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Abstract

Pairwise grouping and clustering approaches have tra-
ditionally worked under the assumption that the similari-
ties or compatibilities between the elements to be grouped
are symmetric. However, asymmetric compatibilities arise
naturally in many areas of computer vision and pattern
recognition. Hence, there is a need for a new generic ap-
proach to clustering and grouping that can deal with asym-
metries in the compatibilities. In this paper, we present
a generic framework for grouping and clustering derived
from a game-theoretic formalization of the competition be-
tween the hypotheses of group membership, and apply it
to perceptual grouping. In the proposed approach groups
correspond to evolutionary stable strategies, a classic no-
tion in evolutionary game theory. We also provide a com-
binatorial characterization of the stable strategies, and,
hence, of the elements that belong to a group. Experiments
show that our approach outperforms both state-of-the-art
clustering-based perceptual grouping approaches with sym-
metric compatibilities, and other approaches explicitly de-
signed to make use of asymmetric compatibilities.

1. Introduction

A common approach to grouping is to cast it into an
instance of pairwise clustering by assigning to each ele-
ment a compatibility with the other responses of the detec-
tor [13, 11, 6, 5, 15, 12]. This is due to the fact that in many
application domains, the objects to be clustered are not nat-
urally representable in terms of a vector of features, but their
properties are more naturally described in terms of similar-
ity/dissimilarity between the various objects. The grouping
algorithms within this class are very versatile and, in con-
trast to parametric approaches, do not require prior infor-
mation of the group distribution, but can work with simple
soft priors. There are two fundamental ingredients in this
approach to grouping. The first is a similarity or affinity
measure that quantifies the compatibility between two ele-
ments. The second ingredient is a clustering algorithm that
can extract a set of mutually compatible image elements.

Stemming from a natural assumption for central clus-
tering frameworks, pairwise grouping and clustering ap-
proaches have traditionally worked under the assumption
that the similarities satisfy metric properties, i.e., they are
symmetric, non-negative, and satisfy the triangle inequal-
ity. However, recently there has been a strong interest in
relaxing these requirements [9, 4, 16]. This is due to the
fact that in many applications non-metric similarities arise
naturally [15, 2]. More fundamentally, some researches ar-
gue that human perception does not satisfy metric proper-
ties [4]. While the literature presents many approaches that
lift the assumption of non-negativity and triangle inequal-
ity [9, 4], little progress has been made in relaxing the sym-
metry constraint. Note, however, that the limited progress
in grouping with asymmetric affinities is not due to the lack
of interest. Non-symmetric similarities, in fact, arise nat-
urally in many areas. Common examples are the directed
Hausdorff distance between sets, and Kullback-Leiber di-
vergence between probability distributions, but several oth-
ers can be found in many fields.

While it is relatively easy to come up with an asymmetric
affinity, it is much harder to define what a cluster is when we
lift the symmetry constraint. For this reason, generic clus-
tering approaches using asymmetric affinities have proven
elusive. A common method to deal with asymmetric com-
patibilities is to symmetrize it by transforming the similar-
ity matrix, typically by taking the maximum, minimum or
mean of the entries corresponding to the two directions of
a binary relation. This approach, however, loses any infor-
mation that might reside in the asymmetry. Yu and Shi [16]
presented an extension of the normalized cut approach to
take into account directed attractions and repulsions. Here
the affinity matrix is split into its symmetric and antisym-
metric components and a Hermitian Matrix is constructed
by setting the real part equal to the symmetric component
and the imaginary part equal to the antisymmetric compo-
nent. Spectral analysis then provides the group information.

In this paper, we present a new framework for grouping
and clustering derived from a game-theoretic formalization
of the competition between the hypotheses of group mem-

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



bership. In our approach the group corresponds to the evo-
lutionary stable strategies of a non-cooperative game [14].
The basic idea behind our proposal is as follows: the hy-
potheses that each object belongs to the figure compete with
one-another, each obtaining support from compatible edges
and competitive pressure from all the other. Competition
will reduce the population of individuals that assume hy-
potheses that do not receive strong support from the rest,
while it will allow populations assuming hypotheses with
strong support to thrive. Eventually all inconsistent hy-
potheses will be driven to extinction, while all the surviv-
ing hypotheses will reach an equilibrium where all receiv-
ing the same average support, hence exhibiting the internal
coherency of a group, while all the extinct hypotheses must
have a lower support, hinting to external incoherency. The
stable strategies are found using replicator dynamics, a clas-
sic formalization of a natural selection process. We apply
the resulting grouping algorithm to perceptual grouping.

