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Abstract

A problem commonly encountered in Computer Vi-
sion is the recovery of the transformation parameters
between two affinely distorted images. In this paper, we
propose a novel feature-based approach that casts the
matching problem to the search of a maximum clique
over an auxiliary hypergraph. We also introduce a
continuous-based characterization of cliques in hyper-
graphs that allows us to handle the hard combinatorial
problem using tools from the continuous domain. Fi-
nally, we present experimental result and comparisons
with a state-of-the-art algorithm.

1. Introduction

The estimation of the transformation parameters be-
tween two affinely distorted images is a problem that
is commonly encountered in many areas of Computer
Vision. We can distinguish mainly two type of ap-
proaches: image-based and feature-based. The image-
based approaches try to find a transformation that max-
imizes the overlap between the two images, usually by
analyzing them in the frequency domain [2, 4, 6]. Con-
versely, feature-based approaches are characterized by
two phases: Initially a set of features is extracted from
each image and are then matched to estimate the affine
transformation [3, 5, 12, 11]. In the literature, we find
several feature detectors [8] and descriptors [7] that can
be employed for the first phase. Among them the most
widely used is the Scale-Invariant Feature Transform
(SIFT) [5]. After the two sets of features have been ex-
tracted, a correspondence between them is established,
and assuming that their coordinates are related by a
parametric transformation, the system of equations de-
fined by them is solved in the least square error sense
to derive the transformation parameters. Unfortunately,
the set of features found by real world detectors are not
perfectly conserved under affine transformation, and
also descriptors can lead to false matching candidates.
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Thereby, there is the need of filtering out wrong trans-
formations and generally this process is accomplished
by means of a generalized Hough transform, where the
model parameters are quantized into bins, and each ex-
tracted correspondence between features votes for the
best transformation.

The method presented in this paper falls in the class
of feature-based approaches and focuses particularly on
the solution of the second phase. A drawback of using
a clustering mechanism to isolate the best affine trans-
formation, is that the number of clusters is unknown a
priori and a quantization of the parameter space can lead
to imprecise solutions if the bins are too large, and to the
dispersion of votes if they are too small. The solution
that we propose overcomes these problems by casting
the feature matching problem for the extraction of the
affine transformation into a clique problem over an aux-
iliary hypergraph where the vertices correspond to fea-
ture associations and hyperedges correspond to groups
of four associations that agree, within a desired toler-
ance, to the same affine transformation. In this way
a maximum clique represents the largest group of fea-
tures that agree on the same transformation. Since the
maximum clique problem on hypergraphs is a relatively
unexplored topic, a contribution of this paper is also to
provide a continuous-based approach for it.

2. A Hypergraph Consistency Model

Before going into the details of the proposed ap-
proach, we need to introduce some notations and def-
initions regarding hypergraphs. Let A be a set and n a
positive integer, with (’:) we denote the set of subsets of
A of cardinality n. A k-uniform hypergraph, or simply
ak-graph, is apair G = (V, E), where V = {1,...,n}
is a finite set of vertices and E C (V) is a set of hyper-
edges. Note that the concept of k-uniform hypergraph
generalizes that of undirected graphs, in fact graphs are
in a one-to-one relation with 2-graphs. The comple-
ment of a k-graph G is given by G = (V, E) where
E = (‘,g) \ E. A subset of vertices C C V is called



Figure 1. Example of auxiliary 4-graph for affine parameter estimation

a clique of G if () C E. A clique is said to be max-
imal if it is not contained in any other clique, while it
is called maximum if it has maximum cardinality. We
denote with K¥ a complete k-graph with n vertices.

Given two sets of Euclidean features F} and Fj
extracted from the images, we build an auxiliary 4-
graph G = (V, E') where vertices are associations from
F} x F5 and edges are groups of four correspondences
that agree on the same affine transformation up to a
given tolerance. In this way, a set of image features
that agree, up to the specified tolerance, to the same
affine transformation, form a clique of G. Thereby
the problem of finding a robust set of correspondences
that can be used to estimate the transformation is re-
duced to the problem of finding a clique on the aux-
iliary 4-graph with maximum cardinality. The method
adopted to decide whether a set of four correspondences
e agrees on a single affine transformation can be de-
fined in many ways. Our solution consists in computing
for every association (z,¥y) € e the affine transforma-
tion (A, b) obtained from the remaining 3 associations
and calculating the transformation error on « given by
||Az + b — yl|2. If the 4 distances are all below the
desired threshold ¢, then the hyperedge e is added to
G. Note that by using this method to select edges, the
user defined tolerance parameter € is expressed in im-
age units (e.g., pixels), which is arguably more intuitive
than the parameter quantization scheme used in the gen-
eralized Hough transforms.

In order to obtain the set of feature correspondences
from which to estimate the affine transformation we
need to find the maximum clique in the auxiliary hyper-
graph G. However, in general a large maximal clique is
enough. Clearly, due to the way in which G was con-
structed, the associations in the clique will all agree on
the found affine transformation within an error of ¢ pix-
els, allowing for a very robust estimation of the param-
eters.

In Figure 1 we show a simplified auxiliary 4-graph
generated from a very small set of SIFT features ex-
tracted from the two affinely distorted images. Each
vertex represents a correspondence between features in
the two images, i.e., node Al represents a match be-
tween feature A of the first fish and feature 1 of the

second. Note that, while correspondences B2, D4,
F6, and HS agree on the same transformation, the best
group of coherent matches is represented by the set A1,
C3,D4,E5, and H8.

