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OPTIMAL GROUNDNESS ANALYSIS USING
PROPOSITIONAL LOGIC
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WILLIAM WINSBOROUGH

> It is well known that propositional formulas form a useful and computa-
tionally efficient abstract interpretation for different data-flow analyses of
logic programs and, in particular, for groundness analysis. This article gives
a complete and precise description of an abstract interpretation, called
Prop, composed of a domain of positive, propositional formulas and three
operations: abstract unification, least upper bound, and abstract projec-
tion. All three abstract operations are known to be correct. They are
shown to be optimal in the classical sense. Two alternative stronger
notions of optimality of abstract operations are introduced, which charac-
terize very precise analyses. We determine whether the operations of Prop
also satisfy these stronger forms of optimality. <

1. INTRODUCTION

Abstract interpretation, a technique for constructing verified analyses of program
execution behavior [4], has been extensively applied to Prolog programs. A compre-
hensive list of references can be found in [5]. Contributions include, among others,
[1, 3, 8, 10, 14-17, 19, 28, 29, 30, 33].

In general, an abstract interpretation framework provides a (collecting) seman-
tics that is parameterized with respect to the computation domain and the
operations used. By instantiating these parameters with the concrete domains and
operations, one obtains a concrete semantics; instantiating the parameters with
nonstandard (abstract) domain and operations, one obtains a static analysis (i.e., an
abstract semantics). We call the combination of a domain and operations on it an
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interpretation, which may be either concrete or abstract. The framework also
provides safety conditions on the abstract interpretation and the concretization
function, which maps abstract domain elements to concrete ones (sets of substitu-
tions in the case of Prolog). When the safety conditions are met, the induced
analysis is guaranteed to safely approximate the concrete semantics.

Probably the most well-known analysis of pure Prolog programs is the analysis
of groundness. (See, for instance, [18].) One candidate abstract domain for repre-
senting groundness consists of sets V' of variables, where V' represents the set of
substitutions that ground each variable in V. However, such a domain fails to
capture the propagation of groundness among program variables bound to terms
that contain the same free variables. This motivates extending the domain to
capture also equivalence of variables: two sets of variables S, and S, are equivalent
with respect to a set of substitutions 3, if

cei= |J Var(ox)= |J Var(ox),
xeS8, xE€S,
where Var(t) is the set of variables occurring in term ¢. The significance of this
information is that, at any subsequent stage of the computation, all variables in S,
become ground if and only iff all variables in S, become ground, too.

Marriott and Sg¢ndergaard [26, 27] have proposed the use of propositional
formulas for representing variable groundness and equivalence. Intuitively, the
formula x Ay says that x and y are both ground; the formula x Vy says that
either x or y is ground, or both. The formula x Ay Az u Aw express the
equivalence of {x,y, z} and {u,w}. It approximates, for instance, the substitution
{u = flx,y), w—f(y, 2)}.

The aim of this paper is to provide a precise description of an abstract
interpretation for groundness analysis based on propositional formulas.

1. We characterize both semantically and syntactically the class of formulas that
is meaningful for groundness analysis, that is, the formulas that approximate
nonempty sets of substitutions and such that any two inequivalent formulas
represent distinct sets of substitutions. This class consists of (the equivalence
classes of) the formulas that are true when all their variables are set to true
[31]. These formulas are called positive [28]. Also a syntactic characterization
of this class is given by showing that the class of positive formulas equals that
of the formulas obtained by using only the connectives, A and e . A
preliminary report of these results appeared in [11]. In addition to this
characterization, we show that all inequivalent positive formulas are useful
for deriving different groundness properties in real programs.

2. The abstract domain Prop, using positive formulas, is defined. Our domain
Prop consists of elements of the form [ f, U], where f is (the equivalence class
of) a positive formula (or the false constant, F) whose variables are all
contained in the finite set U. Intuitively, U contains the variables of interest,
i.e., all the variables about which the abstract value f is supposed to give
information. When bottom and top clements are added to the set of these
pairs, Prop becomes a complete lattice with respect to the following partial
order:

for [f1.U,]), [ f2,U,] € Prop,
.Ul <]f,0,] iff fi=f, and U, =U,.
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Thus, Prop comprises separate complete finite lattices for each finite set of
variables, plus a bottom and a top.

We also maintain explicitly the set of variables of interest in our definition
of the concrete domain Rsub (Rsub stands for restricted substitutions). An
element of Rsub is a pair [3,U], where 2 is a set of substitutions and U a
finite set of variables.! Adding top and bottom elements, Rsub becomes a
complete lattice with respect to a partial order similar to that defined above
for Prop. Our motivation for explicitly including the variables of interest in
the domains is discussed in Section 7.

3. The abstract operations on Prop are defined, obtaining the abstract interpre-
tation Prop. The least upper bound (lub) and the projection are natural
extensions of disjunction and existential quantification. This extension is
needed mainly to handle the second component of the elements of Prop.
Thus, they are very similar to the corresponding operations defined in [29].
The abstract unification U, presents several differences with respect to that
of [29] (cf. the discussion in Section 4.2).

All three abstract operations are correct with respect to the corresonding
concrete ones, as observed in [28, 29]. Moreover, we show that these three
operations are also optimal. To the best of our knowledge, these are the first
optimality results shown for an abstract interpretation for logic programs.

4. Two new forms of optimality, a- and y-optimality, are defined and applied in
our study of Prop. Both «- and y-optimality imply the usual optimality of [4],
and have interesting implications. Assume that the data-flow semantics of a
given logic program P is a function, #[P]: Atom —» X — X, as in [29], where
X is a generic domain and Atom is the set of atoms. Let C and D be a
concrete and an abstract interpretation, whose domains C and D are related
by means of a Galois insertion with adjoined functions, a and vy. Let us now
use C and D to interpret appropriately the domain X and the operation
symbols of the data-flow semantics in order to obtain a concrete and an
abstract semantics that are functions #[P].: Atom - C — C and L[P],:
Atom — D — D, respectively.

If the operations of D are a-optimal with respect to those of C, then V. € C
and VB € Atom, a(P[P]. Bc) =2L[P], B(ac). Thus, a-optimality implies
that the abstract semantics is the best possible with respect to the chosen
abstract domain D. The reader may wonder whether this fact is already true
when normal optimality [4] holds instead of a-optimality. In general, this is
not the case. We show that, even though Prop is optimal in the classic sense,
the above property does not hold and the unification of Prop is not a-opti-
mal.

Let us turn to y-optimality, which implies

VvdieD and BeAtom, y(P[Pl,Bd)=2[P].B(vd).

This property is even stronger than the previous one. In fact, it implies that
no loss of information is caused by computing on D instead of C (when the
concrete computation starts from a value that is the image of an abstract

! Unlike in approaches based on parametric substitutions [27], the domain of o € X has no bearing
on the variables of interest, U.
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value). Thus, y-optimality is an unrealistic condition to require, since it
implies that the abstract domain is in some sense equivalent to the concrete
one. The results we show about these strong forms of optimality are in
agreement with the above intuition: the lub and projection of Prop are
a-optimal but not y-optimal; the abstract unification U, is neither a- nor
~y-optimal.

Let us conclude this introduction with an example that shows how Prop can be
used for the groundness analysis of a Prolog program. In order to focus attention
on the use of the operations, the example omits some steps performed by a typical,
general-purpose analysis.

Example 1.1. Consider the following program fragment:

2-{0yplu, v,w), {1>q(u),{2)v =x,{3)w =x, {4 )use(x).

P(zy, 2, 2,) q(c). use(x)-....
p(zy, 25, 2)).

A typical concrete collecting semantics computes a set of substitutions (called
the activation set) for each program point, whereas an abstract semantics computes
an abstract activation approximating that set. Using Prop as the abstract interpre-
tation, we trace the behavior of the program under both semantics.

Let W= {u,v,w, x} and assume that at point {0) the activation set is [{id}, W],
where id stands for the empty substitution. The corresponding abstract activation is
[T,W] (where T stands for true). The concrete unification of p(u,v,w)=
p(zy, 24, z,) produces [{{u —» v, z; = v, z, = w}}, WU{z,, z,}]. Abstract unification
produces d =[(u & z)) A (v ©z)) A(w & 2,), WU{z,, z,}]. Note that in both con-
crete and abstract activations, the second component has been modified to account
for the introduction of the new variables z, and z,. As part of computing the
abstract activation at point (1), d is projected onto the variable set W by means of
existential quantification:

[z, 2} (o) A(voz)A(woz) W] =[uov,W]

The corresponding concrete projection simply replaces the set of variables of
interest by W:

[{{u»—n),zl '_’U,Zz""W}},W].

In the remainder of the example, we show only the results after projection, and we
omit the second component from activations, because it is always W.

