
pattern-matching. If pattern-matching faitsnd returnst.

For examplebind(x,n%) = (nf‘x), [n(x)/x]). Functionthread
defined below, yields the set of threadsHn abstracting
away from identifiers and replications.

thread(P1) Uthread(P2) if P =P4|P;
thread P) = { threadQ) if Pe{ArQ,!Q}
{P} otherwise

Functionint(A/, G) yields the set of integer terms @& that

is the largest subterms Gfthat have not been generated by
the environment, each of them paired with the outputting
process. In fact, integer terms are either names or cipher-
texts whose encryption key is unknown to the environment.

{(vPd Py if G=v(Pd)
0 ifG=4&
int(A(, G1) Uint(A[, Go) if G=(G1,G2)
int(ALG) 24 {(G.P)} it G={G'}, 00 A
outmsg\() ¥ v(PJ)
iNt(A, G UInt(ALV)  if G={G'}y A
outmsdA)) v/

The next definition characterizes the causal graph associ-
ated with an abstract process. Here and throughout this pa-
per, we writeP =4 Q to say that® andQ area-equivalent

and|| P || to denote the process obtained by replacing each
name and variable i? with the corresponding canonical
representative.



Definition 5 (Causal Graph) The causal graph(/, ) we write length(P) to denote the number of primitives in
associated with P, written a@\(, £) = graph(P), is given P andlength ) to denote the maximal length of the pro-
by the least\(, E satisfying the following conditions: cesses im(, namely the number such thatength Q) = n,
!/ /
(i) threadP) C A for someQ € A/, and, for evenyQ’ € A, length Q") < n.

(i) p.Pea A QethreadP) A p#in(-) Proposition 1 (Uniqueness) For every process P, there ex-
=>QeN ApP—->QeE ists a unique grap{P) up to isomorphism.
(i) in(M).P € AL A outmsg\() = G A bind(M,G) = (G',0) Proof. Consider the functio®p(A(, ) yielding the least
A P’ e threadPo) A (Gy,out(Gr).P1) € int(A,G') A, E' satisfying the three conditions of Definitifh 5. For
=3IQeNsLQ=a P’ Ain(M).P —QeZ proving the thesis, we prove that, for evelgand, there
A out(Gy).Py G—l —Qe€€E exists a unique least fixpoint @&bp(A’, E): this trivially
(iv) V{new(n).P,new(m).Q} C A, implies the thesis. Notice t_halp i§ monotonous over node
[ new(n).P || = [ new(m).Q|| & n=m and edge sets ordered by inclusion.

It is easy to see that iPp(A,E) = A, Z/, then

length ) = length(A'). The set of variables occurring
Functiongraph: P — (A(, ) is in fact a closure operator in the processes al(’ is contained into the_set_of vari-
on causal graphs ordered by inclusion. In particuiathe ~ ables occurring in the processes@f. The situation for
threads inP are part of the set\ of nodess(ii) if p.P is a names is different, since some varlable_ might _be instanti-
node in the causal graph, witht in(-), then the processes ated with& _and, nota_b_ly, new names might be introduced
in thread P), which are connected to.P by direct edges, ~ PY a-renaming (conditioiii ). However, because of con-
belong to the set of nodes; afidl ) if in(M).P is a node dition (iv), the number ofi-renamed copies of each name is
and the environment knows a te@matchingM with sub- bound byN*, whereN andX are the number of restrictions
stitution o, then the set of nodes contains the processes in@nd variables im(, respectively. The set of processes of
thread Pa), up toa-equivalence, and the set of edges con- finite length and composed of a finite set of names and vari-
tains the input edges connectingM).P to the processes ablesisfinite, as weIIi as the set pf edges. By Knaster-Tarski
in thread Po) and the output edges linking the output pro- theorem®p has a unique least fixpoint. O
cesses used by the environment to constfutd the pro-
cesses ithread Po). Intuitively, the input of a term is pre-
ceded by the output @il messages required by the environ-
ment to construct such a term. This point will be clarified

The following corollary says that the size of the graph grows
exponentially with the protocalpecificationwhich is how-
ever fixed in advance, regardless of the number of consid-
- : : ered sessions and the protocol run-time behavior. We re-
later on, when formalizing the causality relation expresse : o .
mark that this result refers to the worst case: in practice,

by causal graphs. Qondnm(w) rule_s thea-renaming of the number of nodes for the protocols we have considered
bound names possibly introduced in the causal graph by .

e X . . ~’s0 far does not exceed 100 nodes and the analysis always
condition(iii ). Thisa-renaming allows the abstract domain

to distinguish the names generated in different threads, th terminated within a few seconds.

making the analysis more precise. Unfortunately, this may Corollary 1 (Size of causal graphs)Let% be a causal net

introduce an infinite number of names in the knowledge of and P a process such that = graph(P). Let N and X be

the environmentand possibly an infinite number of nodes in the number of restrictions and variables in P, respectively

the causal graph. We_tackle this problgm by requiring that Then|node¢%)| = O(length(P) NXZ).

