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Abstract

Object tracking with freely moving cameras is an open
issue, since background information cannot be exploited for
foreground segmentation, and plain feature tracking is not
robust enough for target tracking, due to occlusions, dis-
tractors and object deformations. In order to deal with
such challenging conditions a traditional approach, based
on Camshift-like color-based features, is augmented by in-
troducing a structural model of the object to be tracked in-
corporating previous knowledge about the spatial relations
between the parts. Hence, an attributed graph is built on
top of the features extracted from each frame and a graph
matching technique based on Dominant Set clustering is
used to find the optimal match with the model. Pixel-wise
and object-wise comparison with other tracking techniques
with respect to manually-obtained ground truth are pre-
sented.

1. Introduction

In recent years, object tracking has been recognized by
the scientific community as a fundamental task in several
applications of video analysis. Tracking rigid objects in
simple, uncluttered scenes acquired from static cameras is
an almost solved problem [26]. Conversely, in complex sce-
narios where objects camouflage with the background, have
severe shape variations and are strongly occluded, tracking
can be really challenging. In addition, when either the back-
ground is not fixed or the camera is moving, no statistical
or geometrical model can be exploited to segment the fore-
ground objects and predictive models (such as Kalman fil-
ters) are ineffective.

In point tracking, objects are usually represented by sin-
gle or multiple points and the correspondences between two
consecutive frames is established by either deterministic
[25] or statistical methods [3] to provide tracking without
object segmentation. An alternative is to represent the data
using kernel primitives such as rectangles or ellipses. These
kernel methods can be used to estimate a density-based ap-
pearance model of the object [7]. Other approaches encom-

pass silhouette tracking, estimating the object contour evo-
lution by means of state-space models [13] or variational
methods [4].

These proposals are robust and efficient when the object
can be represented by a single feature, such as the color his-
togram, but in the case of complex articulated objects repre-
sented by parts which are often partially or completely over-
lapped they are likely to fail. To deal with such challeng-
ing scenarios structural information expressing spatial con-
straint among features might be used. This is the case of the
pictorial structures of [9] that have been proposed for object
recognition and has been further developed for people track-
ing by [19]. Similarly [12, 23] are based on inference in a
graphical model and can be applied again to people tracking
[22]. All these approaches tend to be specifically focused
on the articulated structure of the human body or human
face (whereas our framework tackles generic-shape object
tracking), and rely on Bayesian probabilistic frameworks;
on the other hand tracking can be brought to a problem of
graph matching through a graph based representation based
on Region Adjacency Graph (RAG), where vertices repre-
sent image regions and edges encode adjacency. This is the
case of [10, 8, 2, 11]. A notable exception is [14] where
RAGs are tracked by fitting independent Kalman filters to
both regions and adjacency relations. [21] uses graphs and
Kalman filter for insects tracking.

Structural methods based on point features are less used
than region-based ones. This is due primarily to the fact
that is more difficult to define relations between point fea-
tures. In [24] SIFT features are extracted from the tracked
object and a nearest-neighbor graph is built on top of them.
Relaxation labelling is used for matching and the object
graph itself is updated by removing disappearing features
and adding new ones. In [5] the features tracked are the lin-
ear borders of geometric objects and edges connect parallel
or perpendicular borders.

The definition of the structural model can be inferred
from the image data. This approach is very general but
might suffer from the instability of the model inference,
both in terms of detection of regions/features and with
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respect to the invariance of the relational structure to be
tracked. In addition an inferred model is inherently unable
to capture detailed information about the intrinsic articula-
tion and deformability of non-rigid objects. By contrast,
our approach requires an a priori structural model of the
target object (not necessarily bound to the human body fig-
ure), that is then enriched with attributes extracted from real
data. This way we are able to search for a match that not
only maximizes the coherence between attributes, but that
also accounts for the coherence of the structural relations in
a way invariant to variations in scale, rotations and transla-
tions, and even blurring due to camera motions; the search
for the best coherent match with the provided model is made
through Dominant Set extraction.