In both the concrete and the abstract cases, the result of using the second clause
for p is similar to that of the first. Results from the two clauses are combined by
using the join operations of the respective domains. At point {1), the concrete
activation set is {{u = v,z; > v,z, » w}, {u » w, z; > w, z, » v}} and the abstract
activation is (u © v) V (u & w).

When a new unification is simulated, such as that of g(u) = g(c), the abstraction
of the most general unifier (mgu) is conjoined with the previous abstract context. In
this case, the concrete mgu is {# — c}, which is abstracted simply by u, so we
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obtain? at program point {2):

{umc,w—c,z,-c¢,2,> 0}

{u—c,v—>c,2,>c¢,2z, > w}, d ((uev)V(new)) Au
=uA(vVvw).

We obtain at point (3):

(uA(vVvw))A(vex)
{{u*—>c,u-—>c,xr—>c,zl'—)c,zz»—>w}, p =uA((vA(vex))
" V(WA (v o))

=uA((vAx)V(wA(vex))),

{fumrc,woc,o—x,z,~c,2,x}

and at program point {4):
{u—c,o-ec,x>c,woc,zy-c,z,-c}} and uAvAwAx,
which tells us that each variable is ground.

The rest of the paper is organized as follows. Section 2 recalls some basic notation
and properties of abstract interpretation, of propositional formulas, and of substi-
tutions. In particular, Section 2.4 explains the function that maps formulas to sets
of substitutions and shows some of its properties. Section 3 gives a semantic and a
syntactic characterization of the formulas that are useful for groundness analysis.
Section 4 precisely defines and illustrates the concrete and abstract interpretations,
Rsub and Prop. In Section 5, the relation between Prop and Rsub is studied: in
Section 5.1, we show that there is a Galois insertion between their two domains;
Sections 5.2 contains some interesting lemmas relating a value of Rsub with its
abstraction. These results are used in Section 5.3, where we show the correctness
and optimality of the abstract unification and projection. In Section 6, we study
stronger optimality results for the abstract operations. Finally, the paper is closed
by a section discussing related work, followed by a short conclusion.

2. PRELIMINARIES

2.1. Basic Notions Concerning Abstract Interpretation

As mentioned in the Introduction, in a general framework one obtains an abstract
analysis by defining an abstract domain and operations that simulate the concrete
ones and that meet some safety conditions. In this subsection, we recall the most
common safety conditions that are used in the literature [4, 5].

Let the concrete interpretation be C = (C, op.) and A = (A, op,) be an abstract
interpretation. For the sake of simplicity we assume, without loss of generality, that
the interpretations have only one operation and that these operations are unary.

? The attentive reader may be justifiably concerned that in standard execution the current substitu-
tion is applied to the equation before its mgu is found. We take advantage of the fact that for
idempotent substitutions o and equation sets E, mgu(o(E))e o is renaming-equivalent to mgu(E U
Eq(o)).
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Both C and A4 are assumed to be complete lattices with partial orders <. and
<, , respectively.

A Galois connection between C and A is defined by two functions y: 4 —» C,
called concretization, and «: C — A, called abstraction. They must satisfy three
conditions: (i) @ and y are monotonic; (i) V, € C, ¢ <. y(a(c)); (i) Va €A,
a(y(a)) <, a. In that case, y and « are called adjoint. A Galois connection is
denoted by (A4, y,C, a). A Galois connection (A4, y,C, ) that has y injective is
called a Galois insertion. In this case, condition (iii) above becomes an equality. The
abstract operation op, is correct with respect to op. when

VaeA, a(opc(v(a))) <4 0p4(a)

and op, is optimal if that inequality can be replaced by an equality.

2.2. Propositional Formulas

For an introduction to the basic concepts of propositional logic, see, for instance,
[2]. Let V be a countably infinite set of propositional variables. FP(V) denotes the
set of finite subsets of variables of V. The set of propositional formulas constructed
over the variables of V and the logical connectives in T C{A, vV, &, =} is denoted
by QI'). For any U € FP(V), Q,(I') consists of formulas using only the variables
of U and the connectives of I'. The propositional constants T and F (for true and
false) are not included unless otherwise indicated.

A truth-assignment is a function r: V — {true, false}. Given a formula fe
Q{A, VvV, o,-},? r=f means that r satisfies f, and f, =f, is a shorthand for
“rief, implies re=f,” Q{A,V, e, -} is ordered by fiCf, if fiEf,. Two
formulas f, and f, are logically equivalent, denoted f, =f,, if f, =f, and f, =f,.

We are interested in the lattice obtained by taking the quotient of Q(I") with
respect to logical equivalence. To avoid burdensome notation, in the rest of the
paper we simply write f for the class of formulas equivalent to f. Sometimes we
implicitly select a representative of this equivalence class by treating f first as an
equivalence class and then as a formula in that equivalence class. Since the results
of the operations that we apply to f do not depend on which representative
formula is seiected, this abuse neither causes nor hides any problems. Notice that
for any Ue€ FP(V), Q, {A,V, e ,}/= is a complete lattice with least upper
bound V and greatest lower bound A.

For subsets 4, and A4, of Q{A,V, &, =}, we write 4, =A, when every
formula of one is equivalent to a formula of the other and vice versa. For example,
it is well known that Q{A,V, &, -} =Q{A, -}

Let the truth values be ordered by false < true and extend this order pointwise
to truth-assignments: r, <r, if, for all x €V, r(x) <r,(x). A formula f is mono-
tonic if, for all r; and r, satisfying r, <r,, r, =f implies r, =f. A formula f has
the model-intersection property if, for all truth assignments r, and r,, r, =f and
r, =f implies r = f, where r is defined so that for each x €V, r(x) = frue if and
only if r,(x) =ry,(x) = true.

3 We often write Q{A, v, o, a}for QUA,V, o, ), ala) for a({c)}), ox for o(x), and even
assign o for assign (o) when the extra parentheses seem to make the function application more difficult
to read.
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In addition to truth-assignments, we use substitutions that replace a finite set of
variables by an element of { T,F}. Let U={x,,...,x,}. A function s: U—{T,F} is
called a truth-substitution over U. The application of truth-substitutions to a
formula f is denoted by s(f). We also write f(x/Q) for {x/Q)(f), where Q is
a truth value and {(x/Q) is the truth-substitution mapping x to Q. If r is a
truth-assignment, we denote by 7|y the truth-substitution s: U — {T,F} given by

T, if r(x)=1true,
s(x) = .
F, if r(x) = false.
We conclude this subsection with some simple propositions.
Proposition 2.1. For all fe Q{ A,V , &, =}, such that f#F, f is monotonic if and
only if there exists some f' € Q{ A, V } such that f' =f.
Proposition 2.2. Q{A,V,o}=Q{v, o}=0Q{A, o}.
ProOF. Follows from observing

fivh=E(fiefh) o ((Lirf) Afief))
finf=(fiefh)<(fivf). O

Proposition 2.3. Q{A, v} Q{A, ©}. (Note that the inclusion is strict.)

PrROOF. By Propositions 2.1 and 2.2, it suffices to show that there is a formula in
M A, «} that is not monotonic. Define r, by r,(x) = false for all x € V; define r,
to be the same as r; except that r,(x,) = true; define f=x, < x,. We have r, <r,,
rr=f,andnot r, =f. O

The unit assignment u is defined by u(x) = #rue for all x € V. Define the set of
positive formulas by

Pos={feQ{A,V, o, ,a}lu=f}.

Some obvious examples: T, x, € Pos and F, = x, & Pos.

Proposition 2.4. Q{ A, <} C Pos.

PRrROOF. Straightforward, by structural induction on the formula in Q{A, &}. O

Proposition 2.5. Q{A, o} Q{A,V, &, )

PrOOF. By Proposition 2.4, the formula — x; cannot be expressed in Q{A, ©}.
]

The expressive powers of Q{A, &} and Q{A, =} are more similar than one
might at first expect. The former has a sort of quasi-negation, illustrated by the
following proof.

Theorem 2.1 [24]. Consider any f€ Q{A, =}. Assume that all variables of f are
V, ={x,,...,x,}. Then there exists f' € Y A, &} such that f' =fV AV,.

PrOOF. Inductively construct f' from f by replacing each subformula of the form
- f* by f* o AV,. We prove f' =fV AV, by showing that, for all assignments r,
ref'iff refv AV,
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case 1: r = AV,. By construction, f' € Q{A, <}, so by Proposition 2.4, r = f'. The
result follows immediately by the semantics of V.

case 2: ri= AV,. The proof that r=f iff r=f' is by induction on the structure of
f. The basis is trivial: f is a propositional variable. In the inductive step, two
cases are distinguished. If f=f, Af,, then f'=f] Af;, and thus r=f iff r =f’
by the induction hypothesis. In the other case, f= — fi, thus f' =f] & AV,:

r=f" iff re=f] o AV, by construction of f’,

iff ref] by assumption on r,
iff r=-f by induction assumption,
iff r=f by assumptionon f. O

We now can observe the equivalence of the syntactic and semantic characteriza-
tions of this set of formulas.

