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Abstract

Abstract Interpretation, one of the most applied techniques for semantics based static analysis of software,
is based on two main key-concepts: the correspondence between concrete and abstract semantics through Galois
connections/insertions, and the feasibility of a fixed point computation of the abstract semantics, through the fast
convergence of widening operators. The latter point is crucial to ensure the scalability of the analysis to large
software systems. The aim of this paper is to set the ground for a systematic design of widening and narrowing
operators, by comparing the different definitions introduced in the literature and by discussing how to tune them in
case of domain abstraction and domains’ combination through cartesian and reduced products.

Keywords: Static Analysis, Abstract Interpretation, Abstract Domains, Widening Operators, Narrowing Oper-
ators.

1 Introduction

Abstract Interpretation is a general theory of approximation of mathematical structures, in particular those
involved in the semantic models of computer systems, that has been successfully applied for the static analysis of
software systems. This theory is based on two main key-concepts: the correspondence between concrete and
abstract semantics through Galois connections/insertions, and the feasibility of a fixed point computation of
the abstract semantics, through, the combination of widening operators (to get fast convergence) and narrowing
operators (to improve the accuracy of the resulting analysis).

While Galois connections have been widely studied, yielding to a suite of general techniques to manage the
combination of abstract domains, e.g. different kind of products [13, 24, 8], and more sophisticated notions like the
quotient [10], the complement [9], and the powerset [22] of abstract domains, not much attention has been given
to provide general results about widening and narrowing operators.

Nevertheless, widening and narrowing operators play a crucial role in particular when infinite abstract domains
are considered to ensure the scalability of the analysis to large software systems, as it has been shown in the case
of the Astrée project for analysis of absence of run-time error of avionic critical software [11].

The first infinite abstract domain (that of intervals) was introduced in [12]. This abstract domain was later used
to prove that, thanks to widening and narrowing operators, infinite abstract domains can lead to effective static
analyses for a given programming language that are strictly more precise and equally efficient than any other one
using a finite abstract domain or an abstract domain satisfying chain conditions [16].

Specific widening and narrowing operators have been also designed not only for numerical domains but also for
type graphs [25], in domains for reordering CLP(RLin) programs [32], and in the analysis of programs containing
digital filters [21], just to name a few. More recently, widenings have been used also to infer loop invariants inside
an STM solver [26], in trace partitioning abstract domains [33] and in string analysis for string-generating programs
[6].

∗Extended version of A. Cortesi, “Widening Operators for Abstract Interpretation” [7].
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The main challenge for widening and narrowing operators is when considering numerical domains. For instance,
the original widening operator proposed by Cousot and Halbwachs [17] for the domain of convex polyhedra, has
been improved by recent works by Bagnara et al [1], and further refined for the domain of pentagons by Logozzo
et.al. in [27]. In [2], the authors define three generic widening methodologies for a finite powerset abstract domain.
The widening operators are obtained by lifting any widening operator defined on the base-level abstract domain.
The proposed techniques are instantiated on powersets of convex polyhedra, a domain for which no non-trivial
widening operator was previously known.

We observed that, with the noticeable exception of [16, 2], there is still a lack of general techniques that support
the systematic construction of widening or narrowing operators. This is mainly due to the fact that the definition of
widening provides extremely weak algebraic properties, while it is extremely demanding with respect to convergence
and termination.

The aim of the paper is to fill this gap, and to set the ground for a systematic design of widening and narrowing
operators either when they are defined on sets and when they are refined on pairs.
The main contributions can be summarized as follows:

1. the formal definitions of the widening and narrowing operations already introduced in the literature;

2. the proof that the widening and narrowing operators are preserved by abstraction;

3. an indication as how to construct widening operators for a product domain such as the reduced and cartesian
products.

Moreover we prove that, for Galois Insertions, widening and narrowing operators are preserved by abstraction and
we show how the operators can be combined in the cartesian and reduced product of abstract domains.
The advantages of suitable combinations of widening and narrowing operators are illustrated on a suite of examples,
ranging from interval to powerset domains.

The rest of this paper is organized as follows. The next section reports some preliminary notions. In Section
3 we analyze different notions of widening and narrowing operators and we show their weakness points and their
mutual relations. In the Section 4 we show how widening and narrowing behave with respect to the combination
of domains through Galois insertions. Finally, Section 5 concludes.

2 Basic Definitions

Let us briefly recall some basic definitions on orders and lattices [4, 18].

Definition 1 (poset) If P is a non-empty set, then by a partial order on P we mean a binary relation ≤ on
P which is reflexive, anti-symmetric, and transitive. By a poset (P,≤) we shall mean a set P on which there is
defined a partial order ≤.

Definition 2 (upper and lower bounds) Let P be a poset, and let S be a subset of P . An element x ∈ P is
an upper bound of S if s ≤ x for all s ∈ S. If the set of the upper bounds of S has a least element z, then z is
called the least upper bound (lub) of S, and will be denoted by z = tS.
By duality, an element x ∈ P is a lower bound of S if x ≤ s for all s ∈ S. If the set of the lower bounds of S has
a maximum element z, then z is called the greatest lower bound (glb) of S, and will be denoted by z = uS.

Looking ahead, we shall often adopt the neater notation x t y in place of t{x, y}, and x u y in place of u{x, y}.

Definition 3 (directed set, cpo) Let S be a subset of a poset (P,≤). Then S is said to be directed if for each
pair of elements x, y ∈ S, there exists z ∈ S such that x ≤ z and y ≤ z.

We say that a poset (P,≤) is a cpo (complete partially ordered set) if P has a bottom element ⊥, and tD exists
for each directed subset D of P .

Definition 4 (chain) A chain of a poset (P,≤) is a subset C ⊆ P such that ∀x, y ∈ C : (x ≤ y) ∨ (y ≤ x).
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Definition 5 (ACC and DCC) A poset (P,≤) is said to satisfy the ascending chain condition (ACC) if every
ascending chain x1 ≤ x2 ≤ . . . of elements of P is eventually stationary, that is, there is some positive integer n
such that xm = xn for all m > n. By duality, a poset (P,≤) satisfies the descending chain condition (DCC) if
every descending chain x1 ≥ x2 ≥ . . . of elements of P is strictly decreasing that is ∃k ≥ 0 : ∀j ≥ k : xk = xj.

Definition 6 (join and meet semi lattice) A join semi lattice and a meet semi lattice are poset (P,≤) such
that each pair of elements x, y ∈ P has, respectively, least upper bound (x t y) and great lower bound (x u y).

Definition 7 (lattice) Let P be a non empty poset. If x t y and x u y exist for all x, y ∈ P , then P is a lattice.
Moreover, if tS and uS exist for every S ⊆ P , then P is a complete lattice.

In what follows a function’s domain and range are indicated by subscripts: ε
XY

is a function from X to Y . The
ordering and the least upper bound operator defined in X are denoted by v

X
and t

X
, respectively.

Definition 8 (Galois connection and insertion) Let C and D be complete lattices, and consider two func-
tions: γ

DC
: D → C and α

CD
: C → D. The tuple G

CD
= (γ

DC
, C,D, α

CD
) is a Galois connection if

∀c∈C and ∀d∈D : α
CD

(c) ≤
D
d⇔ c ≤

C
γ

DC
(d).

G
CD

is a Galois insertion when γ
DC

is injective or, equivalently, when α
CD

is onto.

In a Galois connection or insertion G
CD
, the functions γ

DC
and α

CD
are called the concretization and the abstraction

function, respectively. The following are well-known properties of these functions, see [15].

Lemma 1 Let C and D be complete lattices, and consider two monotone functions γ
DC

: D → C and α
CD

: C → D.
Then, G

CD
is a Galois connection if and only if

- γ
DC
◦ α

CD
is extensive: ∀c ∈ C, c ≤

C
γ

DC
(α

CD
(c));

- α
CD
◦ γ

DC
is reductive: ∀d ∈ D, α

CD
(γ

DC
(d)) ≤

D
d.

Moreover, G
CD

is a Galois insertion if it is a Galois connection and α
CD
◦ γ

DC
is the identity function.

Lemma 2 Let G
CD

be a Galois connection/insertion,

- if α
CD

and γ
DC

form a Galois connection, then one of the two functions determines the other one. More
precisely, for d ∈ D, γ

DC
(d) = t

C
{c ∈ C | α

CD
(c) v

D
d}, and similarly, for c ∈ C,α

CD
(c) = u

D
{d ∈

D | c v
C
γ

DC
(d)}. Each function is called the adjoint of the other one.

- α
CD
◦ γ

DC
◦ α

CD
= α

CD
, and γ

DC
◦ α

CD
γ

DC
= γ

DC
.

3 Widening and Narrowing Operators

In Abstract Interpretation, the collecting semantics of a program is expressed as a least fix-point of a set of
equations. The equations are solved over some abstract domain that captures the property of interest to be
analyzed. Typically, the equations are solved iteratively; that is, successive approximations of the solution is
computed until a fix-point is reached. However, for many useful abstract domains, such chains can be either
infinite or too long to let the analysis be efficient. To make use of these domains, abstract interpretation theory
provides very powerful tools, the widening operators, that attempt to predict the fix-point based on the sequence of
approximations computed on earlier iterations of the analysis on a cpo or on a (complete) lattice. The degradation
of precision of the solution obtained by widening can be partly restored by further applying a narrowing operator
[16].
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3.1 Set- and Pair-Widening Operators

In the Abstract Interpretation literature, two different general definitions of widening operator have been in-
troduced. The first one defines a widening operator as a partial function on the powerset of a poset P , while the
second one defines it as a binary (total) function on a poset P . In both cases, two main requirements are given:
first, the widening has to be an extrapolation operator, second, it has to guarantee termination when applied to
increasing sequences.

