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Abstract

This paper presents a novel technique for analyzing se-
curity protocols based on an abstraction of the program se-
mantics. This technique is based on a novel structure called
causal graph which captures the causality among program
events within a finite graph. A core property of causal
graphs is that they abstract away from the multiplicity of
protocol sessions, hence constituting a concise tool for rea-
soning about an even infinite number of concurrent protocol
sessions; deciding security only requires a traversal of the
causal graph, thus yielding a decidable, and typically very
efficient, approach for security protocol analysis. Addition-
ally, causal graphs allow for dealing with different secu-
rity properties such as secrecy and authenticity in a uniform
manner. Both the construction of the causal graph from a
given protocol description and the analysis have been fully
automated and tested on several example protocols from the
literature.

1 Introduction

Proofs of security protocols are known to be error-prone
and, owing to the distributed-system aspects of multiple
interleaved protocol runs, awkward to make for humans.
In fact, vulnerabilities have accompanied the design of
such protocols ever since early authentication protocols like
Needham-Schroeder [15, 29], over carefully designed de-
facto standards like SSL and PKCS [31, 7], up to current
widely deployed products like Microsoft Passport [20]. For-
mal methods, and in particular language-based techniques,
have proved to constitute important tools for dealing with
such flaws, by helping both to securely design and to an-
alyze security protocols. A central intricacy that these ap-
proaches have to tackle is how to concisely treat the poten-
tially unbounded number of concurrent protocol sessions.
Techniques based on state-space exploration rely on the in-
spection of (abstractions of) all the unbounded sequences
of messages exchanged by honest principals, and although

such approaches often allow for a careful detection and re-
production of successful attacks, they are inherently con-
strained by only taking a finite number of sessions into ac-
count, or by restricting the analysis to certain classes of
protocols, or by giving up guaranteed termination. In con-
trast to these approaches, static analysis techniques based
on type systems rely on the identification of some syntactic
patterns that suffice for guaranteeing the property of inter-
est. Furthermore, type systems enjoy guaranteed termina-
tion since they work on the syntax of the protocol. The
drawback of these techniques is that for analyzing differ-
ent security properties one has to identify multiple different
patterns and, consequently, to develop different type sys-
tems. Furthermore, the aforementioned patterns are some-
times restrictive in that, e.g., ensuring freshness of authen-
tication requests presupposes that every authentication ses-
sion is based on a different nonce (an unguessable random
string) that is used only in a single protocol session and then
discarded [23, 12]. This rules out some interesting proto-
cols relying on composing multiple authentication sessions
based on the same nonce, e.g., see [26].

This paper presents a novel technique for analyzing se-
curity protocols based on abstract interpretation of program
semantics [13]. In particular, this technique abstracts away
from the multiplicity of protocol sessions while still pre-
serving the causality among program events. More pre-
cisely, the unbounded number of execution traces of a proto-
col generated by running an unbounded number of concur-
rent protocol sessions is concisely abstracted into a novel
structure that we callcausal graph, i.e., a finite graph in
which nodes represent process events and edges express the
causality among events. Interestingly, causal graphs allow
for soundly characterizing which terms abstract messages
generated in the same protocol session and which ones may
instead abstract messages generated in different protocol
sessions; this information turns out to be crucial in order to
determine the safety of protocol specifications. In contrast
to state-space exploration techniques, our analysis enjoys
guaranteed termination. Furthermore, deciding security re-
quires only a traversal of the causal graph, and causal graphs



turn out to be of decent size for commonly analyzed secu-
rity protocols. Our work improves on existing type-based
approaches in that we do not restrict the class of analyzable
protocols to the ones adhering to some specific syntactic
patterns; this is possible since our analysis is based on an
abstraction of the program semantics. Finally, our approach
allows for a uniform treatment of different security proper-
ties such as secrecy and two different variants of authentic-
ity, namely non-injective agreement and agreement [28].

We can summarize our technique as follows. We first
specify the protocol in a dialect of the spi-calculus [4],
a process calculus for modelling cryptographic protocols.
We then construct the corresponding causal graph, which is
proven to be unique for every protocol. The causal graph
then allows for analyzing the intended security properties.
Since causal graphs are of finite size, the analysis is assured
to terminate. Finally, the safety of the causal graph implies
the safety of the protocol and, more precisely, the safety
of the possibly unbounded number of protocol execution
traces. As usual for static analysis and due to the undecid-
ability of the original problem, failures in the verification
may be caused by either a flaw in the protocol or a non-
sufficient precision of the analysis ruling out safe protocols.

Finally, the analysis is amenable to full automation. We
have implemented a tool for automating the analysis, and
we have applied the tool to a number of common protocols
[18]: the analyses terminated within a few seconds and pro-
vided safety proofs for the correct versions of the protocols
while failing to validate the flawed versions. Remarkably,
attacks are often easily derivable by an inspection of the
causal graph. The only human effort required is to capture
the protocol in the dialect of the spi-calculus which is often
straightforwardly derivable from the protocol description.

Outline of the paper. Section 2 introduces a dialect of the
spi-calculus used for modeling security protocols. Section
3 introduces causal graphs. Section 4 defines the abstract
interpretation framework and states the soundness results.
Section 5 presents the safety results. Section 6 discusses
further related work and Section 7 concludes.

2 ρ-spi Calculus

Theρ-spi calculus [11, 12] derives from the spi calculus [4]
and inherits many of the features ofLysa [8], a dialect of
the spi calculus specifically tailored to the analysis of au-
thentication protocols. Theρ-spi calculus differs from both
calculi in several respects: it associates principal identities
to processes; it syntactically binds keys to their owners; and
it provides new authentication-specific constructs. In this
paper, we consider a novel dialect ofρ-spi in which encryp-
tions and decryptions are performed on-the-fly when send-
ing and receiving messages, respectively. This dialect in
particular links protocol specifications more tightly to their

Table 1 (Our Dialect of) theρ-spi Calculus

Name

a ::= I ,J,A,B,E
| n,m,kIJ

| k+
I

| k−I
Term

M,N ::= a
| x,y,z
| (M,N)
| {M}u

Process

P,Q ::= new(n).P
| new∓(kI ).P
| in(M).P
| out(M).P
| begini

N(A, I ,M).P
| endi

N(A, I ,M).P
| A⊲P
| P|Q
| !P
| 0

Notation: u ranges over names and variables.

informal “graphical” descriptions, which only depict sent
and received messages without giving a precise semantics
on how messages are parsed and constructed.

2.1 Syntax

The formal syntax of our dialect of theρ-spi calculus
is depicted in Table 1. We presuppose a countable set of
namespartitioned into the set of identitiesID, the set of
messagesM , including the set of shared keysK , and the
set of public and private keysK ∓. The setID, ranged over
by I andJ, is further partitioned into the two sets oftrusted
principalsIDP , ranged over byA andB, andenemiesIDE ,
ranged over byE. The setK is composed of keyskIJ shared
betweenI andJ. The setK ∓ is partitioned into public and
private keys, notedK + andK −, respectively.I ’s key-pair
is composed of a public keyk+

I and a private keyk−I , re-
lated symbolically bykI . The setKE contains the keys of
malicious parties, i.e., the ones where someE∈ IDE occurs
as subscript. For convenience, we syntactically bind keys to
their owners, thus assuming that keys are already distributed
among protocol participants. Notice that this simplification
is not restrictive since, if needed, processes can exchange
keys thus modelling session-key distribution. Finally, terms
can be paired or encrypted with other terms.1

Processes(or protocols), ranged over byP andQ, be-
have as follows:new(n).P generates a fresh namen local
to P while new∓(kI ) generates a fresh key-pair forI com-
posed ofk+

I and k−I . We presuppose a unique unnamed
public channel, the network, from/to which all principals,
including intruders, read and send messages. Similarly to
Lysa, our input primitive may atomically test part of the
read message, by employing pattern-matching. If the input
term matches the input pattern, then the variables occurring
in the pattern are bound to the remaining sub-part of the

1For the sake of readability, in the rest of the paper we omit brackets:
for instance, the nested pair((a,b),k) is written asa,b,k.



term; otherwise the term is not read at all. This mecha-
nism is also used to decrypt received messages on-the-fly
and thus constitutes an important novelty compared to the
ρ-spi calculus; of course, in order to immediately match a
term encrypted with asymmetric cryptography, the correct
decryption key has to be specified in the pattern. For giv-
ing the intuition of the semantics, which is formally defined
in Section 2.2, the process ‘in(n).P’ tries to read a specific
namen from the network and, if such a name can be read,
no binding occurs andP is executed. This is useful, e.g.,
to check protocols where noncen is sent encrypted as chal-
lenge and received back in clear as response. As another
example, consider ‘in({x}k−A

).P’. This process reads any ci-

phertext of the form{a}k+
A

, decrypts it on the fly, and binds
all the free occurrences ofx to a in processP. We remark
that the key specified in the input pattern is thedecryption
key since for bindingx to a the process has to perform a
decryption and thus to know the correct decryption key. For
easing the presentation, we only consider the instantiation
of variables with names: as in [14, 27], we assume that mes-
sages are typed so as to distinguish names from the other
terms like pairs and ciphertexts.

