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Evolutionary game-theoretic models and, in particular, the so-called repli-
cator equations have recently proven to be remarkably effective at approx-
imately solving the maximum clique and related problems. The approach
is centered around a classic result from graph theory that formulates the
maximum clique problem as a standard (continuous) quadratic program
and exploits the dynamical properties of these models, which, under a cer-
tain symmetry assumption, possess a Lyapunov function. In this letter,
we generalize previous work along these lines in several respects. We
introduce a wide family of game-dynamic equations known as payoff-
monotonic dynamics, of which replicator dynamics are a special instance,
and show that they enjoy precisely the same dynamical properties as
standard replicator equations. These properties make any member of
this family a potential heuristic for solving standard quadratic programs
and, in particular, the maximum clique problem. Extensive simulations,
performed on random as well as DIMACS benchmark graphs, show that
this class contains dynamics that are considerably faster than and at least
as accurate as replicator equations. One problem associated with these
models, however, relates to their inability to escape from poor local so-
lutions. To overcome this drawback, we focus on a particular subclass of
payoff-monotonic dynamics used to model the evolution of behavior via
imitation processes and study the stability of their equilibria when a reg-
ularization parameter is allowed to take on negative values. A detailed
analysis of these properties suggests a whole class of annealed imitation
heuristics for the maximum clique problem, which are based on the idea
of varying the parameter during the imitation optimization process in
a principled way, so as to avoid unwanted inefficient solutions. Experi-
ments show that the proposed annealing procedure does help to avoid
poor local optima by initially driving the dynamics toward promising
regions in state space. Furthermore, the models outperform state-of-the-
art neural network algorithms for maximum clique, such as mean field
annealing, and compare well with powerful continuous-based heuristics.
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1 Introduction

Research in computational complexity has shown that many problems of
practical interest are inherently intractable, in the sense that it is not possible
to find fast (i.e., polynomial time) algorithms that solve them exactly, unless
the classes P and NP coincide, this being believed to be highly unlikely. In
some cases, we can indeed find good approximate solutions in polynomial
time (Papadimitriou & Steiglitz, 1982), but unfortunately, it turns out that
certain important problems remain intractable even to approximate. This
is the case with the maximum clique problem (MCP), a classic problem
in combinatorial optimization that asks for the largest complete subgraph
of a given graph. Indeed, the best polynomial-time approximation algo-
rithm for the MCP achieves an approximation ratio of n1−o(1) (Boppana &
Halldórsson, 1992), where n is the number of vertices in the graph, and
Hastad (1996) has shown that this is actually the best we can achieve by
proving that unless NP = co R, the MCP cannot be approximated within
a factor of n1−ε, for any ε > 0. Although this complexity result character-
izes worst-case instances, it nevertheless indicates that the MCP is indeed
a very difficult problem to solve.1 Due to this pessimistic state of affairs
and because of its important applications in such diverse domains such as
computer vision, experimental design, information retrieval, and fault tol-
erance, much attention has recently gone into developing efficient heuris-
tics for the MCP, for which no formal guarantee of performance may be
provided but are nevertheless useful in practical applications. We refer to
Bomze, Budinich, Pardalos, & Pelillo (1999) for a survey concerning algo-
rithms, applications, and complexity issues of this important problem.

In the neural network community, there has been much interest around
the maximum clique problem. Early attempts at encoding this and related
problems in terms of a neural network were done in the late 1980s by
Ballard, Gardner, and Srinivas (1987), Godbeer, Lipscomb, and Luby (1988),
Ramanujam and Sadayappan (1988), Aarts and Korst (1989), and Shrivas-
tava, Dasgupta, and Reddy (1990; see also Shrivastava, Dasgupta, & Reddy,
1992). However, little or no experimental results were presented, thereby
making it difficult to evaluate the merits of these algorithms. Lin and Lee
(1992) used a quadratic zero-one formulation from Pardalos and Rodgers
(1990) as the basis for their neural network heuristic. For an n-vertex graph,
they used a network with 2(n + 1) computational nodes, and real-valued
connection weights.

Grossman (1996) proposed a discrete, deterministic version of the
Hopfield model for maximum clique, originally designed for an all-optical
implementation. The model has a threshold parameter that determines the

1 See Grötschel, Lovász, & Schrijver (1993) for classes of graphs for which the MCP
can be solved in polynomial time.
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character of the stable states of the network. The author suggests an an-
nealing strategy on this parameter and an adaptive procedure to choose the
network’s initial state and threshold. On DIMACS graphs, the algorithm
performs satisfactorily but does not compare well with more powerful
heuristics such as simulated annealing.

Jagota (1995) developed several variations of the Hopfield model, both
discrete and continuous, to approximate maximum clique. He evaluated
the performance of his algorithms over randomly generated graphs as
well as on harder graphs obtained by generating cliques of varying size
at random and taking their union. Experiments on graphs coming from the
Solomonoff-Levin, or “universal” distribution, are also presented in Jagota
and Regan (1997). The best results were obtained using a stochastic steepest-
descent dynamics and a mean field annealing algorithm, an efficient,
deterministic approximation of simulated annealing. These algorithms,
however, were also the slowest, and this motivated Jagota, Sanchis, and
Ganesan (1996) to improve their running time. The mean field anneal-
ing heuristic was implemented on a 32-processor connection machine,
and a two-temperature annealing strategy was used. Additionally, a re-
inforcement learning strategy was developed for the stochastic steepest-
descent heuristic, to automatically adjust its internal parameters as the pro-
cess evolves. On various benchmark graphs, all their algorithms obtained
significantly larger cliques than other simpler heuristics but ran slightly
slower. Compared to more sophisticated heuristics, they obtained signifi-
cantly smaller cliques on average but were considerably faster.

Other attempts at solving the maximum clique problem using Hopfield-
style neural networks can be found in Takefuji, Chen, Lee, and Huffman
(1990), Funabiki, Takefuji, and Lee (1992), Wu, Harada, and Fukao (1994),
Bertoni, Campadelli, and Grossi (2002), Pekergin, Morgül, and Güzelis
(1999), Jagota, Pelillo, and Rangarajan (2000), and Wang, Tang, and Cao
(2003). Almost invariably, all these works formulate the MCP in terms of
an integer (usually 0-1) programming problem and use some variant of the
Hopfield model to solve it.

In a recent series of papers (Pelillo, 1995, 1999, 2002; Bomze, 1997; Bomze,
Pelillo, & Giacomini, 1997; Bomze, Pelillo, & Stix, 2000; Jagota et al., 2000;
Bomze, Budinich, Pelillo, & Rossi, 2002; Pelillo, Siddiqi, & Zucker, 1999),
a completely different framework has been developed. The approach is
centered around a classic result from graph theory due to Motzkin and
Straus (1965), and variations thereof, which allow us to formulate the MCP
as a standard quadratic program—namely, a continuous quadratic opti-
mization problem with simplex (or probability) constraints, to solve which
replicator equations have been remarkably effective despite their simplic-
ity. These are well-known continuous- and discrete-time dynamical systems
developed and studied in evolutionary game theory, a discipline pioneered
by J. Maynard Smith (1982) that aims to model the evolution of animal
behavior using the principles and tools of noncooperative game theory
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(Hofbauer & Sigmund, 1998). Evolutionary game-theoretic models are also
gaining increasing popularity in economics since they elegantly get rid of
the much-debated assumptions of traditional game theory concerning the
full rationality and complete knowledge of players (Weibull, 1995; Samuel-
son, 1997; Fudenberg & Levine, 1998). Interestingly, these dynamical equa-
tions also turn out to be related to the so-called relaxation labeling processes,
a class of parallel, distributed algorithms developed in computer vision to
solve (continuous) constraint satisfaction problems (Rosenfeld, Hummel,
& Zucker, 1976; Hummel & Zucker, 1983). An independent connection be-
tween dynamical systems such as relaxation labeling and Hopfield-style
networks, and game theory has been described by Miller and Zucker (1992,
1999).

This letter substantially expands on previous work along these lines. We
introduce a wide family of evolutionary game dynamics, of which replica-
tor equations represent just a special instance, characterized by having the
growth rates of strategies ordered by their expected payoffs, so that strate-
gies associated with higher payoffs grow faster. It is shown that these payoff-
monotonic models enjoy precisely the same dynamical properties as stan-
dard, first-order replicator equations. In particular, when the payoff matrix
is symmetric, they possess a quadratic Lyapunov function, which is strictly
increasing along any nonconstant trajectory; furthermore, it is shown that
their asymptotically stable stationary points are in one-to-one correspon-
dence with (strict) local solutions of standard quadratic programs. We then
specialize our discussion to a parameterized family of such quadratic prob-
lems arising from the MCP, which include the Motzkin-Straus formula-
tion as a special case, and show that a one-to-one correspondence exists
between its local-global solutions and maximal-maximum cliques of the
corresponding graph, provided that its parameter is positive (and less than
1). These properties therefore make any member of the payoff-monotonic
family a potential heuristic for the MCP. In particular, we present extensive
experimental results obtained with an exponential version of the standard
replicator dynamics over hundreds of random as well as DIMACS bench-
mark graphs, and show that these dynamics are dramatically faster than
their first-order counterpart and even more accurate. They also compare
favorably with other simple neural network heuristics and obtain only
slightly worse results than more sophisticated ones, such as mean field
annealing.

