
CATS 2003 Preliminary Version

Information Leakage Detection
in Boundary Ambients ?

Chiara Braghin 1, Agostino Cortesi 2 and Riccardo Focardi 3

Dipartimento di Informatica, Università Ca’ Foscari di Venezia,
via Torino 155, 30172 Venezia – Mestre (Italy)

Abstract

A variant of Mobile Ambient Calculus is introduced, called Boundary Ambient, to
model multilevel security policies. Ambients that may guarantee to properly protect
their content are explicitly identified as boundaries: a boundary can be seen as a
resource access manager for confidential data. In this setting, we define a notion
of non-interference which captures the absence of any (both direct and indirect)
information leakage. Then, we guarantee non-interference by extending a control
flow analysis that computes an over approximation of all ambients and capabilities
that may be affected by the actual values of high level data.

1 Introduction

Mobile Ambient Calculus [12] has become a very interesting workbench to
reason about mobility related issues, in which security plays a crucial role.

Our starting point is the “pure” version of Mobile Ambients, in which no
communication channels are present and the only possible actions are repre-
sented by the moves performed by mobile processes, as it allows the study of
a very general notion of information flow which should be applicable also to
more “concrete” versions of the calculus (see, e.g., [10,25]).

In this setting, we are interested in focusing on Multilevel Security [2], a
particular Mandatory Access Control security policy: every entity is bound to
a security level (high and low, for simplicity), and information may only flow
from the low to the high level. Typically, two access rules are imposed: No

? Partially supported by MIUR Projects “Interpretazione Astratta, Type Systems e Analisi
Control-Flow” and “Modelli formali per la sicurezza”, and the EU Contract IST-2001-32617
“Models and Types for Security in Mobile Distributed Systems”.
1 Email:braghin@dsi.unive.it
2 Email:cortesi@dsi.unive.it
3 Email:focardi@dsi.unive.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:braghin@dsi.unive.it
mailto:cortesi@dsi.unive.it
mailto:focardi@dsi.unive.it

Braghin, Cortesi and Focardi

Read Up (a low level entity cannot access information of a high level entity)
and No Write Down (a high level entity cannot leak information to a low level
entity). Sometimes, these two access controls are not enough as information
may be indirectly leaked, through, e.g., some system side-effects: a typical
example is represented by a resource shared among the security levels which
may be alternatively overloaded by some Trojan horse (causing, e.g., longer
response time at all security levels) in order to transmit information to a
malicious low level entity.

In [4,6], we introduced the notion of security boundary, that allows us to
identify ambients that may guarantee to properly protect their content. The
intuition is the following: to guarantee absence of information leakage, every
high-level data or process should be encapsulated into a boundary, and a
boundary can be opened only when it is nested into another boundary. We
may even allow that low level information/processes interfere with high level
data inside a boundary, but we want to be sure that once this happens, the
low information/process is trapped: it can neither carry high-level information
out of the boundary nor move out of it.

The notion of security boundary allows us to formally express Direct Infor-

mation Leakage in terms of boundary crossings, and to provide computational
methods to verify absence of (direct) information flow, either through the veri-
fication of some syntactic properties [13] or by applying a nesting analysis [4,6]
that extends the Nielsons’ flow logic analysis approach [23].

In this paper, we go one step further, facing the issue of detecting Indirect

Information Leakage as well. To the best of our knowledge, there is no result
in literature concerning indirect information leakage detection in Mobile Am-
bients. The only current work we are aware of follows a different approach
aiming at defining a type system that guarantees non-interference in Boxed
Ambients [14].

We extend the language by directly including boundaries in the semantics.
The advantages of this choice is that it guarantees the absence of direct infor-
mation flow and provides an access control mechanism, still leaving open the
much more intriguing issue of facing indirect information flow.

Then, to formally define (indirect) information leakage, we follow the stan-
dard approach based on non-interference [21,27]. Informally, there is no con-
fidential data leakage if the system behaviour is not influenced by high level
values/processes, i.e, if the high level part of the system is not able to “in-
terfere” with the low level one. In other words, there is non-interference if
no low-level observer can distinguish two processes that are equal modulo the
values of confidential data. We formalize this idea through contextual equiva-

lence [22,25], by requiring that the perturbation of high level values/processes
does not change the observable behaviour of the system.

In order to check whenever a process is interference free, we extend the
Nielsons’ control flow analysis of [23] in two directions.

2

Braghin, Cortesi and Focardi

• First, the presence of boundary names in the language allows us to improve
on the analysis, as constraints on boundary crossings reduce the occurrences
of possible nestings.

• Second, a set of “sensitive” ambients is computed which contains all high
ambients and is closed by nesting under the following condition: every am-
bient that may exercise a capability on a “sensitive ambient” is sensitive
too.

Informally speaking, this set of sensitive ambients is an over approxima-
tion of ambients where perturbation propagates. We prove that if the set of
“sensitive” ambients is protected inside security boundaries, then there is no
information leakage towards any context that “well-behaves” with respect to
the same set of sensitive ambients.

The main novelties of our approach with respect to previous attempts to
tackle the problem of non-interference can be summarized as follows:

• The notion of boundary allows us to consider separately the problem of
detecting direct and indirect information flows: the former can be expressed
in terms of boundary crossing, while the latter can be formulated in terms
of a localized propagation of confidential data perturbation;

• The control flow analysis approach allows us to infer an over approximation
of ambient nestings and sensitive ambients. Thus, it leads to positive infor-
mation also when process P is not recognized as interference-free, as it may
dramatically reduce the size of code inspection to find possible causes of
information leakage. This is valuable when compared with the verification
approach by prescriptive rules like in type-system approaches.

The rest of the paper is organized as follows. In Section 2, we introduce
Boundary Ambient Calculus and we present the model of multilevel security
for mobile agents. In Section 3 and 4, we deal with both direct and indirect
information leakage, by specifying a suitable control flow analysis. Section 5
concludes the paper with final remarks and comparisons with related works.

2 The B-Ambients Calculus

The Mobile Ambients calculus has been introduced in [12] with the main pur-
pose of explicitly modeling mobility. Indeed, ambients are arbitrarily nested
boxes which can move around through suitable capabilities. Boundary Ambi-

ents (B-Ambients, for short) extend Mobile Ambients with special ambients,
called boundaries, that are responsible of confining confidential information.

The syntax of processes is the same of Mobile Ambients, and it is given in
Figure 1.