Corollary 2.1. Q{A, &} = Pos.

ProOF. This is an immediate consequence of Proposition 2.4 and Theorem
21. O

2.3. Substitutions

Since propositional formulas are used to express properties of substitutions, it is
convenient to use the same set of variables V for both formulas and substitutions.

Let G be an alphabet of function symbols and let Ty ¢ denote the set of finite
terms over V and G. A substitution o is a function in V - Ty ¢ such that o(x) #x
for only a finite number of variables x. The restriction of o to A CV is given by

_Jo(x), ifxeAd,

ola(x) {x, otherwise.

The set of support of o is given by supp(co) = {x| o (x) # x}. The variable range of
o is given by var-range(o) = U{Var(o x) | x € supp(o )}, where Var(t) denotes the
set of variables occurring in ¢. The set of variables occurring in o is given by
Var(o) = supp(o) U var-range( o). A renaming o is an invertible substitution.

Consider two substitutions o, and o,. If there exists & such that o, = 94 ¢ oy,
then o, is more general than o,, which we write o, < 0;. We also call o, an
instance of o,.

Let E be a set of term equations. If o makes o (¢,) syntactically identical to
o(t,) for each (¢, =t,) €E, o is called a unifier of E. Since all the idempotent
most general unifiers of a set of equations E are renamings of one another [23], we
use the notation mgu(E) to denote an arbitrary such unifier. If o={x, —~1,,...,
x,—1t,} is an idempotent substitution, then we write Eq(co) for the set of
equations {x, =¢,,...,x, =t,}. Note that o is a most general unifier of Eg(o).
Subst is the set of idempotent substitutions.

2.4. Representing Substitutions by Formulas

This subsection defines vy, the function that maps a propositional formula to the set
of substitutions that it approximates, and that forms the basis of the concretization
function of Prop, defined in Section 4.1. A substitution’s groundness and variable
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equivalence properties are preserved under instantiation: if o grounds x, then any
o' 4 o grounds x; if two sets of variables §; and S, are equivalent with respect to
o, then §; and §, are also equivalent with respect to any o'<o. Thus, to
represent the groundness and equivalence of a substitution o, it is natural that the
formulas that represent these properties approximate only instantiation closed sets
of substitutions. (This closure property makes abstract unification easily expressible
as the greatest lower bound of the abstract domain.) The variable equivalence of a
substitution is related to a propositional formula by examining the set of variables
made ground by each of the substitution’s instances. We use an auxiliary function
that maps a substitution to a truth-assignment that assigns the value frue to each
variable that the substitution grounds [26, 27]:

assign: Subst — V — {true, false)
assign o x = true iff o grounds x.

In the examples that follow, %, g and a, ¢ denote function and constant symbols; f
is always a formula.

Example 2.1. Consider the formulas f; =(—x; Vx,) and f, =x; A (x, ©x;) and
the substitutions o, = {x; — g(x,)}, o, = {x, = 4}, and o, = {x, = g(a), x, = h(xy,),
x3 - (h(x4))}). Both assign o, and assign o, satisfy f,, and assign o, satisfies f,.
However, o, does not possess the equivalence property expressed in f, by
x, «>x;. This is revealed when we consider the instance of o,, o; = {x; = g(a),
x, = h(a), x5 g(h(xg)), x5 — a}: assign o3 ¥ f,. On the other hand, assign o, and
assign o, both model x; A (x, & x;). The strongest formula that approximates o,
is x; A (x, ©x5) Alx; ©xg).

These observations motivate the following definition of the function vy [27]:
y:Q{A,V, o, ) > p(Subst),
v(f)= {o'E Subst |Vo' < o-assign o’ l=f}.
Thus, y(T) = Subst and y(F) = .

Example 2.2. Let o ={x; = x,, x, = x5, x5 > g(x,, x5)}. It is easy to see that, for all
o'do,assignag’ =f, VI,V f3Vf,, where,

=X AaX A X3 A X A Xs,
FH=X A X, A X3 AX A 2 X,
3= X AX; A X3 A m Xy AXs,

fa=X  AXy AX3 AX, AXs.

Consequently, o€ y(f, Vf, Vf;VSf). In fact, f,Vf, Vf;Vf, is the strongest
formula approximating o. A more compact and evocative equivalent formula is
(x; ©x) Ax, ©x5) A (x5 < (x; Axs)). This intuition will be formalized in Theo-
rem 5.5.
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Proposition 2.6. y is monotonic.

PROOF. Suppose f; = f,. It follows that if Vo’ < o.assign o’ = f, then Yo' < o .as-
sign o' =f,. So we have y(f))cy(f,). O

Proposition 2.7. For all f, f,€ 1A,V , o, =), y(f; Afy) = y(f) N y(f,).
PROOF.
y(finfy) = {U'VU'ISU'-QSSig" o' Ef /\fz}
= {UI Vo' o.assigno’ I=f1} N {Ul VYo' o .assigno’ I=f2}

=y(fi)ny(fy). O

3. THE FORMULAS USEFUL FOR GROUNDNESS ANALYSIS

Three results are shown in this section. First, we prove that the formulas that
represent nonempty sets of substitutions are exactly the formulas of Pos. Second,
we show that inequivalent members of Pos represent different sets of substitutions.
Finally, we show that all elements of Pos are necessary in the following sense: for
any two inequivalent formulas f; and f,, there is a program such that its abstract
analysis, starting from f, as initial activation, infers different groundness with
respect to that computed by the analysis starting from f,. :

Since all representable sets of substitutions are closed under instantiation,
nonempty sets must contain substitutions that ground arbitrarily large finite sets of
variables. Consequently, nonempty sets are represented by formulas that assume
the value #rue on the unit assignment u.

Proposition 3.1. For each f€ Q{A,V , &, =}, ¥y(f) # Dif and only if f € Pos.
PROOF.

=) Fix any o € y(f). From the definition of y, o'< o implies o’ € y(f).
Clearly, there exists o' < o such that ¢’ grounds each variable occurring
in f. By assumption, assign o' = f and assign o’ =x for each x € Var(f). It
follows that u = f.

<) For any f € Pos, y(f) contains all substitutions that ground each variable of

f. O

Proposition 3.1 tells us that if we include in our abstract domain the formulas of
Pos together with the formula F, there will be only one element representing the
empty set of substitutions, namely F. Proposition 3.2 extends this by telling us that
there will be only one element representing each represented set.

Proposition 3.2. The function vy restricted to Pos is injective.

ProOF. Consider arbitrary [ f;]_ and [f,]_ € Pos such that [f;]_ #[f,]. . Since f,
and f, are not equivalent, there must be a truth-assignment r: V — {true, false}
such that (without loss of generality) r=f; and r#f,. Let g, be the substitution

a, if r(x)=true and x €Var(f,),
o(x) =<z, if r(x)=false and x € Var(f,),
x, if x&Var(f,),
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where a is some constant and z is some variable satisfying r(z) = false. (We know
such a z exists because r I f,.) Now for each ¢’< ¢, o’ either grounds z or it
does not. That is,

either  forall x € Var(f,), assign o'(x) = true
orelse forall x € Var(f,), assign a’(x) =r(x).

In the former case, assign o’ =f, follows from f; € Pos; in the latter case, we have
assign o' =f, because rk=f,. Thus, o, € y(f;). On the other hand, since we
assumed that r & f,, o, & y(f,). Thus, y(f)) ¥ y(f,) as desired. 0O

Together, Proposition 3.1 and Proposition 3.2 characterize semantically the
formulas that are useful for representing distinct nonempty sets of substitutions. By
Corollary 2.1, these are the formulas of Q{A, &}

We conclude this section by showing that if we omit any element from Pos, we
diminish the power of the analysis. We have shown in Proposition 3.2 that
inequivalent elements of Pos denote different subsets of Subst. This is theoretically
interesting; however, for compilation, we are typically interested only in which
variables are ground at each program point. Thus, we need to distinguish two
formulas only if either (1) they have different atomic consequences, or (2) they lead
to different atomic consequences after further analysis of some subject program.
Since abstract activations are computed by conjoining formulas, it suffices to
answer the following question: Given two inequivalent formulas f,, f, € Pos, does
there exist a formula that, when conjoined with f; and f,, leads to different atomic
consequences? Proposition 3.3 answers that question in the affirmative.

Proposition 3.3. Let f,, f, € Pos and f, # f,. There exists a third formula f; € Pos such
that one of f; A f; and f, A f5 is equivalent to AV, and the other is not.