As with standard replicator equations, however, these models are inher-
ently unable to escape from inefficient local solutions or, in other words,
from small maximal cliques. Although this is not necessarily a problem
when dealing with graphs arising from graph isomorphism of maximum
common subtree problems (Pelillo, 1999, 2002; Pelillo et al., 1999), it makes
them unsuited for harder problem instances. In an attempt to overcome this
drawback, in the second part of the article, we focus on a well-known sub-
class of payoff-monotonic dynamics that arises in modeling the evolution of
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behavior by way of imitation processes. Following Bomze et al. (2002), we
investigate the properties of our parameterized Motzkin-Straus program
when its parameter is allowed to take on negative values. In this case, an
interesting picture emerges: as its absolute value grows larger, local max-
imizers corresponding to maximal cliques disappear, that is, they become
unstable under any imitation dynamics. We derive bounds on the parameter
that affects the stability of the solutions, and these results, which generalize
those presented in Bomze et al. (2002), suggest a whole family of annealed
imitation heuristics, which consist of starting from a large negative value
of the parameter and then properly reducing it during the optimization
process. At each step, imitation dynamics are run in order to obtain a local
solution of the corresponding objective function. The rationale behind this
idea is that at large absolute values of the annealing parameter, only local so-
lutions corresponding to large maximal cliques will survive, together with
various spurious maximizers. As the value of the parameter is reduced,
spurious solutions disappear and smaller maximal cliques become stable.
A similar idea has been proposed by Gee and Prager (1994) in a different
context.

Experiments conducted on both random and DIMACS graphs using
an exponential imitation dynamics confirm the effectiveness of the pro-
posed approach and the robustness of the annealing strategy. The overall
conclusion is that the annealing procedure does help to avoid inefficient
local solutions by initially driving the dynamics toward promising regions
in state space and then refining the search as the annealing parameter is
increased. Moreover, the algorithm outperforms state-of-the-art neural net-
work heuristics for maximum clique, such as mean field annealing, and
other heuristics based on Motzkin-Straus and related formulations.

2 Payoff-Monotonic Game Dynamics

Evolutionary game theory considers an idealized scenario whereby in a
large population, pairs of individuals are repeatedly drawn at random
to play a symmetric two-player game. In contrast to traditional game-
theoretic models, players are not supposed to behave rationally or have
complete knowledge of the details of the game. They act instead according
to a preprogrammed behavior pattern, or pure strategy, and it is supposed
that some evolutionary selection process operates over time on the distri-
bution of behaviors. (We refer the reader to Hofbauer & Sigmund, 1998,
and Weibull, 1995, for excellent introductions to this rapidly expanding
field.)

Let J = {1, . . . , n} be the set of available pure strategies, and for all i ∈ J ,
let xi (t) be the proportion of population members playing strategy i , at time
t. The state of the population at a given instant is the vector x = (x1, . . . , xn)′,
where a prime denotes transposition. Clearly, population states are
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constrained to lie in the standard simplex of the n–dimensional Euclidean
space R

n:

� = {x ∈ R
n : xi ≥ 0 for all i ∈ J , e′x = 1},

where e = ∑
i ei = (1, . . . , 1)′, and ei denotes the ith standard basis vector

in R
n. The support of a population state x ∈ �, denoted by σ (x), is de-

fined as the set of indices corresponding to its positive components, which
correspond to nonextinct strategies:

σ (x) = {i ∈ J : xi > 0} .

Given a subset of strategies S ⊆ J , the set of states where all strategies
outside S are extinct, which corresponds to a face of �, is defined as

�S = {x ∈ � : σ (x) ⊆ S},

and its (relative) interior is

int(�S) = {x ∈ � : σ (x) = S}.

Clearly, �J = �, and, accordingly, we shall write int(�) instead of int(�J ).
Let A = (ai j ) be the n × n payoff or utility matrix. Specifically, for each

pair of strategies i, j ∈ J , ai j represents the payoff of an individual playing
strategy i against an opponent playing strategy j . In biological contexts,
payoffs are typically measured in terms of Darwinian fitness or reproduc-
tive success (i.e., the player’s expected number of offspring), whereas in
economic applications, they usually represent firms’ profits or consumers’
utilities. If the population is in state x, the expected payoff earned by an
i-strategist is:

πi (x) =
n∑

j=1

ai j x j = (Ax)i , (2.1)

while the mean payoff over the entire population is

π (x) =
n∑

i=1

xiπi (x) = x′ Ax. (2.2)

In evolutionary game theory, the assumption is made that the game
is played over and over, generation after generation, and that the action
of natural selection will result in the evolution of the fittest strategies. If
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successive generations blend into each other, the evolution of behavioral
phenotypes can be described by a set of ordinary differential equations. A
general class of evolution equations is given by

ẋi = xi gi (x), (2.3)

where a dot signifies derivative with respect to time, and g = (g1, . . . , gn)
is a function with open domain containing �. Here, the function gi (i ∈ J )
specifies the rate at which pure strategy i replicates when the population is
in state x. It is usually required that the growth function g is regular (Weibull,
1995), which means that it is C1 and that g(x) is always orthogonal to x—
g(x)′x = 0. The former condition guarantees us that the system of differential
equations 2.3 has a unique solution through any initial population state.2

The condition g(x)′x = 0 instead ensures that the simplex � is invariant
under equation 2.3, namely, any trajectory starting in � will remain in �.

A point x is said to be a stationary (or equilibrium) point of our dynamical
system if ẋi = 0, for all i = 1 . . . n. A stationary point x is said to be Lyapunov
stable (or, more simply stable) if for any neighborhood U of x there exists
a neighborhood W of x such that any trajectory in W remains also in U
(formally, x(0) ∈ W implies x(t) ∈ U for all t ≥ 0). It is said to be asymptotically
stable if, in addition, such trajectories converge to x.

Payoff-monotonic game dynamics represent a wide class of regular se-
lection dynamics for which useful properties hold. Intuitively, for a payoff-
monotonic dynamics, the strategies associated with higher payoffs will
increase at a higher rate. Formally, a regular selection dynamics 2.3 is said
to be payoff-monotonic if

gi (x) > g j (x) ⇔ πi (x) > π j (x) (2.4)

for all x ∈ �.
Although this class contains many different dynamics, it turns out that

they share a lot of common properties. To begin, they all have the same set
of stationary points.

Proposition 1. A point x ∈ � is stationary under any payoff-monotonic dynam-
ics if and only if πi (x) = π (x) for all i ∈ σ (x).

Proof. See Weibull (1995).

2 Indeed, to ensure existence and uniqueness of solutions to equation 2.3, it is sufficient
that g is (locally) Lipschitz continuous, that is, there exists a constant K such that ‖g(x) −
g(y)‖ ≤ K‖x − y‖ for all x, y in any compact subset of the domain of g (see, e.g., Hirsch &
Smale, 1974). It is well known that C1 functions are also locally Lipschitz continuous.
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A well-known subclass of payoff-monotonic game dynamics is given by

ẋi = xi

⎛
⎝φ(πi (x)) −

n∑
j=1

xjφ(π j (x))

⎞
⎠ (2.5)

where φ(u) is an increasing function of u. These models arise in modeling the
evolution of behavior by way of imitation processes, where players are oc-
casionally given the opportunity to change their own strategies (Hofbauer,
1995; Weibull, 1995).

When φ is the identity function, that is, φ(u) = u, we obtain the standard
replicator equations,

ẋi = xi

⎛
⎝πi (x) −

n∑
j=1

xjπ j (x)

⎞
⎠ , (2.6)

whose basic idea is that the average rate of increase ẋi/xi equals the differ-
ence between the average fitness of strategy i and the mean fitness over the
entire population.

Another popular model arises when φ(u) = eκu, which yields:

ẋi = xi

⎛
⎝eκπi (x) −

n∑
j=1

xj eκπ j (x)

⎞
⎠ , (2.7)

where κ is a positive constant. As κ tends to 0, the orbits of this dynamics
approach those of the standard, first-order replicator model, equation 2.6,
slowed down by the factor κ ; moreover, for large values of κ , the model
approximates the so-called best-reply dynamics (Hofbauer, 1995; Hofbauer
& Sigmund, 1998).