2. Overview of the Framework

Fig. 1 shows the conceptual scheme of our frame-
work. An initial Graph-Based Model Definition provides
the framework with both a model of the features to be
tracked and a structural representation of their spatial ar-
rangement. In this work color features are used, but dif-
ferent or more descriptive features (e.g. textures, edges)
can be exploited. Moreover, an initial image can be used
as reference for the extraction of the feature model (as in
our current implementation), the structural model or both
(Fig. 2a). Each new frame It is provided to the Feature
Cluster Extraction component (Sect. 3) that applies the fea-
ture model and produces the mask of the probability of each
feature class onto the current image (called back-projection
[6]). Each back-projection is then clustered using mean-
shift and, for each cluster, attributes are extracted. Most of
the extracted feature clusters represent erroneous detections
of the tracked object feature (see Figs. 2b-f) and the cor-
rect candidates must be extracted using global consistency
information.

Figure 1. Scheme of the proposed framework.

A labelling function maps each feature cluster on the
originating model feature. Each pair of clusters whose fea-
tures are rigidly joined together in the structural model, are
connected by edges to form the labelled graph Gt (Sect.
4.1). Then an edge weighted association graph GAt is cre-
ated between the structural modelG0 and the labelled graph

Figure 2. Framework steps example: (a)
model to track, (b-f) feature back-projections
and clusters, (g) best coherence match

Gt (Sect. 4.2) and each edge is weighted according to a
global coherence measure (Sect. 4.4) in such a way that
each maximal edge weight clique in GAt corresponds to a
maximal coherence subgraph isomorphism and vice versa.
Finally the Dominant Set framework is used to search for
the maximum coherence Matcht (Sect. 4.3, Fig. 2g).

3. Extraction of Feature Clusters

For each feature of the model, the Feature Cluster Ex-
traction component extracts all the possible clusters of fea-
tures which might represent a part of the tracked object
according to the feature model. In our work, the Feature
Cluster Extraction operates on simple color features using
a modification of the Camshift algorithm [6], but different
cluster extraction algorithms can be used.

The standard Camshift tracking algorithm uses a model
of the object, consisting of a color histogram, and requires
a region of interest to initialize the search. For each input
image a probability mask of the model is produced, eval-
uating each pixel according to the color histogram as if it
were a pdf. The resulting value is then scaled on 256 gray
levels, producing the so called back-projection. Then, iter-
atively alternating the meanshift gradient ascend algorithm
and a size-adaptation of the region of interest, the region
estimate converges to encompass the extracted features and
then provides the initial location for the next frame.

For the extraction of the feature clusters, the Camshift
is modified as follows. First, the object to be tracked is
modelled with multiple color histograms, corresponding to
different areas of the objects (e.g. Fig. 2a); therefore, for
each input image, multiple back-projections (BPt) are ob-
tained (Figs. 2b-f) and the cluster extraction proceeds inde-
pendently for each BPt. Second, the back-projections are
obtained on the following color space:

(h, s, v) =
{ (⌊

H
16

⌋
,
⌊

S
16

⌋
,maxV

)
if S > τS ∧ V > τV(

0, 0,
⌊

V
16

⌋)
otherwise

(1)
The addition of value and saturation components to the

standard Camshift color space allows us to deal better with
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low-saturation (considering only the V component) and pro-
vides an enriched color description. Third, our approach
scatters particles over the BPt from which to start the clus-
ter extraction, producing therefore several clusters. The par-
ticles are spatially scattered over the BPt with Gaussian or
uniform distribution, depending on the object tracking sta-
tus at the previous frame.