Notice that, differently from Mobile Ambients, here a name n ∈ Names

denotes either an ambient or a boundary name. In particular, the countably
infinite set of names Names is partitioned into two disjoint sets Amb and Bound,

3

Braghin, Cortesi and Focardi

P,Q ::= (νn)P restriction

| 0 inactivity

| P | Q composition

| !P replication

| n`a

[[P]] ambient or boundary

| in`t

n.P capability to enter n

| out`t

n.P capability to exit n

| open`t

n.P capability to open n

Fig. 1. Boundary Ambients Syntax

with Amb representing the set of all ambient names and Bound representing
the set of all boundary names. In the following, ambient names will range
over s and t, boundary names over b and d, while m and n will denote both
boundary and ambient names. Labels `a ∈ Lab

a on ambients and labels
`t ∈ Lab

t on transitions are introduced, as it is customary in static analysis, to
indicate “program points”. They will be useful in Section 4 when developing
the analysis, moreover ambient labelling is used to assign different security
levels to ambients, in order to formalize a notion of information leakage.

Intuitively, the restriction (νn)P introduces the new name n and limits its
scope to P ; process 0 does nothing; P | Q is P and Q running in parallel;
replication provides recursion and iteration as !P represents any number of
copies of P in parallel. By n`a

[[P]] we denote the ambient or boundary
named n with the process P running inside it. The capabilities in`t

n and
out`t

n move their enclosing ambients in and out ambient n, respectively;
the capability open`t

n is used to dissolve the boundary of a sibling ambient
n. Moves over boundaries are controlled: out`t

n and open`t

n, when n is a
boundary, are allowed only when the executing ambient is itself a boundary.
The only ambient name binding operator is ν: names that are not bound by
a ν operator are thus free names. We denote by fn(P) the set of free names
of process P, and by bn(P) the set of bound names, as usual.

The operational semantics of a process P is given through a suitable reduc-
tion relation → and a structural congruence ≡ between processes. They are
depicted in Figures 3 and 2, respectively. Intuitively, P → Q represents the
possibility for P of reducing to Q through some computation. Note that the
reduction rules for the open and the out capabilities executed on a boundary
require that such capabilities are performed by boundaries.

For the sake of readability, in all the following examples, we will omit
the terminating 0 at the end of every process specification, e.g., we write
in n | n[[]] in place of in n.0 | n[[0]] . In addition, we will use the notation
n`[[[[P]]]] to denote a boundary named n and labelled `.

Example 2.1 Let P be a process modelling a safe inside a bank caveau,

4

Braghin, Cortesi and Focardi

P ≡ P P | Q ≡ Q | P

P ≡ Q⇒ Q ≡ P (P | Q) | R ≡ P | (Q | R)

P ≡ Q,Q ≡ R⇒ P ≡ R !P ≡ P | !P

P ≡ Q⇒ (νn)P ≡ (νn)Q, n ∈ Names (νn)(νm)P ≡ (νm)(νn)P, n,m ∈ Names

P ≡ Q⇒ P | R ≡ Q | R (νn)P | Q ≡ P | (νn)Q

P ≡ Q⇒ !P ≡ !Q if n 6∈ fn(P) ∧ n ∈ Names

P ≡ Q⇒ n`a

[[P]] ≡ n`a

[[Q]] , n ∈ Names (νn)m`a

[[P]] ≡ m`a

[[(νn)P]]

P ≡ Q⇒ in n.P ≡ in n.P if n 6= m ∧ n,m ∈ Names

P ≡ Q⇒ out n.P ≡ out n.Q P | 0 ≡ P

P ≡ Q⇒ open n.P ≡ open n.Q (νn)0 ≡ 0, n ∈ Names

!0 ≡ 0

Fig. 2. Structural Congruence: P ≡ Q

(InRed) n`a
1 [[in`t

m.P | Q]] | m`a
2 [[R]] → m`a

2 [[n`a
1 [[P | Q]] | R]]

m,n ∈ Names

(OutRed) m`a
1 [[n`a

2 [[out`t

m.P | Q]] | R]] −→ n`a
2 [[P | Q]] | m`a

1 [[R]]

m,n ∈ Amb ∨m,n ∈ Bound

s`a
1 [[b`a

2 [[out`t

s.P | Q]] | R]] −→ b`a
2 [[P | Q]] | s`a

1 [[R]]

s ∈ Amb ∧ b ∈ Bound

(OpenRed) m`a
1 [[open`t

n.P | n`a
2 [[Q]] | R]] −→ m`a

1 [[P | Q | R]]

m,n ∈ Amb ∨m,n ∈ Bound

b`a
1 [[open`t

s.P | s`a
2 [[Q]] | R]] −→ b`a

1 [[P | Q | R]]

s ∈ Amb ∧ b ∈ Bound

(ResRed) P → Q⇒ (νn)P → (νn)Q

(AmbRed) P → Q⇒ n`a

[[P]] → n`a

[[Q]]

(CompRed) P → Q⇒ P | R→ Q | R

(InRed) P
′

≡ P, P → Q,Q ≡ Q
′

⇒ P
′

→ Q
′

Fig. 3. Reduction Rules: P → Q

i.e., P = caveau`a
1 [[[[safe`a

2 [[[[out`t

caveau]]]] | open`t

safe]]]] | open`t

safe.
Notice that, according to the semantics of B-Ambients, the open`t

safe can
be performed only when safe is inside caveau, thus preventing safe to be
opened by any ambient at environment level.

5

Braghin, Cortesi and Focardi

2.1 Observational Equivalences

The notion of information leakage we will introduce in Section 3.2 is based
on a Context Equivalence relation parameterized on a set of contexts. This
relation equates processes that are indistinguishable by such a set of contexts
with respect to the set of ambient/boundary names there may exist. Let us
then recall from [22] some useful definitions about contexts and observables.

Definition 2.2 (Context: C) A context C is a process containing zero or
more holes. In the following, we write C(P) for the outcome of filling each
hole in the context C with process P .

For example, let P be a process of the form P = s`a
1 [[Q]] | b`a

2 [[[[R]]]] , and
C a context of the form C() = t`

a
3 [[S]] | d`a

4 [[[[]]]] . Thus, C(P) = t`
a
3 [[S]] |

d`a
4 [[[[s`a

1 [[Q]] | b`a2[[[[R]]]]]]]] . Notice that names which are free in P may become
bound in C(P).

The following definitions mean intuitively that an observer may eventually
detect an ambient named n at the top-level of process P .

Definition 2.3 (Exhibition of a Name: P ↓ n) Let P be a process, and
n ∈ Names the name of either a boundary or an ambient. Then, P exhibits
name n (P ↓ n) iff there are m1,m2, ...,mk with mi 6= n ∀i ≤ k, and two
processes P

′

and P
′′

such that P ≡ (νm1,m2, ...,mk)(n[[P
′

]] | P
′′

).

Definition 2.4 (Convergence to a Name: P ⇓ n) Let P be a process, and
n ∈ Names the name of either a boundary or an ambient. Then, P converges
to name n (P ⇓ n) iff ∃Q s.t. P →∗ Q ∧Q ↓ n.