3 Payoff-Monotonic Dynamics and Quadratic Programming

In this section we explore the connections between payoff-monotonic dy-
namics and quadratic optimization problems. Consider the following stan-
dard quadratic program:3

maximize π (x) = x′ Ax
subject to x ∈ �,

(3.1)

3 This terminology is due to Bomze (1998).
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where A is an arbitrary n × n symmetric matrix. In evolutionary game
theory, a symmetric payoff matrix arises in the context of doubly symmetric
(or partnership) games, where the interests of the two players coincide
(Hofbauer & Sigmund, 1998; Weibull, 1995).

A point x∗ ∈ � is said to be a global solution of program 3.1 if π(x∗) ≥ π(x),
for all x ∈ �. It is said to be a local solution if there exists an ε > 0 such
that π (x∗) ≥ π (x) for all x ∈ � whose distance from x∗ is less than ε, and
if π (x∗) = π (x) implies x∗ = x, then x∗ is said to be a strict local solution.
Note that the solutions of equation 3.1 remain the same if matrix A is
replaced with A+ kee′, where k is an arbitrary constant. In addition, observe
that maximizing a nonhomogeneous quadratic form x′ Qx + 2c′x over � is
equivalent to solving equation 3.1 with A = Q + ec′ + ce′ (Bomze, 1998).

A point x ∈ � satisfies the Karush-Kuhn-Tucker (KKT) conditions for
problem 3.1, that is, the first-order necessary conditions for local optimality,
if there exist n + 1 real constants μ1, . . . , μn and λ, with μi ≥ 0 for all i =
1 . . . n, such that:

(Ax)i − λ + μi = 0

for all i = 1 . . . n, and

n∑
i=1

xiμi = 0.

Note that since both xi and μi are nonnegative for all i = 1, . . . , n, the latter
condition is equivalent to saying that i ∈ σ (x) implies μi = 0. Hence, the
KKT conditions can be rewritten as

(Ax)i

{
= λ if i ∈ σ (x)

≤ λ if i /∈ σ (x)
(3.2)

for some real constant λ. On the other hand, it is clear that λ = x′ Ax. A point
x ∈ � satisfying equation 3.2 will be called a KKT point throughout.

The following easily proved results establish a first connection between
standard quadratic programs and payoff-monotonic dynamics.

Proposition 2. If x ∈ � is a KKT point for equation 3.1, then it is a stationary
point of any payoff-monotonic dynamics. If x ∈ int(�), then the converse also
holds.

Proof. The proof is a straightforward consequence of proposition 1 and the
KKT conditions 3.2.
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Clearly, not all equilibria of payoff-monotonic dynamics correspond to
KKT points of equation 3.1 (e.g., think about the vertices of �), but if they
are approached by an interior trajectory, then this comes true.

Proposition 3. Let x = limt→∞ x(t) be the limit point to a trajectory under
any payoff-monotonic dynamics. If x(0) ∈ int(�), then x is a KKT point for pro-
gram 3.1.

Proof. Since x is a limit point of a trajectory, it is a stationary point (see,
e.g., Bhatia & Szegö, 1970), and hence by proposition 1, πi (x) = π(x) for
all i ∈ σ (x). Suppose now, to the contrary, that πi (x) > π(x) for some j /∈
σ (x). Because of payoff monotonicity and stationarity of x, we have g j (x) >

gi (x) = 0 for all i ∈ σ (x), and by continuity, there exists a neighborhood
U of x such that g j (y) > 0 for all y ∈ U. Then, for a sufficiently large T ,
g j (x(t)) > 0 for all t ≥ T , and since xj (t) > 0 for all t (recall in fact that int(�)
is invariant), we have ẋ j (t) > 0 for t ≥ T . This implies xj = limt→∞ xj (t) > 0,
a contradiction.

The next proposition, which will be useful later, provides another nec-
essary condition for local solutions of equation 3.1, when the payoff matrix
has a particular structure.

Proposition 4. Let x ∈ � be a stationary point of any payoff-monotonic dy-
namics, and suppose that the payoff matrix A is symmetric with positive diagonal
entries, that is, aii > 0 for all i = 1, . . . , n. Suppose that there exist i, j ∈ σ (x)
such that ai j = 0. For 0 < δ ≤ xj let

y(δ) = x + δ(ei − e j ) ∈ �.

Then y(δ)′ Ay(δ) > x′ Ax.

Proof. From the symmetry of A, we have:

y(δ)′ Ay(δ) = [x + δ(ei − e j )]′ A[x + δ(ei − e j )]

= x′ Ax + 2δ(ei − e j )′ Ax + δ2(ei − e j )′ A(ei − e j )

= x′ Ax + 2δ[(Ax)i − (Ax) j ] + δ2(aii − 2ai j + a j j ).

But since x is a stationary point, we have (Ax)i = (Ax) j (recall in fact that
i, j ∈ σ (x)), and by the hypothesis ai j = 0 we have

y(δ)′ Ay(δ) = x′ Ax + δ2(aii + a j j ) > x′ Ax,

which proves the proposition.
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In an unpublished paper, Hofbauer (1995) showed that for symmetric
payoff matrices, the population mean payoff x′ Ax is strictly increasing along
the trajectories of any payoff-monotonic dynamics. This result generalizes
the celebrated “fundamental theorem of natural selection” (Hofbauer &
Sigmund, 1998; Weibull, 1995), whose original form traces back to R. A.
Fisher (1930). Here, we provide a different proof, adapting a technique
from Fudenberg and Levine (1998).

Theorem 1. If the payoff matrix A is symmetric, then π(x) = x′ Ax is strictly
increasing along any nonconstant trajectory of any payoff-monotonic dynamics.
In other words, π̇ (x(t)) ≥ 0 for all t, with equality if and only if x = x(t) is a
stationary point.

Proof. See Hofbauer (1995), or Pelillo (2002) for a different proof.

Apart from the monotonicity result that provides a (strict) Lyapunov
function for payoff-monotonic dynamics, the previous theorem also rules
out complicated attractors like cycles, invariant tori, or even strange attrac-
tors. It also allows us to establish a strong connection between the stability
properties of these dynamics and the solutions of equation 3.1. To this end,
we need an auxiliary result.

Lemma 1. Let x be a strict local solution of equation 3.1, and put S = σ (x).
Then x is the only stationary point of any payoff-monotonic dynamics in int(�S).
Moreover, x′ Ax > y′ Ay for all y ∈ �S.

Proof. Clearly, since x is a strict local solution of equation 3.1, it is a KKT
point and hence is stationary under any payoff-monotonic dynamics by
proposition 2. Suppose by contradiction that y ∈ int(�S) \ {x} is stationary
too. Then it is easy to see that all points on the segment joining x and y,
which is contained in int(�S) because of its convexity, consists entirely of
stationary points. Hence, by theorem 1, π̇ = 0 on this segment, which means
that π is constant, but this contradicts the hypothesis that x is a strict local
solution of equation 3.1.

Moreover, for a sufficiently small ε > 0 we have

x′ Ax > [(1 − ε)x + εy]′ A[(1 − ε)x + εy]

= (1 − ε)2x′ Ax + 2ε(1 − ε)y′ Ax + ε2y′ Ay,

but since x is stationary and σ (y) ⊆ σ (x), y′ Ax = x′ Ax, from which we read-
ily obtain x′ Ax > y′ Ay.

Theorem 2. A point x ∈ � is a strict local solution of program 3.1 if and only if
it is asymptotically stable under any payoff-monotonic dynamics.
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Proof. If x is asymptotically stable, then there exists a neighborhood U of x
in � such that every trajectory starting in a point y ∈ U will converge to x.
Then, by virtue of Theorem 1, we have y′ Ay > x′ Ax for all y ∈ U\{x}, which
shows that x is a strict local solution for equation 3.1.

On the other hand, suppose that x is a strict local solution of equa-
tion 3.1, and let S = σ (x). By lemma 1, the function V : int(�S) → R defined
as V(y) = π (x) − π (y) is clearly nonnegative in int(�S), and it vanishes only
when y = x. Furthermore, V̇ ≤ 0 by theorem 1 and, again from lemma 1,
V̇ < 0 in int(�S)\{x}, as x is the only stationary point in int(�S). This means
that V is a strict Lyapunov function for any payoff-monotonic dynamics,
and hence x is asymptotically stable (see, e.g., Bhatia & Szegö, 1970; Hirsch
& Smale, 1974).

The results presented in this section show that continuous-time payoff-
monotonic dynamics can be usefully employed to find (local) solutions
of standard quadratic programs. In the rest of the article, we focus the
discussion on a particular class of quadratic optimization problems that
arise in conjunction with the maximum clique problem.