The begini
N(A,B,M) and endi

N(B,A,M) primitives ex-
press thecorrespondence assertions[33] in a nonce hand-
shake betweenA andB. The indexi allows for specifying
which begin assertion should match a specific end assertion:
we assume that the same index is used for at most one begin
assertion and one end assertion. The former primitive de-
clares thatA is starting a protocol session withB, while the
latter declares thatB is ending a protocol session in which
he believes to have correctly authenticatedA: N is the nonce
used in the protocol session andM is the authenticated mes-
sage. Finally,A⊲P represents principalA executing process
P; P|Q is the parallel composition ofP andQ; !P indicates
an arbitrary number of parallel instances ofP, and0 is the
null process that does nothing. In the rest of the paper, we
will often omit 0 from protocol specifications.

Example 1 Let us consider a simple protocol whereB
encrypts messagem, noncen and his own identifier with
A’s public-key andA acknowledges the reception of the first
message by sending back the nonce in clear on the network.
The specification inρ-spi calculus is reported below: for
the sake of readability, we depict message exchanges in
between the corresponding inputs and outputs.

Resp, Init ,

new(m).new(n).
in({B,x,z}k−A

). oo {B,n,m}k+A
out({B,n,m}k+

A
).

begin1
x(A,B,z).

out(x) n // in(n).

end1
n(B,A,m)

Prot , new∓(kA).(B ⊲ !Init | A ⊲ !Resp)

The begin assertion says thatA confirms the reception from
B of messagem in a protocol session based on noncen and,
similarly, the end assertion says thatB authenticatesA re-
ceivingm in a protocol session based onn. The goal of this
protocol is to guarantee the secrecy ofm and the authenti-
cation ofA with B.

2.2 Operational semantics

Following [9], the ρ-spi calculus comes with a trace-
based semantics. Each process primitive has an associated
action and we denote withAct the set of all possible ac-
tions. The dynamics of the calculus is formalized by means
of a transition relation betweenconfigurations, i.e., pairs
〈s,P〉, wheres∈ Act∗ is a trace andP is a closed process.
In the following, ε denotes the empty trace. Each transi-
tion 〈s,P〉 → 〈s :: t,P′〉 simulates one computation step in
P and records the corresponding actiont in the trace. We
denote by→∗ a finite sequence of computation steps. In the
following, G ranges over ground terms, namely terms con-
taining no variable. Principals do not directly synchronize
with each other. Instead, they may receive from the unique
channel an arbitrary message known to the environment,
which models the Dolev-Yao intruder [17]: the knowledge
of the environment associated with aρ-spi trace, charac-
terized by the judgements⊢ G, is formalized by a set of
deduction rules stating that the environment knows all the
messages sent on the network, every message which is not
restricted in the trace, all public keys, and enemies’ keys.
The environment can also construct/destruct pairs and en-
crypt/decrypt ciphertexts if the appropriate key is known.
Formal definitions are postponed to Appendix A.

Definition 1 (Traces) The set T(P) , {s | ∃P′ s.t. 〈ε,P〉
→∗ 〈s,P′〉} is the set of all the traces generated by a finite
sequence of transitions from the configuration〈ε,P〉.

Secrecy and authenticity are defined in terms ofρ-spi traces
and processes.

Definition 2 (Secrecy) A trace s guarantees secrecy of G
if and only if s0 G. A process P guarantees secrecy of G if
and only if s0 G for all s∈ T(P).

The weak authenticity property refines the standardnon-
injective agreementproperty of [28, 33] by making explicit
the nonce used in the handshake and the index binding the
begin assertion with the corresponding end assertion.

Definition 3 (Weak Authenticity) A trace s guarantees
weak authenticity if and only if s= s1 :: endi

G1
(B,A,G2) :: s2

implies beginiG1
(A,B,G2) ∈ s1. A process P guarantees

weak authenticity if and only if s guarantees weak authen-
ticity for all s∈ T(P).



Intuitively, this guarantees that wheneverB authenticatesA
and the messageG2 in an handshake with the nonceG1,
thenA engaged in a protocol session with nonceG1 for au-
thenticatingG2 with B. Similarly to theagreementproperty
of [28, 33], the notion of strong authenticity requires the
freshness of authentication requests.

Definition 4 (Strong Authenticity) A trace s guaran-
tees strong authenticity if and only if whenever s=
s1 :: endi

G1
(B,A,G2) :: s2, we have that s1 = s′1 ::

beginiG1
(A,B,G2) :: s′′1 and s′1 :: s′′1 :: s2 guarantees strong

authenticity. A process P guarantees strong authenticity if
and only s guarantees strong authenticity for all s∈ T(P).

2.3 Notational conventions

For easing the presentation of the static analysis tech-
nique, we use a number of notational conventions. The mes-
sage restrictionnew(n).P is a binder for the messagen, the
key-pair restrictionnew∓(kI ).P is a binder fork+

I andk−I ,
namely the key-pair based onkI , and the input primitive is a
binder for the variables occurring in the input term with the
exception of the decryption keys. In all cases the scope of
the binders is the continuation process. Similarly,new(n) is
a binder for messagen andnew∓(kI ) is a binder for the key-
pair based onkI and their scope is the continuation trace.
The names and variables occurring free and bound in pro-
cesses and traces are defined as usual. As in companion
transition systems, e.g. [10], we implicitly identify pro-
cesses up to renaming of bound variables and names, i.e.,
up toα-equivalence. To simplify the definition of the static
analysis and following [8], we discipline theα-renaming of
bound names. We stipulate that for each messagen there
is acanonical representative, noted⌊⌊n⌋⌋ , and we demand
that two messages areα-convertible only when they have
the same canonical representative. Similar assumption and
notation applies to key-pairs and variables. We write⌊⌊P⌋⌋
to denote the process obtained by replacing each name and
variable inP by the corresponding canonical representative.
For convenience, we also require that keys, both symmet-
ric and asymmetric ones, having the same canonical repre-
sentative depend on the same identifiers, i.e., they have the
same subscripts. We assume that the setME of names gen-
erated by the environment (cf. rule ENV in Table 7) has a
canonical representative which is different from the ones of
the names bound in the process. Finally, we assume that the
bound names of a process are renamed apart and that they
do not clash with the free names; much in the same way
variables are assumed to be all distinct. For convenience
and without loss of generality, we shall reason on protocol
specifications in which every bound name and variable has
a different canonical representative.

3 Causal Graphs

A causal graphC = (N ,E) is a finite directed graph
with nodesN and edgesE . In the following, we will of-
ten write nodes(C ) to denote the set of nodes inC and
edges(C ) to denote the set of edges inC . Nodes represent
abstractions of process events, while edges track the causal-
ity among process events. In the following, we discuss and
formalize each of these components.

3.1 Nodes and edges

Nodes, also referred to as abstract processes and ranged
over byP andQ, areρ-spi processes built uponρ-spi names
and the following new name categories:

• messageE abstracting messages generated by the en-
vironment, identities, public-keys and attackers’ keys;

• labelled namesa(x), which are semantically equivalent
to names but allow for tracking variable instantiation.
As an example, the instantiation inP of the variable
x by the namen yieldsP[n(x)/x]. In fact, labelling is
local to sequential processes and does not propagate
through concurrent threads.

