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(1) Dipartimento di Informatica
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Abstract
We address the problem of comparing attributed trees

and propose four novel distance metrics centered around
the notion of a maximal similarity common subtree, and
hence can be computed in polynomial time. We experimen-
tally validate the usefulness of our metrics on shape match-
ing tasks, and compare them with edit-distance.

1 Introduction

Graph-based representations have long been used with
considerable success in computer vision and pattern recog-
nition in the abstraction and recognition of objects and
scene structure. As a consequence, the problem of how to
measure the similarity or distance of pictorial information
using tree abstractions has been a widely researched topic
of over twenty years. Most metrics on trees found in the
literature are defined in terms of edit-distance [8]. Zhang
and Shasha [10] have investigated a special case of edit-
distance which involves trees with an order relation among
sibling nodes in a rooted tree, proving that it can be com-
puted in polynomial time. Nonetheless, in the general case
the problem has been proven to be NP-complete [11].

Recently, a new and more principled approach to the def-
inition of distance measure between structures has emerged.
In [1], Bunke and Shearer introduce a distance measure on
unattributed graphs based on the maximum common sub-
graph and prove that it is a metric. In [9] Valiente extended
this work introducing a bottom-up distance measure be-
tween trees. While this measure can be calculated in poly-
nomial time both on ordered and unordered trees, it is lim-
ited to rooted and unattributed trees.

In this paper we propose four distance measures, two
normalized and two non-normalized, for trees equipped
with either symbolic or continuous-valued attributes. All
our measures fulfill the properties of a metric, and can be
computed in polynomial time.

2 Distance Metrics

Let T1 and T2 be two trees with node sets V1 and V2,
respectively. Any bijection φ : H1 → H2, with H1 ⊆ V1

and H2 ⊆ V2, is called a subtree isomorphism if it preserves

both the adjacency relationships between the nodes and the
connectedness of the matched subgraphs.

Let σ be any similarity measure on the nodes of trees
to be compared, possibly using the value of the attributes
associated with the nodes, we define the similarity induced
by the isomorphism φ as: Wσ(φ) =

∑
u∈H1

σ(u, φ(u)) .
The isomorphism φ is called a maximum similarity subtree
isomorphism if Wσ(φ) is largest among all subtree isomor-
phisms between T1 and T2. The maximum similarity sub-
tree isomorphism can be computed in polynomial time. For
the rest of the paper we will omit the subscript σ when the
node-similarity used is clear from the context.

Now, given a set S, a non-negative function d : S×S →
R is a metric on S if the following properties hold for any
x, y, z ∈ S.

1. d(x, y) = 0 ⇔ x = y (identity and uniqueness)
2. d(x, y) = d(y, x) (symmetry)
3. d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality).

Furthermore, if the function satisfies d(x, y) ≤ 1 it is
said to be a normalized metric. In the rest of the paper,
we shall assume that all similarity functions are of the form
σ(x, y) = 1 − d(x, y), where d is a normalized metrics.

For any two trees T1 and T2, we define the following
metrics

d1(T1, T2) = max(|T1|, |T2|) − W (φ12) (1)

d2(T1, T2) = |T1| + |T2| − 2W (φ12) (2)

d3(T1, T2) = 1 − W (φ12)
max(|T1|, |T2|) (3)

d4(T1, T2) = 1 − W (φ12)
|T1| + |T2| − W (φ12)

(4)

where φ12 is the maximum similarity common subtree iso-
morphism between T1 and T2, and |T | is the number of the
nodes of tree T . The calculation of φ12 and, consequently,
the optimal value of W (φ12), is going to be different for
rooted and unrooted trees. Nevertheless, once the optimal
similarity is at hand, the definition of the distance and the
analysis of its properties are independent on whether the
trees are rooted or not.

The first two metrics are unbounded and provide an ab-
solute measure of dissimilarity between two attributed trees,
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Figure 1. Top row: Distance matrices. bottom row: Multidimensional scaling. On each ro, left to right: d1, d2, d3, d4, and
edit-distance.

in the sense that a particular perturbation on a tree “moves”
it in tree-space by a distance which is independent of the
whole tree mass. In some applications it is useful to have
a metric which is bounded from above and provides a mea-
sure of relative dissimilarity. For these reasons, we have in-
troduce the last two metrics, which are the normalized ver-
sions of the first two. For the proofs that all these measures
are indeed metrics, we refer the reader to [7].