PRrOOF. Follows easily by viewing f; and f, in their disjunctive normal forms. O

4. THE CONCRETE AND THE ABSTRACT INTERPRETATION

In this section, the domain and the operations of both the concrete and the
abstract interpretation are defined. The concrete interpretation is Rsub =
(Rsub, _,U,, ). The abstract interpretation is Prop = (Prop, n,,U, 'n'p). Rsub,
L., Prop, and Ui, are described in Section 4.1. That section also contains the
definition of the concretization and abstraction functions relating Rsub and Prop.
The operations of concrete and abstract unification (U, and U,) and projection (m,

and m,) are defined in Section 4.2.

4.1. The Domains Rsub and Prop
Recall that FP(V) denotes the set of finite subsets of variables of V:
Rsub ={T_, L.} U (p(Subst) X FP(V)).

Rsub stands for restricted substitutions. The partial order of Rsub is as follows: T,
is the largest element; L_ is the smallest. For any other two elements [3,,U,;] and
[2,,U,] or Rsub, [%,,U,]<.[%,,U,] if and only if U =U, and X, C2,. This
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ordering yields LI, as follows: for any c € Rsub, T, U, c=T,, 1, U, c=c; for
the other elements,
[lezz,Ul], ifU1=U2,

T, otherwise.

(2, 0]u[2,,0,]=

The greatest lower bound (glb) of Rsub is analogous. Rsub is a complete lattice.
Recall from Section 2.2 that we write simply f for the class of formulas
equivalent to f:

Prop={T,, L} U{[f,UlIU€FP(V)&fe (Qy(A, <)/ = U{[FI.})}.

Prop is partially ordered as follows: T,, is the largest element and L, is the
smallest; for the other elements, [f,U;]1<,[f,,U,] if and only if U, =U, and
f1Ef,. This ordering yields L, as follows: for all d € Prop, T, U,d=T, and
1, U, d =d; for the other elements,

[fivh,U], iU =0,
[f,U1] Up[f2’U2] VT otherwise.

p’

The glb of Prop is found in a similar way. The fact that Prop is a complete lattice
follows from the fact that, over a finite set of variables, there is only a finite
number of equivalence classes of propositional formulas. Were we not to restrict
attention to finite sets of variables, we would have to include infinite formulas to
obtain a complete lattice.

The relation between Rsub and Prop is expressed by two functions: the
concretization function, Y- and the abstraction function, «,. v, is based on the
function y defined in Section 2.4:

Yp: Prop = Rsub,
fd=1, T,
ifd=1, i,

%(d) = ifd=[f,U], [3,U], where
S =y(f) =o€ Subst|\Vo' A o.assign o' Ef}.

The function a,: Rsub — Prop is the usual adjoint [S] of v, (e, a,(c) = M{de
Prop | v,(d) <, c}. (Prop,,, Rsub, a,) is a Galois insertion (see Section 5.1).

4.2. Concrete and Abstract Unification and Projection

We start by describing the projection operations, which are illustrated in Example
1.1 (cf. Section 1). Both preserve L and T. The concrete projection =, is as
follows:

m,: Rsub X FP(V) — Rsub
([, 0,].0) -~ [3,U,nG,].

The abstract projection 7, amounts to existentially quantifying a formula [27, 29].
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The existential quantification of a propositional formula obeys

Ax.f=f{x/T)Vfx/F).

(This truth substitution notation {x/T ) is introduced in Section 2.2.) This
generalizes straightforwardly to quantification over sets of variables. It can be seen
as follows that if f € Pos, then 3U.f is also in Pos [28]. Take the truth substitution
s’ on U that replaces by T all variables of U. It is true that u F=s'(f). Thus
uke A{s(f)lseU—-{T,F}}. Applying Corollary 2.1, it follows that there exists
f'e A, o} equivalent to U.f and containing the same free variables. This fact
ensures that the following definition of , is well defined—projection yields an
element of Prop:

m,: Prop X FP(V) — Prop
([f1,01],0,) = [3U, - U,.f,,U U G, ]

The following example shows the use of .

Example 4.1. Let f=((x; Vx,) o (x3 Ax,)) Axs.
w([f,{xl,xz,x3,x4,x5}],{xz,x3,x5})
=[F,{x,,x;,xs}], where
F=3xx,.(((x; VX) © (x5 AXy)) Axs)
=(((T vxy) © (23 A T)) Axs)
V(((T Vay) © (x5 A F)) Axs)
V(((FVx) ©(x3A T)) Axs)
V(((FVxy) © (x5 AF)) Axs)
= (x3Ax5) VFV ((x, ©x3) Axs) V ((x,0F) Axs)
= (x5 Ax5) V ((x2 ©x3) Axs) V ((— %) Axs)
= (x3A%5) V ((x30x3) Axs) V ((x; € (X AX3 AXs)) Axs)
by noting that the formula is in Pos and
using the technique used in the proof of Theorem 2.1
= (x3 Axs5) V ((x, ©x3) Axs).

Let us now turn to the unification operations. As different frameworks require
different combinations of unification and composition, we provide operations that
subsume those of most frameworks. In order to define the concrete unification U,,
it is convenient to introduce first the following function u_:

u,: Subst X Subst X Subst — Subst,
(04,05, 8) —> mgu( Eq(oy) U Eq(a,) U Eq(8)).

U, and U, are strict: if either of the first two arguments is L, the result is L.
Otherwise, if one of these is T, the result is T. The other cases are as follows:

U,: Rsub X Rsub X Subst = Rsub,
([2,UL12:.0,),8) = [{u (01,02, 8) |0y €3, &0, €35},
U, U U, U Var(8)].



150

A. CORTESI ET AL.

The abstract unification U, here is a modest generalization of the abstract
unification operation found in [26, 29]:

U, Prop X Prop X Subst — Prop,

([f1>U1]?[f2’U2]’3) i [f] Nfang, U VG, U Var(6)],
where [g, Var(8)] = a,([{8}, Var(8)]).

We have chosen not to incorporate renaming into U, and U, in order to keep the
operations as simple as possible. These technical details can be found in [13].

The reader may wonder why U, takes two abstract values as arguments (to-
gether with a substitution), whereas in the corresponding operation unify,,, of [29]
only one such argument is present. When considering the abstract unification of
the domain Prop, there is no difference between these two types of operations.
However, this is due to the fact that Prop has the property of being condensing, cf.
[28]. Intuitively, a domain is condensing when the knowledge about the initial
activation is not important for the final result, i.e., no information is lost if one runs
the analysis with “empty” initial activation and then combines the obtained result
with the activation only afterwards. When dealing with noncondensing abstract
domains, an abstract unification can be more precise by taking two arguments than
by taking only one. A simple instance of this phenomenon is illustrated by the
following example.

Example 4.2. Consider the simple domain A4 for groundness analysis consisting of
p(U), for U FP(V). B €A approximates the substitutions that instantiate (at
least) all variables in B to ground terms. Consider now the following unification
step: the calling atom is T = p(x,,[x, | x,], z), and the abstract activation is a, = {x,}.
The clause involved in ! = p(w,,w,,w,): — Body.

Obviously, the forward unification computes & for the variables of /. Assume that,
after having processed Body, the abstract value is a, = {w,}. If we perform the
backward unification using only a, and the mgu of 7 and the head of /, we
compute {x,} which, combined with a,, gives {x,, x;}. On the other hand, if a, is
available during the backward unification step, then one could infer that also w, is
ground and thus also z is ground. Thus, the final result would be {x,, x,, z}.

This difference would not occur if Prop was used. In fact, with Prop in both
cases, we would obtain x, Ax; A (x, Ax, © z), which implies that z is ground.

When condensing domains are used, our approach is equivalent to that of [29].
However, to the best of our knowledge, Prop is the only abstract domain known to
be condensing, whereas it is known that Sharing [21] and Def [1] are not.
Therefore, we have chosen, for our abstract unification, the type that encompasses
an optimal unification for any abstract domain and not only for condensing ones.

Example 4.3, which is a continuation of Example 1.1, illustrates the use of U,
and of U, both for “forward” and “backward” unifications.

Example 4.3. Suppose we modify the program fragment shown in Example 1.1 so
that the definition of ¢q is replaced by

q(2):-{5)z=1c(6).
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Recall that W= {u, v, w, x} and that the activation set and the abstract activation at
program point {1) are, respectively,

o= [{{u— v}, {u—>w}h W],

d=[(uev)Vv(uow),W].
The unification g{u) = q(z) is simulated at the concrete level by

2 =Uey, [{id}, {2}]. {uoz}) = [{{u > v, 2> 0}, {u > w, 2> 2}, WU {2}]
and at the abstract level by

d, = U (dy, [ T.{2}], {u > 2}) = [(u o v) V(wow) A(uoz), WU {z}].

These are forward unification steps. Observe that in such a step, the second
argument is a sort of identity value whose principal role is to introduce the
variables of the new clause as variables of interest.