• indexed namesa(out(G).P,i), where out(G).P is the
node outputtinga andi the positional index ofa in G:
they only occur within the environment’s knowledge
and give a precise characterization of which names
have been used by the environment to construct a cer-
tain term and, notably, the place (i.e., node and posi-
tion) in which they are sent on the network.

For distinguishingρ-spi terms from the ones used in causal
graphs, we write the latter bysanserif fonts. In the fol-
lowing, we refer to the set of possibly labelled and indexed
names as abstract names. Furthermore, we letG range over
ground terms,M,N over terms possibly containing vari-
ables,v over abstract names,u over abstract names and vari-
ables andG over ground term sets.

Edges connect two nodes, so representing the causality
among such nodes. We discern two kinds of causality,
namelyintra-threadandinter-thread causality.

Intra-thread causality links nodes within the same thread
and is represented by edges of the formP→Q, linking
P to the processQ obtained by reducingP.

Inter-thread causality is due to the synchronization
among the processP inputtingG and reducing intoQ
and the nodesout(Gi).Pi outputting the terms used by
the environment to constructG. We call such terms
integer components since they are not forged by the
environment but simply forwarded. They are crucial



for the soundness of our abstraction, which identifies
unbounded protocol sessions into a finite model: the
soundness of the security properties proved on top of
this abstraction requires to determine when different
protocol sessions may be interleaved. This may hap-
pen when the environment exploits terms output in dif-
ferent protocol sessions to construct a term that is sent
to a principal engaging in another protocol session:
in fact, messages within the same integer component
prove to abstract messages belonging to the same pro-
tocol session, while messages in different integer com-
ponents may abstract messages belonging to different
protocol sessions. This kind of causality is represented
by (i) input edgesof the formin(M).P—

�

�

�

�
G →Q, con-

necting the input process with the process obtained by
performing the input via the synchronization point

�

�

�

�
G ;

and(ii) output edgesof the formout(Gi)
G′

i—
�

�

�

�
G → Q,

one for each integer componentG′
i of the input term.

These edges are labelled by the integer component and
connect the process outputting such a component to the
process obtained by performing the input via the syn-
chronization point

�

�

�

�
G . A synchronization point links

an input edge to the output edges required to construct
the input term.

Example 2 Let C be a causal graph containing the nodes
out(n).Q1, out({m,n}k−

A
).Q2 and in({x,{y,z}k+

A
}k−

B
).Q3.

Let us define the following indexes:i1 = (out(n).Q1,1),
i2 = out({m,n}k−

A
).Q2,1), i3 = out({m,n}k−

A
).Q2,2), and

i4 = out({m,n}k−
A
).Q2,3). The environment may com-

bine the two output terms into{ni1,{mi2,ni3}
k−
A

i4}E , which

matches the input pattern{x,{y,z}k+
A
}k−

B
with substitution

σ = [n(x)/x,m(y)/y, n(z)/z]: the substitutionσ is used to
instantiate the free variables in the processQ3 following
the input pattern. ThusC contains the following nodes and
edges, whereG = {n(x)

i1,{m(y)
i2,n(z)

i3}
k−
A

i4}E :

in({x,{y,z}
k+
A
}
k−
B

).Q3

UUUUU

**UUUUUUUU

out(n).Q1

n
i1
(x)

jjj

ttjjjjjjj
��

�� ��

�� ��G pp
{m

i2
(y)

,n
i3
(z)

}
k−
A

i4

ttiiiiiiiiiiiiii Q1

Q3σ Q2
oo out({m,n}

k−
A

).Q2

Notice that the synchronization point tracks both the posi-
tional indexes of the names occurring in the input term and
the variable assignment induced by the input pattern.

3.2 Causal graphs as abstraction of ρ-spi
processes

Before formalizing the causal graph generation, we intro-
duce some useful notations. We write⌊M⌋, ⌈M⌉ and [M]

to denote the term obtained fromM by label erasure, index
erasure, and both label and index erasure, respectively.

Function outmsg(out(G).P) yields the term obtained
from G by erasing the labels inG and indexing each name
a in G with the pair composed of processout(G).P and the
positional index ofa in G. This function is naturally ex-
tended to node sets, thus characterizing the set of output
terms: more formally,outmsg(N ) = {outmsg(out(G).P) |
out(G).P ∈ N }. Notice that labels are local and do not
propagate into the environment’s knowledge.

The knowledge of the abstract environment is formalized
by the judgementG ⊢G (cf. Table 8 of Appendix B), mean-
ing that the environment can constructG given the knowl-
edge of the terms inG . The environment knows every term
in G and the special nameE , it can construct and destruct
pairs and encrypt and decrypt terms provided that it knows
the encryption and decryption keys, respectively. For reduc-
ing the number of terms known to the environment, we pre-
vent the environment from deriving identities, public keys
and enemies’ keys, which abstract the sameρ-spi terms as
E . Functionbind : (M,G) 7→ (G′,σ), reported in Table 8
of Appendix B, defines the pattern-matching among terms.
This function takes as input a termM and a ground termG
and, if the two terms match, yields the termG′ obtained by
labellingG according to the variables inM and the substitu-
tion σ expressing the variable instantiation induced by the
pattern-matching. If pattern-matching fails,bind returns↑.
For example,bind(x,n5) = (n5

(x), [n(x)/x]). Functionthread,
defined below, yields the set of threads inP, abstracting
away from identifiers and replications.

thread(P) ,

{

thread(P1)∪ thread(P2) if P = P1|P2
thread(Q) if P ∈ {A⊲Q, !Q}
{P} otherwise

Functionint(N ,G) yields the set of integer terms inG, that
is the largest subterms ofG that have not been generated by
the environment, each of them paired with the outputting
process. In fact, integer terms are either names or cipher-
texts whose encryption key is unknown to the environment.

int(N ,G) ,



































{(v(P,j),P)} if G = v(P,j)

/0 if G = E

int(N ,G1)∪ int(N ,G2) if G = (G1,G2)
{(G,P)} if G = {G′}v(P,j) ∧

outmsg(N ) 0 v(P,j)

int(N ,G′)∪ int(N ,v′) if G = {G′}v′ ∧
outmsg(N ) ⊢ v′

The next definition characterizes the causal graph associ-
ated with an abstract process. Here and throughout this pa-
per, we writeP =α Q to say thatP andQ areα-equivalent
and⌊⌊P⌋⌋ to denote the process obtained by replacing each
name and variable inP with the corresponding canonical
representative.



Definition 5 (Causal Graph) The causal graph(N ,E)
associated with P, written as(N ,E) = graph(P), is given
by the leastN , E satisfying the following conditions:

(i) thread(P) ⊆ N

(ii) p.P ∈ N ∧ Q ∈ thread(P) ∧ p 6= in(·)
⇒ Q ∈ N ∧ p.P → Q ∈ E

(iii ) in(M).P ∈ N ∧ outmsg(N ) ⊢ G ∧ bind(M,G) = (G′,σ)
∧ P′ ∈ thread(Pσ) ∧ (G′

1,out(G1).P1) ∈ int(N ,G′)

⇒∃Q ∈ N s.t.Q =α P′ ∧ in(M).P—
�

�

�

�
G′ → Q ∈ E

∧ out(G1).P1
G′

1—
�

�

�

�
G′ → Q ∈ E

(iv) ∀{new(n).P,new(m).Q} ⊆ N ,
⌊⌊new(n).P⌋⌋ = ⌊⌊new(m).Q⌋⌋ ⇔ n = m

Functiongraph: P 7→ (N ,E) is in fact a closure operator
on causal graphs ordered by inclusion. In particular,(i) the
threads inP are part of the setN of nodes;(ii) if p.P is a
node in the causal graph, withp 6= in(·), then the processes
in thread(P), which are connected top.P by direct edges,
belong to the set of nodes; and(iii ) if in(M).P is a node
and the environment knows a termG matchingM with sub-
stitution σ, then the set of nodes contains the processes in
thread(Pσ), up toα-equivalence, and the set of edges con-
tains the input edges connectingin(M).P to the processes
in thread(Pσ) and the output edges linking the output pro-
cesses used by the environment to constructG to the pro-
cesses inthread(Pσ). Intuitively, the input of a term is pre-
ceded by the output ofall messages required by the environ-
ment to construct such a term. This point will be clarified
later on, when formalizing the causality relation expressed
by causal graphs. Condition(iv) rules theα-renaming of
bound names possibly introduced in the causal graph by
condition(iii ). Thisα-renaming allows the abstract domain
to distinguish the names generated in different threads, thus
making the analysis more precise. Unfortunately, this may
introduce an infinite number of names in the knowledge of
the environment and possibly an infinite number of nodes in
the causal graph. We tackle this problem by requiring that
whenever two restriction nodes occur in the causal graph
and the restricted names differ because ofα-renaming, then
at least one variable is instantiated with names belonging
to different equivalence classes in the two continuation pro-
cesses. The idea is to applyα-renaming of bound names
in the processes following an input for every different input
term, where the difference among input terms is deemed up
to name equivalence classes. This enhances the precision
of the analysis, yet guaranteeing the finiteness of the causal
graph.