Definition 9 (set-widening [13, 15]) Let (P,≤) be a poset. A set-widening operator is a partial function ∇? :
℘(P ) 9 P such that

(i) Covering: Let S be an element of ℘(P ). If ∇?(S) is defined, then ∀x ∈ S, x ≤ ∇?(S).

(ii) Termination: For every ascending chain {xi}i≥0, the chain defined as

y0 = x0, yi = ∇?({xj | 0 ≤ j ≤ i})

is ascending too, and it stabilizes after a finite number of terms.

The definition above has been used recently in [19, 20], for fix-point computations over sets represented as automata,
in a model checking approach.

Example 1 Consider the lattice of intervals L = {⊥} ∪ {[`, u] | ` ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞}, ` ≤ u}, ordered
by: ∀x ∈ L,⊥ ≤ x and [`0, u0] ≤ [`1, u1] if `1 ≤ `0 and u0 ≤ u1. Let k be a fixed positive integer constant, and I
be any set of indices. Consider the threshold widening operator defined on L by:

∇k
?({⊥}) = ⊥

∇k
?({⊥} ∪ S) = ∇k

?(S)
∇k

?({[`i, ui] : i ∈ I}) = [h1, h2]

where
h1 = min{`i : i ∈ I} if min{`i : i ∈ I} > −k, else −∞
h2 = max{ui : i ∈ I} if max{ui : i ∈ I}) < k, else +∞.

Observe that for all k, ∇k
? is associative, and monotone. Observe that ∇k

∗ may widen also the singletons. For
instance, we get ∇7

?({[−8, 4]}) = [−∞, 4].

Definition 10 (pair-widening [16], [31]) Let (P,≤) be a poset. A pair-widening operator is a binary operator
∇ : P × P → P such that

(i) Covering: ∀x, y ∈ P : x ≤ x∇y, and y ≤ x∇y.

(ii) Termination: For every ascending chain {xi}i≥0, the ascending chain defined as

y0 = x0, yi+1 = yi∇xi+1

stabilizes after a finite number of terms.

Definition 11 (extrapolator) Let (P,≤) be a poset. A binary operator • : P × P → P is called extrapolator if
it satisfies the covering property, i.e. ∀x, y ∈ P : x ≤ x • y, and y ≤ x • y.

Observe that pair-widening operators are not necessarily neither commutative neither monotone, nor associative,
while these properties are crucial for chaotic iteration fixpoint algorithms [31].

Example 2 Consider the binary operator introduced in [12] on the same lattice of Intervals of Example 1:

⊥∇x = x
x∇⊥ = x

[`0, u0]∇[`1, u1] = [if `1 < `0 then −∞ else `0,
if u0 < u1 then +∞ else u0].
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∇ is a pair-widening operator, as it satisfies both covering and termination requirements of Def.10.
Observe that the operator is not commutative, as for instance

[2, 3]∇[1, 4] = [−∞,+∞]
[1, 4]∇[2, 3] = [1, 4]

Moreover, in order to see that it is not monotone, consider [0, 1] ≤ [0, 3]. We have:

[0, 1]∇[0, 2] = [0 +∞]
[0, 3]∇[0, 2] = [0, 3].

and of course [0,+∞] is not smaller or equal to [0, 3]. Finally, observe that associativity does not hold either:

[0, 2]∇([0, 1]∇[0, 2]) = [0 +∞]
([0, 2]∇[0, 1])∇[0, 2] = [0, 2].

Let us come back to the two definitions of widening operators introduced before. As a first contribution, we see
how to build a set-widening out of a pair-widening operator.

Theorem 1 Let (P,≤) be a poset, and let ∇ : P×P → P be a pair-widening operator on P . Define ∇? : ℘(P ) 9 P
such that:

- dom(∇?) = R1 ∪R2, where
R1 = {{x, y} | x, y ∈ P}, and
R2 = {S ⊆ P | S is a finite ascending chain}.

- ∀{x, y} ∈ R1,

∇?({x, y}) =def

{
x∇y if x ≤ y
z ∈ {x∇y, y∇x} randomly, otherwise.

- ∀S = {xi | x0 ≤ x1 ≤ · · · ≤ xj} ∈ R2,
∇?(S) =def (((x0∇x1)∇x2 . . . )∇xj).

Then ∇? is a set-widening operator.

Proof: We have to show that both covering and termination requirements hold for ∇?.

- Covering. Let S ⊆ P such that ∇?(S) is defined. We have to show that ∀s ∈ S : s ≤ ∇?(S).
Case S ∈ R1: it follows from the definition of ∇.
Case S ∈ R2: it follows by induction on the length of the ascending chain, and by the transitivity of the
partial order.

- Termination. Consider the ascending chain {xi}i≥0. Consider the corresponding ascending chain {ŷi}i≥0

obtained by ∇ (see Def. 10), and the ascending chain {yi}i≥0 obtained using ∇? (see Def. 9). We can prove
by induction that for each index i, yi = ŷi.
The basis is true, as y0 = x0 = ŷ0.
Consider the inductive step:

yi+1 = ∇?({xj | 0 ≤ j ≤ i+ 1}) by (ii) of Def. 9
= (((x0∇x1)∇x2 . . . )∇xi+1) by definition of ∇?

= ∇?({xj | 0 ≤ j ≤ i})∇xi+1 again by definition of ∇?

= ŷi∇xi+1 by inductive hypotesis
= ŷi+1 by (ii) of Def. 10

As the sequence {ŷi}i≥0 stabilizes after a finite number of terms, so does {yi}i≥0.
ut

The notion of set-widening is weaker than the notion of pair-widening. This is why, in general, there is no way to
prove the dual of Theorem 1, which can be stated only under restricted conditions.
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Theorem 2 Let (P,≤) be a poset, and let ∇? : ℘(P ) 9 P be a set-widening operator on P such that

- dom(∇?) ⊇ {{x, y} | x, y ∈ P}, and

- ∀S ⊆ P, ∀x ∈ P, if S ∪ {x} ⊆ dom(∇?) then also S ⊆ dom(∇?)

- ∀S ⊆ P, ∀x ∈ P, ∇?(S ∪ {x}) = ∇?({∇?(S), x}).

Then, the binary operator ∇ : P × P → P defined by x∇y = ∇?({x, y}) is a pair-widening operator.

Proof: First, observe that ∇ is well defined. The covering requirement follows immediately from the definition
of ∇ and the covering property of ∇?. Now, consider an ascending chain {xi}i≥0 in P , and the ascending chain
y0 = x0, yi+1 = yi∇xi. As ∇? is a set-widening, we know that the sequence y′0 = x0, y

′
i = ∇?({xj | 0 ≤ j ≤ i}

stabilizes finitely. We show by induction that for each i, yi = y′i. The basis is true, as y0 = x0 = y′0. On the
induction step,

y′i+1 = ∇?({xj | 0 ≤ j ≤ i+ 1} by point (ii) of Def. 9
= ∇?({∇?({xj | 0 ≤ j ≤ i}), xi+1}) by hypothesis on ∇?

= ∇?({y′i, xi+1}) by point (ii) of Def. 9
= ∇?({yi, xi+1}) by inductive hypothesis
= yi∇xi+1 by definition of ∇
= yi+1 by point (ii) of Def. 10.

As the sequence {y′i}i≥0 stabilizes after a finite number of terms, so does {yi}i≥0. ut
Observe that the set-widening operator ∇k

? of Example 1 satisfies the conditions of Theorem 2 above, yielding to
a corresponding pair-widening operator.

3.2 Set- and Pair-Narrowing Operators

Similarly, two different general definitions of narrowing operator have been introduced. The first one defines a
narrowing operator as a partial function on the powerset of a poset P , while the second one defines it as a binary
(total) function on a poset P .

Definition 12 (set-narrowing [15, 19]) Let (P,≤) be a poset. A set-narrowing operator is a partial function
∆? : ℘(P ) 9 P such that

(i) Bounding: Let S be an element of ℘(P ). If ∆?(S) is defined, then glb(S) exists and there exists s ∈ S such
that glb(S) ≤ ∆?(S) ≤ s.

(ii) Termination: For every decreasing chain x0 ≥ x1 ≥ . . ., the chain defined as

y0 = x0, yi = ∆?({xj | 0 ≤ j ≤ i})

is descending too, and it stabilizes after a finite number of terms.

Example 3 Let L be the lattice of intervals introduced in Example 1. We can define ∆?, a narrowing operator,
on L as follows.

∆?({⊥}) = ⊥
∆?({⊥} ∪ S) = ∆?(S)

∆?({[`i, ui] : i ∈ I}) = [h1, h2]

where
h1 = max{`i : i ∈ I}
h2 = min{ui : i ∈ I}

It is easy to verify that it satisfy the termination condition, as it converges immediately on decreasing chains.
Observe that ∆? is associative, and monotone. Observe that ∆? may narrow also the singletons. For instance, we
get ∆?({[−8, 4]}) = [−8, 4] and ∆?({[−8, 6], [1, 5], [−9, 11]}) = [1, 5].
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Example 4 Observe that both conditions (bounding and termination) are required in order to get a narrowing
operator. For instance, on the lattice of intervals on R instead of Z, the operator ∆∗ defined in Example 3 fulfills
the bounding condition but it does not satisfy the termination one. Therefore, it is a not narrowing operator.