For each cluster Ci
t of the set Ct, the set of attributes

Ai
t =

(
D
(
Ci

t

)
,M

(
Ci

t

)
, P
(
Ci

t

)
, R
(
Ci

t

))
are computed,

where D is the density, M the mass, P = (x, y) the coordi-
nates of the cluster’s centroid and R the area:

M
(
Ci

t

)
=
∑
p∈Cit

BPt (p) ;R
(
Ci

t

)
=
∥∥{p ∈ Ci

t

}∥∥
D
(
Ci

t

)
= M

(
Ci

t

)
/R
(
Ci

t

)
(2)

4. Tracking using relational information

Regardless of the robustness of the extraction step sev-
eral factors could lead to a wrong assignment between clus-
ters. In fact, distractors, noise, deformation or pose and il-
lumination changes can easily lower the coherence between
correct correspondences or make unrelated features more
similar. For this reason any approach that is based only
on the similarity between features is inherently sensitive to
noise. To overcome this limitation we add contextual infor-
mation, thus casting the feature matching into a more robust
subgraph matching problem.

4.1. From feature clusters to labelled graphs

In order to obtain a graph from a set of feature clusters
we exploit the previous knowledge about the physical struc-
ture of the object. To this end, we define a structural model
where each part of the object is associated to a feature class
which is known to be rigidly joined to some other parts, but
can move freely from the rest. This is the case with any ar-
ticulated object, while totally-rigid objects can be modeled
by joining all the parts.

A structural model of an object is a connected graph
Gm = (P, S) where P is the set of distinct parts we want to
use to represent the object and S ⊆ P × P are their struc-
tural relations, where (pa, pb) ∈ S iff pa and pb are joined
in the object. This model embeds our previous knowledge
about the structure of the object to be tracked in terms of
its parts. In Fig. 3 some examples of structural models are
presented.

Given a structural model Gm = (P, S), a set of fea-
tures clusters C assigned to |P | classes by a surjective la-
belling function l : C → P and their attributes A, we
define the labelled graph as the |P |-partite graph G =
(C,E,A, l) where C is the vertex set, E = {(u, v) ∈
C×C|(l(u), l(v)) ∈ S} the edge set,A the vertex attributes

Figure 3. Example of structural models and
labelled graphs. The model is subject to de-
formation (a) and also to scaling and occlu-
sion (b); in (c) it comprises two totally-rigid
submodels partially occluding each other

and l the vertex labelling function. In this graph each edge
represents a structural relation between a pair of feature
clusters. The automatic extraction of feature cluster can-
didates from a frame It yields a graph with many nodes and
edges. The supervised selection of the ground truth from a
reference frame will result in a simpler graph with just one
cluster for each part of the object to be tracked: we call this
graph the model graph. Our goal is to find within each la-
belled graph extracted from a frame It the subgraph which
is the most coherent with the model graph we are tracking.
In other words we are looking for a maximum coherence
subgraph isomorphism.

Given labelled graphs G1 = (C1, E1, A1, l1) and
G2 = (C2, E2, A2, l2) a labelled isomorphism between
them is a relation M ⊆ C1 × C2 such that for each
(u1, u2), (v1, v2) ∈M the following properties hold:

l1(u1) = l2(u2) and l1(v1) = l2(v2) (3)
u1 = v1 ⇔ u2 = v2 (4)

The first condition ensures that M does not map feature
cluster of incompatible classes. The second condition
forces M to be a partial injective function. It is easy to see
that any labelled isomorphism is a special case of subgraph
isomorphism which enforces label consistency.