The values ¢, and d, are projected onto the variables of the called clause, i.e.,
{z}, in order to obtain the activations at program point {5). As in Example 1.1, we
exhibit the bindings of the variables of interest only:

c;=m(cyn{2}) = [{{z =0}, {z~>w}} {2},
dy = m(dy. {2}) = [Hu.v.w) ((u o 0) V (o w)) A (uo2).(2}] = [T.{2}].
For program point {6), we obtain

¢y =Uc(e3, [{id},{2}]. {z = c}) = [{z~ ¢}, {2}],
dy=Uy(ds, [T, {z}]. {z = c}) = [2,{2}].

We now compute the activations at point (2). They are obtained by a backward
unification that combines the activation at point (1) and the equation {g(u) = g(2)},
together with the activation at point {6), as follows:

U(cy ey, {umz})=[{{u—c,z-c,v>c},
{u—c,zoc,wec}}), Wu{z}],

U,(d,,d, {u=z})=[unzn(vvw), Wu{z}].

When these values are projected onto W, the variables in the calling clause, we
obtain the activations associated with program point {2) in Example 1.1.

Our backward unification accomplishes two tasks that in other frameworks (e.g.,
[29]) are performed by separate operations.

5. CORRECTNESS AND OPTIMALITY

This section is divided into three parts. Section 5.1 shows that ( Prop, Yp»> Rsub, ap)
is a Galois insertion. Section 5.2 characterizes in several ways the relationship
between an element of Rsub and its abstraction in Prop. These results are used in

Section 5.3 where the correctness and optimality of U, and =, are shown.
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5.1. Galois Insertion

First we show that there is a Galois connection between Prop and Rsub. The
desired Galois insertion will then follow from the injectivity of y,.

Theorem 5.1 (Galois Connection). (Prop, Y,» Rsub, a,,) is a Galois connection.

PrOOF. By [5, Proposition 7], it is sufficient to prove that y is a complete
meet-morphism. By Corollary 2.1 and Proposition 2.7, y is a meet-morphism. Its
completeness derives from the observation that the meet of any infinite subset of
Propis L. O

Theorem 5.2. The concretization function v,: Prop — Rsub is injective.

PROOF. The result follows easily from Propositions 3.1 and 3.2. O

Injectivity of the concretization function is desirable because otherwise the
abstract domain contains different elements that represent the same concrete
element.

Corollary 5.1. (Prop, Yy» Rsub, ap) is a Galois insertion.

That the least upper bound operation of Prop is both safe and optimal follows
from the preceding corollary. In fact, the following general result holds [5].

Theorem 5.3. Let (D,y,C, a) be a Galois insertion and let d,,d, €D. Then L, is
optimal (equivalently, o preserves lubs), that is,

a(y(d)) U, v(dy))=d,Up d,.

In Section 6, it will be proven that U, is also a-optimal, but not y-optimal.

5.2. Characterization of the Abstraction of Rsub

In this section, we study the relationship between an element [, U] of Rsub and
its abstraction ap([E,U ]). First we show that the case in which 2, contains several
substitutions can be reduced to that of a single substitution, and then we concen-
trate on the latter case. The results of this section are needed for showing the
correctness and optimality of U, and m,, but they are also interesting on their own.

It follows easily from Lemma 5.1 that «, is a complete join-morphism.

Lemma 5.1. If [Z,U] € Rsub, then
a([3.0) = U (a([{e).U]) 03],

ProoF. Let Fy={f,|[f,,U]l=a,({c},U], o €3}. By properties of Llp,

Ul {a,([(e}.U]) o€ X} = [V F,U].

By definition of @,, &, (2,UD =[A F,,U], where F, ={f|Var(f)cU, % c y(f)}
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We show that V F,= A F,.

(=) We show that for any f, € F, and f’' € F,, f, =f'. Consider any o € 3 and
let f, satisfy a,([{o’}, UD =[f,,U]. Also let f' € F,. Since {o'} € 2 C y(f"),
by monotonicity of a,, it follows that

o, ([{o}.U]) <, oy (3 ([f.U)))
Since a, oy, is the identity, from this it follows that
a([{a},U]) =1, Ul<,[f.U]
This implies that f_=f".
(e) We show that [3,U] <, y,((V F,, U], which implies that V F, € F;:
WV Fo,UD) = %([V{L1 £, U] = a([{0}.U]) & € 3),U])
by definition of F,
>, Uy (lf, . UDIS, . Ul =a,([{o},U]) & 75}

by monotonicity of v,

= U (e, ([{e},U])) Ioe3)
by definition of [ £, ,U ]
> [3,U]
because v, > a,([{c},U]) 2. [{c},U]. O

Let us then consider the abstraction of a single substitution. Some new termi-
nology is necessary. Let o be an idempotent substitution and U € FP(V):

e Ax(o)={assigno’'| o' dc}. For 3 C Subst, Ax(3) = U{Ax(¢) o€ 3}

o AYU={fIf€Pos, Var(f) cU, Vo' < o, assign o' = f}.

e A,={fIf€Pos, Vo' A0, assigno’' =f}.

o F = Axe AVar(a(x) |x € Supp(o))}.
For any formula f, Models(f) is the set of truth-assignments that model f. If r is a
truth-assignment, r|y is a restriction to U, i.e., rly: U — {true, false}. Restriction to
a finite set of variables will be applied to a set of truth-assignments with the
obvious meaning. If r|; is a restricted truth-assignment, then F(r|y) = A{z, |x€ U},
where 1, =x if ri=x, and ¢, = - x otherwise. For a restricted set of truth-assign-
ments Ty, F(T|y) = V{F(rly)|r € T}. Observe that if U2 Var(f), then F(Mod-

els(ly) =f.
We first relate Ax(o) and F,.

Lemma 5.2. Let U= Var(a), Ax(o)ly = Models(F,)y.

PROOF.

(2) Consider any r € Model(F, ). From r, we want to construct & <l o such that
assign 6ly =rl|y. 6= 00 o, where o' is as follows: for the variables not in
U, o' is fixed arbitrarily, whereas for each x€ U, o’ is

, _fa, ifrex,
o'(x) {x, otherwise.
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We want to show that assign &y =rly. For each x € U — supp(o), this is
immediate from the definition of ¢’ and the idempotency of o. For each
x € supp( o), the following holds:

assign o =x < assigno' = AVar(o(x))
erke AVar(o(x))
erkEx  since rex e AVar(o(x)).

(<) Consider any instance ¢ of o. We want to show that assign 5= F,. Let
6=0"0o.If assign &% F,, then there must be a formula x & A Var(a(x))
in F, such that assign 6 #x < A Var(o(x)). Let us assume that assign =
x, but assign 7 A Var(o(x)). The other case is similar. If assign & x,
then Vy € Var(o(x)), o'(y) is a ground term. But, by the idempotency of
o, 6(y)=c'(y) for all such variables. Thus the initial assumption is
contradicted. O

It is important to understand what happens to the models of a formula when
some of its variables are existentially quantified.

Lemma 5.3. Let f be any formula, U € FP(V') and W = Var(f): Models(QW — U.f)ly
= Models(f)y.

PrROOF. The 2 -direction is easy: just observe that any model of f is also a model
of the quantified formula.

For the other direction, consider r € Models(AW — U.f); there is a truth-sub-
stitution ¢ on W — U such that r = c(f). It suffices now to combine r and ¢ into a
truth-assignment r’ as follows: on W — U, r’ agrees with c¢; on U, it coincides with
r; and on the remaining variables, it is fixed arbitrarily. It is easy to see that
r' € Models(f). 0O

The following simple result is important for the sequel.

Lemma 5.4. Consider any s € Ax(o). Let us construct s' from s as follows: fix any
finite set W of variables such that W N\ Var(o ) = &; for the variables outside of W,
s' coincides with s, whereas for those in W, it takes arbitrary values. Then
s' € Ax(o).

ProoOF. It suffices to observe that variables as those in W are unconstrained by o
and thus there are instances of ¢ that instantiate them to ground/monground
values in all possible ways. 0O

Using the previous result, we can characterize the formula A AY. The intuition
is that in A AY, only the variables in Var(o) N U are useful; the remaining

variables of U are like those in W of Lemma 5.4.

Lemma 5.5. Let U€ FP(V), and W =Var(a) N U, then A AY = F(Ax(a)lw).

PROOF. Let F, = F(Ax(a)ly). First observe that F, belongs to 4Y. In fact, it is a
positive formula containing only variables in U, and obviously, Vo' < o, assign o’
FF,. Thus A AV =F,.