We say that two graphs are isomorphic when they are
obtained byα-renaming of bound names. As stated by
the following proposition, every abstract process admits a
unique causal graph up to isomorphism. In the following,

we write length(P) to denote the number of primitives in
P and length(N ) to denote the maximal length of the pro-
cesses inN , namely the numbern such thatlength(Q) = n,
for someQ ∈ N , and, for everyQ′ ∈ N , length(Q′) ≤ n.

Proposition 1 (Uniqueness)For every process P, there ex-
ists a unique graph(P) up to isomorphism.

Proof. Consider the functionΦP(N ,E) yielding the least
N ′,E ′ satisfying the three conditions of Definition 5. For
proving the thesis, we prove that, for everyN andE , there
exists a unique least fixpoint ofΦP(N ,E): this trivially
implies the thesis. Notice thatΦP is monotonous over node
and edge sets ordered by inclusion.

It is easy to see that ifΦP(N ,E) = N ′,E ′, then
length(N ) = length(N ′). The set of variables occurring
in the processes ofN ′ is contained into the set of vari-
ables occurring in the processes ofN . The situation for
names is different, since some variable might be instanti-
ated withE and, notably, new names might be introduced
by α-renaming (condition(iii )). However, because of con-
dition (iv), the number ofα-renamed copies of each name is
bound byNX , whereN andX are the number of restrictions
and variables inN , respectively. The set of processes of
finite length and composed of a finite set of names and vari-
ables is finite, as well as the set of edges. By Knaster-Tarski
theorem,ΦP has a unique least fixpoint.

The following corollary says that the size of the graph grows
exponentially with the protocolspecification, which is how-
ever fixed in advance, regardless of the number of consid-
ered sessions and the protocol run-time behavior. We re-
mark that this result refers to the worst case: in practice,
the number of nodes for the protocols we have considered
so far does not exceed 100 nodes and the analysis always
terminated within a few seconds.

Corollary 1 (Size of causal graphs)LetC be a causal net
and P a process such thatC = graph(P). Let N and X be
the number of restrictions and variables in P, respectively.
Then|nodes(C )| = O(length(P)∗NX2

).

Example 3 The causal graph associated with protocolProt
of Example 1 is depicted in Table 2. The rounded boxes
represent synchronization points while the other ones ab-
stract processes. The analysis of the causal graph gives us
some interesting information about the run-time behavior
of protocol participants. Even if the protocol is simple, it
turns out to be interesting since the attackers know both the
public-key used for encrypting the first message and, after
the second message, the nonce used in the protocol session.
This increases the number of actions at their disposal and,
consequently, the number of nodes and edges in the causal
graph. In general, fixed the number of message exchanges,
the causal graph for protocols preserving the secrecy of
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messages and relying on digital signature or symmetric-
key cryptography is typically simpler than the one of pro-
tocols based on public-key cryptography and possibly ex-
posing some messages to the attackers. LetN be the set of
nodes in the causal graph: we can see thatoutmsg(N ) 0 mi

for any indexi and this intuitively means that the authen-
ticated message is kept secret, as expected. Furthermore,
the only process asserting an end event isend1

n(B,A,m).
This is preceded by the output ofn(x) (inter-thread causal-
ity), which is in turn preceded (intra-thread causality) by
node begin1

n(x)
(A,B,m(z)).out(n(x)). Note that the out-

put of n(x) may be also preceded (intra-thread causality)
by begin1

n(x)
(A,B,E(z)).out(n(x)) and begin1

n(x)
(A,B,n(z)).

out(n(x)). These events are enabled by the environment
forging the messages{E ,ni5,E }E and {E ,ni5,ni5}E , re-
spectively (cf. the corresponding synchronization points),
and sending them to the responder. This may happen only if
the environment knowsn and these processes are thus pre-
ceded (inter-thread causality) by the output ofn(x). This
cycle in the graph tells us that the environment can ac-
tively interact with the responder only after the responder
has received the message generated by the initiator and “as-
serted”begin1

n(x)
(A,B,m(z)), according to the intended pro-

tocol run. Intuitively, this means that the causal graph guar-
antees authenticity. Finally, the portion of the graph in the
upper-left corner shows that the environment can forge mes-

sages in which the messageE replaces the nonce, but the re-
sulting processes do not increase the environment’s knowl-
edge as they eventually outputE , which is already known
to the environment.

3.3 Paths

Edges describe the causality among process events and
each edge may be naturally associated with an action: for
instance, if a causal graph contains the edgeout(n).P → P,
then the processP is causally preceded by the reduction
of the processout(n).P with action out(n). In general,
we express the causality dependency among process events
throughpaths, which are sequences ofabstract actionsex-
pressing process events. Abstract actions extendρ-spi ones
with the new actionincom(G1,G2), which is used for track-
ing inputs involved in inter-thread causality:G1 is the inte-
ger component andG2 is the input pattern, in which vari-
ables are replaced with the actual received messages.

We now argue on the number of paths associated with
a node. We have mentioned that the input of a term is
causally preceded by the outputs ofall the integer compo-
nents needed by the environment to construct such a term.
Thus an input is preceded by a set of paths. However, the
same process may be generated by the input of different
terms, sayG1 and G2. Then such a process is preceded
by either all the outputs needed by the environment to con-



structG1 or all the outputs needed to constructG2. This
is the reason why the paths associated with a node are ac-
tually a set of path sets, meaning that the node is causally
preceded byall the paths inoneof its path sets. Notice
that, as result of our abstraction which essentially collapses
an unbounded number of instances of each principal into
a strand of nodes related by intra-thread causality, causal
graphs may contain cycles. For this reason, when evalu-
ating the paths preceding a node, we need to avoid loops:
this is achieved by traversing input edges only once, thus
abstracting away from cycles in the causal graph which, in
fact, do not alter the causality among nodes. In the follow-
ing, we write{s1, . . . ,sn} :: τ to denote{s1 :: τ, . . . ,sn :: τ}
andoutedg(G,Q,C ) to denote the set of output edges inC

incoming inQ via the synchronization point
�

�

�

�
G . Function

paths: C ,P,E 7→ S , defined below, yields the setS of
paths sets that are associated with the nodeP and do not
traverse the edges inE . We often writepaths(C ,P) to de-
notepaths(C ,P, /0).

Definition 6 (Paths) Let C be a causal graph and
Q ∈ nodes(C ). The paths precedingQ in C and not
traversing the edges inE , written paths(C ,Q,E), are
defined as the leastS such that

(a)Q has no incoming edge⇒ S = { /0}

(b) p.P → Q ∈ edges(C )∧S ∈ paths(C ,p.P,E) ⇒ S :: p ∈ S

(c) in(M).P—
�

�

�

�
G → Q ∈ edges(C )\E ∧ bind(M,⌊G⌋) = (G,σ)

∧
S

i∈[1,n]
{out(Gi).Pi

G′
i—
�

�

�

�
G → Q} = outedg(G,Q,C )

∧ S ∈ paths(C , in(M).P,E ∪{in(M).P—
�

�

�

�
G → Q})

∧ Si ∈ paths(C ,out(Gi).Pi ,E ∪{in(M).P—
�

�

�

�
G → Q})

⇒ S ::in(Mσ) ∪
S

i∈[1,n]
Si ::out(Gi) :: incom(G′

i ,Mσ) ∈ S

If the node Q is preceded by intra-thread causality by
p.P (condition (a)), then the path sets associated with
Q are the ones associated withp.P, each of them ex-
tended with the actionp. If Q is obtained by the reduc-
tion of processin(M).P receiving G and the input edge
in(M).P—

�

�

�

�
G → Q is not in E , then the paths associated

with Q are the ones associated within(M).P, each of them
extended with the actionin(Mσ), plus the ones associated
with the processes outputting the terms used to construct

G (edgesout(Gi).Pi
G′

i—
�

�

�

�
G → Q), extended without(Gi) ::

incom(G′
i ,Mσ). Notice that the edgein(M).P—

�

�

�

�
G → Q is

inspected only once, thus avoiding loops due to cycles in
the graph.