4 A Family of Quadratic Programs for Maximum Clique

Let G = (V, E) be an undirected graph with no self-loops, where V =
{1, . . . , n} is the set of vertices and E ⊆ V × V is the set of edges. The order
of G is the number of its vertices, and its size is the number of edges. Two
vertices i, j ∈ V are said to be adjacent if (i, j) ∈ E . The adjacency matrix of
G is the n × n symmetric matrix AG = (ai j ) defined as follows:

ai j =
{

1, if (i, j) ∈ E,

0, otherwise.

The degree of a vertex i ∈ V relative to a subset of vertices C , denoted by
degC (i), is the number of vertices in C adjacent to it, that is,

degC (i) =
∑
j∈C

ai j .

Clearly, when C = V we obtain the standard degree notion, in which case
we shall write deg(i) instead of degV(i).

A subset C of vertices in G is called a clique if all its vertices are mutually
adjacent; that is, for all i, j ∈ C , with i = j , we have (i, j) ∈ E . A clique is
said to be maximal if it is not contained in any larger clique and maximum
if it is the largest clique in the graph. The clique number, denoted by ω(G),
is defined as the cardinality of the maximum clique. The maximum clique
problem is to find a clique whose cardinality equals the clique number.
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In the mid-1960s, Motzkin and Straus (1965) established a remarkable
connection between the maximum clique problem and the following stan-
dard quadratic program:

maximize f (x) = x′ AGx
subject to x ∈ � ⊂ R

n,
(4.1)

where n is the order of G. Specifically, if x∗ is a global solution of equation 4.1,
they proved that the clique number of G is related to f (x∗) by the following
formula:

ω(G) = 1
1 − f (x∗)

. (4.2)

Additionally, they showed that a subset of vertices C is a maximum clique
of G if and only if its characteristic vector xC , which is the vector of �

defined as

xC
i =

{
1/|C |, if i ∈ C

0, otherwise,

is a global maximizer of f on �.4 Gibbons, Hearn, Pardalos, and Ramana
(1997), and Pelillo and Jagota (1995), extended the Motzkin-Straus theo-
rem by providing a characterization of maximal cliques in terms of local
maximizers of f on �.

One drawback associated with the original Motzkin-Straus formulation,
however, relates to the existence of “infeasible” solutions, that is, maxi-
mizers of f that are not in the form of characteristic vectors. Pelillo and
Jagota (1995) have provided general characterizations of such solutions. To
overcome this problem, consider the following family of standard quadratic
programs:

maximize fα(x) = x′(AG + α I )x

subject to x ∈ � ⊂ R
n,

(4.3)

where α is an arbitrary real parameter and I is the identity matrix, which
includes as special cases the original Motzkin-Straus program (see equa-
tion 4.1) and the regularized version proposed by Bomze (1997) (corre-
sponding to the cases α = 0 and α = 1

2 , respectively).

4 In their original paper, Motzkin and Straus proved just the “only-if” part of this
theorem. The converse direction is, however, a straightforward consequence of their
result (Pelillo & Jagota, 1995).
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Proposition 5. Let x be a KKT point for program 4.3 with α < 1, and let C = σ (x)
be the support of x. If C is a clique of G, then it is a maximal clique.

Proof. Suppose by contradiction that C is a nonmaximal clique. Hence,
there exists j ∈ V\C such that (i, j) ∈ E for all i ∈ C . Since α < 1, we have
for all i ∈ C :

(AGx + αx)i = (AGx)i + αxi = 1 − (1 − α)xi < 1 = (AGx) j = (AGx + αx) j .

But due to equation 3.2, this contradicts the hypothesis that x is a KKT point
for equation 4.3.

In general, however, the fact that a point x ∈ � satisfies the KKT con-
ditions does not imply that σ (x) is a clique of G. For instance, it is easy to
show that if for a subset C we have degC (i) = k for all i ∈ C (i.e., C induces
a k-regular subgraph), and degC (i) ≤ k for all i /∈ C , then xC is a KKT point
for equation 4.3 provided that α ≥ 0.

The following theorem, which generalizes an earlier result by
Bomze (1997), establishes a one-to-one correspondence between local-
global solutions of equation 4.3 and maximal-maximum cliques of G. By
adapting the proof technique from Bomze (1997), it has also been proved
previously in Bomze et al. (2002) using concepts and results from evolu-
tionary game theory. Here we provide a different proof based on standard
facts from optimization theory.

Theorem 3. Let C be a subset of vertices of a graph G, and let xC be its charac-
teristic vector. Then, for any 0 < α < 1, C is a maximal (maximum) clique of G if
and only if xC is a local (global) solution of equation 4.3. Moreover, all solutions of
the equation are strict and are characteristic vectors of maximal cliques of G.

Proof. See Bomze et al. (2002) for a proof that requires several previous
results from evolutionary game theory or appendix B for a self-contained
proof which uses only basic concepts from optimization theory.

Corollary 1. Let C be a subset of vertices of a graph G with xC as its characteristic
vector, and let 0 < α < 1. Then C is a maximal clique of G if and only if xC is an
asymptotically stable stationary point under any payoff-monotonic dynamics with
payoff matrix A = AG + α I .

Proof. The proof is obvious from theorems 2 and 3.

These results naturally suggest any dynamics in the payoff-monotonic
class as a useful heuristic for the maximum clique problem, and this will be
the subject of the next section.
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5 Clique-Finding Payoff-Monotonic Dynamics

Let G = (V, E) be a graph, and let AG denote its adjacency matrix. By using

A = AG + α I (0 < α < 1) (5.1)

as the payoff matrix, any payoff-monotonic dynamics, starting from an
arbitrary initial state, will eventually be attracted with probability one by
the nearest asymptotically stable point, which, by virtue of corollary 1,
will then correspond to a maximal clique of G. Clearly, in theory, there
is no guarantee that the converged solution will be a global solution of
equation 4.3 and therefore that it will yield a maximum clique in G.

In practice, it is not unlikely, however, that the system converges toward
a stationary point that is unstable, that is, a saddle of the Lyapunov function
x′ Ax. This can be the case when the dynamics is started from the simplex
barycenter and symmetry is not broken. Proposition 3 ensures, however,
that the limit point of any interior trajectory will be at least a KKT point of
program 4.3. The next proposition translates this fact in a different language.

Proposition 6. Let x ∈ � be the limit point of a trajectory of any payoff-monotonic
dynamics starting in the interior of �. Then either σ (x) is a maximal clique or it is
not a clique.

Proof. The proof is obvious from propositions 3 and 5.

The practical significance of the previous result reveals itself in large
graphs: even if these are quite dense, cliques are usually much smaller than
the graph itself. Now suppose we are returned a KKT point x. Then we put
C = σ (x) and check whether C is a clique. This requires O(m2) steps if C
contains m vertices, while checking whether this clique is maximal would
requireO(mn) steps and, as stressed above, usually m � n. But proposition 6
now guarantees that the obtained clique C (if it is one) must automatically
be maximal, and thus we are spared trying to add external vertices.

5.1 Experimental Results. To assess the ability of our payoff-monotonic
models to extract large cliques, we performed extensive experimental eval-
uations on both random and DIMACS benchmark graphs.5 For our sim-
ulations we used discretized versions of the continuous-time linear (see
equation 2.6) and exponential (see equation 2.7) replicator dynamics (see
appendix A for a description of our discretizations). We started the pro-
cesses from the simplex barycenter and stopped them when a maximal
clique (i.e., a strict local maximizer of f ) was found. Occasionally, when

5 Data can be found online at http://dimacs.rutgers.edu.

http://dimacs.rutgers.edu
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the system converged to a nonclique KKT point, we randomly perturbed
the solution and let the game dynamics start from this new point. Since un-
stable stationary points have a basin of attraction of measure zero around
them, the process is pulled away from it with probability one, to converge,
eventually, to another (hopefully asymptotically stable) stationary point.

In an attempt to improve the quality of the final results, we used a
mixed strategy as far as the regularization parameter α is concerned. Indeed,
Bomze et al. (1997) showed that the original Motzkin-Straus formulation
(i.e., α = 0), which is plagued with the presence of spurious solutions, usu-
ally yields slightly better results than its regularized version. Accordingly,
we started the dynamics using α = 0 and, after convergence, we restarted
it from the converged point using α = 1

2 . This way, we are guaranteed to
avoid spurious solutions, thereby obtaining a maximal clique.