On the other hand, Fj= A AY, because every model r of F; is such that
rlw = assign o |y, for some ¢’ < o. This fact, together with Lemma 5.4, proves that
rly € Ax(o)ly, and thus, r= A AY. O

The previous result has several important consequences.
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Theorem 5.4. For o € Subst, the following points are true:

1. AAU_EF(AX((T)IVW((T));
2. NA,= NF,;
3. NAY=3Var(c)—U. A A,,.

PrOOF. Point (1) is true because 4,= U{AY|U € FP(V)}. By Lemma 5.5, this
implies that A A, = A{F(Ax(0)lvarc)nuv) U € FP(V)}, which is equivalent to
F(Ax(0)|var(s))- Point (2) follows directly from Lemma 5.2 and point (1) above.
Point (3) follows from point (1) and Lemmas 5.5 and 5.3. O

The next theorem puts together all results shown so far and states several
interesting characterizations of a,[{c},U].

Theorem 5.5. Let a,([{c},UD =f,U]. The following points hold.:

1. f=3Var(o)-U. A A,;
2. f=3IWar(o) - U.F,; .
3. for f € Pos, f=fiff Ax(o )y = Models(f)|y.

PrOOF. Points (1) and (2) follow immediately from Theorem 5.4(3) and (2),
respectively. Let us consider point (3).

(=) Lemma 5.5 shows that this result holds for the variables in Var(o) N U; in
fact, it states that f= F(Ax(0)lvar(oynv)- Using Lemma 5.4, it is easy to
see that the other va{iables in U are irrelevant.

(=) By the hypothesis, f=F(Ax(o)ly). Using the fact that the variables in
U —Var(o) are unconstrained by ¢ and thus take any value in AAx(a),
one can prove that f=F(Ax(o)lyaro)nv). Thus, by Lemma 5.5, f= AA4Y
=eo,([{o},UD. O

Using the previous theorem and Lemma 5.1, it is easy to characterize the
abstraction of elements of Rsub that contain more than one substitution.

Corollary 5.2. Let [3,U] € Rsub. If ap([E, UD =1[f,U], then Models( )|y = Ax(3)ly.
The following result is immediate from Corollary 5.2.

Lemma 5.6. For any % C Subst and U,, U, € FP(V) satisfying U, C Uy, if o ((%,U,]
=111, Uil and o« ,([3,U,D =1f,,U,], then f, = f,.

We conclude this section with a technical lemma that is useful in the sequel.

Lemma 5.7. Let E be a solvable set of equations and let U € FP(V). Assume that
a,({[mgu(E), UL =[f,U). Then,

fEVar(E) —U. A {AVar(ty) © AVar(t)) [ (t,=1t) €E}.

PROOF. Let o=mgu(E) and let ap([{(r},U D=I[f,,U]l. We show that for all
(toztl)EE,

f.E3Var(E) —U.AVar(ty) © AVar(t)).
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By Theorem 5.5, f, & 3Var(E) — U.A{x & AVar(o(x))|x €supp(c)}). Thus, for
any term ¢,

foEIVar(E) —U.AVar(t) & AVar(o(t)).

Applying this fact to ¢, and ¢, and using o(z,)) = o(¢)) yields the desired re-
sult. O

5.3. Correctness and Optimality of U, and =,
We are now ready to prove correctness and optimality of the operations of Prop.

Theorem 5.6 (Correctness of U, ). For all elements d, and d, of Prop and & € Subst,

o, (U.(%,(dy), %(d2), 8) <, U,(d;,d,, 8).

ProOF. The result follows easily if either d, or d, is either L or T. Assume the
following notation: d,=[f,U;] and d,=[f,,U,], W=U, UU,U Var(8), and
Y(d) =[%,,U,] and v,(d,) =[3,,0,]. If either f, or f, is F, the result follows
easily. Assume this is not the case and hence that neither 3, or %, is empty:

a,(U(%(d1). %,(d,), 8))
= Li:J {a,([{u(0y,0,.8)},W]) 0, €5, &0, €5,}
by Lemma 5.1 and the definition of U,
= l;' {o,([{mgu(Eq( o) VEq(o,) UEG(8))}.W])l oy €3,&0, €3,)
by definition of u,

=[V F,,W], by definition of LI, where
P

= {fILF, W] = o,([{meu(Eq(a,) UEq(0,) UEq(8))},W])&
0, €3, &0, € 22}.

By definition of U,, UJXd,,d,,8) =1[f; Af, Ag, W], where [g,Var(8)]=
a, ({8}, Var(8)].

In order to prove the theorem, it suffices to show that for any truth-assignment
such that ri= V F, it is true that r=f, Af, Ag. Assuming r= V F;, there must
be o,€3; and o, €3, such that [f,W]= a,(mgu(Eq(o,) U Eq(a,) U
Eq(8), W) and r=f. By Lemma 5.7, f= IV Ax o /\Var(t)lx =teEq(a) VU
Eq(o,) U Eq(8)}, where W = [Var(a,) U Var(o,) U Var(8)] -

Therefore, by Theorem 5.5(2), r =f, Af, Ag', where

[, W] = e ([{o}, W]),
[for W] = e([{ 02} W]),
[g".W]=q,([{8},W]).
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Since {} C %, by monotonicity of a,, it is true that

[fo’l’W] = ap([{ol} ’ W]) Sp ap([zl’ W])

Let a,(%;,W]D =[f',W]. Then Lemma 5.6 implies that f' & f,, because [ f;, U]
= a,(y,([f,U;D) = a,(2,,U,D and U, CW. Hence, f, = f,. Similarly, one shows
that f, =f, and that g' =g. Thus, since r=f, Af, Ag’, it must be that r=f; A
f>Ng, as desired. O

Theorem 5.7 (Optimality of U,). For all d, and d, of Prop and & € Subst,

ap(Uc(Yp(dl)’ 7p(d2)’ 6)) = Up(dl’dZ’ 8)

PROOF. One direction of the logical equivalence, namely <, , is shown in Theorem
5.6. We use in this proof the notation introduced in that of Theorem 5.6. Again,
the result follows easily if either d, or 4, is either L or T, and also if either f; or
f; is F.

We show that for any truth-assignment r such that ri=f, Af, Ag, r= V F;. In
the case where ri=x for all x € W, ri= V F, follows from the fact that V F, is a
positive formula in W. In the case where there exists z € W such that r# z, we
show that the following holds: there exist substitutions o, oy, and o, such that
points (i) and (ii) below are satisfied:

(i) 0, €3, and 0, €3,, and

(ii) mgu(Eq(o,) U Eq(0,) UEq(8)) = o, thus the unification does not fail, and
if ap([{a}, WD=I[f,,W], then r=f, .

By case assumption, there exists a variable in W that is falsified by r. Letting z

be such a variable, we define 0= 0, = 0, =00 §, where o' is defined on each
x € W as follows:

, _Ja, ifrex,
o'(x) = {z, otherwise.
We show that conditions (i) and (ii) hold for o, and o, defined in this way.
e Proof of (i):

Since f, and f, have only variables in W, it suffices to consider this set of
variables. For each x € W,

assign c=x < assign o' = AVar(8(x))
erE AVar(8(x)).
Since r = f, Af, Ag and [g,Var(8)] = o, ({8}, Var(8)]), we have
rex o AVar(8(x)).

Thus, for each x €W, assigno=x < re=x, from which it follows that
assign o = f;. It suffices now to observe that for each ¢ <o,

—either for all x € W, assign ¢ =x < assign o =x,
—orforall xeW, assignd=xeouk=x
(recall that u is the unit assignment).

Obviously, u = f. Thus, for all & < o, we have shown that assign & = f,. This
implies that oy €% (recall that y,([f,,U;D =[Z,,U;]D. By a similar argu-
ment, one can show that o, €3,.
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»  Proof of (ii):
From the definition of o = o, = 0o,, it follows that

mgu(Eq( o) UEq(a,) UEG(8)) =mgu(Eq(o’'~8) UEq(5))
=mgu( Eq(o'< 8))

Thus the unification does not fail. It remains to show that r=f_, where
lf,,wl= ap([{cr}, W 1. From Theorem 5.5(2), we know that

f,=3War(o) —W. A {x o AVar(a(x))|x€supp(o))}.
In order to show that r =f,_, we prove the stronger fact that
Vxesupp(o), rExe AVar(o(x)).

As noted in the proof of condition (i), for each x € W, assign o Ex < rEx.
Also note that for each x € W, then o (x) is not ground, then, by definition
of ', Var(a(x)) = {z}. Thus the following holds:

&, if rex,
Var(o(x)) = {{z}, otherwise.

In the case that r =x, obviously r = A Var(o(x)), as the empty conjunction
is true. In the case that r#¥x, we also have that r# AVar(o(x)) =z,
because r i z by assumption. Thus it is true that r =x & A Var(o(x)), as de-
sired. O

In a typical semantic construction, renaming is performed before unification;
thus the substitutions in the first two arguments of U, are variable disjoint. This
restriction is not considered in Theorems 5.6 and 5.7. Both theorems continue to
hold when renaming is applied. The proof of the first need not be changed,
whereas that of the second becomes more complicated, though it still follows the
same outline. Since adding renaming adds technical details to the proof and does
not significantly alter the proof method, we present the simpler result here. The
stronger result can be found in {13].