We still need to define a measure of the global coherence
of a labelled isomorphism M . In our context limiting the
measure to a similarity between vertex attributes would be
not enough, as this way we would be unable to take into
account structural relations among vertices. Unfortunately,
even measuring coherence between edges would not be gen-
eral enough, as it would not be possible to account for in-
variants that depends on more than one edge, such as length
ratios or angle differences. For this reason we defined a
coherence measure between pairs of edge matches as this
allows us to deal with variations in scale and articulation
throughout the video sequence. To this end we define the
set of edge matches as:

e(M) = {((u1, v1), (u2, v2)) ∈ E1 × E2|
(u1, u2) ∈M ∧ (v1, v2) ∈M} (5)
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and let ω : (E1 × E2) × (E1 × E2) → R+ be a measure
of coherence between pairs of edges matches, then the total
weight of M is defined as:

Ω(M) =
∑

a∈e(M)

∑
b∈e(M)\{a}

ω(a, b) . (6)

4.2. From graph matching to clique search

In order to search for a match of maximum compatibility
between two labelled graphs we choose a two-step approach
which first casts the matching problem into a clique search
problem and then solves it using continuous optimization.

Given labelled graphs G1 = (C1, E1, A1, l1) and
G2 = (C2, E2, A2, l2) and a function ω : (E1 × E2) ×
(E1 × E2) → R+ that measures the coherence be-
tween pairs of edge associations, we define an associa-
tion graph between them as an edge weighted graph Ga =
(V a,Ea, ω) where V a = E1 × E2, Ea ⊂ V a × V a with
(((u1, v1), (u2, v2)), ((w1, z1), (w2, z2))) ∈ Ea iff:

l1(u1) = l2(u2), l1(v1) = l2(v2),
l1(w1) = l2(w2) and l1(z1) = l2(z2) (7)

u1 = w1 ⇔ u2 = w2, v1 = z1 ⇔ v2 = z2 (8)

Figure 4. Labelled isomorphism between two
labelled graphs and the clique associated to
it in the edge weighted association graph.

With this definition we are able to show some useful con-
nections between labelled isomorphisms and complete sub-
graphs (cliques) in this association graph.

To this end, note that each X ⊆ Va represents a relation
between edges in E1 and E2. In order to obtain a relation
between vertices in V1 and V2 we define a natural map v :
P(Va)→ P(V1 × V2) as:

v(X) = {(u1, u2) ∈ V1 × V2|
((u1, v1), (u2, v2)) ∈ X ∨ ((v1, u1), (v2, u2)) ∈ X}

(9)

That is, a match between vertices is induced byX if they
are mapped by any edge match in X . It is easy to see that
v is not injective, nevertheless it has a proper right partial
inverse, namely the function e(M) defined by (5).

We now formulate the following lemmas (proofs in [1]):

Lemma 1 Given labelled graphs G1, G2 and their associ-
ation graph Ga, X ⊆ Va is a clique iff v(X) is a labelled
isomorphism between G1 and G2.

Lemma 2 IfX ⊆ Va is a maximal clique inGa, then v(X)
is a maximal labelled isomorphism between G1 and G2.
Conversely, if M is a maximal labelled isomorphism be-
tween G1 and G2 then e(M) is a maximal clique in Ga.

From the previous lemmas and the definition of the
weight of a labelled isomorphismM , derives the following:

Theorem 1 Given two feature graphs G1 and G2, each
maximal(maximum) weight labelled isomorphism M be-
tween them induces a maximal(maximum) edge weight
clique in Ga(G1, G2) and vice versa.

Fig. 4 shows an example of a labelled isomorphism and
the correspondent clique in a labelled association graph.

4.3. An effective heuristic for the weighted
clique problem

Theorem 1 casts our tracking problem into a search for
a maximal edge weighted clique in a novel type of associa-
tion graph. In order to perform this search we use the Dom-
inant Set framework [17]. Given an edge weighted graph
G = (V,E, ω), a subset of vertices S ⊆ V and two vertices
i ∈ S and j /∈ S, the following function measures the co-
herence between nodes j and i, with respect to the average
coherence between node i and its neighbors in S:

φS(i, j) = ω(ij)− 1
|S|
∑
k∈S

ω(ik) (10)

While overall weighted coherence between i and all the
nodes in S is defined as:

wS(i) =

{
1 if |S| = 1∑

j∈S\{i} φS\{i}(i, j)wS\{i}(j) otherwise
(11)