3 Experimental Results

We evaluated the new metrics on three different tree-
based shape representations. The first is the shock tree rep-
resentation used by Pelillo, Siddiqi and Zucker in [3], which
is based on the shape’s skeleton. skeletal points are grouped
in so-called shock-classes, which distinguish between the
cases where the local bitangent circle has maximum, min-
imum, constant, or monotonic radius. The groups are then
abstracted using a rooted tree where node adjacency reflects
the adjacency of shock-groups in the skeleton, and the dis-
tance from the root is related to the distance from the shape
barycenter. Here, we used the same node-distances em-
ployed in [3], defined in terms of length, distance to the
border, propagation speed, and curvature of the correspond-
ing skeletal branch.

We compared our distance metrics with edit-distance. To
approximate the edit-distance we used the relaxation label-
ing algorithm presented in [6] with the following costs: we
defined the cost of matching node u to node w to be equal
to the distance between their attributes, while the cost of
removing any node to be equal to 1. Note that, with these
costs, edit-distance is not normalized.

Our shape database contained 29 shapes from 8 differ-
ent classes. To better visualize the distances we performed
2D multidimensional scaling (MDS) on the five matrices.
Figure 1 shows, on the distance matrices obtained using our
metrics and edit-distance and the resut of applying MDS.

In the distance matrices, lighter colors represent lower dis-
tances while darker colors represent higher distances. As
can be seen, the same block structure emerges in all five
matrices. In particular, the main diagonal blocks are al-
most identical in all five cases, while the off-diagonal blocks
present a wider variation. Essentially, the most signifi-
cant differences among the five metrics are the dark bands
clearly visible in the non-normalized matrices.

In order to assess the ability of the distances to preserve
class structure, we performed pairwise clustering. In partic-
ular, we used two pairwise clustering algorithms: Shi and
Malik’s Normalized Cut [5], and Pavan and Pelillo’s Dom-
inant Sets [2]. Figure 2 shows the clusters obtained with
Normalized Cut, displayed in order of extraction, while Fig-
ure 3 presents the clusters obtained with the Dominant Sets
approach. While the performance of the clustering algo-
rithms, on this shape recognition task, varied significantly,
the dependency on the choice of the distance measure was

d1 d2 d3 d4
Edit-
distance

Figure 2. Clusters obtained with Normalized Cut in the
first experiment.
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Figure 4. Second experiment. Top row: Distance matrices. Bottom row: Multidimensional scaling from the second experiment.
For each row, left to right: d1, d2, d3, d4, and edit-distance. The numbers in each MDS plot represent class labels.

d1 d2 d3 d4
Edit-
distance

Figure 3. Clusters obtained with Dominant Sets in the
first experiment.

less pronounced. Nonetheless, some differences can be ob-
served. In particular, we notice how Normalized Cut ex-
hibits a well-known tendency to over-segment the data, a
behavior particularly visible on the non-normalized metrics
d1 and d2. A particularly interesting example is from the
classification of the two horses: the shock-tree representa-
tion of the horses have the highest average number of nodes
of all shape classes, and they present the highest variation in
terms of number of nodes. For this reason, as can be seen by
looking at the MDS results, the non-normalized measures
strongly separate the two instances, while the normalized
versions are able to keep them close together. The clusters
obtained with the Dominant Sets approach are much better,
with our normalized metrics providing results almost iden-
tical to edit-distance.

Our second set of experiments used a larger database of
shapes abstracted again in terms of shock-trees. Here, how-
ever, we attribute the trees with the proportion of the shape
boundary generating the corresponding shock-group. The
database consisted of 150 shapes divided into 10 classes
of 15 shapes each, and presented a higher structural noise
than the previous one. Here the node distance and node-

matching cost for edit-distance was defined as the absolute
difference between the attributes, while the node removal
cost was the value of the attribute itself. With this edit costs
edit-distance is a normalized metric.

Figure 4 shows the resulting distance matrices and MDS.
All measures extract the same block structure, with non-
normalized metrics showing the same off-diagonal dark
bands as in the previous experiments. In particular, the met-
rics d1 and d2 do not distribute the shapes uniformly, but,
rather, on a tight band along a curve. There are two rea-
sons for this behavior: First, the metrics are inherently non-
Euclidean, while MDS performs an “optimal” embedding
on a Euclidean space; Second, the metrics d1 and d3 take
the tree-similarity, which is smaller than the cardinality of
the smallest tree, and balances it against the cardinality of
the maximum tree. The other two proposed metrics balance
the weight against the average cardinality, thereby provid-
ing a “tighter” measure.