Let us now show the correctness and optimality of .

Theorem 5.8 (Correctness and Optimality of ). For any d € Prop and U' € FP(V),

m,(d,U’) = ap(wc(yp(d),U’)).

PROOF. The result follows trivially if d is either L or T. Thus assume that
[f,Ul=d and let f' be defined as follows:

[F,UnU]=a,(m(v([f.U]),U"))
= a,(7([v(f),U],U")) by definition of v,

= ap([’}’(f),Uﬁ U']) by definition of ..
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From this fact, we reason as follows:

Models( ')y nv = Ax(v(f))lvnv

by Theorem 5.5(3)

= (Ax(y(f NIl

= (Models( f)lv) v
again by Theorem 5.5(3)

= Models( f)ly v

= Models(3U - U'.f)lvnv
by Lemma 5.3.

Thus, f' = 3U — U'.f (recall that both formulas contain only variables in U N U").
To conclude the proof, it suffices now to recall that #,(f,ULU)=[3U-U".f,
UntU’l. O

6. STRONG OPTIMALITIES

This section introduces and studies two alternative notions of optimality for
abstract operations, called a- and y-optimality. Let C and D be a concrete and an
abstract interpretation. Assume that there is a Galois insertion between their
domains, C and D, with a and y abstraction and concretization functions. Let also
opc and op,, be corresponding operations of C and D (that are supposed unary for
simplicity):

e op, is a-optimal if Yc € C, alop(c)) =opp(alc)).
e opp is y-optimal if Vd € D, op-(y(d)) = y(opp(d)).

If we look at D as source programs together with their meaning and at C as
object programs with their meaning, then our notion of y-optimality resembles
quite closely the well-known “‘diagram-commuting” condition for compiler correct-
ness of [32]. It seems natural to consider the appropriateness of this condition as a
standard of precision for abstract interpretations. In the compiler-correctness view,
one expects to find an encoding homomorphism between the meaning of source
programs and that of corresponding object programs, which allows an operation to
be performed in D rather than in C with no loss of information. In abstract
interpretation some loss of information is intrinsic to the method, but it might be
that this loss would be confined to certain operations, while other operations might
behave exactly as their concrete counterparts do on the corresponding sublattice of
the concrete domain. However, it turns out that even for an abstract domain as
powerful as Prop, y-optimality is too strong to be met.

On the other hand, the notion of a-optimality is met by some of the operations
of Prop. Alone among these operations, U, is not a-optimal; U, is the only one in
which the structure of the terms in the substitutions affects the result of the
operation, and this information is lost by Prop.

The section begins by comparing these alternative notions of optimality with the
customary optimality of [4]. Then we characterize the precision of analyses based
on strongly optimal abstract interpretations. The section concludes by applying the
alternative criteria to Prop.
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Both «- and y-optimality imply standard optimality. For instance, consider
a-optimality. From it, we have

VdeD, a(opc(v(d)))=opp(a(y(d))).

Since in a Galois insertion, a(y(d)) =d, we obtain

a(opc(v(d))) =opp(d),

which is standard optimality. The other implication is even simpler.

We say that an abstract interpretation is «- or y-optimal when each of its
operations is, respectively, a- or y-optimal. Let us consider what properties hold
for the analyses induced by abstract interpretations that are either a- or y-optimal.
Some notation is needed. A data-flow semantics of a given logic program P defines
its denotation L[ P] € Den = Atom — X — X, where Atom is the set of atoms and
X a domain constant that must be interpreted. The meaning of a program is a
function that, given an atom (goal) and some information about it (for instance, a
set of substitutions or a formula), produces the answer. This denotation is defined
as the least fixpoint of a continuous function Ll,_, &[I]: Den — Den, that
collects the results of all the clauses / of P. A complete definition of Z[/] can be
found in [13]. Recall the abstract interpretations C and D, introduced above.
Interpreting the domain X and the operation symbols of the data-flow semantics
with those of C and D, respectively, one obtains [ P]. and £[P],, the concrete
and abstract meaning of P. Consider %[ P].. By the hypothesis of continuity, this
function is the lub of the chain of functions g; € Den. with i> 0, defined as
follows:

go(A,c)=1, VYA€Atomand ceC,
fori>0, g =UC[g_,.
lep
P[P], is the lub of the chain of functions s; € Den,, defined analogously.
Theorem 6.1 (Consequences of a-Optimality). If D is a-optimal with respect to C,
then Vi > 0, the following holds: YA € Atom and c € C,

D) a(gA,c)) =54, a(c)),
(2) a(P[P].Ac)=P[P], A(ac).

PROOF.

(1) For i=0, it suffices to observe that a(L.)= 1, , since a(l.)= A{d:
deD,y(d) =1 }=1,.
For i > 0, a structural induction on the equations defining #[/] (see [13])
using the optimality hypothesis easily gives the result.
(2) Using point (1) and the a-optimality of Li,, it is easy to show that

a(P[P]. Ac) =a( |EI {8:(4,¢): izO}) = IEI {s:(A,a(c)):i=>0}
=Z[P]p A(ac). D

In the case that D is y-optimal with respect to C, a result similar to that of
Theorem 6.1 can be shown.



OPTIMAL GROUNDNESS ANALYSIS 161

Theorem 6.2 (Consequences of yv-Optimality). If D is a-optimal with respect to C and
if y(1p)= L., the following holds: YA € Atom and d € D,

Piplc Ay(d) =y(£[P]p Ad).

PROOF. The proof is similar to that of Theorem 6.1. The extra condition about L,
takes care of the case i=0. O

From the above theorems, it follows that it is quite interesting to have abstract
interpretations that are «- or y-optimal. Thus, we will test below whether Prop
satisfies one of these properties. Unfortunately, the answer is to the negative. In
addition to this, we will show that, even though optimal, Prop does not satisfy the
conditions of Theorems 6.1 and 6.2.

Lemma 6.1. U, is a-optimal.

PrROOF. We have to show that
Vc,,c, €ERsub, a,(ci U, c;) = a,(c) U, a,(cy).

When ¢; or ¢, is L, or T,, the result is immediate from the definitions of LI,
U,, and a,. Consider then that ¢, =[3,,U;] and ¢, =[%,,0,] If U; # U,, then
again the result is T, , by definition of U, and U, . Thus assume that U; = U, =U.
Also let o, ([%,,UD=[f,Uland a,([%,,UD=I[f,, U]

By definition of LI, it is true that
a,([2, U] U.[2,,U]) = q,([2, VUE,,U]).
Let (3, UZ,,UD=[f,Ul
Models( f)ly =Ax(Z, U3,)ly by Theorem 5.5
=Ax(3,)ly UAx(3,)ly obvious
= Models( f,)lv U Models( f,)ly by Theorem 5.5
= Models(f, Vf,)lv. O

That LI, is not y-optimal is quite surprising. In fact, Corollary 5.2 seems to
imply that the models of f determine the substitutions in y(f). Now, Models(f v
g) = Models(f) U Models(g). Thus one would also expect that y(fV g)=y(f)U
v(g). However, this is false, as shown in the following lemma.

Lemma 6.2 [19]. U, is not y-optimal.

The reason for this surprising negative result is that, taking the union of the
models of two formulas f and g, we allow for new substitutions to be approxi-
mated, namely those substitutions that have some instances that give truth-assign-
ments satisfying f and other instances that give truth-assignments that satisfy g.

Let us consider now the projection m,. As for U,, 7, is a-optimal, but not
y-optimal.
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Lemma 6.3. m, is a-optimal.

ProoF. We must show that for any ¢ € Rsub and U’ € FP(V), it is true that
m,(a,(c),U") = a,(m(c,U")).

If cis L, or T, the result is immediate. Assume then that ¢ =[3, U]. Theorem
5.8 shows this result for those elements [3, U] of Rsub that are images of elements
of Prop, ie., [3,U]l=y,((f,UD. In fact, for such elements, the following holds:

"P(ap(Vp([f,U])),U') = m([f,U)U")

since for a Galois insertion, a, °y, equals the identity

= a,(7([2,ULU))
by Theorem 5.8.

From the assumption that [3,U] = y,(f,U)), from Corollary 5.2, we have that

Ax(2) |y = Models(f)lv .

Consider now any element [2',U] <_[3, U] and such that a (3", UD =[f, Ul
Again, by Corollary 5.2, we have that Ax(2)ly = Models(f)ly = Ax(Z)ly. This
implies that, if [f',UNU'] = ap([E', UnU’), then

Models(f')ly v =Ax(Z v nv

= Models(f)ly nv’
= Models(AU - U" .f)ly n v
by Lemma 5.3.