2. Grouping as a non-cooperative game

Consider the following grouping game. Assume a pre-
existing set of objects O and a (possibly asymmetric) ma-
trix of affinities A between the elements of O. Two players
with complete knowledge of the setup play by simultane-
ously selecting an element of O. After both have shown
their choice, each player receives a payoff, monetary or oth-
erwise, proportional to the affinity that the chosen element
has with respect to the element chosen by the opponent.
Clearly, it is in each player’s interest to pick an element that
is strongly supported by the elements that the adversary is
likely to choose. As an example, let us assume that our
grouping problem is one of figure/ground discrimination,
that is, the objects in O consist of a cohesive group with
high mutual affinity (figure) and of non-structured noise
(ground). Being non-structured, the noise gives equal av-
erage affinity to elements of the figures as to elements of
the ground. Informally, assuming no prior knowledge of
the inclination of the adversary, a player will be better-off
selecting elements of the figure rather than of the ground.

Let O = {1, · · · , n} be the set of available elements
(pure strategies in the language of game theory) and, A =
(aij) be the n×n element-affinity matrix, also called payoff
or utility matrix in game theory [14]. Specifically, for each
pair of strategies i, j ∈ O, aij represents the payoff of an
individual playing strategy i against one playing strategy j.

A mixed strategy is a probability distribution x =
(x1, . . . , xn)′ over the available strategies O. From here
on, a prime denotes transposition. Clearly, mixed strate-
gies are constrained to lie in the standard simplex of the
n–dimensional Euclidean space IRn

Δ =

{
x ∈ IRn : xi ≥ 0 for all i ∈ O,

∑
i∈O

xi = 1

}
.

The support of a mixed strategy x ∈ Δ, denoted by σ(x),
is defined as the set of elements chosen with non-zero prob-
ability: σ(x) = {i ∈ O | xi > 0}. The expected payoff re-
ceived by a player choosing element i when playing against
a player adopting a mixed strategy x is (Ax)i =

∑
j aijxj ,

hence the expected payoff received by adopting the mixed
strategy y against x is y′Ax. The best replies against mixed
strategy x is the set of mixed strategies

β(x) = {y ∈ Δ | y′Ax = max
z

(z′Ax)} .

while the best pure replies against mixed strategy x, de-
noted with Ω(x), is the set of pure strategies that are best
replies to x. It can be shown that, if y is in β(x), then
each strategy in σ(y) is in Ω(x). A strategy x is said to
be a Nash equilibrium if it is the best reply to itself, i.e.,
∀y ∈ Δ, x′Ax ≥ y′Ax . It is easy to show that this im-
plies that ∀i ∈ σ(x) we have (Ax)i = x′Ax; that is, the
payoff of every strategy in the support of x is constant. Fur-
thermore, note that, in general, we have σ(x) ⊆ Ω(x).

Within our setting, Nash equilibria abstracts well the
main characteristics of a group: internal coherency, that
is, a high mutual support of all elements within the group,
and external incoherency, or low support from elements of
the group to elements that do not belong to the group. In
fact, any element i ∈ σ(x) of a Nash equilibrium x re-
ceive from x the same expected payoff (Ax)i = x′Ax,
while elements not in Ω(x) receive a lower or equal sup-
port from the elements of the group. Note, however, that
external incoherency is not strict: while strategies that are
not in σ(x) cannot have higher than average payoff, they
can have a payoff equal to x′Ax like elements in the group.
For this reason we will impose a more stringent require-
ment, namely that Ω(x) = σ(x). Note, however, that this
is not enough, we also want the solution to be stable and
unambiguous, that is we require the solution to be isolated
and unique in β(x).

To this end, here we undertake an evolutionary game-
theoretic analysis of the possible strategies available to each
player. Evolutionary game theory considers an idealized
scenario whereby pairs of individuals are repeatedly drawn
at random from a large population to play a symmetric two-
player game. In contrast to traditional game theoretic mod-
els, players are not supposed to behave rationally or to have
complete knowledge of the details of the game. They act
instead according to a pre-programmed behavior pattern, or
mixed strategy, and it is supposed that some selection pro-
cess operates over time on the distribution of behaviors.