Intuitively, wS(i) will be high if i is highly coherent with
vertices in S. Given this measure S ⊆ V is said to be dom-
inant if the following conditions hold:

wS(i) > 0,∀i ∈ S and wS∪{i}(i) < 0,∀i /∈ S (12)

The conditions above correspond to the two main proper-
ties of a cluster: namely internal homogeneity and external
inhomogeneity. In the literature this framework has been
associated to clustering, nevertheless its use as an heuristic
for the edge weighted clique problem is justified by the fact
that, when applied to unweighted graphs, the notion of a
dominant set is equivalent to the notion of a clique. Hence,
a dominant set can be seen as a generalization of cliques
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to graphs with weighted edges. Moreover there is another
compelling reason to prefer dominant sets over traditional
techniques of clique search: in fact their clustering property
allows us to discard automatically nodes that are less coher-
ent with respect to the others. This is the case when a part of
the model is missing or occluded. For instance in Fig. 5 the
face is out of the frame border, but candidates for it are gen-
erated anyway by the back projection: in this situation an
exact graph matching would wrongly include in the result
also the best of those candidates (green ellipse), whereas
dominant sets leave it out as its coherence is very low with
respect to the other parts in the result (red ellipses). It is
worth noting that this selection does not require the user to
choose a threshold as it is implicit in the cluster properties.

Pavan and Pelillo [17] have shown that dominant sets
correspond to local maximizer over the standard simplex
of the quadratic function f(x) = xtAx where A is
the weighted adjacency matrix of the graph (thus Aij =
ω(i, j)). These maximizers can be found by exploiting the
convergence properties of the payoff monotonic replicator
dynamic xi(t+1) = (Ax(t))i/(x(t)tAx(t)) which is guar-
anteed to converge to a local maximum when the associa-
tion graph is undirected and, thus, the matrix A is symmet-
ric [18]. At convergence the value of the function f is a
measure of the coherence of the extracted set. This property
is used to detect the absence of the object from the scene and
suspend the tracking. Finally, as the local maximizer found
by the replicator dynamic is not guaranteed to be the global
maximum, we used an enumeration strategy similar to the
one presented in [20].

Figure 5. Example of the failing of an exact
graph matching

4.4. Coherence Computation

Given the association graph Gat,0 between Gt and
G0, our goal is to assign to each of its edges
(((ut, vt), (u0, v0)), ((wt, zt), (w0, z0))) ∈ Eat,0 a weight
in the interval [0, 1] which reflects the coherence between
the two connected edge associations (see Fig. 4). This
measure ω : Eat,0 → [0, 1] is the sum of several com-
ponents, each referring to a specific property of the tracked
object that should be consistent along the video sequence.
Since different and independent properties are considered,
the mis-detection of any of them (for example, due to oc-
clusion or deformation) does not compromise the overall
coherence evaluation. In the present work we define three
properties that are expected to be consistent along the video

sequence: color and structure w.r.t. the initial model, and
spatial similarity w.r.t. the previous frame.

Color-based consistency measured through cluster den-
sity ωd and mass ωm: let us define the normalized density
and the normalized mass respectively as:

ND (ut) =
D (ut)

max
∀vt∈Ct | l(ut)=l(vt)

D (vt)
(13)

NM (ut) =
M (ut)

max
∀vt∈Ct | l(ut)=l(vt)

M (vt)
(14)

then:

ωd = 4
√
ND (ut) ·ND (vt) ·ND (wt) ·ND (zt) (15)

ωm = 4
√
NM (ut) ·NM (vt) ·NM (wt) ·NM (zt)

(16)
The clusters are defined over the back-projection that mea-
sures the color similarity of the image It compared to a
color feature of the model: therefore the higher the density
of a cluster, the higher its color similarity to the model. The
densities of the four clusters are multiplied and not summed
up in order to reinforce the overall Eat,0 color similarity.
Since small clusters might show very high ωd, the ωm com-
ponent reinforces only the Eat,0 that have strong masses.