In the first set of experiments we ran the algorithms over random graphs
of order 100, 200, 300, 400, 500, and 1000 and with edge densities ranging
from 0.25 to 0.95. For each order and density value, 100 different graphs
were generated. Table 1 shows the results obtained in terms of clique size.
Here, n refers to the graph order, ρ is the edge density, and the labels “RD
linear” and “RD exp” indicate the first-order and the exponential repli-
cator dynamics, respectively. The results are compared with the following
state-of-the-art neural network heuristics for maximum clique: Jagota’s con-
tinuous Hopfield dynamics (CHD) and mean field annealing (MFA) (Jagota,
1995; Jagota et al., 1996), the saturated linear dynamical network (SLDN) by
Pekergin et al. (1999), an approximation approach introduced by Funabiki
et al. (FTL) (1992), the iterative Hopfield nets (IHN) algorithm by Bertoni
et al. (2002), and the Hopfield network learning (HNL) of Wang et al. (2003).
Figure 1 plots the corresponding CPU timings obtained with a (nonopti-
mized) C++ implementation on a machine equipped with a 2.5 GHz Pen-
tium 4 processor.

Since random graphs are notoriously easy to deal with, a second set of
experiments was also performed on the DIMACS benchmark graphs (see
Tables 2 and 3). Here, columns marked with n and ρ contain the num-
ber of vertices in the graph and the edge density respectively. Columns
“Clique Size” contain the size of the cliques found by the competing algo-
rithms, while the column “Time” reports the CPU timings for the proposed
dynamics. The sizes of the cliques obtained are compared against several
algorithms present in either the neural network or the continuous opti-
mization literature, and against the best result over all algorithm featured
on the DIMACS challenge (Johnson & Trick, 1996) (DIMACS best). The
neural-based approaches include mean field annealing (MFA), the inverted
neurons network (INN) model by Grossman (1996), and the IHN algorithm,
while algorithms from the continuous optimization literature include the
continuous-based heuristic (CBH) by Gibbons et al. (1997) and the QSH
algorithm by Busygin, Butenko, and Pardalos (2002). The results are taken
from the cited papers. No results are presented for CHD, SLDN, FTL, and
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Table 1: Results of Replicator Dynamics (RD) and State-of-the-Art Neural
Network–Based or Optimization-Based Approaches on Random Graphs with
Varying Order and Density.

n ρ RD Linear RD Exponential CHD MFA SLDN FTL IHN HNL

100 0.25 4.90 ± 0.56 4.81 ± 0.60 4.48 — 4.83 4.2 — —
0.50 8.01 ± 0.66 8.07 ± 0.64 7.38 8.50 8.07 8.0 9.13 9
0.75 15.10 ± 1.05 15.15 ± 1.11 13.87 — 15.05 14.1 — —
0.90 28.50 ± 1.87 28.92 ± 1.74 27.92 30.02 — — — 30
0.95 41.81 ± 1.80 42.04 ± 1.78 — — — — — —

200 0.25 5.34 ± 0.68 5.35 ± 0.64 — — — 4.9 — —
0.50 9.04 ± 0.76 9.11 ± 0.77 — — — 8.5 10.60 11
0.75 17.77 ± 1.35 18.05 ± 1.23 — — — — — —
0.90 36.74 ± 1.65 37.41 ± 1.55 — — — — — 39
0.95 57.33 ± 2.33 58.24 ± 2.09 — — — — — —

300 0.25 5.58 ± 0.62 5.61 ± 0.62 — — — 5.1 — —
0.50 9.54 ± 0.90 9.57 ± 0.88 — — — 8.9 11.60 11
0.75 19.05 ± 1.27 19.40 ± 1.17 — — — — — —
0.90 40.74 ± 1.97 41.48 ± 1.81 — — — — — 46
0.95 66.48 ± 2.69 67.43 ± 2.47 — — — — — —

400 0.25 5.73 ± 0.65 5.73 ± 0.60 5.53 — 5.70 4.9 — —
0.50 9.99 ± 0.80 10.07 ± 0.77 9.24 10.36 9.91 8.9 12.30 —
0.75 20.17 ± 1.16 20.42 ± 1.10 18.79 — 20.44 17.7 — —
0.90 43.63 ± 1.73 44.44 ± 1.64 43.24 49.94 — — — —
0.95 73.11 ± 2.37 74.25 ± 2.30 — — — — — —

500 0.25 5.81 ± 0.69 5.74 ± 2.30 — — — 6.2 — —
0.50 10.14 ± 0.93 10.31 ± 0.91 — — — 9.4 12.80 12
0.75 20.90 ± 1.32 21.31 ± 1.27 — — — — — —
0.90 46.10 ± 2.25 46.93 ± 2.29 — — — — — 56
0.95 78.73 ± 2.66 79.94 ± 2.68 — — — — — —

1000 0.25 6.23 ± 0.62 6.17 ± 0.57 6.03 — 6.17 5.8 — —
0.50 10.74 ± 0.80 10.83 ± 0.82 10.25 — 10.93 10.4 — —
0.75 22.88 ± 1.28 23.04 ± 1.35 21.26 — 23.19 21.4 — —
0.90 52.60 ± 2.02 53.15 ± 2.11 — — — — — —
0.95 93.75 ± 3.12 94.80 ± 2.96 — — — — — —

HNL since the authors did not provide results on the DIMACS graphs. For
the same reason, we did not report results on random graphs for INN, CBH,
and QSH.

A number of conclusions can be drawn from these results. First, the
exponential dynamics provides slightly better results than the linear one,
being, however, dramatically faster, especially on dense graphs. These re-
sults confirm earlier findings reported in Pelillo (1999, 2002) on graph classes
arising from graph and tree matching problems. As for the comparison with
the other algorithms, we note that our dynamics substantially outperform
CHD and FTL and are, overall, as effective as SLDN (for which no results
on DIMACS graphs are available). Observe that these approaches do not
incorporate any procedure to escape from poor local solutions and, hence,
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Figure 1: CPU time of replicator dynamics on random graphs with varying
order and density. The x-axis represents the edge density, while the y-axis
denotes time (in seconds).

are close in spirit to ours. Clearly our results are worse than those obtained
with algorithms that do use some form of annealing or, in any case, are
explicitly designed to avoid local optima, such as IHN, HNL, CBH, and
QSH. Interestingly, however, the results are close to (and in some instances
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even better than) those obtained with Jagota’s MFA and Grossman’s INN,
which are also in this family.

6 Annealed Imitation Dynamics: Evolving Toward Larger Cliques

In an attempt to avoid inefficient local solutions, we now follow Bomze
et al. (2002) and investigate the stability properties of equilibria of payoff-
monotonic dynamics when the parameter α is allowed to take on negative
values. Indeed, we shall restrict our analysis to imitation dynamics (see
equation 2.5), but we first make a few observations pertaining to general
selection dynamics.

For any regular selection dynamics ẋi = xi gi (x), we have:

∂ ẋi

∂xj
= δi j gi (x) + xi

∂gi (x)
∂xj

, (6.1)

where δi j is the Kronecker delta, defined as δi j = 1 if i = j and δi j = 0 other-
wise. Assuming without loss of generality that σ (x) = {1, . . . , m}, the Jaco-
bian of any regular selection dynamics at a stationary point x has therefore
the following block triangular form,

J (x) =
[

M(x) N(x)

O D(x)

]
, (6.2)

where the entries of M(x) and N(x) are given by xi
∂gi (x)
∂xj

, O is the (possibly
empty) matrix containing all zeros, and

D(x) = diag{gm+1(x), . . . , gn(x)}.

An immediate consequence of this observation is that we can already say
something about the spectrum of J (x), when m < n. In fact, the eigen-
values of J (x) are those of M(x) together with those of D(x), and since
D(x) is diagonal, its eigenvalues coincide with its diagonal entries, that is,
gm+1(x), . . . , gn(x). This set of eigenvalues governs the asymptotic behavior
of the external flow under the system obtained by linearization around x
and is usually called transversal eigenvalues (Hofbauer & Sigmund, 1998).

Without knowing the form of the growth functions gi , however, it is
difficult to provide further insights into the spectral properties of J (x),
and therefore we now specialize our discussion to imitation dynamics (see
equation 2.5). In this case, we have

gi (x) = φ(πi (x)) −
n∑

k=1

xkφ(πk(x)), (6.3)
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where φ is a strictly increasing function, and hence

∂ ẋi

∂xj
= δi j

[
φ(πi (x)) −

∑
k

xkφ(πk(x))

]

+ xi

[
ai jφ

′(πi (x)) − φ(π j (x)) −
∑

k

xkak jφ
′(πk(x))

]
. (6.4)

When x is an equilibrium point, and hence πi (x) = π(x) for all i ∈ σ (x), the
previous expression simplifies to

∂ ẋi

∂xj
= δi j [φ(πi (x)) − φ(π (x))]

+ xi [ai jφ
′(π (x)) − φ(π j (x)) − φ′(π(x))π j (x)]. (6.5)

Before we provide the main result of this section, we prove the following
useful proposition, which generalizes an earlier result by Bomze (1986).