3.4 Names and sessions

Since a causal graph abstracts an unbounded number of
protocol sessions, an interesting issue related to our abstrac-

tion is that different occurrences in a path of the same name
n might actually abstract differentρ-spi names, one for each
abstracted protocol session. The problem is that the envi-
ronment may exploit messages generated in different pro-
tocol sessions so as to forge a message which is then used
to interact with another session: in fact, this kind of inter-
leaving may break the security goals of the protocol. Ac-
cording to the definition of causal graphs, the labels of the
output edges express the integer components of the input
term. This information can be used for soundly charac-
terizing which names abstract over the same protocol ses-
sion and, in particular, which names abstract the sameρ-
spi name. Intuitively, it is sufficient to check for every pair
of output and input actions related by inter-thread causality
which messages belong to the integer component and which
do not: the former abstract over the same protocol session
while the latter may belong to different protocol sessions.
Here and throughout this paper, we writemsgs(M) to de-
note the set of messages inM, including those labelled. We
also writeπi(G) to denote the name occurring in thei-th po-
sition of G andπi(s) to denote thei-th action ins. Finally,
|s| denotes the number of actions ins.

Table 3 introduces the deduction system for judgement
s ⊢ (v, i) = (v′, j), meaning that namesv andv, occurring
in thei-th and j-th action ofs respectively, abstract over the
sameρ-spi name. Intuitively, the concretization of a path
yields the set ofρ-spi traces obtained by instantiating the
abstract names occurring therein: ifs ⊢ (v, i) = (v′, j), then
the occurrences ofv andv′ in the i-th and j-th action ofs,
respectively, are instantiated with the sameρ-spi name (see
Section 4 for more detail). Rule AX says that the occur-
rences of the same message within a single action abstract
the sameρ-spi name. Rule INTRA says that the occurrences
of a message within actions related by intra-thread causal-
ity abstract the sameρ-spi name, since such actions belong
to the same thread and thus abstract over the same proto-
col session. Rule INTER-BIND says that messages received
within an integer component, that is messages not manip-
ulated by the attacker, abstract over the same protocol ses-
sion. Rule INTER-MATCH says that the pattern-matching of
namen allows for recovering a protocol session described
in a previous part of the path and, more precisely, it allows
to inherit the equality constraints holding at the time ofn’s
restriction. Finally, TRANS, SYM , and PREFIX make the
relation transitive, symmetric, and closed by prefixes, re-
spectively.

Example 4 Let us consider the following path, which rep-
resents the intended protocol behavior:

s , new∓(kA) :: new(m) :: new(n) :: out({B,n,m}k+
A
) ::

incom({Bi1,n(x)
i2,m(z)

i3}
k+

A

i4 ,{B,n(x),m(z)}k−A
) ::

begin1
n(x)

(A,B,m(z)) :: out(n(x)) ::

incom(ni5,n) :: endi
n(B,A,m)



Table 3Equality among abstract terms

AX
|s :: t| = i v ∈ msgs(t)

s :: t ⊢ (v, i) = (v, i)

INTRA
|s| = i t 6= incom(G,G′) s ⊢ (v, i) = (v, j)

s :: t ⊢ (v, i +1) = (v, i)

INTER-BIND

v(P, j) ∈ msgs(G2) π j(G1) = v′ |s| = i

s::out(G1) :: incom(G2,G) ⊢ (v, i +2) = (v′, i +1)

INTER-MATCH
n ∈ msgs(G) s = s1::new(n) :: s2 |s| = i

|s1| = j s ⊢ (n, i +2) = (n, j +1) s1 ⊢ (v, j) = (v′, j ′)

s :: out(G1) :: incom(G2,G) ⊢ (v, i +2) = (v, j)

TRANS
s ⊢ (v, i) = (v′, i′) s ⊢ (v′, i′) = (v′′, i′′)

s ⊢ (v, i) = (v′′, i′′)

SYM
s ⊢ (v, i) = (v′, i′)

s ⊢ (v′, i′) = (v, i)

PREFIX
s ⊢ (v, i) = (v′, i′)

s :: t ⊢ (v, i) = (v′, i′)

The messages occurring in the begin and end assertions ab-
stract over the same protocol session. In particular, we can
prove s ⊢ (n,9) = (n(x),6) via INTRA and INTER-BIND.
Similarly, we can proves ⊢ (m,9) = (m,2) via INTRA

and INTER-MATCH, ands ⊢ (m(z),6) = (m,2) via INTRA,
INTER-BIND and PREFIX. Finally, by SYMM and TRANS

we gets ⊢ (m,9) = (m(z),6).

In Section 3.3, we have defined the paths associated to a
node in a causal graph and, for avoiding loops due to cy-
cles in the graph, we have requested that input edges are in-
spected only once. This approximation does not affect the
causality among nodes but it might affect the equality con-
straints. For this reason, we only consider a class of causal
graphs, calledcycle-invariantgraphs, for which cycles do
not affect the equality constraints of the involved paths.

Definition 7 (Cycle-invariance) We say that
C is cycle-invariant if and only if for every

{in(M).P—
�

�

�

�
G → Q,out(G1).P

′ G2—
�

�

�

�
G → Q} ⊆ edges(C ),

Sout ∈ paths(C ,out(G1).P
′), Sin ∈ paths(C , in(M).P) there

existsS ∈ paths(C ,Q) s. t. the following conditions hold:

• for everys1 = s′ :: in(G′) ∈ S there existss2 ∈ Sin such
that eithers2 = s′ or s2 = s′ :: in(G′) :: s′′ ∈ Sin and
s1 ⊢ (v, j) = (v′, j ′)⇒ s2 ⊢ (v, i) = (v′, j ′), with |s1|= j
and|s2| = i.

• for everys1 = s′ :: out(G1) :: incom(G2,G
′) ∈ S there

existss2 ∈ Sout such that eithers2 = s′ or s2 = s′ ::
out(G1) :: incom(G2,G

′) :: s′′ ands1 ⊢ (v, j) = (v′, j ′)⇒
s2 ⊢ (v, i) = (v′, j ′), with |s1| = j and |s2| = i.

For example,graph(Prot) is cycle-invariant in that input
nodes do not belong to cycles, the only output node within
cycles isout(n(x)), and cycles in the causal graph do not
affect the equality constraints onn(x).

4 Abstract Interpretation

In this section we illustrate the relation between causal
graphs andρ-spi semantics. This is formalized by a con-
cretization function, defined on abstract terms, paths, path
sets and causal graphs.

4.1 Concretization of causal graphs

Terms The relation betweenρ-spi terms and abstract terms
is formally defined in Table 4 by the concretization function
γtrm : M 7→ {M1, . . . ,Mn}. Abstract identities are instantiated
with the correspondingρ-spi identity. The concretization of
an abstract message yields the set of messages having the
same canonical representative. Similar reasoning appliesto
variables, public and private keys. The special nameE ab-
stracts over identities, public keys, messages possibly gen-
erated by the environment and attackers’ keys. Finally, the
concretization of the remaining terms is given by instantiat-
ing the names and the variables occurring therein.

Paths The concretization function γpath : s 7→
{(s1,σ1), . . . ,(sn,σn)} takes as input a path and yields
a set of pairs composed of aρ-spi tracesi and a substitution
σi from abstract names toρ-spi names. More precisely,(i)
each trace is obtained by instantiating the names occurring
in each action of the path so as to satisfy the equality
constraints associated to the path and(ii) the substitution
tracks the instantiation of the abstract messages occurring
in the actions of the last thread, namely the largest suffix
of s related by intra-thread causality. We recall that a path
may “cross” different threads and, as a matter of fact,
s ⊢ (v,k) = (v′,k′), with k being the length ofs, only if v is
an abstract name occurring in the last thread.