Structure consistency measured through cluster sizes
and inter-cluster distances ωsd: this component reinforces
the Eat,0 that shows structural similarity with the model,
i.e. cluster size variations which are supported by consis-
tent inter-cluster distance variations. Fig. 6 depicts three
different cases. (a) is a typical structure size reduction (for
example, due to camera zoom out) that maintains consis-
tency between area and distance variations. On the other
hand, (b) and (c) depict a structure deformation that is pe-
nalized by ωsd: in both cases the distance variation between
top and middle clusters is not supported by a similar varia-
tion in the size of the cluster; ωsd is formalized introducing
the linear area ratio and the distance ratio respectively as:

lar : Ct × C0 → [0,∞), lar (ut, u0) =
√

R(ut)
R(u0)

dr : Et × E0 → [0,∞), dr ((ut, vt) , (u0, v0)) =
|P (ut)P (vt)|
|P (u0)P (v0)| . Structure consistency of Eat,0 is obtained

when lar measures are similar to the respective dr mea-
sures, i.e. their ratio is close to 1; the consistency mea-
sure can then be obtained modelling the deviation with a
Gaussian. To evenly stretch the ratio codomain from [0,∞)
to (−∞,∞), it is appropriate to compute the logarithm.
Therefore, ωsd is defined as follows:

ωsd =e
−(Q(u)−∆(u,v))2

2σ2 · e
−(Q(v)−∆(u,v))2

2σ2 ·

· e
−(Q(w)−∆(w,z))2

2σ2 · e
−(Q(z)−∆(w,z))2

2σ2 (17)
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where Q (a) = log (lar (at, a0)) and ∆ (b, c) =
log (dr ((bt, ct) , (b0, c0))). In analogy to what is done with
ωd and ωm, the four contributes of ωsd are multiplied to-
gether and not summed up.

dr = 0.5

sd = 1 sd = 0.26G0

a = 1 a = 0.3

(a) (b) (c)

(d) (e)

lar = 0.5

lar = 0.5

dr = 0.5
lar = 0.5

dr = 1

lar = 1

lar = 1

lar = 1 dr = 0.5

dr = 1

lar = 0.5

lar = 1

lar = 1

dr = 1

sd = 0.52

= -130° = -130°

Matcht-1 o = 0.95 o = 0 r = 0.1r = 1(f) (g) (h) (i)

Ov = 0.95

Ov = 0.95 Ov = 0

Ov = 0

Ov = 0

= 0°

= 0°

= -45°

= -45°

Ov = 0.95

Figure 6. Structure consistency measure with
ωsd (a, b, c) and ωa (d, e), and spatial similar-
ity measure with ωo (f, g) and ωr (h, i). For the
only sake of clarity and without loss of gen-
erality, the G0 and Matcht−1 are made of only
three nodes.

Structure consistency measured through cluster rela-
tive orientations ωa : this component favors the main-
tenance of angular consistency of the Eat,0. Fig. 6
depicts two cases: regardless of the overall rotation
of one graph compared to the other, (d) maintains the
consistency of reciprocal angles of the segments, while
(e) does not and is therefore penalized by ωa. Let
ϑ ((ut, vt) , (u0, v0)) = arccos P (ut)P (vt)×P (u0)P (v0)

‖P (ut)P (vt)‖·‖P (u0)P (v0)‖
as the angle between the two segments connecting the
centroids of the clusters, the value ωa is defined as:
ωa =

exp {m · cos [ϑ ((ut, vt) , (u0, v0))− ϑ ((wt, zt) , (w0, z0))]}
exp {m}

(18)
This resembles the Von Mises distribution [15], that is often
used to model angular distributions.