The next definition is a parameterized version of Contextual Equivalence [22].

Definition 2.5 (Contextual Equivalence up to C: P 'C P
′

) Let C be a
set of contexts. Two processes P and P

′

are contextually equivalent up to C,
denoted (P 'C P

′

), iff for all n ∈ Names and C ∈ C, C(P) ⇓ n⇔ C(P
′

) ⇓ n.

In the technical proofs we will use the following definition of barbed bisimi-
larity and barbed congruence.

Definition 2.6 (Barbed bisimilarity: P ≈ P
′

) A barbed bisimulation pa-
rameterized to a set of contexts C is a symmetric relation S such that whenever
(P, P

′

) ∈ S,

• P ↓ n implies P
′

↓ n;

• P −→ Q implies that ∃Q′ such that P ′ −→∗ Q′ and (Q,Q
′

) ∈ S.

Two processes P and P ′ are barbed bisimilar (P ≈ P
′

) iff there exists a barbed
bisimulation S such that (P, P ′) ∈ S.

Definition 2.7 (Barbed congruence up to C : P ≈C P
′

) Let C be a set
of contexts. Two processes P and P

′

are barbed congruent up to C, denoted
(P ≈C P

′

), iff for all C ∈ C, C(P) ≈ C(P
′

).

6

Braghin, Cortesi and Focardi

The following result shows that, as expected, barbed congruence is stronger
than contextual equivalence.

Proposition 2.8 Let C be a set of contexts. P ≈C P ′ implies P 'C P ′.

Proof. Assume P ≈C P ′ and consider a context C ∈ C and a name n ∈
Names. We prove that C(P) ⇓ n implies C(P

′

) ⇓ n. C(P) ⇓ n means that ∃Q
s.t. C(P)→∗ Q∧Q ↓ n. Since P ≈C P ′ and C ∈ C we also have C(P) ≈ C(P ′).
By definition of barbed bisimilarity, C(P ′) →∗ Q′, with Q ≈ Q′, thus Q ↓ n
implies Q′ ↓ n, hence proving that C(P ′) ⇓ n.

The fact that C(P ′) ⇓ n implies C(P) ⇓ n may be symmetrically proved.
We thus have that for all C ∈ C and for all names n ∈ Names, C(P) ⇓ n iff
C(P

′

) ⇓ n, and so the thesis P 'C P ′. 2

The result above allows to use barbed congruence as a sufficient condition
for proving contextual equivalence.

2.2 Modeling Multilevel Security

In order to define Multilevel security in B-Ambients, we first need to classify
information into different levels of confidentiality. We do this by exploiting
the labelling of ambients and boundaries. In particular, we partition the set
of labels Lab

a into three disjoint sets Lab
a
H ,Lab

a
L and Lab

a
B, which stand for

high, low and boundary labels. We require that all (and only) boundaries must
be labelled with boundary labels from set Lab

a
B. High level ambients are the

ones labelled in Lab
a
H . We require that they are nested in boundaries. Finally,

all the other ambients are considered low level ones and they are consequently
labelled with labels from set Lab

a
L. This is how we will always label processes,

and it corresponds to defining a multilevel security policy: what is confidential
(high), what is possibly malicious (low), what is a container of possible secrets
(boundary). In all the examples, we will use the following notation for labels:
b ∈ Lab

a
B, h ∈ Lab

a
H , m,m

′

∈ Lab
a
L and c, ch, cl, cm, cm

′

∈ Lab
t.

As an example, consider the following process:

P1 = containerb[[[[hdatah[[outc container]] | sendb
′

[[[[outc′ container.Q]]]]]]]]

Ambient container is a boundary for high level data hdata (note that data
are abstractly represented as ambients). This process is an example of how
boundaries may prevent direct information flow. In fact, the high level am-
bient hdata cannot perform the out capability from boundary container,
as it is prevented by the semantics of B-Ambients. Thus, hdata is never
exposed to any ambient at environment level. 4 On the other hand, am-
bient send, which is a boundary, may go out of container without caus-

4 Note that the presence of an ambient may be tested by trying to open it or by entering
and then exiting from it. A low level ambient may thus test if hdata is present. This may
be seen as reading high level information.

7

Braghin, Cortesi and Focardi

(res) Nest`((νn)P) = Nest`(P)

(zero) Nest`(0) = ∅

(par) Nest`(P | Q) = Nest`(P) ∪Nest`(Q)

(repl) Nest`(!P) = Nest`(P)

(amb) Nest`(n
`a

[[P]]) = Nest`(P) ∪ {(`, `
a)}

(in) Nest`(in
`t

n.P) = Nest`(P) ∪ {(`, `
t)}

(out) Nest`(out
`t

n.P) = Nest`(P) ∪ {(`, `
t)}

(open) Nest`(open
`t

n.P) = Nest`(P) ∪ {(`, `
t)}

Fig. 4. Definition of Function Nest

ing any direct information leakage. In particular, P1 may only evolve to

containerb[[[[hdatah[[outc container]]]]]] | sendb
′

[[[[Q]]]] .

3 Direct and Indirect Information Flow

3.1 Direct Information Flow

The concept of direct flow of high level/ambients outside security boundaries
may be formalized as follows. In the definitions we use the function Nest

reported in Figure 4 which collects all the nestings and capabilities of a given
process P . We denote by env a special label corresponding to the low level
environment.

Definition 3.1 (Unprotected) Given a process P , a labelling Lab
a, and a

setR ⊆ (Lab
a×(Lab

a∪Lab
t)), Unprotected (`,R) = true iff ∃ `1, ..., `n ∈ Lab

a
L

s.t (env, `1), (`1, `2), ..., (`n−1, `n), (`n, `) ∈ R.

Definition 3.2 (Protected) Given a process P , a labelling Lab
a, and a set

R ⊆ (Lab
a× (Lab

a∪Lab
t)), Protected (`,R) = true iff ¬Unprotected (`,R).

Definition 3.3 (Direct Information Leakage) Given a process P , a la-
belling Lab

a, and a set R ⊆ (Lab
a × (Lab

a ∪ Lab
t)), P directly leaks secret h

∈ Lab
a
H iff ∃Q,P →

∗ Q such that Unprotected (h,Nest`(Q)).