whenever two restriction nodes occur in the causal graph

and the restricted names differ becausa-@énaming, then ~ Example 3 The causal graph associated with protdewit

at least one variable is instantiated with names belongingof Example[l is depicted in Tabl@ 2. The rounded boxes

to different equivalence classes in the two continuati@n pr  represent synchronization points while the other ones ab-

cesses. The idea is to apmlyrenaming of bound names stract processes. The analysis of the causal graph gives us

in the processes following an input for every differentinpu some interesting information about the run-time behavior

term, where the difference among input terms is deemed upof protocol participants. Even if the protocol is simple, it

to name equivalence classes. This enhances the precisioturns out to be interesting since the attackers know both the

of the analysis, yet guaranteeing the finiteness of the tausapublic-key used for encrypting the first message and, after

graph. the second message, the nonce used in the protocol session.
We say that two graphs are isomorphic when they are This increases the number of actions at their disposal and,

obtained bya-renaming of bound names. As stated by consequently, the number of nodes and edges in the causal

the following proposition, every abstract process admits agraph. In general, fixed the number of message exchanges,

unigue causal graph up to isomorphism. In the following, the causal graph for protocols preserving the secrecy of



Table 2 Causal graplgraph(Prot)

new(m).
new(n).

begink, (A,B, &) new™ (ka). out({B,n,m
om(é"(x)) {8,608 e (BbInit | AvIResp) ({Bomomi 0.

in(n).

end%(BﬁA,m)
Y
B new(n).
in({ ﬁxﬁz}k;)‘ out({B,n,m},+).
out(&y)) begini(A,B,2). in(n) A
out(x) o end!(B,A,m)
(B0 )i ]

out({B,n,m}kX).

1 ——
beging) (AB:ne)> {BLng) mE ), g in(n)
out(&y)) A end!(B,A,m)
, ¥
. 1 . .
begln%(x) (A,B,&)). < n(% begm%(x)(A,B.m(Z)). lln(n)A
out(n()) ) out(n(y)) end;(B,A,m)
¥
ne) |
() I
.1 —1
A,B, .
beginy (A B.niz))- | end:(B,A,m)
out(ny)) i

Legend: for everyj € [1,4],ij= (out({B,n,m}kX).in(n).endﬁ(B,A,m),j); is=(out(ny)),1)

messages and relying on digital signature or symmetric-sages in which the messageeplaces the nonce, but the re-

key cryptography is typically simpler than the one of pro- sulting processes do not increase the environment’s knowl-

tocols based on public-key cryptography and possibly ex- edge as they eventually outp£it which is already known

posing some messages to the attackersALéte the set of  to the environment.

nodes in the causal graph: we can see tlémsga) # m'

for any indexi and this intuitively means that the authen- 3.3 Paths

ticated message is kept secret, as expected. Furthermore,

the only process asserting an end everﬁnid;ﬁ(B,A,m). Edges describe the causality among process events and

This is preceded by the output of,) (inter-thread causal- ~ each edge may be naturally associated with an action: for

ity), which is in turn preceded (intra-thread causality) by instance, if a causal graph contains the ecigé¢n).P — P,

node begin%m (A,B,m(;)).out(n(,)). Note that the out- then the proces® is causally preceded by the reduction

put of n,) may be also preceded (intra-thread causality) Of the processut(n).P with actionout(n). In general,

by beginﬁ (A,B,&)-out(ng,) and begin% (A,B,n(z))- we express the cgusallty dependency among process events
) ol throughpaths which are sequences abstract actionex-

out(n(,). These events are enabled by the envwonmentIoressing process events. Abstract actions expesyi ones

: i is i
forging the messageps’,n's, &'}s and {&,n,n'}s, 1€~ ity the new actionineom(Gy, G2), which is used for track-
spectively (cf. the corresponding synchronization pgints 4 innuts involved in inter-thread causalit§; is the inte-
and sen_dlng them to the responder. This may happen only |fger component anG, is the input pattern, in which vari-
the environment knows and these processes are thus pre- 5 a5 are replaced with the actual received messages.
ceded (inter-thread causality) by the outputngf). This We now argue on the number of paths associated with
cycle in the graph tells us that the environment can ac-

. : . a node. We have mentioned that the input of a term is
tively interact with the responder only after Fh_e_ responder causally preceded by the outputsaif the integer compo-
has received the message generated by the initiator and “

MR ) _ 3Sents needed by the environment to construct such a term.
serted’begin,  (A,B,m(;), according to the intended pro- 1, an input is preceded by a set of paths. However, the
tocol run. Intuitively, this means that the causal graphrgua ggme process may be generated by the input of different
antees authenticity. Finally, the portion of the graph ie th teyms, sayG, and G,. Then such a process is preceded
upper-left corner shows that the environment can forge mes+yy eijther all the outputs needed by the environment to con-