Definition 13 (pair-narrowing [14, 16]) Let (P,≤) be a poset. A pair-narrowng operator is a binary operator
∆ : P × P → P such that

(i) Bounding: ∀x, y ∈ P : (x ≤ y) =⇒ (x ≤ (y∆x) ≤ y).

(ii) Termination: For every decreasing chain x0 ≥ x1 ≥ . . ., the decreasing chain defined as

y0 = x0, yi+1 = yi∆xi+1

stabilizes after a finite number of terms.

Observe that pair-narrowing operators are not necessarily neither commutative neither monotone, nor associative.
Moreover observe also that if P is a meet-semi-lattice (the greatest lower bound x u y exists for all x, y ∈ P )
satisfying the decreasing chain condition (no strictly decreasing chain in P can be infinite), then u is a narrowing.

Example 5 Consider the binary operator introduced in [16] on the same lattice of intervals on Z of Example 1:

⊥∆x = ⊥
x∆⊥ = ⊥

[`0, u0]∆[`1, u1] = [if `0 = −∞ then `1 else `0,
if u0 = +∞ then u1 else u0]

∆ is a pair-widening operator, as it satisfies both bounding and termination requirements of Def.13.

[−∞,+∞]∆[−∞, 101] = [−∞, 101]
[1,+∞]∆[50, 100] = [1, 100]

[1, 4]∆[2, 3] = [1, 3]

Let us come back to the two definitions of narrowing operators introduced above. Like in the case of widening, we
study how we can build a set-narrowing operator out of a pair-narrowing operator, and viceversa.

Theorem 3 Let (P,≤) be a poset, and let ∆ : P ×P → P be a pair-narrowing operator on P . Define ∆? : ℘(P ) 9
P such that:

- dom(∆?) = R1 ∪R2, where
R1 = {{x, y} | x, y ∈ P : ∃ glb(x, y)}, and
R2 = {S ⊆ P | S is a finite descending chain}.

- ∀{x, y} ∈ R1,

∆?({x, y}) =def

{
y∆x if x ≤ y
glb({x, y}) otherwise.

- ∀S = {xi | x0 ≥ x1 ≥ · · · ≥ xj} ∈ R2,
∆?(S) =def ((((x0∆x1)∆x2)∆) . . .∆xj).

Then ∆? is a set-narrowing operator.

Proof: We have to show that both bounding and termination requirements hold for ∆?.

- Bounding. Let S ⊆ P such that ∆?(S) is defined. We have to show that glb(S) ≤ ∆?(S) ≤ s.
Case S ∈ R1: it follows from the definition of ∆.
Case S ∈ R2: it follows by induction on the length of the decreasing chain (x0 ≥ x1 ≥ . . . ≥ xj), and by the
transitivity of the partial order.
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- Termination. Consider the decreasing chain {xi}i≥0. Consider the corresponding decreasing chain {ŷi}i≥0

obtained by ∆ (see Def. 13), and the decreasing chain {yi}i≥0 obtained using ∆? (see Def. 12). We can
prove by induction that for each index i, yi = ŷi.
The basis is true, as y0 = x0 = ŷ0.
Consider the inductive step:

yi+1 = ∆?({xj | 0 ≤ j ≤ i+ 1}) by definition of the sequence {yj}j≥0

= (((((x0∆x1)∆x2)∆) . . .∆xi)∆xi+1) by definition of ∆?

= ∆?({xj | 0 ≤ j ≤ i})∆xi+1 again by definition of ∆?

= ŷi∆xi+1 by inductive hypothesis
= ŷi+1 by (ii) of pair-narrowing definition

As the sequence {ŷi}i≥0 stabilizes after a finite number of terms, so does {yi}i≥0.
ut

Theorem 4 Let (P,≤) be a poset, and let ∆? : ℘(P ) 9 P be a set-narrowing operator on P such that

1. dom(∆?) ⊇ {{x, y} | x, y ∈ P}, and

2. ∀S ⊆ P, ∀x ∈ P, if S ∪ {x} ⊆ dom(∆?) then also S ⊆ dom(∆?)

3. ∀S ⊆ P, ∀x ∈ P, ∆?(S ∪ {x}) = ∆?({∆?(S), x}).

Then, the binary operator ∆ : P × P → P defined x∆y = ∆?({x, y}) is a pair-narrowing operator.

Proof: First, observe that ∆ is well defined. The bounding requirement follows immediately from the definition of
∆ and the bounding property of ∆?. Now, consider an descending chain {xi}i≥0 in P , and the descending chain
y0 = x0, yi+1 = yi∆xi+1. As ∆? is a set-narrowing, we know that the sequence y′0 = x0, y

′
i = ∆?({xj | 0 ≤ j ≤ i})

stabilizes finitely. We show by induction that for each i, yi = y′i. The basis is true, as y0 = x0 = y′0. On the
induction step,

yi+1 = yi∆xi+1 by definition of the sequence {yj}j≥0

= ∆?({yi, xi+1}) by ∆ definition
= ∆?({∆?({xj | 0 ≤ j ≤ i}), xi+1}) by induction hypothesis
= ∆?({xj | 0 ≤ j ≤ i+ 1}) by the property 3
= y′i+1 by (ii) of set-narrowing definition

As the sequence {y′i}i≥0 stabilizes after a finite number of terms, so does {yi}i≥0. ut

3.3 Combination of Widening and Narrowing Operators

In order to better understand how widening and a narrowing operators can be combined in an effective way,
consider the following example on the finite powerset domain of intervals.

The design of a successful widening is a very delicate task that is not only dependent on the considered abstract
domain but also on the particular analysis or verification application. An important contribution in such context
is [2], which introduces three methodologies for the design of widening operators. All of these methodologies are
based on the same extrapolator, while they differ on the termination property: the first one poses constraints on
the cardinality of the arguments, the second one uses connectors (as, for example, Egli-Milner Connectors), and
the last one is certificate-based.
Notice that these generic widening constructions are applicable to any finite powerset abstract domain, encoding
either numerical or symbolic information.

Example 6 Let L be the lattice of intervals introduced in Example 1, and let ℘
f
(L) be its finite powerset. For

A,B ∈ ℘
f
(L), we say AEB if and only if ∀x ∈ A,∃y ∈ B such that x ≤ y. Consider the function reduce : ℘

f
(L)→

℘
f
(L) defined as ∀A ⊆ L, reduce(A) is the maximal subset of A such that ∀x, y ∈ A : x < y ⇒ x /∈ reduce(A).

Observe that reduce(A) EA and AE reduce(A).
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The closure of A ⊆ L, denoted by A, is the superset of A such that ∀x, y ∈ A, such that x ∩ y 6= ∅, the least upper
bound x t y ∈ A.
For X ⊆ L, we denote by min(X) the minimal value, and by max(X) the maximal value, e.g. min({[3, 8], [2, 5], [1, 4]}) =
1 and max({[3, 8], [2, 5], [1, 4]}) = 8.
By minInt(X) we denote the interval which have min(X) as bottom value and, analogously, by maxInt(X) the
interval having max(X) as top value, e.g. minInt({[3, 8], [2, 5], [1, 4]}) = [1, 4] and maxInt({[3, 8], [2, 5], [1, 4]}) =
[3, 8].
For any positive constant k, we can define the pair-widening ∇k : ℘

f
(L)× ℘

f
(L)→ ℘

f
(L) as follows.

Let A,B be elements of ℘
f
(L).

• If the cardinality of reduce(A ∪B) is smaller or equal to k, then A∇kB = reduce(A ∪B).

• Otherwise, let R = reduce(W ) where W is obtained by:

– W = A ∪B
– If the cardinality of reduce(W ) is greater than k and ∃s′ ∈ B such that max(s′) > max(A) then:

let r ∈ A be the interval such that max(r) = max(A) then W = W ∪ [min(r),+∞].

– And if the cardinality of reduce(W ) is greater than k and ∃s′ ∈ B such that min(s′) < min(A) then:
let r ∈ A be the interval such that min(r) = min(A) then W = W ∪ [−∞,max(r)].

• While the cardinality of R is greater than k:
let s, s′ ∈ R such that |min(s′)−max(s)| is minimal in R, then R = (R \ {s, s′}) ∪ {(s t s′)}.

• A∇kB = R.

Observe that if Y = A∇kB, then the cardinality of Y is always smaller or equal to k.
For instance, if

A = {[−5, 2], [1, 6], [11, 23], [27, 33], [30, 35], [36, 40]}

and
B = {[−2, 3], [9, 15], [32, 35], [37, 42]}

then
A∇3B = {[−5, 6], [9, 23], [27,+∞]}.

In fact , as the cardinality of reduce(A ∪ B) is 4, which is greater than k = 3, and there exists an interval s in
B (namely [37, 42]) such that min(s) > max(A), the set W = A ∪ B ∪ {[36,+∞]} is computed. Then, its closure
W = W ∪ {[−5, 6], [−5, 3], [−2, 3], [9, 23], [27, 35], [36, 42]} is computed. Finally, the reduce operator is applied,
yielding to reduce(W ) = {[−5, 6], [9, 23], [27,+∞]}.
Notice that this widening operator satisfies the constraints in [2], as it merges an extrapolation heuristics “∇-
covered” and a “k-collapsor”, as requested to obtain a “cardinality-based” widening. In addition, our operator can
be applied also on not comparable elements, whereas the generic construction provided by Bagnara et.al. requires
that the first element is less than second one.