Spatial similarity with the object at previous frame mea-
sured through overlap ωo and rotation ωr: let us consider
the graphMatcht−1, which represents the tracked object at

the previous frame, and the projection of its attributes over
the graph G0; the similarity components ωo and ωr favor
the edges in Eat,0 that respectively maximize the area of
overlap and minimize the overall graph rotations with re-
spect to Matcht−1. In case Matcht−1 is partial/missing,
these components will provide the contribution for the de-
tected portion of the object only. Fig. 6 (f,g,h,i) depicts
some explanatory examples. By defining Ov (ut, ut−1) =
2·R(ut∩ut−1)

R(ut)+R(ut−1) , we have:

ωo = 4
√
Ov (ut, ut−1)Ov (vt, vt−1)Ov (wt, wt−1)Ov (zt, zt−1)

(19)
ωr is defined to favor the minimization of the rotation of
each single segment:

ωr =
exp {m · cos [ϑ ((ut, vt) , (ut−1, vt−1))]}

exp {m}
·

· exp {m · cos [ϑ ((wt, zt) , (wt−1, zt−1))]}
exp {m}

(20)

5. Experimental Results

To demonstrate the advantage that the proposed graph
based tracking (GB from now) offers with respect to exist-
ing techniques, we selected two tracking algorithms to com-
pare with: Camshift (CS from now) and a particle filtering
tracking based on color features (PF from now) similar to
that proposed in [16]. For the sake of a fair comparison all
three approaches are applied to the same color space (1).

In contrast to our approach, CS and PF do not correlate
the results on the different feature models, that is, they do
not exploit structure model. Therefore, we issue several in-
dependent instances of the algorithm on each single feature
of the same object model used for the GB. They work well
in standard conditions, but for the intrinsic limitation due
to the lack of a structure model, they are likely to fail in
challenging conditions, especially in the case of occlusions.

Our test bed consists of 3 videos and in one of them
(Video 3) the tracking is applied twice, on two different tar-
get objects1. Table 1 summarizes the main characteristics
of the benchmark videos.

In order to evaluate the performance of the approaches,
we manually extracted the ground truth with the help of
the VIPER-GT tool 2, consisting of several oriented bound-
ing boxes, each containing a single part of the object to be
tracked. Given the ground truth and the output of the track-
ing algorithms, it is possible to automatically compute the
performance based on a set of metrics. Specifically, using
the VIPER-PE tool 2, we obtained true positives, false neg-
atives, false positives and, from them, recall and precision;
these measures were extracted both at object and pixel level.

1Downloaded by AVSS 2007 dataset:
ftp://motinas.elec.qmul.ac.uk/pub/multi face

2http://viper-toolkit.sourceforge.net/
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Video 1 Video 2 Video 3 - a and b
Generic Outdoor, Outdoor, Indoor, static
info moving cam, moving cam, cam, 3 occluding

1 person 2 persons people
Model F,T,P, F,T,P F,T, F,T,

LA,RA H,P LA,RA
Challen- Severe scale Scene cuts, severe
ges vars and total obj. disapp, occlusions,

rotations, scale vars, several
camouflaging rotations, color
background camouflaging bkg distractors

Table 1. Benchmark (F=face, T=torso,
H=hands, P=pants, LA,RA= left/right arm).

The pixel-wise evaluation is shown in Fig. 7. In this
case, we directly plot the frame-by-frame F-measure de-
fined as an aggregation of recall R and precision P : F =
2·R·P
R+P . Pixel-wise recall and precision aggregate together
the pixel measures performed separately on each single
model class. F = 1 could reveal either a perfect match-
ing (never happened in our tests), or the correct tracking
suspension when the whole object is absent from the scene.
Conversely, F = 0 reveals either a total failure or the detec-
tion of an object when this is not present.