structG1 or all the outputs needed to constrdgt This tion is that different occurrences in a path of the same name
is the reason why the paths associated with a node are acs might actually abstract differeptspi names, one for each
tually a set of path sets, meaning that the node is causallyabstracted protocol session. The problem is that the envi-
preceded byall the paths inone of its path sets. Notice ronment may exploit messages generated in different pro-
that, as result of our abstraction which essentially caégp  tocol sessions so as to forge a message which is then used
an unbounded number of instances of each principal intoto interact with another session: in fact, this kind of inter
a strand of nodes related by intra-thread causality, causaleaving may break the security goals of the protocol. Ac-
graphs may contain cycles. For this reason, when evalu-cording to the definition of causal graphs, the labels of the
ating the paths preceding a node, we need to avoid loopsoutput edges express the integer components of the input
this is achieved by traversing input edges only once, thusterm. This information can be used for soundly charac-
abstracting away from cycles in the causal graph which, in terizing which names abstract over the same protocol ses-
fact, do not alter the causality among nodes. In the follow- sion and, in particular, which names abstract the spme
ing, we write{sy,...,s,} :: T to denote{s; :: T,...,s, 1 T} spi name. Intuitively, it is sufficient to check for every pai
andouteddG, Q, ¥) to denote the set of output edgesdh of output and input actions related by inter-thread catysali
incoming inQ via the synchronization poifiG ). Function ~ which messages belong to the integer componentand which
paths: ¥,P,E — .7, defined below, yields the set’ of do not: the former abstract over the same protocol session
paths sets that are associated with the neded do not ~ While the latter may belong to different protocol sessions.
traverse the edges ifi. We often writepathg%’,P) to de- ~ Here and throughout this paper, we writesggM) to de-
notepathg%, P, 0). note the set of messageshh including those labelled. We
o also writert (G) to denote the name occurring in thth po-
Definition 6 (Paths) Let ¢ be a causal graph and sijtion of G andri(s) to denote the-th action ins. Finally,
Q € node$?%). The paths precedin® in ¢ and not |s| denotes the number of actionssin

traversing the edges irE, written path$#’,Q,E), are Table[3 introduces the deduction system for judgement
defined as the least’ such that st (v,i) = (v, ]), meaning that namesandv, occurring
(@) Q has no incoming edges .7 = {0} in thei-th andj-th action ofs respectively, abstract over the

samep-spi name. Intuitively, the concretization of a path
yields the set op-spi traces obtained by instantiating the
(c) in(M).P —. Qe edge¢?)\ T A bind(M,|G)) = (G,0) abstract names occurring_therei_ns I (v,i) = (v, ]), then
AU {out(G).P G_;H Q) = outeddG,Q, %) the occurrences gtandy in thgl—th andj-th gctlon ofs,
e B respectively, are instantiated with the sapagpi name (see
A S € pathg%,in(M).P, EU{in(M).P -Q}) Section[ for more detail). Rule YAsays that the occur-
. rences of the same message within a single action abstract
A Si € pathg@’,out(Gi).Pi, £U {in(M).P— 6] — Q}) the same-spi name. RuleNTRA says that the occurrences
= Suin(Mo) U U Siout(Gj) i incom(G{,Mo) € ¥ of a message within actions related by intra-thread causal-
e ity abstract the samg-spi name, since such actions belong
If the nodeQ is preceded by intra-thread causality by t0 the same thread and thus abstract over the same proto-
p.P (condition (a)), then the path sets associated with col session. RuleNTER-BIND says that messages received
Q are the ones associated withP, each of them ex-  Within an integer component, that is messages not manip-
tended with the actiop. If Q is obtained by the reduc- ulated by the attacker, abstract over the same protocol ses-
tion of processin(M).P receivingG and the input edge sion. Rule NTER-MATCH says that the pattern-matching of
in(l\/l).P—a — Q is not in E, then the paths associated Nnamen allows for recovering a protocol session described
with Q are the ones associated witiiM).P, each of them  in a previous part of the path and, more precisely, it allows
extended with the actioim(Ma), plus the ones associated to inherit the equality constraints holding at the timentsf
with the processes outputting the terms used to constructestriction. Finally, RANS, Sym, and RREFIX make the

G (edgesout(Gi).P, c_; ~ Q), extended without(G;) - ;elggt(i)\?eltransmve, symmetric, and closed by prefixes, re-
incom(G{,Ma). Notice that the edga(M).P—{c] — Q is P y-
inspected only once, thus avoiding loops due to cycles in gxample 4 Let us consider the following path, which rep-

(b) p.P — Q € edges?’) A S € pathg%,p.P,E) = S:ipe.s

the graph. resents the intended protocol behavior:
3.4 Names and sessions s £ new'(ka):newm)::newn) ::out({B,n,m}.)
inCOm({Bll,n(x)'z,m(z)'3}kxi4a{an(x)vm(z)}k;) i
Since a causal graph abstracts an unbounded number of begirﬁ()(A, B,m(,)) ::out(ny)) ::

protocol sessions, an interesting issue related to ouraatyst incom(n's,n) : end, (B, A, m)



Table 3 Equality among abstract terms

AX
st =i v € msgst)

stk (v,i) = (v,i)

INTRA
s| =i t # ingom(G, G') sk (v,i)=(v,])
stk (v,i+1) =(v,i)

INTER-BIND _
viP) emsggGy) (G =V Js| =i
s::0Ut(Gy) i1 incom(Ga,G) = (v,i+2) = (V,i+1)

INTER-MATCH
n € msgs$G) s=s1::newn) sy Is| =i
lsal=J  sF(i+2)=(j+1) sk (v,))=(])

s out(Gy) it incom(G2,G) F (v,i+2) = (v, )

TRANS
sk (v,i)=(V,i") sk (V,i")y=(",i")
sk (v,i) = (V",i")
Sym PREFIX
sk (v,i)=(V,i") sk (v,i)= (Vi)
sk (V,i") = (v,i) stk (v,i)=(V,i")

e for everys; = ¢’ 1 out(Gy) :: incom(G2,G’) € S there
existssy € Sout such that eithes, = s’ or s, = ¢ ::
out(G1) i1 incom(G2, G') i:s” andsi - (v, j) = (V, j') =
s2 b (v,i) = (V,}), with |s;| = jand|sy| = .