Thus, f/=3U-U'.f. O
Lemma 6.4. m, is not y-optimal.

PROOF. An easy counterexample suffices. Consider [ x,{x}]. Obviously, if yp([x,{x}])
=[Z,,{x}], then X, contains all the substitutions that ground x. Consider now,

7([x.{x}]. {y})=[T.9] and
m,([2..{x}], {»}) =[2,.9].

Obviously, 'yp([T, DD >, [3,,2)], because Subst O%,. O

The abstract unification U, is neither - nor y-optimal. The intuitive reason for
this is that in the concrete unification, the substitutions produced depend on the
particular unification performed. Thus, some substitutions that are in the argu-
ments of the unification can disappear because of a unification failure. Clearly, this

phenomenon cannot be taken care of by Prop at the abstract level.

Lemma 6.5. U, is neither a- nor y-optimal.

PrROOF. The following counterexample shows that U, is not a-optimal. Consider,
¢ =[{{x & a}}, {x}]. Clearly,

a,(c) = [x,{x}].
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In what follows, e, = [{id}, 7], and e,= [T,J]. These are dummy values that are
used for the forward unification step, cf. Example 4.3. It is easy to see that

Uc(cp e, {x—b}) = [D,{x}],
and that

ap([@’{x}]) = [F,{x}], whereas
U,([x.{x}],e,.{x—b}) = [x,{x}].

A similar counterexample shows that U, is not y-optimal. Consider, y,({x,{x}]
=[Z,,{x}]. Obviously, %, contains all substitutions that instantiate x to ground
terms. Consider now,

U([20{x}] e, {x — b)) = [3.{x}].

Obviously, % does not contain any substitution that instantiates x to «. Hence,
3, # 3. However,

W(Up([x:{x}]. e, {x > b})) = ([ x. {x}])
=[3.{z})]. O

Using the above lemma, it is easy to show that Prop does not satisfy the
statements of Theorems 6.1 and 6.2.

Lemma 6.6. For any logic program P, consider the functions P[P]g,,, and
PP psop; the following two statements are false:

1. YA € Atom and ¢ € Rsub,
p(PLPgpu AC) =PI P10y A(726).
2. VA € Atom and Vd < Prop,
PLPlgaus A(vpd) = vp(L[Plp,,, Ad).

PROOF. It is easy to find counterexamples using the same ideas of the proof of the
preceding lemma. For disproving both statements (1) and (2), consider the program
P: g(b) and the goal g(x). For point (1), consider the element [{{x — a}}, {x}] € Rsub,
whose abstraction in Prop is [x, {x}]. It is easy to see, cf. the proof of the preceding
lemma, that

PPl e a(x) [{{x > a}} . {x}] = [{ }.{x}], whereas
PLPIpopq(x)[x,{x}] = [x,{c}].
Obviously, ap([{ },{x}D =[T7,{x}]# [x,{x}].

For point (2), it suffices to consider the element [x,{x}] € Prop and its con-
cretization in Rsub. 0O
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7. RELATED WORK

This section surveys the use of propositional formulas for abstract interpretation of
logic programs. It then compares the domain constructions presented in this paper
with those in [28, 29], discussing the differences.

The use of propositional formulas for representing variable groundness and
equivalence was proposed for the first time by Marriott and Sgndergaard in [26,
27). However, some ambiguity remained about precisely which formulas were
useful for representing substitutions. This ambiguity was clarified in [11] where it
was shown that only positive formulas are useful and it was also proven that there
is a Galois insertion between the set of positive formulas over some fixed finite set
{xi,...,x,} of variables and the concrete domain p(Subst,), where Subst, are the
substitutions whose support is contained in {x,,..., x,}. It is easy to see (now) that
the result is true also substituting Subst, with Subst.

More recently, in [29], a complete description of the abstract interpretation
using positive formulas (called Pos) is given and the correctness of all its opera-
tions is proven. Pos is also studied in [28], where it is shown that it is condensing.
In [12], it is shown that Prop is strictly more precise than Sharing [21], as far as the
computation of groundness information is concerned. Recently, it has been shown
that, in practice, an analysis based on positive formulas can be quite efficient [25, 6,
1, 34]. Positive formulas have been also used for type inference in pure Prolog
programs [7], for the analysis of constraint languages, viz. for definiteness analysis
[9], and for detecting nonlinear constraints that are sure to become linear during
any computation [20].

Turning to the second point of this section, there are two aspects of our
presentation that differ from that of [29]. The first is the type of the abstract
unification, which is discussed in Section 4.2. The second aspect is the way in which
we deal with the variables of interest: both Rsub and Prop consist of pairs where
the second component explicitly gives the variables of interest.

Let us explain our choice starting from Prop. The simplest abstract domain
based on positive formulas is the set of all such formulas (together with the
constant F). However, such a domain has a drawback. If we want it to be a
complete lattice with a Galois insertion into the concrete domain, we have to fix a
finite set U of variables and then consider only formulas on those variables [11, 28].
In fact, if we would not restrict ourselves to formulas on a finite U, the domain
would contain infinite formulas such as A;, , x;, obtained as the glb of an infinite
number of finite formulas. The presence of such formulas prevents the existence of
a Galois insertion between the abstract and the concrete domain. In fact, such
formulas approximate the empty set of substitutions (or the empty set of existen-
tially quantified term equations, called ex-equations in [29]), because a substitution
(ex-equation) constrains only a finite set of variables. Having to consider only
formulas on a finite set of variables U seems inelegant to us because, in this way,
there is not just one abstract domain but one for each set U, and a domain with
“sufficient” variables must be chosen for analyzing any given program. Our
construction of Prop avoids these problems.

The approach followed for the definition of Prop is simple and general. It can
be applied to any abstract domain and has the effect of associating to each abstract
value its variables of interest. The importance of this fact should not be underesti-
mated. There are, in fact, abstract domains, such as the well-known domain
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Sharing of [21], for which is necessary to explicitly specify the variables of interest.
This is true for Sharing because the absence of a variable in a Sharing value
expresses that that variable is ground. Thus, abstract values should always contain
all nonground variables. Clearly this is incompatible with what is done in abstract
analysis, viz. abstract values are projected onto the variables of a clause or of an
atom forgetting the variables of other clauses (which can be still free).

In order to guarantee the existence of a Galois insertion between Prop and the
concrete domain, we applied the same approach to our concrete domain Rsub. We
have seen in Section 4.1 that an element of Rsub is a pair [, U], where X is a set
of substitutions and U a finite set of variables. We stress the fact that no restriction
at all is imposed on the substitutions in 3, i.e., any substitution might contain some
variable of U in its set of support and/or in its variable range or it might not
contain any variable of U at all.

This concrete domain has two positive features. Its values are almost identical to
the values (i.e., substitutions) computed by Prolog programs. Furthermore, the
projection operation on Rsub is very simple: projecting [3,U] onto U’ yields
[3,UnU’] This simplicity is very pleasing to us because it matches our feeling
that projection does not belong to the concrete semantics, which only “inherits” it
from the abstract semantics, where it is necessary for achieving finiteness.

Instead of using substitutions as the basis of the concrete domain, [29] use
ex-equations. The variables of interest are then the free variables. This proposal is
conceptually similar to ours: the unquantified variables of ex-equations are the
variables of interest. In other words, one has to distinguish two types of variables:
relevant ones (those of interest) and irrelevant ones. Indeed, it is well known that
sets of equations precisely correspond to substitutions [23]. However, since logic
programs compute substitutions, a concrete domain based on substitutions seems
slightly more natural. Set-intersection also seems to be a slightly simpler form of
projection than the existential quantification of ex-equations. More importantly,
however, it is unclear how one could use sets of ex-equations as the concrete
domain while avoiding the inelegance of having to choose, for the analysis of any
given program, a domain of formulas with “sufficient” variables.

8. CONCLUSIONS

The paper contains a complete and formal study of the abstract interpretation
Prop. The main achievements of this study are as follows.

The formulas that are useful for groundness analysis are characterized both
semantically and syntactically. The useful formulas are those that are true when all
variables assume the value frue and, equivalently, are the formulas obtained using
the connectives A and < . These results already appeared in [11].

On the basis of this characterization, we give a complete and formal description
of the abstract interpretation Prop, which is an elegant and practical basis for
groundness analysis. We also outline a general method for identifying the variables
of interest in concrete and abstract interpretations. By using this method, we
construct a concrete interpretation that is based on the notion of substitutions.

We verify the correctness and optimality of the operations of Prop. Similar
correctness results appear in [29]. To the best of our knowledge, ours are the first
optimality results to be shown about any abstract interpretation for logic programs.
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Two new stronger forms of optimality are also introduced. It is shown that an
abstract interpretation satisfying either of them is very precise. Unfortunately, even
a domain as rich as Prop does not satisfy either of the two.
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part by Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo of CNR, under grant number
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