Proposition 7. Let x be a stationary point of any imitation dynamics,
equation 2.5. Then:

a. −φ(π (x)) is an eigenvalue of J (x), with x as an associated eigenvector.

b. If y is an eigenvector of J (x) associated with an eigenvalue λ = −φ(π(x)),
then e′y = ∑

i yi = 0.

Proof. Recall from proposition 1 that x is an equilibrium point for
equation 2.5 if and only if πi (x) = π(x) for all i ∈ σ (x). Hence, for i =
1, . . . , n, we have:

n∑
j=1

xj
∂ ẋi

∂xj
= xi [φ(πi (x)) − φ(π (x))]

+ xi

n∑
j=1

xj [ai jφ
′(π(x)) − φ(π j (x)) − π j (x)φ′(π(x))]

= xi [φ(πi (x)) − φ(π (x)) + φ′(π(x))πi (x) − φ(π(x)) − φ′(π(x))π (x)]

=−xiφ(π (x)).

In other words, we have shown that J (x)x = −φ(π(x))x, which proves part
a of the proposition.
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To prove part b, first note that the columns of J (x) have a nice property:
they all sum up to −φ(π (x)). Indeed, for all j = 1, . . . , n we have:

n∑
i=1

∂ ẋi

∂xj
= φ(π j (x)) − φ(π (x))

+
n∑

i=1

xi
[
ai jφ

′(π(x)) − φ(π j (x)) − π j (x)φ′(π(x))
]

= φ(π j (x)) − φ(π (x)) + φ′(π(x))π j (x) − φ(π j (x)) − φ′(π(x))π j (x)

= −φ(π (x)).

Now, the hypothesis J (x)y = λy yields

λ
∑

i

yi =
∑

i

(J (x)y)i =
∑

j

yj

∑
i

J (x)i j = −φ(π(x))
∑

j

yj ,

which implies
∑

i yi = 0, since λ = −φ(π(x)).

Since we analyze the behavior of imitation dynamics restricted to the
standard simplex �, we are interested only in the eigenvalues of J (x) as-
sociated with eigenvectors belonging to the tangent space e⊥ = {y ∈ R

n :
e′y = 0}. The previous result therefore implies that the eigenvalue −φ(π(x))
can be neglected in our analysis, and that the remaining ones, including the
transversal eigenvalues, are indeed all relevant.

We now return to the maximum clique problem. Let a graph G = (V, E)
be given, and for a subset of vertices C , let

γ (C) = max
i /∈C

degC (i) − |C | + 1 . (6.6)

Note that if C is a maximal clique, then γ (C) ≤ 0. The next theorem shows
that γ (C) plays a key role in determining the stability of equilibria of imita-
tion dynamics.

Theorem 4. Let C be a maximal clique of graph G = (V, E), and let xC be
its characteristic vector. If γ (C) < α < 1, then xC is an asymptotically stable
stationary point under any imitation dynamics (see equation 2.5) with payoff
matrix A = AG + α I , and hence a (strict) local maximizer of fα in �. Moreover,
assuming C = V, if α < γ (C), then xC becomes unstable.

Proof. Assume without loss of generality that C = {1, . . . , m} and suppose
that γ (C) < α < 1. To simplify notations, put x = xC . We shall see that the
eigenvalues of J (x) are real and negative. This implies that x is a sink and
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hence an asymptotically stable point (Hirsch & Smale, 1974). The fact that
x is a strict local maximizer of fα in � follows directly from theorem 2.

As already noticed in the previous discussion, because of its block di-

agonal form, the eigenvalues of J (x) are those of M(x) =
(

xi
∂gi (x)
∂xj

)
i, j=1,...,m

together with the n − m transversal eigenvalues gm+1(x), . . . , gn(x), where:

gi (x) = φ(πi (x)) −
n∑

k=1

xkφ(πk(x)).

Since C is a (maximal) clique, πk(x) = π(x) for all k ∈ C = σ (x), and therefore

gi (x) = φ(πi (x)) − φ(π (x)).

But φ is a strictly increasing function, and hence gi (x) < 0 if and only if
πi (x) < π (x). Now, since C is a maximal clique, πi (x) = (AGx)i = degC (i)/m
for all i > m, and π (x) = (m − 1 + α)/m. But for all i > m, we have degC (i) −
m + 1 ≤ γ (C) < α, and this yields πi (x) < π(x). Hence, all transversal eigen-
values are negative.

It remains to show that the eigenvalues of M(x) are negative too. When
A = AG + α I , we have:

M(x)i j = xi
∂ ẋi

∂xj
= 1

m
[(ai j + αδi j )φ′(π(x)) − φ(π (x)) − φ′(π(x))π (x)].

Hence, in matrix form, we have

M(x) = φ′(π (x))
m

[(
1 − φ(π(x))

φ′(π(x))
− π (x)

)
ee′ + (α − 1)I

]
,

where ee′ is the m × m matrix containing all ones, and the eigenvalues of
M(x) are

λ1 = φ′(π(x))
m

(α − 1)

with multiplicity m − 1, and

λ2 = φ′(π (x))
m

[(
1 − φ(π(x))

φ′(π(x))
− π(x)

)
m + α − 1

]
= −φ(π(x))

with multiplicity 1. Since α < 1 and φ is strictly increasing, we have λ1 < 0.
Moreover, recall from proposition 7 that eigenvalue λ2 = −φ(π (x)) is not
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relevant to the imitation dynamics on the simplex �, since its eigenvector
x does not belong to the tangent space e⊥. Hence, as far as the dynamics in
the simplex is concerned, we can ignore it.

Finally, to conclude the proof, suppose that α < γ (C) =
maxi>m degC (i) − m + 1. Then there exists i > m such that m − 1 + α <

degC (i) and hence, dividing by m, we get πi (x) − π(x) > 0 and then
gi (x) = φ(πi (x)) − φ(π (x)) > 0, which implies that a transversal eigenvalue
of J (x) is positive, that is, x is unstable.

Theorem 4 provides us with an immediate strategy to avoid unwanted
local solutions: maximal cliques that are not maximum. Suppose that C is
a maximal clique in G that we want to avoid. By letting α < γ (C), its char-
acteristic vector xC becomes an unstable stationary point of any imitation
dynamics under fα , and thus will not be approached by any interior trajec-
tory. Hence, if there is a clique D such that still γ (D) < α holds, there is a
(more or less justified) hope to obtain in the limit xD, which yields automati-
cally a larger maximal clique D. Unfortunately, two other cases could occur:
(1) no other clique T satisfies γ (T) < α, that is, α has a too large absolute
value, and (2) even if there is such a clique, other attractors could emerge
that are not characteristic vectors of a clique (note that this is excluded if
α > 0 by theorem 3). The proper choice of the parameter α is therefore a
trade-off between the desire to remove unwanted maximal cliques and the
emergence of spurious solutions.

Instead of keeping the value of α fixed, our approach is to start with a suf-
ficiently large negative α and adaptively increase it during the optimization
process, in much the same spirit as simulated or mean field annealing proce-
dures. Of course, in our case, the annealing parameter has no interpretation
in terms of a hypothetical temperature. The rationale behind this idea is that
for values of α that are sufficiently negative, only the characteristic vectors
of large maximal cliques will be stable, attractive points for the imitation dy-
namics, together with a set of spurious solutions. As the value of α increases,
spurious solutions disappear, and at the same time, (characteristic vectors
of) smaller maximal cliques become stable. We expect that at the beginning
of the annealing process, the dynamics is attracted toward “promising”
regions, and the search is further refined as the annealing parameter in-
creases. In summary, a high-level description of the proposed algorithm is
shown in Figure 2. Note that the last step in the algorithm is necessary if we
also want to extract the vertices comprising the clique found, as shown in
theorem 3.

It is clear that for the algorithm to work, we need to select an ap-
propriate annealing schedule. To this end, we employ the following
heuristic suggested in Bomze et al. (2002). Suppose that the underly-
ing graph is a random one in the sense that edges are generated in-
dependent of each other with a certain probability q (in applications, q
will be replaced by the actual graph density), and suppose that C is an
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Algorithm

1. Start with a sufficiently large negative α.

2. Let b be the barycenter of Δ and set x = b.

3. Run any imitation dynamics starting from x, under AG +

αI until convergence and let x be the converged point.

4. Unless a stopping condition is met, increase α and goto

3.

5. Select α̂ with 0 < α̂ < 1 (e.g., α̂ = 1
2
), run any imi-

tation dynamics starting from current x under AG + α̂I

until convergence, and extract a maximal clique from the

converged solution.

Figure 2: Annealed Imitation Heuristic.

unwanted clique of size m. Take δ > 0 small, say 0.01, and consider the
quantity

γ m = 1 − (1 − q )m −
√

mq (1 − q ) δν, (6.7)

where ν = 1/2(n − m). Bomze et al. (2002) proved that γ (C) exceeds γ m with
probability 1 − δ. Thus, it makes sense to use γ m as a heuristic proxy for the
lower bound of γ (C), to avoid being attracted by a clique of size m.