For example graph(Prot) is cycle-invariant in that input
nodes do not belong to cycles, the only output node within
cycles isout(n(,), and cycles in the causal graph do not
affect the equality constraints on,).

4 Abstract Interpretation

In this section we illustrate the relation between causal
graphs ang-spi semantics. This is formalized by a con-
cretization function, defined on abstract terms, pathd) pat
sets and causal graphs.

4.1 Concretization of causal graphs

Terms The relation betweep-spi terms and abstract terms
is formally defined in TablEl4 by the concretization function
Virm - M — {M3,...,Mp}. Abstractidentities are instantiated
with the corresponding-spi identity. The concretization of

an abstract message yields the set of messages having the
same canonical representative. Similar reasoning applies
variables, public and private keys. The special nafreab-

The messages occurring in the begin and end assertions alitracts over identities, public keys, messages possilily ge
stract over the same protocol session. In particular, we carerated by the environment and attackers’ keys. Finally, the
proves i (n,9) = (n(,),6) via INTRA and INTER-BIND. concretization of the remaining terms is given by instantia
Similarly, we can proves - (m,9) = (m,2) via INTRA ing the names and the variables occurring therein.

and INTER-MATCH, ands - (m(,),6) = (m,2) via INTRA,
INTER-BIND and RReFix. Finally, by SrMmMm and TRANS
we gets - (m,9) = (m(,),6).

Paths The concretization function ypan : s —
{(s1,01),...,(5n,0n)} takes as input a path and yields
a set of pairs composed ofpaspi traces and a substitution

In SectionC3B, we have defined the paths associated to &y from abstract names {@-spi names. More preciselfi,)
node in a causal graph and, for avoiding loops due to cy-each trace is obtained by instantiating the names occurring
cles in the graph, we have requested that input edges are inin each action of the path so as to satisfy the equality
spected only once. This approximation does not affect theconstraints associated to the path giigl the substitution
causality among nodes but it might affect the equality con- tracks the instantiation of the abstract messages ocgurrin
straints. For this reason, we only consider a class of causaln the actions of the last thread, namely the largest suffix
graphs, calleatycle-invariantgraphs, for which cycles do  of s related by intra-thread causality. We recall that a path
not affect the equality constraints of the involved paths. may “cross” different threads and, as a matter of fact,
st (v,k) = (V/,K'), with k being the length of, only if v is

Definition 7 (Cycle-invariance) We say  that 5 apstract name occurring in the last thread.

% is cycle-invariant if and only if for every
{in(M).P—{c] — Q,out(G1).P’ 2(c) — Q} C edge$?),
Sout € pathg%’,out(G1).P’), Sin € pathg%’,in(M).P) there
exists$ € pathg%, Q) s. t. the following conditions hold:

Example 5 One of the possible concretizations of the path
s described in Exampld 4 is reported below:

new" (ka) :: new(m) :: new(n) :: out({B,n, m}kK) ::

in({B,n,m}k;) = beginh(A,B,m) :: out(n) ::
in(n) :: endk(B, A, m)

e for everys; =s' :1in(G’) € S there exists; € Sip such
that eithers; = s’ or s, = ' ::in(G') = s” € S and
stk (v,)) = (V) = szt (v,i) = (V, |), with [s1| = |

and|sp| = . o:n—n,ni—m



Table 4 Concretization functions

{1} if M=
{nflIn]] =[m]} if M=m
{yllLyll =lxI} if M=x
w e ) KT =1k 1) it M=k

Ve )= TR =11k ) M=k
IDUKTUMg U Kg ifM=¢& o
Yirm (@) if Me {a(x),a',a'(X)}
{Mgo | Yu € dom(0),0(u) € Yym(u)} otherwise

{(so)|ls|=lsl=nA (i) Vie[ln,3ostiE)oi="1(s) A (sk(v,j)=(,])=0j(v)=0j())A
(i) (st (v,n)=(",k) A ox(V)=a) & o(v)=a}
Yoset(S) £ {({s1,---,5n}.0) [ S={s1,....5n} A Vi€[LN],(S,0i) € Yparn(si) A O= W 0j #1}

i=1n
Vnet(€) {(sP)| (i) Vie[Ln],3Qi € nodes?),Si € pathd%,Qi),(S,0i) € Ypset(Si) S:t. S = Sj 11 (s), with j <i A

(i) VvQethreadP), Jie[1,n,0st.Q=Qi0 A CWa; #T }

Ypatn (S)