In our grouping-game setting, each player is pre-
programmed to select each element in O with a certain
probability and the evolutionary selection will allow play-
ers that select elements with high average support to thrive,
while driving players that choose elements with low support
to extinction. In our grouping setup, we expect the selective
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pressure to drive to extinction the players programmed to
select elements of the ground, converging to a population
selecting elements of the figure only.

A strategy x is said to be an evolutionary stable strategy
(ESS) if it is a Nash equilibrium and

∀y ∈ Δ x′Ax = y′Ax ⇒ x′Ay > y′Ay . (1)

This condition guarantees that any deviation from the sta-
ble strategies does not pay. Further, it implies that A is
negative-definite in the face of Δ spanned by the strategies
with maximum payoff. In fact, ∀y ∈ Δ, y′Ax = x′Ax,
we have, (y − x)′A(y − x) = y′Ay − x′Ay < 0.

Evolutionary stability provides a constraint that forces
the group to be non-ambiguous. In fact, the fact that x
is ESS implies that it is an isolated Nash equilibrium, or
that there exists an open set U containing x with no other
other Nash equilibrium within it. Hence, evolutionary sta-
ble strategies with σ(x) = Ω(x) satisfy all the conditions
we posed for a cluster: internal coherency, external disomo-
geneity, stability and non-ambiguity.

3. Characterization of the equilibria

In this section we will provide a combinatorial character-
ization of the evolutionary stable points of the two-player
game with both binary and weighted affinities. We start
with the binary case since it is easier and allows a direct in-
terpretation. However, the results will be sufficient to draw
some conclusions about the role of the asymmetry within
this framework.

3.1. Binary affinities

In this subsection we will characterize the solutions to
our game-theoretic clustering approach in presence of bi-
nary 0-1 affinities. A clustering problem with binary affini-
ties can be described as a directed graph where the pres-
ence of a directed edge from node i to node j implies a
positive compatibility of node j with node i. The intuitive
notion of a cluster is a subset of elements that are all mu-
tually compatible and have low external compatibility. The
graph theoretic counterpart of mutual-compatibility within
a subset is a straightforward extension to directed graphs of
the concept of clique. A clique is a subset of vertices of a
undirected graph that are all mutually adjacent.

Let G(V, E) be a directed graph with vertex set V and
edge set E ⊆ V × V , a S ⊆ V is a doubly-linked clique if
∀i, j ∈ S, (i, j) ∈ E, and (j, i) ∈ E. Furthermore, if there
is no j ∈ (V \S) such that ∀i ∈ S, (i, j) ∈ E, the doubly
linked clique is said to be saturated.

Let S ⊆ V , the characteristic vector of S is a vector
xS ∈ Δ defined as

xs
i =

{
1/|S| if i ∈ S

0 otherwise.
(2)

Theorem 1 Let G(V, E) be a directed graph with adja-
cency matrix A. S ⊆ V is a saturated doubly-linked clique
of G if and only if xS is an ESS for a two-player game with
payoff matrix B = A′ + αI , 1/2 < α < 11.

The reason for using A′ instead of A is due to the fact
in graph-theory that aij represents an edge from vertex i to
vertex j, while in game theory aij represents a support from
node j to node i. Hence, we transpose the affinity matrix
to translate between the two interpretations. Now we can
proceed to proving the theorem.

Proof. Suppose S is a doubly-linked clique, xS is a Nash
point. In fact,

∀i ∈ S (BxS)i =
|S| − 1 + α

|S| .

Further, let OS
j = {i ∈ S|(i, j) ∈ E}, we have

∀j ∈ V \ S (BxS)j =
|OS

j |
|S| .