3. Finding cliques in k-graphs

In 1965, Motzkin and Straus introduced a continuous
characterization of cliques in graphs [9]. This result was
generalized to hypergraphs in [10], where it is shown
that maximal cliques of a k-graph G are in one-to-one
correspondence with the local solutions of the following
program:
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where A = {zeR":Y " x; =1, >0} is the
standard simplex and Lg(x) = >, cp[[;c. @i is the
Lagrangian of G. More precisely, « is a local/global
solution of (1) if and only if it is the characteristic vector
of a maximal/maximum clique C of G, i.e. z; = |C| ™!
for all ¢ € C and 0 elsewhere.

This result permits to cast clique problems on k-
graphs in a continuous optimization setting. To solve
Program 1 we turn it into an equivalent maximization
of a homogeneous polynomial P with nonnegative co-
efficients over the standard simplex, where

P(m):k(%_l) (;az> _;xf — La(x).

The function is then maximized using the discrete dy-
namics x; < ax;0;P(x), which, by means of the
Baum-Eagon theorem [1], can be shown to be a growth
transformation for P in A. Here, 0; denotes partial
derivative with respect to x; and « is the normalizing
constant that projects  on A. By unfolding the partial
derivative, we obtain
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Since in our experiments |E| < |E|, the computa-
tion of 0; L& () is expensive, however, we can express
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this partial derivative in terms of G using the fact that
9jLg(x) = 0jLix (x) — 0;Lc (). Restricting our at-
tention to 4-graphs, we have
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Since the stable stationary points of the discrete dy-
namics (2) are in one-to-one correspondence with char-
acteristic vectors of maximal cliques of G, they can
be used as heuristic for the maximum clique prob-
lem on k-graphs, giving an approach with complexity
O(m(|V| + |E|)) where m is the average number of
iteration required by the dynamics for convergence.
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Figure 3. Sensitivity to ¢
4. Experimental results

In order to assess the precision improvement of our
approach over current techniques, we compared our al-
gorithm with the Hough transform approach proposed
by Lowe in [5] for clustering pose votes. The exper-
iments were conducted on the fishes database used in
[4]. Since Lowe’s method is more robust with defor-
mations that preserve the aspect ratio, we evaluated the
approaches on both aspect ratio preserving as well as
aspect ratio deforming transformations. We run the al-
gorithms on 20 randomly selected images under affine
transformations at varying scales, rotations, aspect ra-
tios and translations. We used the SIFT algorithm to

extract features both from the original as well as the de-
formed images. The set of feasible associations, and
hence, the vertex set of the auxiliary hypergraph, was
generated by keeping the 100 best associations ranked
according to their Euclidean distance in the feature
space. For Lowe’s algorithm we used the modified ver-
sion of the best-bin-first algorithm as suggested in his

paper.

We performed tests on transformations with scaling
factors varying from 0.5 to 2, rotation angles from 0.5
to 3 radians, aspect ratios from 0.8 to 1.3 and random
translations. Further, to assess the effect of the toler-
ance e on our approach, we iterated the set of experi-
ments with values of € varying from 1 to 5 pixels. The
quality of the affine transformations were evaluated by
calculating the y? distance between the true parameters
and the estimated ones.

In Figures 2 the performance of the two approaches
are compared. Figures 2(a) and 2(b) refer to aspect ra-
tio preserving experiments, and plot the average error at
varying scale and rotation respectively. These were cal-
culated averaging over all the values of the other aspect
preserving parameters and all the images. Conversely,
Figure 2(c) presents the error at varying aspect ratio, av-
eraging this time over all parameters and images. The
performance of our approach is roughly one order of
magnitude better than that obtained using the Hough
transform. This is mainly because our hypergraph-
based formulation does not need to define bins, or to
select good initial matches, as it is able to capture the
largest set of coherent associations in a more accurate
way. In Figure 3 we show how the performance of our
approach varies with respect to the parameter e. We can
see that the algorithm is robust with respect to this pa-
rameter, in fact the accuracy obtained by using a toler-
ance of 3, 4 or 5 pixels does not change much and even
with very relaxed constraints it is able to find highly
coherent cliques. By the converse, setting very small
values of ¢ is not only unnecessary, but also counter-
productive: By setting a transformation constraint of 2
pixels the algorithm begins to reduce the number of hy-
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Table 1. Some example results.

peredges in G, yielding smaller cliques and, thus a less
reliable estimation of the transformation parameters.

To illustrate how the differences in the x2 measure
impact the estimation of the affine transformation, we
show some examples in Table 1. Each row presents a
different example, the first column shows the original
fish, the second displays the target fish (black) and the
original fish distorted with the transformation estimated
using Lowe’s approach (yellow). Finally, the last col-
umn shows the target fish (black) and the original fish
distorted with the transformation estimated using our
approach (yellow). From the images we can see that the
estimation obtained by our method is indistinguishable
from the target image, while the performances obtained
using the Hough transform deviates from the target im-
ages significantly. Note that in the last two rows the
same fish was transformed using respectively an aspect-
ratio invariant transformation and an affine transforma-
tion that modified the aspect-ratio. As mentioned be-
fore, the solution proposed by Lowe is less robust with
the latter transformation and, in fact, the error in the es-
timation of the last transformation is fairly high, while
our approach performs very well in both cases.

5. Conclusions

In this paper we presented a new feature-based ap-
proach for the estimation of the transformation parame-
ters between affinely distorted images. This is done by
casting the problem to the search for a maximum clique
in an auxiliary hypergraph, and then turning this into a
continuous optimization problem over the standard sim-

plex. Finally, we compared our approach with a state-
of-the-art algorithm on a database of affinely distorted
fish images. The tests show that our approach outper-
forms the competition in terms of precision of the esti-
mation.
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