Example 3.4 In distributed and mobile systems, it is unrealistic to con-
sider a unique boundary, containing all the confidential information. As
an example, consider bob and alice willing to exchange some confidential
information that need to be protected during the communication process.
This can be modeled by defining two boundaries, one for each principal:
bobb[[[[Q1]]]] | alice

b[[[[Q2]]]] | Q. Making the model applicable needs a mecha-
nism for moving confidential data from one boundary to another one. This

8

Braghin, Cortesi and Focardi

may be achieved through another boundary which moves out from the first
protected area and into the second one (i.e. a sort of encryption of the con-
fidential data sent from one actor to the other). The following example, also
depicted in Figure 5, describes the exchange of confidential information be-
tween the two principals bob and alice:

P2= bobb[[[[encryptb[[[[outc bob.inc alice]]]] | hdatah[[inch encrypt]]]]]] |

aliceb[[[[openc encrypt]]]] | Q

The process may evolve to the following one (see steps (a) to (d) of Figure 5):

bobb[[[[]]]] | aliceb[[[[openc encrypt | encryptb[[[[hdatah[[]]]]]]]]]] | Q

and finally to (see step (e) of Figure 5):

bobb[[[[]]]] | aliceb[[[[hdatah[[]]]]]] | Q

Note that encrypt is labelled as a boundary. Thus, high level data hdata is
always protected by boundary ambients, during the whole execution. Further-
more, notice that an empty message could be sent from bob to alice. Such a
situation could be avoided by making the model deterministic, but this would
complicate the example.

3.2 Detecting Indirect Flows

In this section, we face the issue of detecting indirect information flows. To
do so, we follow the standard approach based on non-interference [21]. Infor-
mally, there is no information flow from high to low if and only if the system
behaviour is not influenced by high level values/processes, i.e, if and only if
the high level part of the system is not able to interfere with the low level
one (see, .e.g, [17,18,20] for more detail on non-interference-based properties).
We formalize this idea by requiring that the perturbation of high level val-
ues/processes do not change the observable behaviour of the system. If this
happens, we should be guaranteed that no interference is possible from level
high to low.

Example 3.5 Let P3 be the following process:

containerb[[[[sendb[[[[inc hdata.outc hdata.outc container]]]] | openc download]]]]

In this process, the fact that send exits from container is caused by the
presence of hdata, e.g. in a downloaded application. There is no direct flow,
but a low level user deduces information about high level ambients in an
indirect way.

Definition 3.6 (Substitution Function σN) Let N ∈ Names be a set of
names. A substitution function σN over N is a function σN : Names → Names,
such that σN(s) = s, whenever s 6∈ N . We also denote with PσN the process
P in which σN is applied to all the name occurrences.

9

Braghin, Cortesi and Focardi

alice

open encrypt

alice

open encrypt

hdata
out bob.

encrypt

in alice

bob

alice

open encrypt

bob

bob

hdata

encrypt

bob

open encrypt

hdata

alice

hdata

alice

out bob.

encrypt

in alice

bob

in encrypt

hdata

(a) Bob needs to send confidential data "hdata" to Alice.

(b) The confidential data is encrypted with a shared key.

(c) The confidential data is sent encrypted over the communication channel.

in alice

(d) The confidential data is safely received by alice.

encrypt

(e) Alice accesses the confidential data by decrypting it.

Fig. 5. Bob and Alice exchange confidential information

We now give a formal definition of absence of information leakage based on
non-interference by adopting the approach introduced and discussed in [1].

Definition 3.7 (Absence of (Indirect) Information Leakage) Let P be
a process, N ⊆ Names be a set of names and C be a set of contexts. P does
not leak secrets N to C if and only if, for all substitution functions σN we
have P 'C PσN

Intuitively, N represents the set of sensitive names, corresponding to am-
bients that belong to the propagation area when perturbations of confidential
data may arise. Given a set of contexts C, we say that P does not leak high
level information to C if and only if any perturbation of such information is
not visible whenever P is executed in every context C ∈ C.

Example 3.8 Consider again process P3 above. We show that it leaks name

10

Braghin, Cortesi and Focardi

hdata. Consider context C() = | downloadb[[[[inc container | hdatah[[0]]]]]] ,
and substitution σhdata(hdata) = hdata′, σhdata(n) = n ∀n 6= hdata. Then,
C(P) ⇓ send while C(Pσhdata) 6⇓ send. Therefore, P 6≈{C} Pσhdata, i.e., P leaks
hdata to C().

In this process, send exits from container by the presence of hdata, e.g. in
a downloaded application. There is no direct flow, but a low level user might
deduce information about high level ambients in an indirect way.

Our aim is now to extend the techniques of [4,6] for direct flows, to handle
also indirect information leakage. To this purpose, we define a suitable control
flow analysis that allows us to statically verify that a system P do not leaks
secrets.

4 Control Flow Analysis of Information Leakage

The control flow analysis we propose aims at modeling which ambients may be
influenced by high level ambients, i.e., which is the part of the system whose
execution is influenced by the presence of high level information. It works on
triplets (Ĉ,Î,Ĥ), where Î and Ĥ are used to track the ambient nestings at
runtime as done in [23], and Ĉ represents the set of ambients whose execution
is sensitive. More specifically:

• The first component Ĉ (sensitive ambients) is an element of ℘(Names). If a
process contains an ambient n whose execution is conditioned by high level
ambients, then n should be in Ĉ.

• The second component Î (ambients nestings) is an element of ℘(Lab
a ×

(Lab
a ∪ Lab

t)). If a process contains an ambient labelled `a having inside
either a capability or an ambient labelled `, then (`a, `) is expected to belong
to Î.

• The third component Ĥ ∈ ℘(Lab
a × Names) keeps track of the correspon-

dence between names and labels. If a process contains an ambient labelled
`a with name n, then (`a, n) is expected to belong to Ĥ.

• The triplets are component-wise partially ordered, and v is the component-
wise inclusion.

According to the control flow framework in [26], the analysis is defined by
a representation function and an analysis specification 5 . They are depicted,
respectively, in Figure 6 and Figure 7.

The representation function aims at mapping concrete values to their best
abstract representation. It is given in terms of a function βB

` (P) which ba-
sically builds sets Ĉ, Î and Ĥ corresponding to process P , with respect to
an enclosing ambient labelled with `. The representation of a process P is

5 In ambient calculus bound names may be α-converted. For the sake of simplicity, here
we are assuming that ambient names are stable, i.e., n is indeed a representative for a class
of α-convertible names. See [23] for more details on how this can be handled.

11

Braghin, Cortesi and Focardi

defined as βB
env(P). Intuitively, β

B
env(P) collects in Ĉ the names of ambients

nested inside a high level ambient, and in Î all the nestings of ambients and
capabilities. Finally, in Ĥ, βB

env(P) collects all the mappings between labels
and ambients.

Example 4.1 Consider again process P1 introduced in Section 2.2.

P1 = containerb[[[[hdatah[[outc container]] | sendb′[[[[outc′ container.Q]]]]]]]]

The representation function of P is the following: βB
env(P) = ({hdata},

{(env, b), (b, h), (b, b′), (h, c), (b′, c′)}, {(b, container), (h, hdata), (b′, send)}).