Example 5 One of the possible concretizations of the path
s described in Example 4 is reported below:

new∓(kA) :: new(m) :: new(n) :: out({B,n,m}k+
A
) ::

in({B,n,m}k−A
) :: begin1n(A,B,m) :: out(n) ::

in(n) :: end1
n(B,A,m)

σ : n 7→ n, n 7→ m



Table 4Concretization functions
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{I} if M = I

{n | ⌊⌊n⌋⌋ = ⌊⌊m⌋⌋} if M = m

{y | ⌊⌊y⌋⌋ = ⌊⌊x⌋⌋} if M = x

{k′I
+ | ⌊⌊k′I ⌋⌋ = ⌊⌊kI ⌋⌋} if M = k+

I

{k′I
− | ⌊⌊k′I ⌋⌋ = ⌊⌊kI ⌋⌋} if M = k−I

ID ∪K + ∪ME ∪KE if M = E

γtrm(a) if M ∈ {a(x),a
i,ai

(x)}

{Mσ | ∀u ∈ dom(σ),σ(u) ∈ γtrm(u)} otherwise

γpath(s) , {(s,σ) | |s| = |s| = n ∧ (i) ∀i ∈ [1,n],∃σi s.t. πi(s)σi = πi(s) ∧ (s ⊢ (v, j) = (v′, j ′) ⇒ σ j(v) = σ j ′(v
′)) ∧

(ii) (s ⊢ (v,n) = (v′,k) ∧ σk(v
′) = a) ⇔ σ(v) = a}

γpset(S) , { ({s1, . . . ,sn},σ) | S = {s1, . . . ,sn} ∧ ∀i ∈ [1,n],(si ,σi) ∈ γpath(si) ∧ σ =
U

i=1,n
σi 6=↑}

γnet(C ) , {〈s,P〉 | (i) ∀i ∈ [1,n],∃Qi ∈ nodes(C ),Si ∈ paths(C ,Qi),(Si ,σi) ∈ γpset(Si) s.t.Si = Sj :: πi(s), with j < i ∧
(ii) ∀Q∈ thread(P), ∃i ∈ [1,n],σ s.t.Q = Qiσ ∧ σ⊎σi 6=↑ }

Notation: πi(s) yields thei-th action ins

s yields the trace obtained froms by replacing each occurrence ofincom(G1,G2) with in(G2)

σ1⊎σ2 = σ1∪σ2 if σ1 6=↑ ∧ σ2 6=↑ ∧ u ∈ dom(σ1)∩dom(σ2) ⇒ σ1(u) = σ2(u)
σ1⊎σ2 =↑ otherwise

Sinces ⊢ (n(x),6) = (n,9), n(x) andn are instantiated with
the same namen. Similarly, sinces ⊢ (m(z),6) = (m,9),
m andm(z) are instantiated with the same namem. Notice
also that the path guarantees authenticity and the trace guar-
antees strong authenticity.

Path setsThe concretization of a path set is given by the
concretization of the paths occurring therein and by the
union of the corresponding instantiations. It is worth to
mention that the instantiation of the messages in last thread
has to be the same (

U

i=1,n
σi 6=↑): the unionσ1⊎σ2 succeeds

only when the abstract names substituted by bothσ1 andσ2

are bound to the sameρ-spi name.

Configurations The concretization functionγnet : C 7→
{〈s1,P1〉, . . . ,〈sn,Pn〉} takes as input a causal graph and
yields a set ofρ-spi configurations satisfying two con-
straints, the former concerning traces and the latter concern-
ing processes. In the following, we letS range overρ-spi
trace sets.

i for every actionτi in the trace there exists a nodeQi

in the causal graph, a path setSi associated toQi and
a trace setSi such thatSi is an instantiation ofSi

((Si ,σi) ∈ γpset(Si)), whereSi is a trace set associated
to a preceding action in the trace, extended withτi .

ii for every threadQ of the process in theρ-spi config-
uration, there exists a nodeQi in the causal graph, a
path setSi , a trace setSi and an instantiationσi such

thatQ = Qiσ, whereσ is compatible with the name in-
stantiationσi given by the concretization of the path set
associated toτi . in the last thread.

Intuitively, condition(i) requires that the actions in the trace
respect the causality paths induced by the causal graph and
condition(ii) requires that every process has an abstraction
in the causal graph and the trace respects the causality paths
associated to such a node.

Finally, we state the soundness results of the abstract in-
terpretation. The following theorem says that the causal
graph generated from a process is an abstraction of the con-
figuration composed of such a process and the empty trace.

Theorem 1 (Soundness)If graph(P) = C , then〈ε,P〉 ∈
γnet(C ).

The following theorem says that the set of configurations
abstracted by a causal graph is closed under process reduc-
tion, i.e., causal graphs are a sound abstraction of theρ-spi
semantics.

Theorem 2 (Preservation) Let C be cycle-invariant. If
〈s,P〉→ 〈s′,P′〉 and〈s,P〉 ∈ γnet(C ), then〈s′,P′〉 ∈ γnet(C ).

5 Safety Results

In this section we state the safety results of our static
analysis technique. As stated by the following definition,
a causal graph guarantees the secrecy of a namev, if the
abstract environment cannot deduce any term which is equal
to v up to index erasure.



Definition 8 (Abstract secrecy) A causal graphC guar-
antees the secrecy ofv if and only if outmsg(nodes(C )) ⊢ v′

implies⌈v⌉ 6= ⌈v′⌉.

As formalized below, a path guarantees authenticity if every
end assertion is preceded by a corresponding begin asser-
tion and the terms occurring therein are related by equality
constraints. This guarantees that authenticity carries over
the action sequences abstracted by the path. A causal graph
guarantees authenticity if for everyendi

G1
(A,B,G2).P and

S ∈ paths(C ,endi
G1

(A,B,G2).P), there exists a path inS
containing a suitable begin assertion. In the following, we
write G ≃s,i, j G′, read asG is equivalent toG′ in s, if the
two terms are equal component-wise, i.e., for everyk such
that πk(G) = v andπk(G′) = v′, we have thatv andv′ are
either the same identity or possibly labelled messages satis-
fying s ⊢ (v, i) = (v′, j). This guarantees that the two terms
abstract the sameρ-spi term.

Definition 9 (Abstract Authenticity) A paths guarantees
authenticity if and only if for every j such thatπ j(s) =

endi
G1

(A,B,G2), there existG′
1,G

′
2, j ′ < j s.t. π j ′(s) =

begini
G′

1
(B,A,G′

2), G1 ≃s, j , j ′ G
′
1 andG2 ≃s, j , j ′ G

′
2.

A causal graph C guarantees authenticity
iff for every endi

G1
(A,B,G2).P ∈ nodes(C ) and

S ∈ paths(C , endi
G1

(A,B,G2).P), there exists s ∈ S

s.t. s :: endi
G1

(A,B,G2) guarantees authenticity.

For example, the pathd in Example 4 guarantees au-
thenticity as the end assertion is preceded by a cor-
responding begin assertion and the messages occurring
therein are equivalent. As a matter of fact, everyS ∈
paths(graph(Prot),end1

n(B,A,m)) contains a path guaran-
teeing authenticity. Thusgraph(Prot) guarantees authentic-
ity. The following theorems state that causal graphs consti-
tute a sound model for the static verification of secrecy and
authenticity. In particular, the next theorem says that if the
causal graph associated withP guarantees the secrecy ofv,
thenP guarantees the secrecy of any concretization ofv.

Theorem 3 (Secrecy)Let P be a process andC =
graph(P) a cycle-invariant causal graph. IfC guaran-
tees the secrecy ofv then P guarantees the secrecy of any
v∈ γtrm(v).