Similarly, we can define a corresponding pair-narrowing operator ∆k : ℘
f
(L)→ ℘(L). Let A,B ∈ ℘

f
(L) such that

AEB, B∆kA is defined as follows.

• Let A′ = reduce(A) = {s1, . . . , sn}, B′ = reduce(B) = {q1, . . . , qm} and R = A′.

• If min(A′) = −∞ then R = R \ {minInt(A′)} ∪ {minInt(B′)}, and if max(A′) = +∞ then R = R \
{maxInt(A′)} ∪ {maxInt(B′)}.

• For each qi ∈ B′.

– Let Hi = {sj ∈ R|sj ≤ qi}
– If cardinality of Hi is greater than 1.

9



• Let a, b ∈ Hi such that |min(b)−max(a)| is minimal in Hi.
• R = reduce(R \ {a, b} ∪ {lub(a, b)}).

– If the cardinality of R is smaller than k then break.

• B∆kA = R.

Observe that ∆k is a pair-narrowing operator, as it satisfies both bounding and termination properties.
For instance, if

A = {[−10,−6], [−5,−2], [−1, 0], [1, 3], [9, 13], [18, 20], [23, 27], [29,+∞]}

and
B = {[−10, 3], [7, 13], [16,+∞]}

then we have
B∆3A = {[−10, 3], [9, 13], [16,+∞]}

As an example on how the widening and narrowing operators just introduced can be combined in order to accelerate
the fixpoint computation without loosing too much accuracy, consider the function F : ℘

f
(L)→ ℘

f
(L) defined by

F ≡ λX.((((X t {[1, 2]}) ∪ {(maxInt(X)⊕ [2, 2])}) \ {⊥}) u {[100, 100]})

where ⊕ : L× L → L such that ⊥⊕X = X ⊕⊥ = ⊥ and [`0, u0]⊕ [`1, u1] = [`0 + `1, u0 + u1]. The computation
of the fixpoint of F starting from the ⊥ element, would require at least 50 steps, getting to the fixpoint element
{[1, 2], [3, 4], . . . , [100, 100]}. In order to accelerate the fixpoint computation of F , first we use the widening operator
∇3 defined above.

X0 = {⊥}
X1 = X0∇3((((X0 t {[1, 2]}) ∪ {(maxInt(X0)⊕ [2, 2])}) \ {⊥}) u {[100, 100]})

= {[1, 2]}
X2 = {[1, 2], [3, 5]}

...
X4 = {[1, 2], [3, 4], [5,+∞]} = X5

The fixpoint is obtained in 5 steps, but the accuracy of the result is not satisfactory as it completely looses the
rightmost bound. Nevertheless, this lack of precision can be recovered by applying the narrowing operator ∆3.

Y0 = X4

Y1 = Y0∆3((((Y0 t {[1, 2]}) ∪ {(maxInt(Y0)⊕ [2, 2])}) \ {⊥}) u {[100, 100]})
= {[1, 2], [3, 4], [5, 100]}

Y2 = {[1, 2], [3, 4], [5, 100]} = Y1

Observe that ∆3 requires only 3 steps to converge. We obtain as a final result the set {[1, 2], [3, 4], [5, 100]}, which
is not as precise as the least fixpoint computation mentioned above, but that has the advantage of being reached
dramatically quicker, and of preserving accuracy about the rightmost bound of the possible values of F .

3.4 Widening, Narrowing and Cartesian Product

The next theorems show how pair-widening and pair-narrowing operators can be combined when considering the
cartesian product of posets.

Theorem 5 Let ∇
A

and ∇
D

be pair-widening operators defined on the posets A and D, respectively.
The binary operator ∇ : (A × D) × (A × D) → (A × D) defined by ∀〈a, d〉, 〈a′, d′〉 ∈ A × D : 〈a, d〉∇〈a′, d′〉 =
〈a∇

A
a′, d∇

D
d′〉 is a pair-widening operator.

Proof:

10



- Covering
a ≤ a∇

A
a′ and d ≤ d∇

D
d′ by covering of ∇

A
,∇

D

⇒ 〈a, d〉 ≤ 〈a∇
A
a′, d∇

D
d′〉 by definition of ≤ on A×D

⇒ 〈a, d〉 ≤ 〈a, d〉∇〈a′, d′〉 by definition of ∇.

- Termination Let {〈ai, di〉}i≥0 be an ascending chain in the cartesian product A×D. We have to show that
the sequence 〈u0, v0〉 = 〈a0, d0〉, 〈ui+1, vi+1〉 = 〈ui, vi〉∇〈ai, di〉 stabilizes after a finite number of terms.

By the termination property of ∇
A

and ∇
D

, both the sequence â0 = a0, âi+1 = âi∇A
ai, and the sequence

d̂0 = d0, d̂i+1 = d̂i∇D
di stabilize finitely.

It can be easily proved by induction that for each i, 〈ui, vi〉 = 〈âi, d̂i〉. Therefore, the sequence {〈uj , vj〉}j≥0

stabilizes finitely too. ut

Theorem 6 Let ∆
A

and ∆
D

be pair-narrowing operators defined on the posets A and D, respectively.
The binary operator ∆ : (A × D) × (A × D) → (A × D) defined by ∀〈a, d〉, 〈a′, d′〉 ∈ A × D : 〈a, d〉∆〈a′, d′〉 =
〈a∆

A
a′, d∆

D
d′〉 is a pair-narrowing operator.

Proof:

- Bounding
∀a, a′ ∈ A : (a ≤ a′) =⇒ (a ≤ a′∆a ≤ a′) and
∀d, d′ ∈ D : (d ≤ d′) =⇒ (d ≤ d′∆d ≤ d′)

by bounding of ∆A and ∆B

⇒ 〈a, d〉 ≤ 〈a′∆Aa, d
′∆Dd〉 ≤ 〈a′, d′〉

by definition of ≤ on A×D
⇒ 〈a, d〉 ≤ 〈a′, d′〉∆〈a, d〉 ≤ 〈a′, d′〉

by definition of ∆

- Termination Let {〈ai, di〉}i≥0 be a descending chain in the cartesian product A×D. We have to show that
the sequence 〈u0, v0〉 = 〈a0, d0〉, 〈ui+1, vi+1〉 = 〈ui, vi〉∆〈ai, di〉 stabilizes after a finite number of terms.

By the termination property of ∆
A

and ∆
D

, both the sequence â0 = a0, âi+1 = âi∆A
ai, and the sequence

d̂0 = d0, d̂i+1 = d̂i∆D
di stabilize finitely.

By induction we prove that for each i, 〈ui, vi〉 = 〈âi, d̂i〉.
The basis is true: 〈u0, v0〉 = 〈a0, d0〉 = 〈â0d̂0〉. On the induction step,

〈ui+1, vi+1〉 = 〈ui, vi〉∆〈ai+1, di+1〉 by definition of 〉ui+1, vi+1〉
= 〈âi, d̂i〉∆〈ai+1, di+1〉 by induction hypothesis
= 〈âi∆Aai+1, d̂i∆Ddi+1〉 by definition of ∆
= 〈âi+1, d̂i+1〉 by definition of âi+1 and d̂i+1

Therefore, the sequence {〈uj , vj〉}j≥0 stabilizes finitely too.
ut

A corresponding result can be obtained also for set-widening and set-narrowing operators.

3.5 Combination of widening and narrowing operators on the same poset

What happens when more than one widening (or narrowing) operators are defined on a poset P? Is it possible to
get a more precise and/or a more efficient operator by combining them in a suitable way? Unfortunately, in general
the answer is negative. And the reason relies on the fact that the possibly non monotonic behavior of the widening
(or narrowing) operators becomes an issue when trying to prove termination of their combination on an ascending
(and descending for narrowing) chain. However, as soon as stronger termination conditions are guaranteed on the
poset P , some positive results can be easily derived.
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Theorem 7 Let (P,≤) be a lattice satisfying the ascending chain property. Let ∇1,∇2 be two pair-widening
operators on P . Then, the binary operators ∇u,∇t defined by

x∇u y = (x∇1 y) u (x∇2 y)
x∇t y = (x∇1 y) t (x∇2 y)

are pair-widening operators.

Proof: It follows by properties of t and u. ut
This result may apply for instance to widening operators defined on the (infinite) domain of congruences [23],
where prime factorization is an issue, in order to tune performance vs. accuracy of the analysis. In fact, ∇t may
gain in efficiency with respect to both ∇1 and ∇2, while ∇u may better keep accuracy, thus returning a more
accurate result.
A corresponding result can be obtained with narrowing operators.

Theorem 8 Let (P,≤) be a lattice satisfying the descending chain property. Let ∆1,∆2 be two pair-narrowing
operators on P . Then, the binary operators ∆u,∆t defined by

x∆u y = (x∆1 y) u (x∆2 y)
x∆t y = (x∆1 y) t (x∆2 y)

are pair-narrowing operators.

Proof: It follows by properties of t and u, as for the widening operators. ut
Similar results can be easily derived by similar proofs also for set-widening and set-narrowing operators.

Theorem 9 Let (P,≤) be a lattice satisfying the ascending chain property. Let ∇∗1,∇∗2 be two set-widening
operators on P . Then, the operators ∇∗u,∇∗t defined by

∇∗u({S}) = (∇∗1({S})) u (∇∗2({S}))
∇∗t({S}) = (∇∗1({S})) t (∇∗2({S}))

are set-widening operators.