Let us briefly discuss the specification rules of Figure 7. They depict how
the process transforms one abstract representation to another one, and they
are logically divided in two parts: (i) the construction of sets Î and Ĥ, which
is done by refining the analysis of [23] in order to correctly handle boundaries,
and (ii) the construction of set Ĉ of sensitive ambients. The specification
mostly amounts to recursive check of subprocesses except for the three capa-
bilities open, in, and out, and for ambient/boundary definition. The first part
of the rule for open-capability says that if ambient labelled `a has an open-

capability `t on ambient n, that may apply due to the presence of a sibling
ambient labelled `a′

whose name is n, and either `a′

is not a boundary or `a is a
boundary, then the result of performing that capability should also be recorded
in Î, i.e. all the ambients/capabilities nested in `a′

have to be nested also in
`a. Notice that, requiring that either `a′

is not a boundary or `a is a boundary,
allows us to consider only the open capabilities that may indeed be performed
(recall that only boundaries may open boundaries). The second part of the
rule aims at collecting information about sensitive ambients/boundaries. It
requires that every ambient/boundary potentially performing an output ca-
pability on a sensitive ambient/boundary, has to be considered sensitive, as
well. The in and out capabilities behave similarly. Finally, the rule for am-
bient/boundary definition requires that every ambient/boundary nested in a
sensitive ambient/boundary has to be considered sensitive, too.

Example 4.2 Let P1 be the process of Example 4.1. It is easy to see that the
least solution of the analysis for P1 is the triplet (Ĉ, Î,Ĥ) where Ĉ = {hdata},
Î = {(env, b), (env, b′), (b, h), (b, b′), (h, c), (l, c′)}, and Ĥ = {(b, container)
(h, hdata), (b′, send)}). Notice that, with respect to βB

env(P1), the analysis
adds in Î the pair (env, l), representing the possibility for boundary send to
exit the container. As there is no ambient/boundary performing capabilities
over hdata, the set Ĉ of sensitive ambients/boundaries is not incremented,
and contains hdata only.

The correctness of the analysis is proven by showing that every reduction of
the semantics is properly mimicked in the analysis:

Theorem 4.3 Let P and Q be two processes such that βB
env(P) v (Ĉ, Î, Ĥ) ∧

(Ĉ, Î, Ĥ) |=B P ∧ P → Q. Then, βB
env(Q) v (Ĉ, Î, Ĥ) ∧ (Ĉ, Î, Ĥ) |=B Q.

12

Braghin, Cortesi and Focardi

Proof. The correctness for sets Î and Ĥ may be obtained by slightly adapting
the proof for the control flow analysis proposed in [23]. Then, it is sufficient
to observe that the amb rule requires that any ambient/boundary potentially
nested, at run-time, inside a high level ambient, is added in Ĉ. This proves
that the Ĉ ′ produced by βB

env(Q) is a subset of Ĉ. 2

Intuitively, the theorem above states that whenever (Ĉ, Î, Ĥ) |=B P and
the representation of P is contained in (Ĉ, Î, Ĥ), we are assured that every
ambient which is nested inside a high level ambient and every nesting of am-
bients and capabilities in every possible derivative of P is also captured in
(Ĉ, Î, Ĥ). It is important to recall that the resulting control flow analysis
applies to any process. It is also possible to prove that every process enjoys a
least analysis.

We now state the main result of the paper by showing how the control flow
defined above may be applied to prove the absence of (indirect) information
flow in a process P .

First, some additional definitions need to be introduced. Given an analysis
(Ĉ, Î, Ĥ) |=B P , we write Protected (Ĉ, (Î , Ĥ)) to denote that for every
n ∈ Ĉ such that ∃(l, n) ∈ Ĥ, it holds Protected (l, Î). Moreover, we denote
by Cont the set of contexts whose hole is not contained inside any high level
ambient. In other words, a context in Cont cannot host a process inside a
sensitive area. Finally, given (Ĉ, Î, Ĥ) |=B P we define

CP,Ĉ = {C ∈ Cont | bn(C(0)) ∩ fn(P) = ∅ ∧ ∃(Ĉ ′, Î ′, Ĥ ′) s.t.

(Ĉ ′, Î ′, Ĥ ′) |=B C(0) and Protected (Ĉ ′, (Î ′, Ĥ ′)) ∧

fn(P) ∩ fn(C(0)) ∩ Ĉ = fn(P) ∩ fn(C(0)) ∩ Ĉ ′}

Intuitively, CP,Ĉ is the set of contexts C ∈ Cont that admit an analysis

(Ĉ ′, Î ′, Ĥ ′) such that Ĉ and Ĉ ′ classify the free-names of both P and C(0), with
respect to sensitivity, in the same way. The condition bn(C(0)) ∩ fn(P) = ∅
is necessary to avoid that the context binds the free names of P . Observe
that such a condition is not restrictive, as it may be guaranteed through a
α-conversion of bound names.

Lemma 4.4 Let P be a process and consider a triplet (Ĉ, Î, Ĥ) such that

(Ĉ, Î, Ĥ) |=B P and Protected(Ĉ, (Î , Ĥ)). Then, for all C ∈ CP,Ĉ, there ex-

ists a triplet (Ĉ ′′, Î ′′, Ĥ ′′) such that (Ĉ ′′, Î ′′, Ĥ ′′) |=B C(P) and Protected(Ĉ ′′,

(Î ′′, Ĥ ′′)).

Proof. Consider an analysis (Ĉ, Î, Ĥ) for P such that (Ĉ, Î, Ĥ) |=B P and
such that Protected(Ĉ, (Î , Ĥ)). By definition of CP,Ĉ , there exists an analysis

(Ĉ ′, Î ′, Ĥ ′) |=B C(0) such that Protected(Ĉ ′, (Î ′, Ĥ ′)). Now, if we get Ĉ ′′ =
Ĉ ∪ Ĉ ′, Ĥ ′′ = Ĥ ∪ Ĥ ′, it is possible to prove that exists Î ′′ ⊇ Î ∪ Î ′ such that
(Ĉ ′′, Î ′′, Ĥ ′′) |=B C(P) and Protected(Ĉ ′′, (Î ′′, Ĥ ′′)).