Notation: T (s) yields thei-th action ins
Syields the trace obtained frosby replacing each occurrenceiogom(G1, G2) with in(Gy)

o1Wo, =01U0s if 01 #1 A 02 #] Auedomog)Nndom(oy) = a1(u) = G2(u)

o1Wor =7 otherwise
Sinces - (n(y),6) = (n,9), n(,y andn are instantiated with thatQ = Q;o, whereo is compatible with the name in-
the same nama. Similarly, sinces - (m(,),6) = (m,9), stantiationo; given by the concretization of the path set
m and m,) are instantiated with the same name Notice associated to;. in the last thread.
also that the path guarantees authenticity and the trace gua o ) o
antees strong authenticity. Intuitively, condition(i) requires that the actions in the trace

respect the causality paths induced by the causal graph and
o o condition(ii) requires that every process has an abstraction
Path setsThe concretization of a path set is given by the in the causal graph and the trace respects the causality path
concretization of the paths occurring therein and by the 5550ciated to such a node.
union of the corresponding instantiations. It is worth to  Finally, we state the soundness results of the abstract in-
mention that the instantiation of the messages in last threa terpretation. The following theorem says that the causal
has to be the samelf) o; #1): the uniono1 W0z succeeds  graph generated from a process is an abstraction of the con-

i=1,n " N
only when the abstract names substituted by loatanda figuration composed of such a process and the empty trace.

are bound to the sanpespi name. Theorem 1 (Soundness)if graph(P) = €, then (g,P) €

Configurations The concretization functiory,e : € — Yned(%).

{(s1,P1), ...,(sn,Pn)} takes as input a causal graph and The following theorem says that the set of configurations
yields a set ofp-spi configurations satisfying two con- abstracted by a causal graph is closed under process reduc-
straints, the former concerning traces and the latter donce tion, i.e., causal graphs are a sound abstraction ob-tbi

ing processes. In the following, we I8&range oveip-spi semantics.

trace sets. ] . ]
Theorem 2 (Preservation) Let ¢ be cycle-invariant. If

/ /
i for every actiont; in the trace there exists a nodg (8.P) — (s, P) and(s,P) € ynet(?'), then(s',P’) & yne((?).

in the causal graph, a path sgtassociated t&; and
a trace set§ such thatS is an instantiation ofs; 5 Safety Results
((S,01) € Ypset(:Si)), where§ is a trace set associated

to a preceding action in the trace, extended with In this section we state the safety results of our static
analysis technique. As stated by the following definition,
i for every threadQ of the process in the-spi config- a causal graph guarantees the secrecy of a narfehe

uration, there exists a nodg; in the causal graph, a abstract environmentcannotdeduce any term which is equal
path setSj, a trace se§ and an instantiatiow; such tov up to index erasure.



Definition 8 (Abstract secrecy) A causal grapts” guar- Theorem 4 (Authenticity) Let P be a process and’ =
antees the secrecy off and only if outmsgnodes$®’)) - v/ graph(P) be cycle-invariant. 1f&” guarantees authenticity,
implies[v] # [V']. then P guarantees weak authenticity.#¢lfguarantees au-

As formalized below, a path guarantees authenticity ifgver thenticity and P is nonce linear, then P guarantees strong

end assertion is preceded by a corresponding begin asseuthenticity.
tion and the terms occurring therein are related by equality
constraints. This guarantees that authenticity carries ov

the action sequences abstracted by the path. A causal grap

.« . . I

guarantees authient|C|ty if for eveeydg, (A’ B.G2).P a.nd tication requests, namely the condition distinguishinghve
S € pathg %, endg, (A, B, G2).P), there exists a path iy from strong authenticity, may be directly verified on the
containing a suitable begin assertion. In the following, we syntax ofp-spi processes. For example, simraph(Prot)
write G = ; G', read asG is equivalent toG’ in s, if the g arantees authenticity afdot is nonce-linear, theRrot
two terms are equal co/mpon/ent-mse, i.e., for e\le/s}ach guarantees strong authenticity. Notice tRaot describes
thatn“(G) =V andn“(_G )=V, we have thav andv’ are 3 ynpounded number of instancesiodcting as claimant
either the same |dfer?t|ty or possibly labelled messages sati i protocol sessions witB and an unbounded number of
fying st (v,i) = (', j). This guarantees that the two terms  jsrances oB acting as verifier in protocol sessions with

This means that causal graphs, which express the causality
mong process events, are a sound (and decidable) model
r proving weak authenticity while the freshness of authen

abstract the samespi term. A. We can easily extend the protocol specification with the
Definition 9 (Abstract Authenticity) A paths guarantees  parallel composition oA andB running protocol sessions
authenticity if and only if for every j such that (s) = with an arbitrary malicious parti. Even in this scenario,
endcl(AB,Gz), there existG},Gh, |’ < j s.t. T[J’(S) - the protocol turns out to be safe.

begir},, (B,A,G}), G1 =~ j s G} andGz = | j» Gb.