Furthermore, note that among all graphs with n vertices and m edges,
the maximum possible clique number is the only integer c that satisfies the
following relations:

(
c
2

)
≤ m <

(
c + 1

2

)
, (6.8)
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which, after some algebra, yields

√
8m + 1

4
− 1

2
< c ≤

√
8m + 1

4
+ 1

2
, (6.9)

from which we get

c =
⌊√

8m + 1
4

+ 1
2

⌋
. (6.10)

The previous results suggest us a sort of two-level annealing strategy:
the level of clique size, which in turn induces that of the “actual” annealing
parameter. More precisely, if we do not have any a priori information about
the expected size of the maximum clique, we can use equation 6.10 to
have an initial overestimation of it. By setting the initial value for α (step
1 of our algorithm) at some intermediate value between γ c and γ c−1, for
example, α = (γ c + γ c−1)/2, we expect that only the characteristic vectors
of maximal cliques having size c will survive in fα , together with many
spurious solutions. After the initial cycle, we decrease c, recalculate γ c and
γ c−1, and update α = (γ c + γ c−1)/2 in step 4 as in the previous step. The
whole process is iterated until either c reaches 1 or α becomes greater than
zero.

7 Experimental Results

In this section we present experiments of applying our annealed imitation
heuristics to the same set of random and DIMACS graphs used in the pre-
vious experiments. For each graph considered, the algorithms were run by
using the two-level annealing schedule described at the end of the previous
section. As for the internal cycle (step 3), we used both the (discretized
versions of the) linear and exponential replicator dynamics. The processes
were iterated until the Euclidean distance between two successive states
became smaller than a threshold value. At the final cycle (step 5), the pa-
rameter α̂ was set to 1/2, and the dynamics were stopped when either a
maximal clique (i.e., a local maximizer of f1/2 on �) was found or the dis-
tance between two successive points was smaller than a fixed threshold.
When the process converged to a saddle point, the vector was perturbed,
and the algorithm restarted from the new perturbed point.

Table 4 and Figure 3 show the results obtained with our annealed im-
itation heuristics (AIH) on the random graphs, in terms of clique sizes
and computation time, respectively, while Tables 5 and 6 show the results
obtained on the DIMACS benchmark.

Several conclusions can be drawn from these experiments. First, both of
our annealing heuristics perform, on average, significantly better than the
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Table 4: Results of the Annealed Imitation Heuristics (AIH) and State-of-the-
Art Neural Network–Based or Optimization-Based Approaches on Random
Graphs with Varying Order and Density.

n ρ AIH Linear AIH Exponential CHD MFA SLDN FTL IHN HNL

100 0.25 5.11 ± 0.53 5.22 ± 0.46 4.48 — 4.83 4.2 — —
0.50 8.43 ± 0.77 8.84 ± 0.63 7.38 8.50 8.07 8.0 9.13 9
0.75 16.10 ± 0.92 16.43 ± 0.83 13.87 — 15.05 14.1 — —
0.90 29.53 ± 1.71 30.20 ± 1.52 27.92 30.02 — — — 30
0.95 42.82 ± 1.74 42.94 ± 1.75 — — — — — —

200 0.25 5.60 ± 0.60 5.87 ± 0.51 — — — 4.9 — —
0.50 9.43 ± 0.89 10.14 ± 0.55 — — — 8.5 10.60 11
0.75 19.59 ± 1.14 19.96 ± 1.00 — — — — — —
0.90 38.62 ± 1.80 39.77 ± 1.50 — — — — — 39
0.95 60.15 ± 1.79 60.60 ± 1.64 — — — — — —

300 0.25 6.10 ± 0.54 6.30 ± 0.46 — — — 5.1 — —
0.50 9.98 ± 0.92 10.89 ± 0.60 — — — 8.9 11.60 11
0.75 21.02 ± 1.11 21.78 ± 0.84 — — — — — —
0.90 43.84 ± 2.02 45.33 ± 1.57 — — — — — 46
0.95 70.98 ± 2.35 72.09 ± 1.75 — — — — — —

400 0.25 6.65 ± 0.50 6.43 ± 0.54 5.53 — 5.70 4.9 — —
0.50 11.15 ± 0.76 11.24 ± 0.73 9.24 10.36 9.91 8.9 12.30 —
0.75 22.82 ± 0.89 22.80 ± 0.90 18.79 — 20.44 17.7 — —
0.90 48.68 ± 1.51 48.65 ± 1.51 43.24 49.94 — — — —
0.95 79.19 ± 2.00 79.00 ± 2.03 — — — — — —

500 0.25 6.28 ± 0.68 6.68 ± 0.55 — — — 6.2 — —
0.50 10.53 ± 0.84 11.73 ± 0.71 — — — 9.4 12.80 12
0.75 22.70 ± 1.24 23.91 ± 0.85 — — — — — —
0.90 49.75 ± 2.10 52.26 ± 1.46 — — — — — 56
0.95 84.87 ± 2.16 86.50 ± 2.51 — — — — — —

1000 0.25 6.61 ± 0.73 7.17 ± 0.45 6.03 — 6.17 5.8 — —
0.50 11.32 ± 0.85 12.73 ± 0.78 10.25 — 10.93 10.4 — —
0.75 24.88 ± 1.40 26.63 ± 1.03 21.26 — 23.19 21.4 — —
0.90 56.90 ± 2.40 60.46 ± 1.60 — — — — — —
0.95 101.98 ± 3.10 104.93 ± 3.47 — — — — — —

corresponding plain replicator dynamics, where no annealing strategy is
used, while paying a time penalty that is in most cases limited. Moreover,
similar to what we found in section 5.1 for the plain processes, the expo-
nential version of AIH provides larger cliques than its linear counterpart,
thereby improving the results reported in Bomze et al. (2002).

As for the comparison with other neural-based clique finding algorithms,
we see that AIH performs substantially better than CHD and FTL, which
were already outperformed by the plain dynamics, SLDN, mean field an-
nealing (MFA), and the inverted neurons network (INN). Furthermore, it
provides results comparable to those obtained with the continuous-based
heuristic (CBH) and Hopfield network learning (HNL).
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Figure 3: CPU time of the annealed imitation heuristics on random graphs
with varying order and density. The x-axis represents the edge density, while
the y-axis denotes time (in seconds).

The comparison with the iterative Hopfield nets (IHN) and the QSH
algorithm is not as straightforward and depends on the specific graph
class. More specifically, on c-fat, hamming, and johnson graphs, the
proposed AIH approaches perform as well as IHN and QSH. The annealed
dynamics outperform QSH on the sanr graphs and provide slightly better
results on the p hat graphs, while QSH performs better on the brock



1250 M. Pelillo and A. Torsello

and the keller graphs. Note, however, that we do not provide results
for the largest instances such as hamming10-2, hamming10-4, keller6,
san1000, and all the p hat’s with 1000 or more vertices. As for IHN,
the approach performs slightly better than AIH on p-hat, although no
result for the largest instances is given, and gives comparable results on
the sanr graphs. However, we did not provide results for the brock and
the keller graphs, which are notoriously hard instances (Brockington &
Culberson, 1996).

The sanc graphs deserve a separate discussion. Indeed, these graphs
were already found to be particularly hard for Motzkin-Straus-based ap-
proaches, like the proposed dynamics and CBH (Bomze et al. 2002). As
expected, our approaches fail to provide good results and are substantially
outperformed by IHN and QSH.

8 Conclusions

In this letter, we have introduced a wide family of game dynamic equations
known as payoff-monotonic dynamics and have shown how their dynamical
properties make any member of this family a potential heuristic for solving
standard quadratic programs and, in particular, the maximum clique prob-
lem (MCP). Such systems can easily be implemented in a parallel network
of locally interacting computational units and can be coded in a few lines of
any high-level programming language. We have shown experimentally that
an exponential version of the classic (linear) replicator dynamics is partic-
ularly effective at finding maximum or near-maximum cliques for several
graph classes, being dramatically faster and even more accurate than its
linear counterpart. However, these models are inherently unable to avoid
poor local solutions in harder graph instances.

In an attempt to avoid local optima, we have focused on a particular
subclass of these dynamics used to model the evolution of behavior via
imitation processes, and have developed the annealed imitation dynamics.
This is a class of heuristics for MCP whose basic ingredients are (1) a param-
eterized continuous formulation of the problem, (2) an instability analysis
of equilibria of imitation dynamics, and (3) a principled way of varying
a regularization parameter during the evolution process. Experiments on
various benchmark graphs have shown that the annealed imitation class
contains algorithms that substantially outperform classic neural network al-
gorithms for maximum clique, such as mean field annealing, and compares
well with sophisticated MCP heuristics from the continuous optimization
literature.