The fact that Ĥ ′′ = Ĥ ∪ Ĥ ′ is trivially derived by how Ĥ is constructed,
i.e., it is a collection of mappings between labels and ambients. The crucial

13

Braghin, Cortesi and Focardi

point to prove is that Ĉ ′′ = Ĉ ∪ Ĉ ′ even if the nestings in Î ′′ may be more
than in Î ∪ Î ′, because of the potential interaction between the process and
the context. To this aim, we consider the least set Î ′′ ⊇ Î ∪ Î ′ such that
(Names, Î ′′, Ĥ ′′) |=B C(P). We show that also (Ĉ ′′, Î ′′, Ĥ ′′) |=B C(P). It is
important to observe that fn(P) ∩ fn(C(0)) ∩ Ĉ = fn(P) ∩ fn(C(0)) ∩ Ĉ ′,
i.e., that P and the context agree on what is sensitive and what is not on
the common free-names. The fact that (Ĉ ′′, Î ′′, Ĥ ′′) |=B C(P) is based on
observing that a new sensitive ambient/boundary would be added by the
analysis to Ĉ ∪ Ĉ ′ in the following two cases:

• when a non-sensitive ambient/boundary become nested in a sensitive one;

• when a non-sensitive ambient/boundary gains a new capability with a sen-
sitive ambient/boundary as target.

Thanks to the minimality of Î ′′, the first case may only happen when a non-
sensitive ambient/boundary enters a sensitive one (recall that the hole in the
context is required to be a non-sensitive place). However the in rule guar-
antees that any potential in inside sensitive ambient/boundaries makes the
performing ambient/boundary a sensitive one.

The second case may happen only through an open capability, as it is
the only rule that adds new nestings of capabilities. However, notice that
if the opened ambient contains an open capability over a sensitive ambi-
ent/boundary, then, by the open rule it must be sensitive, too. We thus
obtain a non-sensitive ambient opening a sensitive one, again proving that the
opening ambient/boundary is sensitive, too. 2

We can now state the main theorem:

Theorem 4.5 Let P be a process and consider a triplet (Ĉ, Î, Ĥ) such that

(Ĉ, Î, Ĥ) |=B P and Protected(Ĉ, (Î , Ĥ)). Then, P does not leak Ĉ to CP,Ĉ.

Proof. We have to prove that for all substitution functions σĈ we have

P 'C
P,Ĉ

PσĈ , i.e., that P does not leak Ĉ to CP,Ĉ . To do this, we exploit
Proposition 2.8 and we thus prove P ≈C

P,Ĉ
PσĈ . This amounts to proving

that for all contexts C ∈ CP,Ĉ we have C(P) ≈ C(PσĈ).

We define a barbed bisimilarity as follows. Consider a transformation
on processes ns(P, Ĉ) that returns process P where all ambients/boundaries
belonging to Ĉ, together with the process they include, have been syntactically
replaced by 0 in P .
Now we define the following relation:

S = { (P, P ′) | ∃(Ĉ, Î, Ĥ), (Ĉ ′, Î ′, Ĥ ′) s.t. (Ĉ, Î, Ĥ) |=B P, (Ĉ ′, Î ′, Ĥ ′) |=B P ′,

Protected(Ĉ, (Î , Ĥ)), Protected(Ĉ ′, (Î ′, Ĥ ′)), ns(P, Ĉ) = ns(P ′, Ĉ ′)}

Intuitively, relation S equates processes that are the same with respect to non-
sensitive ambients/boundaries and in which sensitive ambients are protected.

14

Braghin, Cortesi and Focardi

It is easy to prove that S is a barbed bisimilarity. The following steps of the
proof can be summarized as follows.

(i) The fact that sensitive ambients are protected and ns(P, Ĉ) = ns(P ′, Ĉ ′)
proves that P and P ′ exhibit the same names (a protected ambient cannot
float at top level).

(ii) By the definition of the control flow analysis, all the capabilities per-
formed by non-sensitive ambients must have a non-sensitive ambient as
target. Thus, since ns(P, Ĉ) = ns(P ′, Ĉ ′), all such capabilities may
be mutually simulated by P and P ′, moving to processes Q and Q′,
respectively, that still satisfy ns(Q, Ĉ) = ns(Q′, Ĉ ′) and (Ĉ, Î, Ĥ) |=B

C(P), (Ĉ ′, Î ′, Ĥ ′) |=B C(P ′), Protected(Ĉ, (Î , Ĥ)), Protected(Ĉ ′, (Î ′, Ĥ ′)).
Note that, by Theorem 4.3, the control flow is invariant with respect to
the execution of processes.

(iii) Finally, when a sensitive ambient/boundary performs a capability we may
ignore such a move (no need to simulate it). This can easily proved if
the target of the capability is a sensitive ambient/boundary, as ns(P, Ĉ)
is unchanged. The crucial case is when such capabilities are performed
on non-sensitive ambients, as this might change the non-sensitive part of
processes. Indeed, it is easy to see that in and out capabilities do not
change the non-sensitive part of the process as they just move a non-
sensitive part of it in a different place (ns(P) is still the same). The most
interesting case is the open capability. This could potentially modify the
non-sensitive part of P . However, notice that the control flow rule amb

requires that ambients/boundaries inside sensitive ambients/boundaries
are also sensitive. This implies that whenever an open is performed by
a sensitive ambient/boundary, the target should be inside such ambi-
ent/boundary, thus being sensitive. This basically proves that sensitive
ambients/boundaries may perform open capabilities only over sensitive
ambients/boundaries.

Once proved that S is a barbed bisimilarity, by Lemma 4.4 we have that there
exists a triplet (Ĉ ∪ Ĉ ′, Î ′′, Ĥ ∪ Ĥ ′) such that (Ĉ ∪ Ĉ ′, Î ′′, Ĥ ∪ Ĥ ′) |=B C(P)
and Protected(Ĉ ∪ Ĉ ′, (Î ′′, Ĥ ∪ Ĥ ′)). Then, it is easy to see that (ĈσĈ ∪

Ĉ ′, Î ′′, ĤσĈ ∪ Ĥ
′) |=B C(PσĈ) and Protected(ĈσĈ ∪C

′, (Î ′′, ĤσĈ ∪ Ĥ
′)) and

ns(C(P), ĈσĈ ∪ Ĉ
′) = ns(C(PσĈ), ĈσĈ ∪ Ĉ

′). Therefore (C(P), C(PσĈ)) ∈ S,
i.e. they are barbed bisimilar. 2

Example 4.6 The least analysis for process P1 returns Ĉ = {hdata} which
is also protected. Thus, P1 does not leak Ĉ. The same holds for process
P2. Regarding P3, we have that the sensitive set Ĉ must contain send, as
it performs capabilities over high level ambients. As send may exit from
container, process P3 cannot be proved interference-free, and indeed it is not.

Notice that in [19] also deadlocks are shown to be potential sources of
information leakage. In order to deal with this special kind of information

15

Braghin, Cortesi and Focardi

flow, it is sufficient to strength Definition 3.7 by using an equivalence notion
which is deadlock-sensitive, such as bisimilarity. Observe that Theorem 4.5
still holds even with this stronger notion of information leakage.