1 ’ : . .
A causal graph % guarantees authenticity 6 Related Work
iff for every endg (A,B,Gz).P € node$%) and

S e pathg{%, end'Gl(A,B,Gz).P), there existss € $ Causality-based modelling of concurrency is a widely
S.t.s: enctl(A,B,Gz) guarantees authenticity. studied research topic and several important results have
For example, the pathl in Example[® guarantees au- been pr_oposed. Event structure_s [32] are a general and
thenticity as the end assertion is preceded by a cor-€xpressive framework for modelllng the causallty_among
responding begin assertion and the messages occurrin&ve”ts in concurrent and distributed systems. Th|_s model
therein are equivalent. As a matter of fact, evenge _captures the dependency among_events and the interleav-
pathggraph(Prot),end}(B, A, m)) contains a path guaran- N9 of concurrent events by a partial orde_r. A.tncky prob-
teeing authenticity. Thusraph(Prot) guarantees authentic- €M when abstracting away from the multiplicity of proto-
ity. The following theorems state that causal graphs censti €0l S€ssions is that an event may causally precede itself,
tute a sound model for the static verification of secrecy and tNus 100sing the antisymmetry property and, consequently,
authenticity. In particular, the next theorem says thatéf t (e partial order. This is easily seen by thinking of a pro-

causal graph associated wRrguarantees the secrecysgf €SS inpu_tting amessage and t_hen sending out another mes-
thenP guarantees the secrecy of any concretization of sage, which is used by the environment to construct a mes-
sage sent to a replication of the former process and so on.

Theorem 3 (Secrecy)Let P be a process an&’ = In this scenario, since we abstract away from the multi-
graph(P) a cycle-invariant causal graph. ¥’ guaran-  pjicity of protocol sessions, the input is causally prectde
tees the secrecy ofthen P guarantees the secrecy of any py jiself. The safety of this kind of abstraction requires
V € Yirm (V). to determine which events abstract over the same protocol

For instance, the causal graph of Examgle 3 guaranteesession and which ones may instead abstract over differ-
the secrecy ofn and, consequently, the protocol of Exam- ent protocol sessions. Thus a more specific structure was
plel guarantees the secrecy of the authenticated messageeeded, containing some additional information about mes-
in every protocol session. In the following we say that a sage integrity, and relying on paths representing computa-
process isonce lineariff (i) every end assertion has the tional flows instead of a partial order among events. Crazzo-
form end,,(1,J,M) and is preceded byew(n) and (ii) if lara and Winskel have applied Petri néts [30], a well-known
end! (1,J,M) occurs inside the scope of a replication then causality-based model for distributed systems, to theyanal
new(n) occurs inside the scope of the same replication. In sis of cryptographic protocols1L4], although this work sloe
fact, this syntactic condition suffices to prove thatautieen ~ not abstract away from the multiplicity of sessions.

ity on causal graphs implies strong authenticity ongkepi Type systems proved successful in analyzing different
processes abstracted by such causal graphs. security properties of cryptographic protocols, e.dl. A1,



b Ral}

for secrecy and [23,12] for authenticity. As mentioned in niques is thus interesting but it is left as future work. An-
the introduction, they exploit syntactic patterns of sé@gur  other interesting work is an abstract interpretation for mo
protocols while providing guaranteed compositionalityt b bile systems and, as an instance, for spi-calculus proposed
they constrain the class of analyzable protocols and are typ by Feret [19]. The analysis deals with the origin of mes-
ically specific to individual security properties. On theeon sages but does not address the freshness of authentication
hand, the type system in_[R23] is very general and appliesrequests.

to several settings including authorization policies [2a Strand space5[2[/, 26] are an effective framework for the
key-compromise[24], but type definitions quickly get cum- analysis of cryptographic protocols. Proofs of safety typ-
bersome and no type-inference algorithm is currently avail ically rely on the causality among protocol events and, in
able. The type system in_[12] is compositional, modular, a recent papel [16], authors investigate how to automati-
and allows for automatic type inference, but this generalit cally detect those specific executions, called shapes, @mon
is paid by restricting the form of protocols to some specific the infinitely many possible, that should be considered for

tagged patterns. analysis. There are interesting similarities between etap
As a and causal graphs and, although strand spaces do not enjoy
simple ex- . guaranteed termm_atlon, we plan _to exploit the underlymg
ample, to Table 5 Variant of NSL ideas to further refine the expressiveness of our analysis.
the best of A B Proverif [5[3] constitutes a powerful tool that takes as in-
our knowl- <—{anA7m}k/§7 put spi-like protocol descriptions and, by Horn clause reso
edge, the — Ay lution, verifies a variety of different security propertgsh
protocol begin, (B,Am) as secrecy, perfect secrecy and authenticity. The anadysis
in  Table (he}.s general and automated but guarantees termination only for
can be ) ‘e protocols where every ciphertext is tagged differerifly [6]
analyzed endy, (A,B,m)
by neither 7 Conclusion and Future Work

the type system from[23] nor the one from[12]. This

protocol is a variation of the Needham-Schroeder-Lowe  \ye have proposed a static analysis technique for ana-
public-key authentication protocol, in whicB sends a |y;ing security protocols based on abstract interpretaio
messagem to A in the first message exchange. From ihe causality among process events. We have specifically