Next, we applied the same clustering algorithms used
previously. In order to assess the quality of the groupings,
we used two well-known cluster-validation measures: the
standard misclassification rate and the Rand Index. The lat-
ter measure is calculated as follows: We count the number
of pairs of shapes that belong to the same class and that
are clustered together and the number of pairs of shapes be-
longing to different classes that are in different clusters. The
sum of these two figures divided by the total number of pairs
gives us the Rand index. The higher the value, the better the
classification. Table 1 summarizes the clustering results.
The Dominant Sets method provides better results in this
case as well, while the different metrics generate clusters
with comparable validation measures.

The last set of experiments was performed on a tree rep-
resentation of Northern Lights [4]. As in the previous exper-
iments, the representation used is derived from the morpho-
logical skeleton, but the choice of structural representation
was different from the one adopted for shock-graphs, and
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Misclassification rate Rand index
Normalized

Cut
Dominant

Sets
Normalized

Cut
Dominant

Sets
d1 25.3% 20.7% 90.1% 90.8%
d2 28.7% 22.7% 90.1% 90.8%
d3 23.3% 21.3% 90.3% 90.8%
d4 22.7% 20.7% 90.5% 90.8%

edit 22.7% 24.0% 90.4% 90.8%

Table 1. Validation measures of clusters obtained in the
second experiment.

Figure 5. Multidimensional scaling of the distances ob-
tained with our metrics from the third experiment. Top to
bottom, left to right: d1, d2, d3, and d4.

the extracted trees tend to be larger.
The database consisted of 1440 shapes. Using our met-

rics we were able to extract the full distance matrices within
a few hours, but it was infeasible to compute edit-distance
on the entire database. For this reason, in order to be
able to compare the results with edit-distance, we also per-
formed experiments using a smaller database consisting of
50 shapes. The calculation of edit-distance, even on this
reduced database, took a full weekend. Figure 5 displays
the results of applying MDS to the distance matrices ob-
tained with our measures. Here the hue of the point varies
uniformly from red on the first shape to purple on the last.
While there is no clear separation, there is a clear locality in
shape-space of trees with similar indices.

In this case, we did not have the ground truth for the class
memberships. We opted for a standard measure that favors
compact and well-separated clusters: the Davies-Bouldin
index. Let ei be the average distance between elements in
class i, and dij the average distance between elements in
cluster i and elements in cluster j The Davies-Bouldin in-
dex is DB = 1

c

∑c
i=1 maxj Rij , where c is the number

of clusters and Rij = ei+ej

dij
is the cluster separation mea-

sure. Clearly, lower values correspond to better separated
and more compact clusters. Table 2 provides the values
of the Davies-Bouldin index on the extracted clusters. As
was the case with the previous experiments, the results are

Normalized Cut Dominant Sets
50 trees 1440 trees 50 trees 1440 trees

d1 0.0270 0.0159 0.0695 0.0057
d2 0.0232 0.0135 0.0670 0.0055
d3 0.0486 0.0165 0.0723 0.0074
d4 0.0349 0.0155 0.0670 0.0068

edit 0.0232 — 0.0635 —

Table 2. Davies-Bouldin index of clusters obtained in the
third experiment.

clearly comparable.

4 Conclusions
In this paper we have presented four novel distance mea-

sures for attributed trees based on the notion of a maximum
similarity subtree isomorphism, and that can be computed
in polynomial time. We have experimentally validated their
usefulness by comparing them with edit-distance on three
different shape recognition tasks. Our experimental results
show that, in terms of quality, the proposed metrics compare
well with edit-distance, their computation being, however,
orders of magnitude faster.

References
[1] H. Bunke and K. Shearer. A graph distance metric based on

the maximal common subgraph. PRL, 19:255–259, 1998.

[2] M. Pavan and M. Pelillo. A new graph-theoretic approach to
clustering and segmentation. In CVPR , Vol. I, pp. 145-152,
2003.

[3] M. Pelillo, K. Sidiqi, and S. W. Zucker. Matching hi-
erarchical structures using association graphs. TPAMI.,
21(11):1105–1120, 1999.

[4] M. Peura. Attribute trees in image analysis: Heuristic
matching and learning techniques. In ICIAP, pp. 1160–
1165, 1999.

[5] J. Shi and J. Malik, Normalized cuts and image segmenta-
tion, TPAMI., 22(8):888–905, 2000.

[6] A. Torsello and E. R. Hancock. Efficiently computing
weighted tree edit-distance using relaxation labeling. In
EMMCVPR LNCS 2134, pp. 438–453, 2001.
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