5 Related Works and Conclusions

The main novelty of the approach presented in this paper is that we face the
problem of detecting indirect information leakage (non-interference) in the
context of Mobile Ambients.

The most related contributions in the area mainly focused on either extend-
ing the ambient calculus thus enhancing its expressive power, or on building
suitable type systems to verify security properties.

Among the type systems approaches, it is worth to mention [11], where
the authors introduce a new type system for tracking the behaviour of mobile
computations. Using groups, the type system can impose to an ambient be-
havioral constraints on the set of ambients it may cross and the set of ambients
it may open. It has the effect of statically preventing certain communications
through a mandatory access control policy, and can block accidental or ma-
licious leakage of secrets. Dezani and Salvo [16] extend the work of Cardelli
et al. just mentioned, with a type system that also expresses security levels
associated with ambients and provide further control over ambient movement
and opening.

Among the language extensions, some valuable proposals are described
in [9,8,10,15,25]. Safe Ambients is a modification of Mobile Ambients, where
a movement or an ambient dissolution can take place only when the affected
ambient agrees, offering the corresponding coaction. Boxed Ambients [10] is
another variant of the Ambient calculus with a completely different model
of communication, which results from dropping the open capability. In their
paper, Bugliesi et al. define also a type system that provides an effective
mechanism for resource protection and access control. In [24], Degano et al.
present a control flow analysis that mainly focuses on access control. The
analysis relies on the use of coactions as a filter to control access to resources.

As already said in the Introduction, as far as we know the only work
towards the study of non-interference in the context of Mobile Ambients is [14],
where a type system that guarantees that well-typed programs do not interfere
when in parallel with any high-level source is studied for Boxed Ambients. Of
course, one of the priorities as future work will be to carefully compare these
two approaches. This may also give interesting insights on the tradeoff between
accuracy and efficiency and usability between type system and control-flow
analysis techniques.

Finally, the way we propose to express a multilevel information flow policy
through the notion of boundary, also leads to interesting applications to model
cryptographic protocols [5].

16

Braghin, Cortesi and Focardi

References

[1] Abadi, M. and A. D. Gordon, A Bisimulation Method for Cryptographic
Protocols, Nordic Journal of Computing 5 (1998), pp. 267–303.

[2] Bell, D. E. and L. J. L. Padula, “Secure Computer Systems: Unified Exposition
and Multics Interpretation”, ESD-TR-75-306, MITRE MTR-2997 (1976).

[3] Braghin, C., A. Cortesi, S. Filippone, R. Focardi, F. L. Luccio and C. Piazza,
Banana, a Tool for Boundary Ambients Nesting ANAlysis, in: Proc. of The
9th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’03), 2003.

[4] Braghin, C., A. Cortesi and R. Focardi, Control Flow Analysis of Mobile
Ambients with Security Boundaries, in: B. Jacobs and A. Rensink, editors, Proc.
of Fifth IFIP International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS’02) (2002), pp. 197–212.

[5] Braghin, C., A. Cortesi and R. Focardi, Freshness Analysis in Security
Protocols, in: Proc. of 14th Nordic Workshop on Programming Theory
(NWPT’02), 2002, pp. 30–33.

[6] Braghin, C., A. Cortesi and R. Focardi, Security Boundaries in Mobile
Ambients, Computer Languages 28 (2002), pp. 101–127.

[7] Braghin, C., A. Cortesi, R. Focardi and S. van Bakel, Boundary Inference for
Enforcing Security Policies in Mobile Ambients, in: Proc. of The 2nd IFIP
International Conference on Theoretical Computer Science (TCS’02) (2002),
pp. 383–395.

[8] Bugliesi, M. and G. Castagna, Secure Safe Ambients, in: Proc. 28th ACM
Symposium on Principles of Programming Languages (POPL’01) (2001), pp.
222–235.

[9] Bugliesi, M. and G. Castagna, Behavioural Typing of Safe Ambients, Computer
Languages 28 (2002), pp. 61–99, revised and extended version of [8].

[10] Bugliesi, M., G. Castagna and S. Crafa, Boxed Ambients, in: Proc. of the 4th
Int. Conference on Theoretical Aspects of Computer Science (TACS’01), LNCS
2215 (2001), pp. 38–63.

[11] Cardelli, L., G. Ghelli and A. D. Gordon, Ambient Groups and Mobility
Types, in: J. van Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses and
T. Ito, editors, Theoretical Computer Science: Exploring New Frontiers of
Theoretical Informatics, Proceedings of the International IFIP Conference TCS
2000 (Sendai, Japan), LNCS 1872, IFIP (2000), pp. 333–347.

[12] Cardelli, L. and A. D. Gordon, Mobile Ambients, in: M. Nivat, editor,
Proceedings of Foundations of Software Science and Computation Structures
(FoSSaCS), LNCS 1378, Springer-Verlag, Berlin, Germany, 1998 pp. 140–155.

17

Braghin, Cortesi and Focardi

[13] Cortesi, A. and R. Focardi, Information Flow Security in Mobile Ambients,
in: Proc. of International Workshop on Concurrency and Coordination
(ConCoord’01), Electronic Notes on Theoretical Computer Science, ENTCS
54 (2001).

[14] Crafa, S., M. Bugliesi and G. Castagna, Information Flow Security for Boxed
Ambients, in: F-WAN: Int. Workshop on Foundations of Wide Area Networks,
number 66(3) in ENTCS, 2002.

[15] Degano, P., F. Levi and C. Bodei, Safe Ambients: Control Flow Analysis and
Security, in: J. He and M. Sato, editors, Proc. of Advances in Computing Science
- ASIAN’00 (6th Asian Computing Science Conference, Penang, Malaysia),
LNCS 1961 (2000), pp. 199–214.

[16] Dezani-Ciancaglini, M. and I.Salvo, Security Types for Mobile Safe Ambients,
in: J. He and M. Sato, editors, Proc. of Advances in Computing Science
- ASIAN’00 (6th Asian Computing Science Conference, Penang, Malaysia),
LNCS 1961 (2000), pp. 215–236.

[17] Focardi, R. and R. Gorrieri, A Classification of Security Properties for Process
Algebras, Journal of Computer Security 3 (1995), pp. 5–33.

[18] Focardi, R. and R. Gorrieri, The Compositional Security Checker: A Tool for
the Verification of Information Flow Security Properties, IEEE Transactions on
Software Engineering 23 (1997), pp. 550–571.

[19] Focardi, R. and R. Gorrieri, Classification of security properties (part i:
Information flow), in: Foundations of Security Analysis and Design - Tutorial
Lectures, LNCS 2171 (2001), pp. 331–396.

[20] Focardi, R., R. Gorrieri and F. Martinelli, Information Flow Analysis in
a Discrete-Time Process Algebra, in: Proc. of The 13th Computer Security
Foundations Workshop (CSFW) (2000), pp. 170–184.