For instance, the causal graph of Example 3 guarantees
the secrecy ofm and, consequently, the protocol of Exam-
ple 1 guarantees the secrecy of the authenticated message
in every protocol session. In the following we say that a
process isnonce lineariff (i) every end assertion has the
form endi

n(I ,J,M) and is preceded bynew(n) and (ii) if
endi

n(I ,J,M) occurs inside the scope of a replication then
new(n) occurs inside the scope of the same replication. In
fact, this syntactic condition suffices to prove that authentic-
ity on causal graphs implies strong authenticity on theρ-spi
processes abstracted by such causal graphs.

Theorem 4 (Authenticity) Let P be a process andC =
graph(P) be cycle-invariant. IfC guarantees authenticity,
then P guarantees weak authenticity. IfC guarantees au-
thenticity and P is nonce linear, then P guarantees strong
authenticity.

This means that causal graphs, which express the causality
among process events, are a sound (and decidable) model
for proving weak authenticity while the freshness of authen-
tication requests, namely the condition distinguishing weak
from strong authenticity, may be directly verified on the
syntax ofρ-spi processes. For example, sincegraph(Prot)
guarantees authenticity andProt is nonce-linear, thenProt
guarantees strong authenticity. Notice thatProt describes
an unbounded number of instances ofA acting as claimant
in protocol sessions withB and an unbounded number of
instances ofB acting as verifier in protocol sessions with
A. We can easily extend the protocol specification with the
parallel composition ofA andB running protocol sessions
with an arbitrary malicious partyE. Even in this scenario,
the protocol turns out to be safe.

6 Related Work

Causality-based modelling of concurrency is a widely
studied research topic and several important results have
been proposed. Event structures [32] are a general and
expressive framework for modelling the causality among
events in concurrent and distributed systems. This model
captures the dependency among events and the interleav-
ing of concurrent events by a partial order. A tricky prob-
lem when abstracting away from the multiplicity of proto-
col sessions is that an event may causally precede itself,
thus loosing the antisymmetry property and, consequently,
the partial order. This is easily seen by thinking of a pro-
cess inputting a message and then sending out another mes-
sage, which is used by the environment to construct a mes-
sage sent to a replication of the former process and so on.
In this scenario, since we abstract away from the multi-
plicity of protocol sessions, the input is causally preceded
by itself. The safety of this kind of abstraction requires
to determine which events abstract over the same protocol
session and which ones may instead abstract over differ-
ent protocol sessions. Thus a more specific structure was
needed, containing some additional information about mes-
sage integrity, and relying on paths representing computa-
tional flows instead of a partial order among events. Crazzo-
lara and Winskel have applied Petri nets [30], a well-known
causality-based model for distributed systems, to the analy-
sis of cryptographic protocols [14], although this work does
not abstract away from the multiplicity of sessions.

Type systems proved successful in analyzing different
security properties of cryptographic protocols, e.g., [1,2]



for secrecy and [23, 12] for authenticity. As mentioned in
the introduction, they exploit syntactic patterns of security
protocols while providing guaranteed compositionality, but
they constrain the class of analyzable protocols and are typ-
ically specific to individual security properties. On the one
hand, the type system in [23] is very general and applies
to several settings including authorization policies [21]and
key-compromise [24], but type definitions quickly get cum-
bersome and no type-inference algorithm is currently avail-
able. The type system in [12] is compositional, modular,
and allows for automatic type inference, but this generality
is paid by restricting the form of protocols to some specific
tagged patterns.

Table 5Variant of NSL

A B
oo {B,nA,m}

k+A
{A,nB,nA}k+B

//

begin1
nB

(B,A,m)

oo {nB}k+B

end1
nB

(A,B,m)

As a
simple ex-
ample, to
the best of
our knowl-
edge, the
protocol
in Table
5 can be
analyzed
by neither
the type system from [23] nor the one from [12]. This
protocol is a variation of the Needham-Schroeder-Lowe
public-key authentication protocol, in whichB sends a
messagem to A in the first message exchange. From
A’s point of view, the authentication of this message is
guaranteed by the handshake with noncenB (second and
third message). The problem is thatmoccurs within neither
the second nor the third message, thus resulting free in the
corresponding type definitions and not enabling the end
assertion based on noncenB. Furthermore, as opposed to
existing type-systems that in case of failure do not yield
any information on possible attacks, a simple inspection of
the causal graph gives useful insights on the actual protocol
run-time behaviour and, in fact, attack derivation is often
immediate.

The control-flow analysis for message authenticity pro-
posed by Bodeiet al. in [8] and recently extended in [22]
to detect replay attacks is closely related to our approach.
Although the underlying static analysis techniques are dif-
ferent, both of the approaches rely on an abstraction of the
protocol semantics and enjoy guaranteed termination. How-
ever, due to the undecidability of secrecy and authenticity,
they perform an overapproximation that necessarily rules
out safe protocols. Our approach relies on the causality re-
lation among process events while the control-flow analysis
of [8] statically verifies the origin and destination of mes-
sages and, more precisely, checks whether a message en-
crypted byA and intended forB does indeed come fromA
and reachesB only. A formal comparison between the tech-

niques is thus interesting but it is left as future work. An-
other interesting work is an abstract interpretation for mo-
bile systems and, as an instance, for spi-calculus proposed
by Feret [19]. The analysis deals with the origin of mes-
sages but does not address the freshness of authentication
requests.

Strand spaces [27, 26] are an effective framework for the
analysis of cryptographic protocols. Proofs of safety typ-
ically rely on the causality among protocol events and, in
a recent paper [16], authors investigate how to automati-
cally detect those specific executions, called shapes, among
the infinitely many possible, that should be considered for
analysis. There are interesting similarities between shapes
and causal graphs and, although strand spaces do not enjoy
guaranteed termination, we plan to exploit the underlying
ideas to further refine the expressiveness of our analysis.

Proverif [5, 3] constitutes a powerful tool that takes as in-
put spi-like protocol descriptions and, by Horn clause reso-
lution, verifies a variety of different security propertiessuch
as secrecy, perfect secrecy and authenticity. The analysisis
general and automated but guarantees termination only for
protocols where every ciphertext is tagged differently [6].

7 Conclusion and Future Work

We have proposed a static analysis technique for ana-
lyzing security protocols based on abstract interpretation of
the causality among process events. We have specifically
shown that secrecy and authenticity can be soundly charac-
terized in terms of causality, but we remark that the analysis
is not tailored to these security properties but may as well
be applicable to verify properties formulated in terms of
causality among the actions of execution traces. The anal-
ysis enjoys guaranteed termination since the size of causal
graphs is finite, the generation of paths terminates since in-
put edges are inspected only once, thus avoiding loops due
to cycles in the graph, and the analysis is linear on the num-
ber of paths. We have implemented a tool for automating
the analysis, and we have applied the tool to some com-
mon protocols in the literature [18]. The analyses termi-
nated within a few seconds and provided safety proofs for
the correct versions of the protocols while failing to vali-
date the flawed ones. Remarkably, attacks are often easily
derivable by an inspection of the path sets. The only human
effort required is to capture the protocol in the dialect of the
spi-calculus which is often straightforwardly derivable from
the protocol description.

As future work, we plan to investigate a more sophis-
ticated abstraction allowing us to relax some of the con-
straints that are currently imposed by our analysis: for in-
stance, our experiments show that some false positives oc-
cur when an authenticated term, e.g., a session key, has to be
kept secret until authentication requests are accepted andis



then leaked out. This kind of scenario turns out to be prob-
lematic also for the abstraction of Horn clauses in the decid-
ableH1 subclass proposed by Goubault-Larrecqet al. [25].
A first reason for such false positives is that the leakage of
names previously kept secret may introduce cycles in the
graph that break the cycle-invariance condition. A possible
solution is to augment the number of times each input edge
can be inspected, by refining functionpathsand the cycle-
invariance definition accordingly. This refinement enhances
the precision of the abstraction at the price of increasing the
number and size of path sets and thus the complexity of the
analysis. A second reason is that the check on the fresh-
ness of nonces is used so far only as sufficient condition for
proving that weak authenticity implies strong authenticity:
more generally, nonce checks guarantee that different pro-
tocol sessions rely on different nonces and we believe that
this information can be used for refining the analysis and,
more precisely, for excluding those paths where a check on
the same nonce is performed more than once, thus ruling
out this kind of false positives.