Theorem 10 Let (P,≤) be a lattice satisfying the descending chain property. Let ∆∗1,∆∗2 be two set-widening
operators on P . Then, the operators ∆∗u,∆∗t defined by

∆∗u({S}) = (∆∗1({S})) u (∆∗2({S}))
∆∗t({S}) = (∆∗1({S})) t (∆∗2({S}))

are set-narrowing operators.

3.6 Strong Widening and Narrowing Operators

For numerical domains like polyhedra, where the abstract elements computed at each iteration of the analysis
are not necessarily ordered, stronger notions of widening and narrowing are used for forcing the termination of
the analysis. This is the case, for instance, of the trace partitioning abstract domain of Astrée, an abstract
interpretation-based analyzer aiming at proving automatically the absence of run time errors in programs written
in the C programming language, which has been applied with success to large safety critical real-time software for
avionics [5, 11].

Definition 14 (strong pair-widening [33]) Let (P,≤) be a poset. A strong pair-widening operator is a binary
operator ∇ : P × P → P such that

(i) Covering: ∀x, y ∈ P : x ≤ x∇y, and y ≤ x∇y.

12



(ii) Termination: For every sequence {xi}i≥0, the ascending chain defined as y0 = x0, yi+1 = yi∇xi+1 stabilizes
after a finite number of terms.

Observe that this definition is strictly stronger than Definition 10, as termination is required starting from every
(not necessarily increasing) sequence.

Example 7 The octagon domain [28, 30] is based on invariants of the form ±x ± y ≤ c, where x and y are
numerical variables and c is a numeric constant. Sets described by such invariants are special kind of polyhedra
called octagons because they feature at most eight edges in dimension 2. These constraints are expressed through
Difference Bound Matrices, which are adjacency matrices of weighted graphs. The widening operator defined on
this domain consists on removing unstable constraints. In this case, termination has to be guaranteed for the chain
of widened elements starting from a sequence of elements possibly incomparable. This is why the strongest notion
of pair widening has to be used.
Notice however that as an alternative to the strong pair-widening, Bagnara et.al. [3] introduced a different repre-
sentation of the octagons to ensure that the standard pair-widening can be applied. This approach is applied in [3]
to several weakly-relational domains, but it can be generalized to other domains.

The two notions of Pair-widening and Strong pair-widening are equivalent for a lattice P , under associativity
conditions, as shown in Theorem 11. In order to prove it, we introduce the following auxiliary Lemma.

Lemma 3 Let ∇ be a pair-widening operator on a lattice (P,≤), such that for every finite set {xi}0≤i≤n and for
every y ∈ P , (((x0∇x1)∇ . . . )∇xn) ∇ (x0 t x1 t · · · t xn t y) = (((x0∇x1)∇ . . . )∇xn)∇y, then ∇ is a strong
pair-widening operator.

Proof: We need to focus only on the termination property. Consider the sequence {xi}0≤i≤n, and the increasing
sequence

z0 = x0, zi+1 = x0 t . . . t xi+1

We show by induction that the two increasing sequences y0 = x0, yi+1 = yi∇xi+1 and h0 = z0, hi+1 = hi∇zi+1

are such that ∀i : yi = hi.
The basis is trivial, as y0 = x0 = z0 = h0.
The induction step:

hi+1 = hi∇zi+1 by def. of {hj}j≥0

= yi∇zi+1 by inductive hypothesis
= (((x0∇x1)∇ . . . )∇xi)∇zi+1 by def. of {yj}j≥0

= (((x0∇x1)∇ . . . )∇xi)∇(x0 t . . . t xi+1) by def. of {zj}j≥0

= (((x0∇x1)∇ . . . )∇xi)∇xi+1 by hypothesis on ∇
= yi+1 by def. of {yj}j≥0

As the increasing sequence {hj}j≥0 stabilizes after a finite number of terms, so does {yj}j≥0. ut

Theorem 11 Let ∇ be an associative pair-widening operator on a lattice (P,≤), such that for ∀x, y ∈ P : x∇y =
x∇(x t y), then ∇ is a strong pair-widening operator.

Proof: By Lemma 3, it is sufficient to prove by induction that for every finite set {xi}0≤i≤n and for every y ∈ P ,
(((x0∇x1)∇ . . . )∇xn) ∇ (x0 t x1 t · · · t xn t y) = (((x0∇x1)∇ . . . )∇xn)∇y.
The basis (n = 1) follows immediately from the hypothesis.
Induction step:

(((x0∇x1)∇ . . . )∇xn) ∇ (x0 t · · · t xn t y) = by inductive hypothesis
(((x0∇x1)∇ . . . )∇(x0 t · · · t xn)) ∇ (x0 t . . . t xn t y) = by associativity of ∇ and of t
((x0∇x1)∇ . . . )∇((x0 t · · · t xn)∇((x0 t · · · t xn) t y)) = by applying the hypothesis
((x0∇x1)∇ . . . )∇((x0 t · · · t xn)∇y) = by associativity of ∇
(((x0∇x1)∇ . . . )∇xn)∇y.

ut
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Example 8 The pair-widening operator on intervals obtained from the set-widening of Example 1 following the
construction of Theorem 2, satisfies the condition of Theorem 11, and it is in fact a strong pair widening operator.
However, not every pair-widening operator is also a strong one. On the same lattice of intervals, consider for
instance the pair-widening ∇ defined by:

⊥∇x = x and x∇⊥ = x

[`0, u0]∇[`1, u1] = =


[−∞,+∞]

if [`0, u0] ≤ [`1, u1] or [`1, u1] ≤ [`0, u0]

[min(`0, `1),max(u0, u1)]
otherwise

On increasing sequences, the widened sequence terminates immediately, whereas if we consider for instance the
sequence {[i, i+ 1]}i≥0, ∇ yields to the ascending sequence {[0, i]}i≥1, which does not terminate.

Definition 15 (strong pair-narrowing) Let (P,≤) be a poset. A strong pair-narrowing operator is a binary
operator ∆ : P × P → P such that

(i) Bounding: ∀x, y ∈ P : (x ≤ y) =⇒ (x ≤ (y∆x) ≤ y).

(ii) Termination: For every sequence {xi}i≥0, the decreasing chain defined as

y0 = x0, yi+1 = yi∆xi+1

stabilizes after a finite number of terms.

Example 9 The following strong narrowing operator has been introduced in [12].

x∆⊥ = ⊥
[`0, u0]∆[`1, u1] = [if `0 = −∞ then `1 else min(`0, `1),

if u0 = +∞ then u1 else max(u0, u1)]

∆ is a pair-narrowing operator, as it satisfies both bounding and termination requirements of Def.15. For instance:

[−∞,+∞] ∆ [−∞, 101] = [−∞, 101]
[−∞, 101] ∆ [0, 100] = [0, 101]

[0, 100] ∆ [0, 99] = [0, 100]

The two notions of pair-narrowing (Def. 13) and strong pair-narrowing (Def. 15) are equivalent for a lattice P ,
under associativity conditions, as shown in Theorem 12. In order to prove it, we introduce the following auxiliary
Lemma.

Lemma 4 Let ∆ be a pair-narrowing operator on a lattice (P,≤), such that for every finite set {xi}0≤i≤n and
for every y ∈ P , (((x0∆x1)∆ . . . )∆xn) ∆ (x0 u x1 u · · · u xn u y) = (((x0∆x1)∆ . . . )∆xn)∆y, then ∆ is a strong
pair-narrowing operator.

Proof: We need to focus only on the termination property. Consider the sequence {xi}0≤i≤n, and the decreasing
sequence

z0 = x0, zi+1 = x0 u . . . u xi+1

We show by induction that the two increasing sequences y0 = x0, yi+1 = yi∆xi+1 and h0 = z0, hi+1 = hi∆zi+1

are such that ∀i : yi = hi.
The basis is trivial, as y0 = x0 = z0 = h0.
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The induction step:

hi+1 = hi∆zi+1 by Def. of {hj}j≥0

= yi∆zi+1 by inductive hypothesis
= (((x0∆x1)∆ . . . )∆xi)∆zi+1 by Def. of {yj}j≥0

= (((x0∆x1)∆ . . . )∆xi)∆(x0 u . . . u xi+1) by Def. of {zj}j≥0

= (((x0∆x1)∆ . . . )∆xi)∆xi+1 by hypothesis on ∆
= yi+1 by Def. of {yj}j≥0

As the increasing sequence {hj}j≥0 stabilizes after a finite number of terms, so does {yj}j≥0. ut

Theorem 12 Let ∆ be an associative pair-narrowing operator on a lattice (P,≤), such that for ∀x, y ∈ P : x∆y =
x∆(x u y), then ∆ is a strong pair-narrowing operator.