For the hypothesis, |OS
j | ≤ |S| − 1, hence, (BxS)j <

(BxS)i.
Let BS be the restriction of B to S. Clearly, xS is the

single global maximum of x′BSx, hence ∀y ∈ Δ, σ(y) =
S we have y′By < (xS)′BxS . Yet (xS)′BxS = y′BxS

since xS is a Nash point, and y′BxS = (xS)′By since BS

is symmetric. Hence, y′By < (xS)′By.
Conversely, if x is an ESS, σ(x) is a doubly-linked

clique. In fact, let, by absurd, aij = 0 with i, j ∈ σ(x), i �=
j. and let y = x + δ(ei − ej) with 0 < δ ≤ xj . Then,

yT By = xT By + δ(ei − ej)T By =

xT By + δ(ei − ej)T Bx + δ2(ei − ej)T B(ei − ej) =

xT By + δ2(2α − aij − aji) > xT By ,

which implies that x is not an ESS, against the hypothesis.
Hence, S = σ(x) is a doubly linked clique. Furthermore,

∀i ∈ S (Bx)i = (|S| − 1) − xi(|S| − 1 − α) .

Hence, since all the supports must be equal, xi = 1/|S|.

cb

a

d

Figure 1. Unstable
doubly-linked clique.

It is interesting to note the role
of the asymmetry in the selec-
tion of the cluster. First, the
elements that belong to a group
must all be mutually compatible,
hence forcing, in the binary case,
a strong symmetry within the clus-
ter. In the general case the affini-
ties within the cluster must not be

1The diagonal value α is just a technicality to guarantee unambiguous
solutions.
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completely symmetric, but there must be a strong mutuality
between each pair of elements so that compatibility must
be high in both directions. The asymmetry comes into play
only in inside/outside relations though the condition that a
doubly-linked clique must not be fully connected to an ex-
ternal node to be evolutionally stable. This condition allows
the asymmetry to intervene in the selection of an equilib-
rium by dominating strategies belonging to a clique. See,
for an example, Figure 1. Here nodes a, b, c form a doubly-
linked clique, however all the nodes link to an external node
d, hence, by Proposition 1 x{a,b,c} is not an ESS. On the
other hand node d links back only to c. This means that
any deviation towards strategy d will reduce the support of
a and b with respect to that of c or d. Hence, a and b are
not best replies in the new environment and will be driven
to extinction, leaving the solution {c, d} which is a doubly-
linked clique not fully connected to any external node and,
hence, an ESS. In this case the asymmetry is able to route
the selection process towards a smaller clique.

3.2. Continuous affinities

After providing a complete characterization of the ESS
points obtained from binary affinities, now we provide a
complete characterization of the ESS with general affinity
matrix in terms of a generalization of the dominant set con-
cept to the general case of asymmetric affinities. The dom-
inant set framework has been presented in [8]. While it has
been introduced in the context of symmetric similarities, it
is straightforward to extend it to the case of asymmetric
affinities. Let S ⊆ O be a non-empty subset of elements.
The (average) weighted in-degree of i ∈ O w.r.t. S is de-
fined as:

awindegS (i) =
1
|S|

∑
j∈S

aij (3)

where |S| denotes the cardinality of S. Moreover, if j ∈ S
we define φS (i, j) = aij − awindegS (j) which is a mea-
sure of how compatible node i is with node j with respect
to the average compatibility of node j with elements in S.

Let S ⊆ O be a non-empty subset of vertices and i ∈ S.
The weight of i w.r.t. S is

wS (i) =

⎧⎪⎨
⎪⎩

1, if |S| = 1∑
j∈S\{i}

φS\{i} (i, j)wS\{i} (j) , otherwise

(4)
while the total weight of S is defined as: W(S) =∑

i∈S wS(i) . Intuitively, wS (i) gives us a measure of the
support that vertex i receives from the vertices of S\{i} rel-
ative to the overall mutual affinity of the vertices in S \{i},.
Here positive values indicate that i has high affinity to
S \ {i}.

A non-empty subset of vertices S ⊆ O such that
W(T ) > 0 for any non-empty T ⊆ S, is said to be directed-
dominant if:

1. wS (i) > 0, for all i ∈ S

2. wS∪{i} (i) < 0, for all i /∈ S.

The two previous conditions correspond to the two main
properties of a cluster: the first regards internal coherency,
whereas the second regards external incoherency. The
above definition represents our formalization of the concept
of a cluster in an edge-weighted graph.

The characteristic vector xS of a set S ⊆ O is defined as

xS
i =

{
wS(i)
WS

if i ∈ S

0 otherwise.