For the sake of readability, we have not considered oper-
ators such as tags and hashes: their insertion in our frame-
work does not induce any complication but is left as future
work. Finally, in this paper we have only considered the
instantiation of variables with names. The interesting com-
plication arising when variables can be instantiated with
ciphertexts is the capability of the environment to forge,
and make trusted participants create, arbitrarily nested ci-
phertexts, thus potentially causing an infinite number of
branches in the input. We plan to solve this problem by an
overapproximation guaranteeing that the number of cipher-
texts generated by trusted principals in the abstract model
is finite and by abstracting away from the ciphertexts gen-
erated by the environment.
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A Semantics ofρ-spi

The dynamics ofρ-spi is formalized by means of a transi-
tion relation, which is reported in Table 6, betweenconfig-
urations, i.e., pairs〈s,P〉, wheres is a sequence of actions
andP is a closed process. Some transitions apply substitu-
tions to processes: formally, a substitutionσ : x 7→ G is a
function from variables to run-time messages. Often sub-
stitutions are written explicitly by[G1/x1, . . . ,Gn/xn]. The

Table 6Transition System forρ-spi

Transition rules: We omit the symmetric rule of PAR.

NAME RES
n /∈ bn(s)∪ fn(s)

〈s,new(n).P〉→〈s :: new(n),P〉

KEY-PAIR RES
k−I ,k+

I /∈ bn(s)∪ fn(s)

〈s,new∓(kI ).P〉→〈s :: new∓(kI ),P〉

INPUT
s⊢ G σ = bind(M,G) 6=↑

〈s, in(M).P〉 → 〈s :: in(Mσ),Pσ〉

OUTPUT

〈s,out(G).P〉 → 〈s :: out(G),P〉

BEGIN

〈s,begini
G(A, I ,G′).P〉→ 〈s :: begini

G(A, I ,G′),P〉

END

〈s,endi
G(A, I ,G′).P〉 → 〈s :: endi

G(A, I ,G′),P〉

PRINCIPAL
〈s,P〉 → 〈s :: t,P′〉

〈s,A⊲P〉 → 〈s :: t,A⊲P′〉

PAR
〈s,P〉 → 〈s′,P′〉

〈s,P|Q〉→〈s′,P′|Q〉

REPLICATION

〈s, !P〉→〈s,P | !P〉

application of the substitutionσ to the processP is denoted
by Pσ and applies only to free occurrences of the variables
in P. NAME RES generates a new namen by checking that
it differs from all the names already used in the traces. It
is possible to force this condition by applyingα-conversion
to n, i.e., by substitutingn and all of its free occurrences
in P with a different name having the same canonical rep-
resentative. Similar reasoning applies to the restrictionof
key-pairs. INPUT requires messageG, read from the net-
work, to be computable by the environment: the environ-
ment knowledge is defined by the message manipulation
rules reported in Table 7 and discussed below. The run-time
messageG is read only if it can be pattern-matched with
the input termM via the functionbind, which is defined in
Table 7 and discussed below. We writea to denote the de-
cryption key corresponding toa. We haven = n, kIJ = kIJ ,
I = I , k+

I = k−I andk−I = k+
I . OUTPUT, BEGIN, END, and

PRINCIPAL are self-explanatory. Finally, PAR interleaves
two different protocol executions and REPLICATION arbi-
trarily replicates a principal. Functionbind takes as input a
static termM and a run-time messageG and, in case it ex-
ists, yields the substitutionσ which makesM equal toG, up



Table 7Deduction system and binding
Message Manipulation Rules

OUT
out(G) ∈ s

s⊢ G

ENV
a /∈ bn(s)

s⊢ a

PAIR
s⊢ G1 s⊢ G2

s⊢ (G1,G2)

PAIR DES
s⊢ (G1,G2)

s⊢ G1 s⊢ G2

ENC
s⊢ G s⊢ a

s⊢ {G}a

DEC
s⊢ {G}a s⊢ a

s⊢ G

PUBLIC KEYS

s⊢ k+
I

ENEMY KEYS

s⊢ kEI s⊢ kIE s⊢ k−E

Binding

bind(a,a) = []
bind(x,a) = [a/x]
bind((M,M′),(G,G′)) = bind(M,G)⊎bind(M′,G′)
bind({M}a,{G}a) = bind(M,G)
bind(M,G) =↑ otherwise

to the different notation for encryption and decryption keys.
If pattern-matching fails,bindreturns↑. This function is de-
fined by cases on the structure of termM: a name matches
a name with empty substitution; a variable can be bound to
a name; pairs match pairs yielding a substitution which is
the union⊎ of the ones achieved for the subterms; finally,
decryptions must be performed with the correct decryption
key. In all the other cases,bind returns failure↑.

The knowledge of the environment is formalized by the
deduction system reported in Table 7. Rule OUT says that
every message sent on the network is known by the envi-
ronment. ENV allows the environment to know any name
which is not bound (i.e., restricted) in the trace. By PAIR

and PAIR DES, the environment can construct and destruct
pairs. By ENC, and DEC the environment can encrypt and
decrypt messages only knowing the required keys. By PUB-
LIC KEYS, all the public keys are known to the environ-
ment. Finally, by ENEMY KEYS, the environment may be
provided with its own private keys and with long-term keys
shared with honest participants. This gives the possibility
to the enemy to interact with the other participants by pre-
tending to be a trusted principal.

B Semantics of Causal Graphs

The knowledge of the abstract environment is formal-
ized by the judgementG ⊢ G, meaning that the environ-
ment can constructG given the knowledge of the terms in
G : this judgement is defined by a deduction system reported
in Table 8. The environment knows every term sent on the
network (OUT) and the special nameE (ENV), it can con-
struct and destruct pairs (PAIR and PAIR DES) and encrypt

Table 8Deduction System and Binding

OUT
G ∈ G

G ⊢ G

ENV

G ⊢ E

PAIR
G ⊢ G1 G ⊢ G2

G ⊢ (G1,G2)

PAIR DES
G ⊢ (G1,G2)

G ⊢ G1 G ⊢ G2

ENC
G ⊢ G G ⊢ v

G ⊢ {G}v

DEC
G ⊢ {G}v G ⊢ v′ inv(v,v′)

G ⊢ G

Binding

bind(v1,v2) = (v2, []) if [v1] = [v2] ∨
([v1] = E ∧ [v2] ∈ PN) ∨
([v2] = E ∧ [v1] ∈ PN)

bind(x,v) = (v(x), [v(x)/x])

bind((M,M′),(G,G′)) =
((G1,G2),(σ1⊎σ2))

if bind(M,G) = (G1,σ1) ∧
bind(M′,G′) = (G2,σ2)

bind({M}v,{G}v′ ) = ({G′}v′ ,σ) if bind(M,G) = (G′,σ) ∧
inv(v,v′)

bind(M,G) =↑ otherwise

Notation:

PN, {a | ∃k, I,E s.t.a ∈ {I,k+
I ,k−E ,kIE,kEI,E }}.

In OUT, PAIR DES, and DEC, G,G1, andG2 are not inPN.
inv(v,v′) , ([v′] 6= E ⇒ bind(v, [v′]) 6=↑) ∧

([v] 6= E ⇒ bind([v],v′) 6=↑)

and decrypt terms only knowing the required keys (ENC and
DEC). For reducing the number of terms known to the en-
vironment and abstracting the same set ofρ-spi terms, we
prevent the environment from deriving labelled version of
identities, public keys, enemy’s keys andE , which abstract
the sameρ-spi terms asE .

Functionbind, reported in Table 8, defines the pattern-
matching among terms. This function takes as input a term
M and a ground termG and, if the two terms match, yields
the termG′ obtained by labellingG according to the vari-
ables inM and the corresponding substitution. If pattern-
matching fails,bind returns↑. Functionbind is defined by
cases on the structure of termM: a name matches itself and,
similarly, the nameE matches identities, public keys and
enemy’s keys; a variable can only be bound to an atomic
namev; pattern-matching of pairs and ciphertexts is de-
fined component-wise: notice that decryptions must be per-
formed by the correct decryption key. In all the other cases,
bind returns failure↑. Functionv yields the decryption key
matching the encryption keyv: this function is smoothly
extended to arbitrary abstract termsG by inverting the en-
cryption keys inG.
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