[21] Goguen, J. and J. Meseguer, Security Policies and Security Models, in: Proc. of
Symposium on Security and Privacy (1992), pp. 11–20.

[22] Gordon, A. D. and L. Cardelli, Equational Properties of Mobile Ambients,
in: W. Thomas, editor, Proc. of the Second International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS ’99),
Held as Part of the Joint European Conferences on Theory and Practice of
Software (ETAPS’99), (Amsterdam, The Netherlands, April 1999), LNCS 1578
(1999), pp. 212–226.

[23] Hansen, R. R., J. G. Jensen, F. Nielson and H. R. Nielson, Abstract
Interpretation of Mobile Ambients, in: A.Cortesi and G.File’, editors, Proc.
of Static Analysis Symposium (SAS’99), number 1694 in Lecture Notes in
Computer Science (1999), pp. 134–148.

[24] Levi, F. and C. Bodei, Security Analysis for Mobile Ambients, in: Electronic
Proc. of IFIP WG 1.7 Workshop on Issues on the Theory of Security
(WITS’00), Geneve, 2000.

18

Braghin, Cortesi and Focardi

[25] Levi, F. and D. Sangiorgi, Controlling Interference in Ambients, in: Proc. 28th
ACM Symposium on Principles of Programming Languages (POPL’01), 2000,
pp. 352–364.

[26] Nielson, F., H. R. Nielson and C. L. Hankin, “Principles of Program Analysis,”
Springer, 1999.

[27] Smith, G. and D. Volpano, Secure Information Flow in a Multi-Threaded
Imperative Language, in: Conference Record of POPL 98: The 25TH ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, California, New York, NY, 1998, pp. 355–364.

19

Braghin, Cortesi and Focardi

βB(P) = βB
env,False(P)

(res) βB
`,Cond((νn)P) = βB

`,Cond(P)

(zero) βB
`,Cond(0) = (∅, ∅, ∅)

(par) βB
`,Cond(P | Q) = βB

`,Cond(P) t βB
`,Cond(Q)

(repl) βB
`,Cond(!P) = βB

`,Cond(P)

(amb) βB
`,Cond(n

`a
[[P]]) = case Cond of

True : βB
`a,Cond(P) t ({n} , {(`, `a)} , {(`a, n)})

False: if (`a ∈ Lab
a
H) then

βB
`a,T rue(P) t ({n} , {(`, `a)} , {(`a, n)})

else

βB
`a,False(P) t (∅, {(`, `a)} , {(`a, n)})

(bound) βB
`,Cond(n

`a
[[[[P]]]]) = case Cond of

True : βB
`a,Cond(P) t ({n} , {(`, `a)} , {(`a, n)})

False: if (`a ∈ Lab
a
H) then

βB
`a,T rue(P) t ({n} , {(`, `a)} , {(`a, n)})

else

βB
`a,False(P) t (∅, {(`, `a)} , {(`a, n)})

(in) βB
`,Cond(in

`t

n.P) = case Cond of

True : βB
`,Cond(P) t ({n} ,

{

(`, `t)
}

, ∅)

False: βB
`,Cond(P) t (∅,

{

(`, `t)
}

, ∅)

(out) βB
`,Cond(out`t

n.P) = case Cond of

True : βB
`,Cond(P) t ({n} ,

{

(`, `t)
}

, ∅)

False: βB
`,Cond(P) t (∅,

{

(`, `t)
}

, ∅)

(open) βB
`,Cond(open`t

n.P) = case Cond of

True : βB
`,Cond(P) t ({n} ,

{

(`, `t)
}

, ∅)

False: βB
`,Cond(P) t (∅,

{

(`, `t)
}

, ∅)

Fig. 6. Representation Function for the Control Flow Analysis

20

Braghin, Cortesi and Focardi

(res) (Ĉ, Î, Ĥ) |=B (νn)P iff (Ĉ, Î, Ĥ) |=B P

(zero) (Ĉ, Î, Ĥ) |=B 0 always

(par) (Ĉ, Î, Ĥ) |=B P | Q iff (Ĉ, Î, Ĥ) |=B P ∧ (Ĉ, Î, Ĥ) |=B Q

(repl) (Ĉ, Î, Ĥ) |=B !P iff (Ĉ, Î, Ĥ) |=B P

(amb) (Ĉ, Î, Ĥ) |=B n`a

[[P]] iff (Ĉ, Î, Ĥ) |=B P ∧

∀`a, `a
′

∈ Lab
a : (`a, `a

′

) ∈ Î ∧ (`a
′

,m) ∈ Ĥ ∧ n ∈ Ĉ

=⇒ m ∈ Ĉ

(in) (Ĉ, Î, Ĥ) |=B in`t

n.P iff (Ĉ, Î, Ĥ) |=B P ∧

∀`a, `a
′

, `a
′′

∈ Lab
a :

1: ((`t, Î) ∈ ∧ (`a
′′

, `a) ∈ Î ∧ (`a
′′

, `a
′

) ∈ Î ∧ (`a
′

, n) ∈ Ĥ)

=⇒ (`a
′

, `a) ∈ Î

2: ((`a, `t) ∈ Î ∧ (`a,m) ∈ Ĥ ∧ n ∈ Ĉ)

=⇒ m ∈ Ĉ

(out) (Ĉ, Î, Ĥ) |=B out`t

n.P iff (Ĉ, Î, Ĥ) |=B P ∧

∀`a, `a
′

, `a
′′

∈ Lab
a :

1: ((`a, `t) ∈ Î ∧ (`a
′

, `a) ∈ Î ∧ (`a
′′

, `a
′

) ∈ Î ∧ (`a
′

, n) ∈ Ĥ ∧

(`a
′

6∈ Lab
a
B ∨ `

a ∈ Lab
a
B)) =⇒ (`a

′

, `a) ∈ Î

2: ((`a, `t) ∈ Î ∧ (`a,m) ∈ Ĥ ∧ n ∈ Ĉ)

=⇒ m ∈ Ĉ

(open) (Ĉ, Î, Ĥ) |=B open`t

n.P iff (Ĉ, Î, Ĥ) |=B P ∧

∀`a, `a
′

∈ Lab
a :

1: ((`a, `t) ∈ Î ∧ (`a
′

, n) ∈ Ĥ ∧ (`a
′

6∈ Lab
a
B ∨ `

a ∈ Lab
a
B))

=⇒
{

(`a, `′) | (`a
′

, `′) ∈ Î
}

⊆ Î

2: ((`a, `t) ∈ Î ∧ (`a,m) ∈ Ĥ ∧ n ∈ Ĉ) =⇒ m ∈ Ĉ

Fig. 7. Specification of the Control Flow Analysis

21