Proof: By Lemma 4, it is sufficient to prove by induction that for every finite set {xi}0≤i≤n and for every y ∈ P ,
(((x0∆x1)∆ . . . )∆xn) ∆ (x0 u x1 u · · · u xn u y) = (((x0∆x1)∆ . . . )∆xn)∆y.
The basis (n = 1) follows immediately from the hypothesis.
Induction step:

(((x0∆x1)∆ . . . )∆xn) ∆ (x0 u · · · u xn u y) = by inductive hypothesis
(((x0∆x1)∆ . . . )∆(x0 u · · · u xn)) ∆ (x0 u . . . u xn u y) = by associativity of ∆ and of u
((x0∆x1)∆ . . . )∆((x0 u · · · u xn)∆((x0 u · · · u xn) u y)) = by applying the hypothesis
((x0∆x1)∆ . . . )∆((x0 u · · · u xn)∆y) = by associativity of ∆
(((x0∆x1)∆ . . . )∆xn)∆y.

ut

3.7 Lower Bound Pair-Narrowing

When considering narrowing operators for numerical domains other slightly different notions of narrowing have
been introduced in the literature, where different bounding constraints are considered: x∆y is bound to be greater
than x u y and lower than x.

Definition 16 (lower-bound pair-narrowing [29]) Let (P,≤) be a meet-semi-lattice. A lower-bound pair-
narrowing operator is a binary operator ∆ : P × P → P such that

(i) Bounding: ∀x, y ∈ P : (x u y) ≤ (x∆y) ≤ x.

(ii) Termination: For every decreasing chain x0 ≥ x1 ≥ . . ., the decreasing chain defined as

y0 = x0, yi+1 = yi∆xi+1

stabilizes after a finite number of terms.

Observe that not every pair-narrowing operator is also a lower-bound pair-narrowing. For example, the pair-
narrowing of Example 5 doesn’t satisfy the above condition.
When modifying the termination constraints in Definition 16, we get:

Definition 17 (strong lower-bound pair-narrowing [29]) Let (P,≤) be a poset. A strong lower-bound pair
narrowing operator is a binary operator ∆ : P × P → P such that

(i) Bounding: ∀x, y ∈ P : (x u y) ≤ (x∆y) ≤ x.

(ii) Termination: For every sequence x0 ≥ x1 ≥ . . ., the decreasing chain defined as

y0 = x0, yi+1 = yi∆xi+1

stabilizes after a finite number of terms.
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Example 10 This notion of narrowing operator is introduced, for the octagon domain, in [28, 30], with the strong
widening operator defined in Definition 14.

Under particular conditions, the two notions of pair-narrowing and strong lower-bound pair-narrowing are equiv-
alent.

Theorem 13 Let (P,≤) be a meet-semi-lattice (the greatest lower bound x u y exist for all x.y ∈ L) satisfying
the descending chain condition (no strictly decreasing chain in L can be infinite). Let ∆ : P × P → P be a
pair-narrowing operator such that x∆y = x u y. Then ∆ is a strong lower-bound pair-narrowing.

Proof:

- Bounding: Consider y ≤ x:

x ≥ x∆y ≥ y by bounding property in Def. 13
⇒ x ≥ x∆y ≥ x u y by the relation between x and y

This result is true for each x, y ∈ P : x ≤ y, as request by bounding property in Def. 17.

- Termination: Consider the sequence {xi}0≤i≤n and the decreasing sequence

z0 = x0, zi+1 = x0 u . . . u xi+1

We show by induction that the two increasing sequences y0 = x0, yi+1 = yi∆xi+1 and h0 = z0, hi+1 =
hi∆zi+1 are such that ∀i : yi = hi.

The basis is trivial, as y0 = x0 = z0 = h0.

The induction step:

hi+1 = hi∆zi+1 by Def. of {hj}j≥0

= yi∆zi+1 by inductive hypothesis
= (((x0∆x1)∆ . . . )∆xi)∆zi+1 by Def. of {yj}j≥0

= (((x0∆x1)∆ . . . )∆xi)∆(x0 u . . . u xi+1) by Def. of {zj}j≥0

= (((x0 u x1) u . . . ) u xi) u (x0 u . . . u xi+1) by Def. of ∆
= (x0 u . . . u xi+1) by properties of u
= (((x0∆x1)∆ . . . )∆xi)∆xi+1 by Def. of ∆
= yi+1 by Def. of {yj}j≥0

As the increasing sequence {hj}j≥0 stabilizes after a finite number of terms, so does {yj}j≥0.
ut

We can bind pair-narrowing and lower-bound pair-narrowing throught next two theorems.

Theorem 14 Let (P,≤) be a poset and ∆ be a pair-narrowing (Def. 13).
If ∀v, w : v∆(v u w) = v∆w, then ∆ is a lower bound pair-narrowing (Def. 16).

Proof: We need to focus only on the bounding property. By Definition 13, of ∆, we know that

(x ≥ y) =⇒ (x ≥ (x∆y) ≥ y)

We consider u, v ∈ P , with x = v and y = v u w.
Then we have

v ≥ v∆(v u w) ≥ v u w

By assumption, we have that ∀v, w
v∆(v u w) = v∆w

then we get
v ≥ v∆w ≥ v u w

That is the bounding property of lower-bound pair-narrowing operator. ut
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Theorem 15 Let (P,≤) be a poset and ∆ be a lower-bound pair-narrowing (Def. 16).
Consider x∆y, it’s simple to prove that ∀x, y ∈ P : y ≤ x than ∆ is a pair-narrowing (Def. 13).

Proof: We have, by Definition 16, of ∆:
(x u y) ≤ (x∆y) ≤ x

if we have that y ≤ x then x u y = y by definition. Therefore

(y ≤ x) =⇒ y ≤ x∆y ≤ x

as requested by Def. 13. ut

4 Widening and Narrowing Operators wrt Galois Insertions

Widening operators have already been used in order to derive abstract domains [34]. The next results show
how to derive Galois insertions by introducing an abstraction function built on top of a widening operator. In
order to do that, additional requirements have to be assumed on the widening operator, like idempotence and
order-preservation on pairs/singletons.

Theorem 16 Let ∇ be a pair-widening operator on a complete lattice (L,≤) such that ∀x, y ∈ L : x ≤ y ⇒ x∇x ≤
y∇y. Let A be the set {x∇x | x ∈ L}. Then α

LA
(x) = x∇x is the lower adjoint of a Galois insertion between L

and A, with the upper adjoint being the identity function.

Proof: According to Def. 8, we have to show that (γ
AL
, L,A, α

LA
) is a Galois insertion, with γ

AL
being the identity

function. By Lemma 1, it is sufficient to prove that ∀x ∈ L : x ≤ γ
AL

(α
LA

(x)), and that ∀a ∈ A : a = α
LA

(γ
AL

(a)).

∀x ∈ L : x ≤ x∇x, by (i) of Def. 10
⇒ x ≤ α

LA
(x), by definition of α

LA

⇒ x ≤ γ
AL

(α
LA

(x)), as γ
AL

is the identity

∀a ∈ A : a = a∇a, by definition of A
⇒ a = (γ

AL
(a))∇(γ

AL
(a)), as γ

AL
is the identity

⇒ a = α
LA

(γ
AL

(a)), by definition of α
LA

ut
A corresponding result can be obtained also for set-widening operators.

Theorem 17 Let ∇? be a set-widening operator on a complete lattice (L,≤) such that ∇?({x}) is defined for each
x in L, and such that ∀x, y ∈ L : x ≤ y ⇒ ∇?({x}) ≤ ∇?({y}). Let A be the set {∇?({x}) | x ∈ L}. Consider the
function α

LA
: L→ A defined by α

LA
(x) = ∇?({x}). Then, α

LA
is the lower adjoint of a Galois insertion between

L and A, with the upper adjoint being the identity function.

Proof: The proof is similar to the proof of Theorem 16. ut

4.1 Widening, Narrowing and Abstraction

The following theorem shows that pair widening is preserved through abstraction.

Theorem 18 Let C and D be two complete lattices, s.t. G
CD

= (γ
DC
, C,D, α

CD
) is a Galois insertion. Let ∇

C
be

a pair-widening on C. The binary operator ∇
D

defined by ∀d1, d2 ∈ D, d1∇D
d2 = α

CD
(γ

DC
(d1)∇

C
γ

DC
(d2)) is a

pair-widening operator on D.

Proof:

17



- Covering. Let us show that ∀d1, d2 ∈ D : d1 ≤ d1∇D
d2.

γ
DC

(d1) ≤ γ
DC

(d1)∇
C
γ

DC
(d2) by (ii) of Def. 10

α
CD

(γ
DC

(d1)) ≤ α
CD

(γ
DC

(d1)∇
C
γ

DC
(d2)) by monotonicity of α

CD

α
CD

(γ
DC

(d1)) ≤ d1∇D
d2 by definition of ∇

D

d1 ≤ d1∇D
d2 as G

CD
is a Galois insertion.

The same way, we can also prove that ∀d1, d2 ∈ D : d2 ≤ d1∇D
d2.

- Termination. Consider the ascending chain {di}i≥0 in D. Consider the corresponding ascending chain
γ

DC
(d0) ≤ γ

DC
(d1) ≤ . . . in C. And consider the sequence y0 = γ

DC
(d0), yi+1 = yi∇C

γ
DC

(di+1). As ∇
C

is
a pair-widening operator, this ascending sequence stabilizes after a finite number of terms. We have to show
that also the sequence ŷ0 = d0, ŷi+1 = ŷi∇D

di+1 stabilizes after a finite number of terms. By induction, we
prove that for each i, ŷi = α

CD
(yi).

The basis is trivial, as ŷ0 = d0 = α
CD

(γ
DC

(d0)) = α
CD

(y0).

Looking at the inductive step,

ŷi+1 = ŷi∇D
di+1 by definition of the sequence {ŷj}j≥0.