Appendix A: Discrete-Time Replicator Dynamics

The results presented in section 3, and in particular theorem 1, show that
continuous-time payoff-monotonic dynamics can be usefully employed to
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find local solutions of standard quadratic programs. In practical computer
implementations, however, we need a way of discretizing the models. A
customary way of doing this is given by the following difference equations:

xi (t + 1) = xi (t)πi (t)∑n
j=1 xj (t)π j (t)

(A.1)

and

xi (t + 1) = xi (t)eκπi (t)∑n
j=1 xj (t)eκπ j (t)

, (A.2)

which correspond to well-known discretizations of equations 2.6 and 2.7,
respectively (Cabrales & Sobel, 1992; Gaunersdorfer & Hofbauer, 1995; Hof-
bauer & Sigmund, 1998; Weibull, 1995). Note that model A.1 is the standard
discrete-time replicator dynamics, which have already proven to be remark-
ably effective in tackling maximum clique and related problems, and to be
competitive to other more elaborated neural network heuristics (Bomze,
1997; Bomze et al., 1997, 2000; Pelillo, 1995, 1999; Pelillo et al., 1999). Equa-
tion A.2 has been used in Pelillo (1999, 2002) as a heuristic for graph and
tree isomorphism problems.

As their continuous counterparts, these dynamics are payoff-monotonic,
that is,

xi (t + 1) − xi (t)
xi (t)

>
xj (t + 1) − xj (t)

xj (t)
⇔ πi (t) > π j (t).

It is a well-known result in evolutionary game theory (Weibull, 1995; Hof-
bauer & Sigmund, 1998) that the fundamental theorem of natural selection
(see theorem 1) also holds for the first-order linear dynamics (see equa-
tion A.1)—namely, the average consistency x′ Ax is a (strict) Lyapunov func-
tion for equation A.1, provided that A = A′. In other words:

x(t)′ Ax(t) < x(t + 1)′ Ax(t + 1)

unless x(t) is a stationary point. Unfortunately, unlike the continuous-time
case, there is no such result for the discrete exponential dynamics, equa-
tion A.2. That is, there is no guarantee that for any fixed value of the
parameter, κ , the dynamics increases the value of x′ Ax. Indeed, with high
values of this parameter, the dynamics can exhibit an oscillatory behavior
(Pelillo, 1999). However, a recent result by Bomze (2005) allows us to define
an adaptive approach that is guaranteed to find a (local) maximizer for
x′ Ax.
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We define the ε-stationary points as

Statε =
{

x ∈ � :
∑

i

xi ((Ax)i − x′ Ax)2 < ε
}
.

Clearly, this set is composed of the union of open neighborhoods around the
stationary points of any payoff-monotonic dynamics, and for ε → 0 shrinks
toward the stationary points themselves. Let m̄A = maxi j |ai j |, span(A) =
maxi j ai j − mini j ai j , and, for any given ε, define κA(ε) as the unique κ > 0,
which satisfies

κ exp(2m̄Aκ) = 2ε

span(A)
(
ε + 2m̄2

A

) .

Theorem 5. Suppose A = A′. Then for arbitrary ε > 0, for any positive κ ≤
κA(ε), the objective function x′ Ax is strictly increasing over time along the parts
of trajectories under equation A.2, which are not ε-stationary, that is,

x(t)′ Ax(t) < x(t + 1)′ Ax(t + 1) if x(t) ∈ Statε.

Proof. See Bomze (2005).

This means that for each point x ∈ � we can find a κ for which one
iteration of equation A.2 increases x′ Ax. That is, by setting at each iteration
κ = κA(ε), we are guaranteed to increase x′ Ax along the trajectories of the
system. Note, however, that this estimate of κA(ε) is not tight. In particular,
our experience shows that it severely underestimated the value of κ , slowing
the convergence of the dynamics considerably.

In order to obtain a better estimate of the parameter κ and improve the
performance of the approach, in our experiments we employed the adaptive
exponential dynamics described in Figure 4, which, as the next proposition
shows, has x′ Ax as a Lyapunov function.

Proposition 8. If the payoff matrix A is symmetric, then the function x′ Ax is
strictly increasing along any nonconstant trajectory of the adaptive exponential
dynamics defined above. In other words, x(t)′ Ax(t) ≤ x(t + 1)′ Ax(t + 1) for all t,
with equality if and only if x = x(t) is a stationary point.

Proof. By construction, the function is guaranteed to grow as long a κ that
increases x′ Ax can be found. Theorem 5 guarantees that such a κ can indeed
be found.
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Algorithm

1. Start with a sufficiently large κ and from an arbitrary

x(0) ∈ Δ. Set t ← 0.

2. While x(t) is not stationary do

3. Compute x(t + 1) using equation A.2;

4. While x′(t + 1)Ax(t + 1) ≤ x′(t)Ax(t) do

5. Reduce κ;

6. Recompute x(t + 1) using equation A.2;

7. Endwhile;

8. t ← t + 1;

9. Endwhile;

Figure 4: Adaptive exponential (discrete-time) replicator dynamics.

Appendix B: Proof of Theorem 3

Theorem 3. Let C be a subset of vertices of a graph G, and let xC be its char-
acteristic vector. Then, for any 0 < α < 1, C is a maximal (maximum) clique of
G if and only if xC is a local (global) solution of equation 4.3. Moreover, all solu-
tions of the equation 4.3 are strict and are characteristic vectors of maximal cliques
of G.

Proof. Suppose that C is a maximal clique of G, and let |C | = m. We shall
prove that xC is a strict local solution of program 4.3. To this end, we use
standard second-order sufficiency conditions for constrained optimization
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(Luenberger, 1984). Let AG = (ai j ) be the adjacency matrix of G and, for
notational simplicity, put

A = AG + α I.

First, we need to show that xC is a KKT point for equation 4.3. It is easy to
see that since C is a maximal clique, we have:

(AGxC )i

{
= m−1

m if i ∈ C

≤ m−1
m if i /∈ C.

Hence, if i ∈ C , then

(AxC )i = (AGxC )i + αxC
i = m − 1

m
+ α

m
, (B.1)

and if i /∈ C ,

(AxC )i = (AGxC )i ≤ m − 1
m

<
m − 1

m
+ α

m
. (B.2)

Therefore, conditions 3.2 are satisfied and xC is a KKT point. Note that the
Lagrange multipliers μi ’s defined in section 3 are given by

μi = m − 1 + α

m
− (AxC )i .

To conclude the first part of the proof, it remains to show that the Hessian
of the Lagrangian associated with program 4.3, which in this case is simply
AG + α I , is negative definite on the following subspace:

� = {y ∈ R
n : e′y = 0 and yi = 0 for all i ∈ ϒ},

where

ϒ = {i ∈ V : xC
i = 0 and μi > 0} .

But from equation B.2, ϒ = V\C . Hence, for all y ∈ �, we have:

y′ Ay =
n∑

i=1

yi

n∑
j=1

ai j yj + α

n∑
i=1

y2
i

=
∑
i∈C

yi

∑
j∈C

ai j yj + α
∑
i∈C

y2
i
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=
∑
i∈C

yi

⎛
⎝∑

j∈C

yj − yi

⎞
⎠ + α

∑
i∈C

y2
i

= (α − 1)
∑
i∈C

y2
i

= (α − 1)y′y

≤ 0

with equality if and only if y = 0, the null vector. This proves that AG + α I
is negative definite on �, as required.

To prove the inverse direction, suppose that xC ∈ � is a local solution to
equation 4.3 and hence a KKT point. By proposition 2, xC is also a station-
ary point for payoff-monotonic dynamics, and since Ahas positive diagonal
entries aii = α > 0, all the hypotheses of proposition 4 are fulfilled. There-
fore, it follows that C is a clique (i.e., ai j > 0 for all i, j ∈ C); otherwise
xC could not be a local solution of equation 4.3. On the other hand, from
proposition 5, C is also a maximal clique.

Furthermore, if x is any local solution, and hence a KKT point of
equation 4.3, then necessarily x = xS where S = σ (x). Geometrically, this
means that x is the barycenter of its own face. In fact, from the previous
discussion, S has to be a (maximal) clique. Therefore, for all i ∈ S,

(AGx)i + αxi = 1 − (1 − α)xi = λ,

for some constant λ. This amounts to saying that xi is constant for all i ∈ σ (x),
and

∑
i xi = 1 yields xi = 1/|S|. From what we have seen in the first part of

the proof, this also shows that all local solutions of equation 4.3 are strict.
Finally, as for the “global/maximum” part of the theorem, simply notice

that at local solutions x = xS of equation 4.3, S = σ (x) being a maximal
clique, the value of the objective function fα is 1 − (1 − α)/|S|.
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