Table 2 reports the summary of the pixel-wise and
object-wise performance on the benchmark videos. Differ-
ently from the pixel-wise evaluation that merges together
the pixel evaluations of all the tracked model classes, the
object-wise evaluation gives a fairer evaluation on the track-
ing of the single classes, regardless of their pixel areas (e.g.
it equally weights the tracking of a small part like a hand as
the tracking of a bigger part like a torso). The three orig-
inal video sequences, the four post-processed videos with
our graph based tracking, the four ground truths in VIPER
XML meta-data and the graph of the object-wise evalua-
tion are web published [1]. Since video 1 does not con-
tain severe occlusions, scene cuts or object disappearances,
the structural model in our approach does not significantly
increases the performance compared to CS or PF, with ex-
ception of frames 199 and 231, when the face exits from
the view: in fact, our approach correctly suspends the face
tracking to resume it when the face reappears, whereas the
other approaches fail. On the other hand, the sharp scene
cuts (frames 156 and 231) and the full object disappearance
(frame 156) of video 2 make the performance of CS and PF
drop severely. Our approach instead is not affected at all,
suspending the tracking when necessary and resuming it as
soon as the structure of the model is found again.

Conversely, Video 3 is a static camera sequence but the
persons occlude each other several times and the scene is
full of color distractors (e.g. the several skin-colored re-
gions of faces and arms, the two blue jeans, the dark t-shirt
of the person on the right and the dark cupboard on the back
wall). In such conditions the use of a structural model is de-
terminant to have a successful tracking. As can be seen in
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Figure 7. Pixel-level measure of performance.
On top of each graph, a time line represents
the different challenges on the tracking. The
legend is on the top of the figure.

sequence 3-a, our approach takes a few frames to resume
the tracking since it needs to locate the structure first.

6. Conclusions and Future Work

The proposed joint feature-structure approach to object
tracking in freely moving camera scenarios has shown inter-
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Object level Recall Precision F-measure
CS PF GB CS PF GB CS PF GB

Video 1 96,72% 96,41% 99,24% 87,66% 74,52% 95,31% 91,97% 84,07% 97,24%
Video 2 92,83% 95,99% 100,00% 66,86% 89,00% 97,20% 77,73% 92,36% 98,58%
Video 3-a 30,25% 72,46% 97,87% 12,94% 69,89% 89,58% 18,13% 71,15% 93,54%
Video 3-b 88,59% 86,28% 98,13% 91,55% 79,39% 87,65% 90,05% 82,69% 92,59%
Pixel level Recall Precision F-measure

CS PF GB CS PF GB CS PF GB
Video 1 84,54% 66,92% 85,71% 52,77% 49,80% 62,14% 64,09% 55,41% 71,16%
Video 2 53,20% 49,42% 84,87% 36,85% 64,64% 76,20% 43,34% 55,50% 79,78%
Video 3-a 7,93% 30,68% 65,26% 4,76% 36,93% 53,42% 5,67% 32,07% 57,67%
Video 3-b 65,06% 44,20% 71,95% 69,67% 74,30% 63,65% 64,66% 52,74% 66,90%

Table 2. Summary of the performance.
esting and promising results. In particular the experimental
results show that the use of the structural approach give ro-
bustness to the tracking in the presence of severe occlusions
and distractors. The coherence measure, used for weighting
the association graph, is also used as a metric for the reli-
ability of the tracking, allowing it to be suspended in case
the object is not found in the scene. Moreover, the exclusion
of low-coherence nodes from the extracted dominant set al-
lows to reject false positive detections, often due to distrac-
tors. It is worth noting that the use of color features pre-
sented in this work is not a limitation, since the framework
is flexible and open to be extended to different types of fea-
tures. In fact, in future work we aim to include texture and
edge features as well. Regarding the graph matching step,
other search heuristics can be plugged into the framework
in substitution of dominant sets. An extensive evaluation
of the results obtained using different algorithms could be
useful to choose the best performing technique in a general
scenario. It should be noted that the current implementation
of the dominant sets does not fit a real-time tracking as their
extraction time for a single frame can span from one to sev-
eral seconds, whereas discrete matching techniques could
be much faster.
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