= α
CD

(yi)∇D
di+1 by inductive hypotesis

= α
CD

(yi)∇D
α

CD
(γ

DC
(di+1)) as G

CD
is a Galois insertion

= α
CD

(yi∇C
γ

DC
(di+1)) by definition of ∇

D

= α
CD

(yi+1) by definition of the sequence {yj}j≥0.

ut

A corresponding result can be obtained also for set-widening operators.

Theorem 19 Let C and D be two complete lattices, s.t. G
CD

= (γ
DC
, C,D, α

CD
) is a Galois insertion. Let ∇∗C

be a set-widening on C. The operator ∇∗D
defined by ∀S ∈ D, ∇∗D

(S) = α
CD

(∇∗C
(γ

DC
(S)) is a set-widening

operator on D.

Proof: The proof is similar to the proof of Theorem 18.

As a corollary of Theorem 18, we can prove that pair-widening operators are preserved also when projecting a
cartesian product of lattices on one of its components.

Corollary 1 Let A and D be complete lattices, and let ∇ be a pair-widening operator over the cartesian product
A×D. Let π1 be the projection on the first argument. The binary operator ∇

A
: A×A→ A defined by

a∇
A
a′ = π1(〈a,>〉∇〈a′,>〉)

is a pair-widening operator.

Proof: It is sufficient to observe that the monotone functions α : A×D → A and γ : A→ A×D defined by

∀(a, d) ∈ A×D : α(〈a, d〉) = a
∀a ∈ A : γ(a) = 〈a,>〉

form a Galois insertion between A and D. Therefore, by applying Theorem 18, the binary operator ∇′ =
α(γ(a)∇γ(a′)) is a pair widening operator on A. To conclude, it is sufficient to observe that ∇

A
= ∇′. ut

Similarly, also, we can prove that narrowing operators are preserved by abstraction.

Theorem 20 Let C and D be two complete lattices, s.t. G
CD

= (γ
DC
, C,D, α

CD
) is a Galois insertion. Let ∆

C
be

a pair-narrowing on C. The binary operator ∆
D

defined by ∀d1, d2 ∈ D, d1∆
D
d2 = α

CD
(γ

DC
(d1)∆

C
γ

DC
(d2)) is a

pair-narrowing operator on D.
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Proof:

- Bounding. Let us show that ∀d1, d2 ∈ D : (d1 ≤ d2)⇒ (d1 ≤ d2∆
D
d1 ≤ d2).

γ
DC

(d1) ≤ γ
DC

(d2)∆
C
γ

DC
(d1) ≤ γ

DC
(d2)
by Def. 13

α
CD

(γ
DC

(d1)) ≤ α
CD

(γ
DC

(d2)∆
C
γ

DC
(d1)) ≤ α

CD
(γ

DC
(d2))

by monotonicity of α
CD

α
CD

(γ
DC

(d1)) ≤ d2∆
D
d1 ≤ α

CD
(γ

DC
(d2))

by definition of ∆
D

d1 ≤ d2∆
D
d1 ≤ d2

as G
CD

is a Galois insertion.

- Termination. Consider the decreasing chain {di}i≥0 in D. Consider the corresponding decreasing chain
γ

DC
(d0) ≥ γ

DC
(d1) ≥ . . . in C. And consider the sequence y0 = γ

DC
(d0), yi+1 = yi∆C

γ
DC

(di+1). As ∆
C

is a
pair-narrowing operator, this descending sequence stabilizes after a finite number of terms. We have to show
that also the sequence ŷ0 = d0, ŷi+1 = ŷi∆D

di+1 stabilizes after a finite number of terms. By induction, we
prove that for each i, ŷi = α

CD
(yi).

The basis is trivial, as ŷ0 = d0 = α
CD

(γ
DC

(d0)) = α
CD

(y0).

Looking at the inductive step,

ŷi+1 = ŷi∆D
di+1 by definition of the sequence {ŷj}j≥0.

= α
CD

(yi)∆D
di+1 by inductive hypotesis

= α
CD

(yi)∆D
α

CD
(γ

DC
(di+1)) as G

CD
is a Galois insertion

= α
CD

(yi∆C
γ

DC
(di+1)) by definition of ∆

D

= α
CD

(yi+1) by definition of the sequence {yj}j≥0.
ut

A corresponding result holds also for set-narrowing operators.

Theorem 21 Let C and D be two complete lattices, s.t. G
CD

= (γ
DC
, C,D, α

CD
) is a Galois insertion. Let ∆∗C

be a set-narrowing on C. The operator ∆∗D
defined by ∀S ∈ D, ∆∗D

(S) = α
CD

(∆∗C
(γ

DC
(S)) is a set-narrowing

operator on D.

Proof: The proof is similar to the proof of Theorem 20.

As for widening operator, we can prove that pair-narrowing operators are preserved also when projecting a cartesian
product of lattices on one of its components.

Corollary 2 Let A and D be complete lattices, and let ∆ be a pair-narrowing operator over the cartesian product
A×D. Let π1 be the projection on the first argument. The binary operator ∆

A
: A×A→ A defined by

a∆
A
a′ = π1(〈a,>〉∆〈a′,>〉)

is a pair-narrowing operator.

Proof: It is sufficient to observe that the monotone functions α : A×D → A and γ : A→ A×D defined by

∀(a, d) ∈ A×D : α(〈a, d〉) = a
∀a ∈ A : γ(a) = 〈a,>〉

form a Galois insertion between A × D and D. Therefore, by applying Theorem 20, the binary operator ∆′ =
α(γ(a)∆γ(a′)) is a pair narrowing operator on A. To conclude, it is sufficient to observe that ∆

A
= ∆′. ut
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4.2 Widening, Narrowing and Reduced Product

A very important operator for combining abstract domains in Abstract Interpretation, is the reduced product [13].
We have already seen in Theorem 5 and in Theorem 6 that the pair-widening and pair-narrowing operators can be
combined when considering the cartesian product of two posets. Unfortunately, this result cannot be fully extended
to the reduced product, due to the fact that pair-widening and pair-narrowing operators in general are not required
to be monotone. However, getting results relating widening and narrowing operators in case of reduced product
may have great impact on abstract domains used for the analysis of critical software. For instance, the octagon
domain [30] can be seen as the reduced product of 2n2 abstract domains, each one of them focusing on an invariant
of the form ±x± y ≤ c.

Definition 18 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be

Galois insertions.
Consider the function reduce:A×D → A×D defined by reduce(〈a, d〉) = u{〈a′, d′〉 | γ

AC
(a)u γ

DC
(d) = γ

AC
(a′)u

γ
DC

(d′)}
The reduced product A uD is defined as follows:

A uD = {reduce(〈a, d〉) | a ∈ A, d ∈ D}.

Moreover, the function γ : A u D → C defined by γ(〈a, d〉) = γ
AC

(a) u γ
DC

(d) is the upper adjoint of a Galois
insertion between A uD and the domain C.

We can prove (Lemma 6) that by combining two pair-widening operators in the reduced product at least covering
is preserved, i.e. we can obtain an extrapolation operator (which does not necessarily terminate on ascending
sequences, see for instance the domain of octagons [30]). The following auxiliary Lemma says that reduce behaves
well with respect to the ordering in the reduced product A uD.

Lemma 5 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be Galois

insertions. For â ∈ A, d̂ ∈ D, 〈a, d〉 ∈ A uD, if a ≤ â and d ≤ d̂, then 〈a, d〉 ≤ reduce(〈â, d̂〉).

Proof: By u properties and monotonicity of γ functions, γ
AC

(a)uγ
DC

(d) ≤ γ
AC

(â)uγ
DC

(d̂). Therefore, reduce(〈â, d̂〉)
is such that

γ(〈a, d〉) ≤ γ(reduce(〈â, d̂〉)

where γ is the upper adjoint of the Galois insertion (γ,C,A uD,α) as in Def. 18.
By applying α to both expressions, by monotonicity of α we get

α(γ(〈a, d〉)) ≤ α(γ(reduce(〈â, d̂〉)))

and by Galois insertion properties, as α ◦ γ is the identity function, we get

〈a, d〉 ≤ reduce(〈â, d̂〉)

ut

Lemma 6 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be Galois

insertions.
Let ∇

A
and ∇

D
be pair-widening operators defined on the lattice A and D, respectively.

The binary operator • : (A u D) × (A u D) → (A u D) defined by ∀〈a, d〉, 〈a′, d′〉 ∈ A u D : 〈a, d〉 • 〈a′, d′〉 =
reduce(〈a∇

A
a′, d∇

D
d′〉) is an extrapolator operator.

Proof: Let 〈a, d〉, 〈a′, d′〉 ∈ A uD. We have to prove that 〈a, d〉 ≤ 〈a, d〉 • 〈a′, d′〉.

〈a, d〉 ≤ 〈a∇
A
a′, d∇

D
d′〉 by covering of ∇

A
,∇

D

⇒ 〈a, d〉 ≤ reduce(〈a∇
A
a′, d∇

D
d′〉) by Lemma 5

⇒ 〈a, d〉 ≤ 〈a, d〉 • 〈a′, d′〉 by definition of • .
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In the same way, we can also prove that 〈a′, d′〉 ≤ 〈a, d〉 • 〈a′, d′〉. ut
The last Theorem shows that if the pairwise application of the pair-widening operators is always an element of
the reduced product, the extrapolator of Lemma 6 enjoys also the termination property, thus resulting into a
pair-widening operator too.