Theorem 2 If S ⊆ O is a dominant set with respect to
affinity matrix A, then xS is an ESS for a two-player game
with payoff matrix A.

Conversely, if x is an ESS for a two-player game with
payoff matrix A, then S = σ(x) is a dominant set wrt A,
provided that σ(x) = Ω(x).

Proof. Here we give only a sketch of the proof, with
some details missing.

For all T ⊆ O, with AT we represent the restriction of
A to T and with BT the matrix

BT =
(

0 1′

1 AT

)
,

where 1 = (1, . . . , 1)′. Further, with iBT we indicate a
matrix obtained from BT by substituting the ith column
with vector (1, 0, . . . , 0)′.

Clearly, requiring that xS be a Nash equilibrium is equiv-
alent to saying that there is a λ ∈ IR such that

BS(λ,x′
S)′ = (1, 0, . . . , 0)′ (5)

Further, we must have ∀i ∈ O \ S (AxS)i ≤ λ.
Following the a proof technique similar to the equivalent

in [7], we can prove that for all T ⊆ O

wT (i)=(−1)|T | det
(
iBT

)
W(T )=(−1)|T | det (BT ) .

By Cramer rule, we get BS(λ,x′
S)′ = (1, 0, . . . , 0)′. Fur-

ther, since S is a directed-dominant set, for j /∈ S we have

0 > wS∪{j}(j) =
∑

i∈S φS(j, i)wS(i) =∑
i∈S ajiwS(i) − ∑

i∈S awindegS(i)wS(i) =
W(S)

[
(AxS)j − 1

|S|
∑

i∈S(AxS)i

]
.

Hence, (AxS)j < λ, which proves that xS is a Nash equi-
librium.
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To prove that xS is an ESS, we need to prove that ∀y ∈
Δ with y′Ax = x′Ax , (y − x)′A(y − x) < 0, but, using
the bounded Hessian test, this can be proven to hold if and
only if ∀T ⊆ Ω(x)W(T ) > 0, which is true since S is a
directed-dominant set.

To prove the converse, we note that, since x is an ESS,
we have ∀y ∈ Δ, σ(y) ⊆ Ω(x), (y − x)′A(y − x) <
0 . Hence, ∀T ⊆ S W (T ) > 0, which implies that
det(BS) = (−1)|S|W(S) �= 0. This, in turn, implies that
there is only one solution to (5) and, as shown previously,
this solution is xS and ∀i ∈ S wS(i) = xS

i W(S) > 0.
It remains to be shown that ∀j �∈ S wS∪{j}(j) < 0, but
as shown previously, wS∪{j}(j) = W(S)

[
(AxS)j − λ

]
.

Since, by hypothesis, σ(x) = Ω(x), we have (Ax)j < λ ,
hence, wS∪{j}(j) < 0.

This result has a twofold implication. On the one hand,
it supports the idea of using ESS as a notion of group, since
in the symmetric case it reduces to a known cluster concept.
On the other hand, it provides a generalization of the domi-
nant set framework to asymmetric affinities.

4. Evolving towards a cohesive group

In this section, we describe an algorithmic approach for
extracting a coherent group from a set of stimuli. This is
done by simulating the evolution of a natural selection pro-
cess which is guaranteed to converge to Nash equilibria and
(hopefully) to ESS’s. If successive generations blend into
each other, the evolution of behavioral patterns can be de-
scribed by a set of ordinary differential equations.

A well-known formalization of the selection process is
given by the replicator equations [14]:

ẋi = xi ((Ax)i − x′Ax) . (6)

A point x is said to be a stationary (or equilibrium) point
of our dynamical system, if ẋi = 0, for all i = 1 . . . n. A
stationary point x is said to be asymptotically stable if any
trajectory starting sufficiently close to x converge to x.

Theorem 3 A point x ∈ Δ is the limit of a trajectory of
(6) starting from the interior of Δ if and only if x is a Nash
equilibrium. Further, if point x ∈ Δ is ESS then it is asymp-
totically stable.2

Proof. See [14].
In our approach, we let elements to be grouped com-

pete with each other, each obtaining support from compat-
ible elements and competitive pressure from all the others.
At equilibrium, only elements that are mutually compatible
should survive and are then taken to form a highly cohesive
group.