A's point of view, the authentication of this message iS spown that secrecy and authenticity can be soundly charac-
guaranteed by the handshake with nonge(second and  terized in terms of causality, but we remark that the analysi

third message). The problem is tabccurs within neither g 1ot tajlored to these security properties but may as well
the second nor the third message, thus resulting free in th,e applicable to verify properties formulated in terms of
corresponding type definitions and not enabling the end c5,sality among the actions of execution traces. The anal-
assertion based on nonog. Furthermore, as opposed 10 ygjs enjoys guaranteed termination since the size of causal
existing type-systems that in case of failure do not yield ranhs s finite, the generation of paths terminates since in
any information on possible attacks, a simple inspection of put edges are inspected only once, thus avoiding loops due
the causal graph gives useful insights on the actual prbtoco, cycles in the graph, and the analysis is linear on the num-
run-time behaviour and, in fact, attack derivation is often pa, o paths. We have implemented a tool for automating
immediate. the analysis, and we have applied the tool to some com-
The control-flow analysis for message authenticity pro- mon protocols in the literaturé_[L8]. The analyses termi-
posed by Bodeét al. in [8] and recently extended in[22] nated within a few seconds and provided safety proofs for
to detect replay attacks is closely related to our approachthe correct versions of the protocols while failing to vali-
Although the underlying static analysis techniques are dif date the flawed ones. Remarkably, attacks are often easily
ferent, both of the approaches rely on an abstraction of thederivable by an inspection of the path sets. The only human
protocol semantics and enjoy guaranteed termination. How-effort required is to capture the protocol in the dialecthef t
ever, due to the undecidability of secrecy and authenticity spi-calculus which is often straightforwardly derivatierh
they perform an overapproximation that necessarily rulesthe protocol description.
out safe protocols. Our approach relies on the causality re- As future work, we plan to investigate a more sophis-
lation among process events while the control-flow analysisticated abstraction allowing us to relax some of the con-
of [B]] statically verifies the origin and destination of mes- straints that are currently imposed by our analysis: for in-
sages and, more precisely, checks whether a message estance, our experiments show that some false positives oc-
crypted byA and intended foB does indeed come from cur when an authenticated term, e.g., a session key, has to be
and reacheB only. A formal comparison between the tech- kept secret until authentication requests are acceptetsand



then leaked out. This kind of scenario turns out to be prob-
lematic also for the abstraction of Horn clauses in the decid
able# subclass proposed by Goubault-Larretal. [25].

A first reason for such false positives is that the leakage of
names previously kept secret may introduce cycles in the
graph that break the cycle-invariance condition. A possibl
solution is to augment the number of times each input edge
can be inspected, by refining functipathsand the cycle-
invariance definition accordingly. This refinement enhance
the precision of the abstraction at the price of increadieg t
number and size of path sets and thus the complexity of the
analysis. A second reason is that the check on the fresh-
ness of nonces is used so far only as sufficient condition for
proving that weak authenticity implies strong authenyicit
more generally, nonce checks guarantee that different pro-
tocol sessions rely on different nonces and we believe that
this information can be used for refining the analysis and,
more precisely, for excluding those paths where a check on

(6]

(7]

(8]

(9]

the same nonce is performed more than once, thus ruling[10]

out this kind of false positives.

For the sake of readability, we have not considered oper-
ators such as tags and hashes: their insertion in our frame-
work does not induce any complication but is left as future
work. Finally, in this paper we have only considered the
instantiation of variables with names. The interesting €om
plication arising when variables can be instantiated with
ciphertexts is the capability of the environment to forge,
and make trusted participants create, arbitrarily nested ¢
phertexts, thus potentially causing an infinite number of

[11]

[12]

branches in the input. We plan to solve this problem by an [13]

overapproximation guaranteeing that the number of cipher-
texts generated by trusted principals in the abstract model
is finite and by abstracting away from the ciphertexts gen-
erated by the environment.

[14]
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A Semantics ofp-spi

The dynamics op-spi is formalized by means of a transi-
tion relation, which is reported in Tadlé 6, betwemmfig-

urations i.e., pairs(s,P), wheresis a sequence of actions PRINCIPAL are self-explanatory. Finally,AR interleaves
andP is a closed process. Some transitions apply substitu-two different protocol executions andeRLICATION arbi-
tions to processes: formally, a substitution x — G is a
function from variables to run-time messages. Often sub- static termM and a run-time messad&and, in case it ex-
stitutions are written explicitly byG1 /X1, ...,Gn/Xa]. The

Table 6 Transition System fop-spi

Transition rules: We omit the symmetric rule ofAR.