Theorem 22 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be

Galois insertions.
Let ∇

A
and ∇

D
be pair-widening operators defined on the lattice A and D, respectively, such that ∀〈a, d〉 ∈ AuD,

∀a′ ∈ A, ∀d′ ∈ D : 〈a∇
A
a′, d∇

D
d′〉 ∈ A uD.

Then the binary operator ∇ : (A uD)× (A uD) → (A uD) defined by ∀〈a, d〉, 〈a′, d′〉 ∈ A uD : 〈a, d〉∇〈a′, d′〉 =
reduce(〈a∇

A
a′, d∇

D
d′〉) is a pair-widening operator.

Proof: By Lemma 6, we need to focus only on the termination property.
Consider the increasing sequence 〈a0, d0〉 ≤ 〈a1, d1〉 . . . in AuD. As the ordering ≤ in AuD is the same as in the
cartesian product A×D, we may consider the increasing sequence a0 ≤ a1 ≤ . . . in A, and the increasing sequence
d0 ≤ d1 ≤ . . . in D. By the termination property of ∇

A
and ∇

D
, we know that the corresponding sequences

â0 = a0, âi+1 = âi∇A
ai+1, and d̂0 = d0, d̂i+1 = d̂i∇D

di+1 stabilize after a finite number of terms.
We show by induction that the increasing sequence 〈a′0, d′0〉 = 〈a0, d0〉, 〈a′i+1, d

′
i+1〉 = 〈a′i, d′i〉∇〈ai+1, di+1〉 is such

that ∀i : 〈a′i, d′i〉 = 〈âi, d̂i〉.
The basis is trivial, as 〈a′0, d′0〉 = 〈a0, d0〉 = 〈â0, d̂0〉.
Induction step:

〈a′i+1, d
′
i+1〉 = 〈a′i, d′i〉∇〈ai+1, di+1〉 by definition of {〈a′j , d′j〉}j≥0

= reduce(a′i∇A
ai+1, d

′
i∇D

di+1) by def. of ∇
= 〈a′i∇A

ai+1, d
′
i∇D

di+1〉 by the hypothesis
= 〈âi+1, d̂i+1〉 by def. of {âj}j≥0 and {d̂j}j≥0

It follows that {〈a′j , d′j〉}j≥0 converges in a finite number of steps, namely the maximum between the termination
indexes of {âj}j≥0 and {d̂j}j≥0. ut
For narrowing operators, we can define a theorem corresponding to theorem 22. Also in this case we need some
auxiliary lemma.

Lemma 7 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be Galois

insertions. For a ∈ A, d ∈ D, reduce(〈a, d〉) ≤ 〈a, d〉.

Proof: By Def. 18: reduce(〈a, d〉) = uS, where S = {〈a′, d′〉 | γ
AC

(a) u γ
DC

(d) = γ
AC

(a′) u γ
DC

(d′)}. We know
that 〈a, d〉 ∈ S and that all elements of S are comparable, than reduce(〈a, d〉) ≤ 〈a, d〉. ut

Lemma 8 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be Galois

insertions. For â ∈ A, d̂ ∈ D, 〈a, d〉 ∈ A uD, if â ≤ a and d̂ ≤ d, then reduce(〈â, d̂〉) ≤ 〈a, d〉.

Proof: By u properties and monotonicity of γ functions, γ
AC

(a)uγ
DC

(d) ≥ γ
AC

(â)uγ
DC

(d̂). Therefore, reduce(〈â, d̂〉)
is such that

γ(〈a, d〉) ≥ γ(reduce(〈â, d̂〉)
where γ is the upper adjoint of the Galois insertion (γ,C,A uD,α) as in Def. 18.
By applying α to both expressions, by monotonicity of α we get

α(γ(〈a, d〉)) ≥ α(γ(reduce(〈â, d̂〉)))

and by Galois insertion properties, as α ◦ γ is the identity function, we get

〈a, d〉 ≥ reduce(〈â, d̂〉)

ut
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Theorem 23 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be

Galois insertions.
Let ∆

A
and ∆

D
be pair-narrowing operators defined on the lattice A and D, respectively, such that ∀〈a, d〉 ∈ AuD,

∀a′ ∈ A, ∀d′ ∈ D : 〈a∆
A
a′, d∆

D
d′〉 ∈ A uD.

Then the binary operator ∆ : (A uD)× (A uD) → (A uD) defined by ∀〈a, d〉, 〈a′, d′〉 ∈ A uD : 〈a, d〉∆〈a′, d′〉 =
reduce(〈a∆

A
a′, d∆

D
d′〉) is a pair-narrowing operator.

Proof:

- Bounding We have to show that ∀〈a, d〉, 〈a′, d′〉 ∈ AuD, (〈a, d〉 ≤ 〈a′, d′〉)⇒ (〈a, d〉 ≤ 〈a, d〉∆〈a′, d′〉 ≤ 〈a′, d′〉)

〈a, d〉 ≤ 〈a∆
A
a′, d∆

D
d′〉 ≤ 〈a′, d′〉 by bounding of ∆

A
and ∆

D

〈a, d〉 ≤ reduce(〈a∆
A
a′, d∆

D
d′〉) ≤ 〈a′, d′〉 by Lemma 5 and Lemma 7 or Lemma 8

〈a, d〉 ≤ 〈a, d〉∆〈a′, d′〉 ≤ 〈a′, d′〉 by definition of ∆

- Termination Consider the increasing sequence 〈a0, d0〉 ≤ 〈a1, d1〉 . . . in A uD. As the ordering ≤ in A uD
is the same as in the cartesian product A × D, we may consider the increasing sequence a0 ≤ a1 ≤ . . . in
A, and the increasing sequence d0 ≤ d1 ≤ . . . in D. By the termination property of ∆

A
and ∆

D
, we know

that the corresponding sequences â0 = a0, âi+1 = âi∆A
ai+1, and d̂0 = d0, d̂i+1 = d̂i∆D

di+1 stabilize after a
finite number of terms.

We show by induction that the increasing sequence 〈a′0, d′0〉 = 〈a0, d0〉, 〈a′i+1, d
′
i+1〉 = 〈a′i, d′i〉∆〈ai+1, di+1〉 is

such that ∀i : 〈a′i, d′i〉 = 〈âi, d̂i〉.

The basis is trivial, as 〈a′0, d′0〉 = 〈a0, d0〉 = 〈â0, d̂0〉.
Induction step:

〈a′i+1, d
′
i+1〉 = 〈a′i, d′i〉∆〈ai+1, di+1〉 by definition of {〈a′j , d′j〉}j≥0

= reduce(a′i∆A
ai+1, d

′
i∆D

di+1) by def. of ∆
= 〈âi∆A

ai+1, d̂i∆D
di+1〉 by the hypothesis

= 〈âi+1, d̂i+1〉 by def. of {âj}j≥0 and {d̂j}j≥0

It follows that {〈a′j , d′j〉}j≥0 converges in a finite number of steps, namely the maximum between the termi-
nation indexes of {âj}j≥0 and {d̂j}j≥0

ut
We can also obtain the corresponding results for set-widening and set-narrowing operators.

Theorem 24 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be

Galois insertions.
Let ∇∗A and ∇∗D be set-widening operators defined on the lattice A and D, respectively, such that ∀S ⊆ A uD,
〈∇∗A({ai | 〈ai, di〉 ∈ S}),∇D

({di | 〈ai, di〉 ∈ S})〉 ∈ A uD.
Then the operator ∇∗ : ℘(A u D) 9 (A u D) defined by ∀S ⊆ A u D : ∇∗({S}) = reduce(〈∇∗A({ai | 〈ai, di〉 ∈
S}),∇∗D({di | 〈ai, di〉 ∈ S})〉) is a set-widening operator.

Theorem 25 Let C,A,D be complete lattices, and let G
CD

= (γ
DC
, C,D, α

CD
) and G

CA
= (γ

AC
, C,A, α

CA
) be

Galois insertions.
Let ∆∗A and ∆∗D be set-narrowing operators defined on the lattice A and D, respectively, such that ∀S ⊆ A uD,
〈∆∗A({ai | 〈ai, di〉 ∈ S}),∆∗D({di | 〈ai, di〉 ∈ S})〉 ∈ A uD.
Then the operator ∆∗ : ℘(A u D) 9 (A u D) defined by ∀S ⊆ A u D : ∆∗({S}) = reduce(〈∆∗A({ai | 〈ai, di〉 ∈
S}),∆∗D({di | 〈ai, di〉 ∈ S})〉) is a set-narrowing operator.

The proofs of these Theorems are similar to Theorem 22 and Theorem 23, respectively.
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5 Conclusions and Future Work

We investigated which properties are necessary to support a systematic design of widening and narrowing
operators. As far as we know, this is the first attempt to provide a general comparison of the different notions of
widening and narrowing used in the literature and a first comprehensive discussion of their main features. More
work deserves to be done in order to support a broader range of widening operators defined on abstract domains
where only the concretization function is available or where the least upper bound operator is not always defined.
We are currently investigating how to enhance domains and widening and narrowing operators with suitable metrics
that allow to get a quantitative comparison of their precision and/or of their speed to reach a fixed-point.
Notice that most of the papers in the literature use only the widening operator without defining any corresponding
narrowing operator; it would be interesting to investigate narrowing operators to analyse the resulting improvements
with respect to accuracy already mentioned. For instance, for the abstract domain LInt whose elements on linear
inequations with interval coefficients [32]. Narrowing operator can be defined on the lines of Example 5 that may
improve the overall precision of the analysis.
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