NAME RES
n ¢ bn(s)Ufn(s)

(s,new(n).P)—(s:: new(n),P)

KEY-PAIR RES
K,k & bn(s)ufn(s)

(s,newT (ki ).P)—(s:: newr (k ), P)

INPUT
skG o =bind(M,G) #71

(s,in(M).P) — (s::in(Mo),Po)

OuTPUT
{s,out(G).P) — (s:: out(G),P)

BEGIN '
(s,beging(A,1,G').P) — (s:: begirk(A,1,G'),P)

END _
(s,endg(A1,G).P) — (s end;(A,1,G),P)

PRINCIPAL PAR
(s,P) — (s::t,P) (s,P) — (d,P")
(s,A>P) — (s t,A-P') (s,P|Q)—(<,P'|Q)

REPLICATION
(s,!P)—(s,P | IP)

application of the substitutioni to the proces® is denoted

by Po and applies only to free occurrences of the variables
in P. NAME RES generates a new hamey checking that

it differs from all the names already used in the tracét

is possible to force this condition by applyingconversion

to n, i.e., by substitutingh and all of its free occurrences

in P with a different name having the same canonical rep-
resentative. Similar reasoning applies to the restrictibn
key-pairs. NPUT requires messag®@, read from the net-
work, to be computable by the environment: the environ-
ment knowledge is defined by the message manipulation
rules reported in Tabld 7 and discussed below. The run-time
messagés is read only if it can be pattern-matched with
the input termM via the functionbind, which is defined in
Table[T and discussed below. We wiét¢o denote the de-
cryption key corresponding t@ We haven = n, kjj = k3,
=1,k =k andk =k'". OuTPuT, BEGIN, END, and

trarily replicates a principal. Functidsind takes as input a

ists, yields the substitutiom which makedv equal toG, up



Table 7 Deduction system and binding

Table 8 Deduction System and Binding

Message Manipulation Rules

OuTt E PAIR
ouT ENV PAIR Geg NFVg GFGL  GFG
out(G) € s a¢ bn(s) sk G sk Gy GFG G W
sk-G ska sk (G1,G2)
oAR D c 5 PAIR DES ENcC
AIR DES NC EC GF (G1,Gp) GFG GFv
st (G1,G2) skG ska sk {G}a ska m W
skGp sk Gy st {G}a skG
DEec
PuBLIC KEYS ENEMY KEYS G+ {G}, GV inv(v,V)
S stkker  skke  skkg GG
Binding Binding
bind(a,a) = [| bind(v1,v,) = (v2,[]) if [vi] =[vo] V
bind(x,a) = [a/X] (Vi) =& A[v2] €ePN) Vv
bind((M,M’),(G,G')) = bind(M, G) wbind(M’,G') ([v2] = & Alvi] € PN)
bind({M }a,{G}a bind(M, G) bind (x,v) = (v(x) [V(x)/X])
bind(M,G) = otherwise bind((M, M'), (G, G’)) if bind(M,G) = (G1,01) A
((G ,G2), (01602)) bind(M/,G/)—(Gz,Oz)
bind({M},{G}v) = ({G'}v,0) if bind(M,G)=(G,0) A
inv(v,v')
to the different notation for encryption and decryptiongey
If pattern-matching faildyindreturns. This function is de- bind(M,G) =1 otherwise

fined by cases on the structure of telin a name matches

a name with empty substitution; a variable can be bound toNotation:

a name; pairs match pairs yielding a substitution which is pn2 {a |3k LEstae {I,k' ke, kig, ke, €1}

the unionw of the ones achieved for the subterms; finally, In OuT, Pair DES, and Dec, G, G4, andG, are not inPN.
decryptions must be performed with the correct decryption (V'] # & = bind(v,[V']) #

key. In all the other casebind returns failuref. ([v] # & = bind ﬂ " #

The knowledge of the environment is formalized by the
deduction system reported in Tallle 7. RuleiCsays that
every message sent on the network is known by the envi-and decrypt terms only knowing the required keys¢gand
ronment. BV allows the environment to know any name DEC). For reducing the number of terms known to the en-
which is not bound (i.e., restricted) in the trace. By vironment and abstracting the same sep«spi terms, we
and RAIR DEs, the environment can construct and destruct prevent the environment from deriving labelled version of
pairs. By ENc, and Dec the environment can encrypt and identities, public keys, enemy’s keys a#dwhich abstract
decrypt messages only knowing the required keys. B-P  the same-spi terms ag’.

Lic Keys, all the public keys are known to the environ- Functionbind, reported in Tabl&l8, defines the pattern-
ment. Finally, by RREMY KEYS, the environment may be  matching among terms. This function takes as input a term
provided with its own private keys and with long-term keys M and a ground tern and, if the two terms match, yields
shared with honest participants. This gives the possibilit the termG’ obtained by labellings according to the vari-
to the enemy to interact with the other participants by pre- ables inM and the corresponding substitution. If pattern-
tending to be a trusted principal. matching fails bind returns?. Functionbind is defined by
cases on the structure of teivh a name matches itself and,
similarly, the names” matches identities, public keys and
enemy'’s keys; a variable can only be bound to an atomic
namev; pattern-matching of pairs and ciphertexts is de-
fined component-wise: notice that decryptions must be per-
formed by the correct decryption key. In all the other cases,
dbind returns failuref. Functionv yields the decryption key
matching the encryption key: this function is smoothly
extended to arbitrary abstract terady inverting the en-
cryption keys inG.

inv(v,v') &

B Semantics of Causal Graphs

The knowledge of the abstract environment is formal-
ized by the judgemeng; - G, meaning that the environ-
ment can construdd given the knowledge of the terms in
G: this judgement s defined by a deduction system reporte
in Table[®. The environment knows every term sent on the
network (QuT) and the special nam& (ENV), it can con-
struct and destruct pairsARR and RAIR DES) and encrypt
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