2Note however, that in the asymmetric case it is possible to have asymp-
totically stable points that are not evolutionary stable.

Furthermore, at equilibrium the distribution of surviving
strategies exhibits properties that are similar to those en-
joyed by Shashua and Ullman’s saliency vector [11]: all el-
ements that do not belong to the group will not be played by
any surviving player and, hence, will have a zero probabil-
ity of being selected, while elements with a strong support,
which are more “central” to the group will be chosen by a
high number of players, hence having a high probability of
being selected.

Thus, in order to find a cohesive group from a set of
elements with affinity matrix A, we simply run (6) and at
convergence elements with non-zero population will be as-
signed to the figure, while extinct elements will be assigned
to the ground.

5. Experimental evaluation

In this section we apply the proposed clustering frame-
work to the perceptual grouping of edge elements, or
edgelets, in a noisy image. The goal of perceptual grouping
is to partition detected image elements, like points or edges,
into perceptually coherent groups. Here we concentrate on
the task of grouping together the responses of an edge detec-
tor that belong to the same object boundary. The similarity
functions found in the literature of perceptual grouping can
be categorized into three main groups. The first consists
of the measures that are defined in terms of co-circularity,
a quantification of how far the edges are from laying on a
common circumference [13, 6, 1]. The second group is de-
fined in terms of curves of least energy [11]. Here the simi-
larity is inversely related to the bending energy of the curve
joining the two edges. The third class of measures is based
on a probability distribution of shape boundary modeled in
terms of a random walk [5, 15],

In this paper we apply the proposed grouping algo-
rithm to two affinity measures. The first is a co-circularity
based symmetric affinity proposed by Hérault and Ho-
raud [1]. The second is an asymmetric measure proposed
by Williams and Thornber [15], which is based on the
transition-probability of a random walk between two di-
rected edgelets, where the asymmetry comes from split-
ting each edge element into its two directed parts. For
each measure we apply two grouping algorithms. Using
Williams and Thornber’s asymmetric affinities we compare
the steady-state extraction proposed in [15] with our game-
theoretic approach, while with Hérault and Horaud’s co-
circularity based affinities we compare our game-theoretic
approach with the mean-field annealing approach presented
in [1]. Note that the latter affinities are symmetric and hence
our approach reduces to dominant-sets. However, we add
the results in an attempt to separate the relative effects of the
different measures and of the grouping approaches. Further,
we create a new measure by rendering the one proposed by
Williams and Thornber symmetric by taking the max of the

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



0%

1%

2%

3%

4%

5%

6%

7%

8%

 0  50  100  150  200  250  300

fa
ls

e 
po

si
tiv

e 
ra

te

number of noise edgelets

HH ESS
HH

WT ESS
WT

WT SIMM

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

 0  50  100  150  200  250  300

fa
ls

e 
po

si
tiv

e 
ra

te

number of noise edgelets

HH ESS
HH

WT ESS
WT

WT SIMM

0%

1%

2%

3%

4%

5%

6%

7%

8%

 0  50  100  150  200  250  300

fa
ls

e 
po

si
tiv

e 
ra

te

number of noise edgelets

HH ESS
HH

WT ESS
WT

WT SIMM

0%

2%

4%

6%

8%

10%

12%

14%

 0  50  100  150  200  250  300

fa
ls

e 
po

si
tiv

e 
ra

te

number of noise edgelets

HH ESS
HH

WT ESS
WT

WT SIMM

0%

5%

10%

15%

20%

25%

30%

35%

40%

 0  50  100  150  200  250  300

fa
ls

e 
ne

ga
tiv

e 
ra

te

number of noise edgelets

HH ESS
HH

WT ESS
WT

WT SIMM

0%

10%

20%

30%

40%

50%

60%

70%

80%

 0  50  100  150  200  250  300

fa
ls

e 
ne

ga
tiv

e 
ra

te

number of noise edgelets

HH ESS
HH

WT ESS
WT

WT SIMM

0%

20%

40%

60%

80%

100%

 0  50  100  150  200  250  300

fa
ls

e 
ne

ga
tiv

e 
ra

te

number of noise edgelets

HH ESS
HH

WT ESS
WT

WT SIMM

0%

20%

40%

60%

80%

100%

 0  50  100  150  200  250  300

fa
ls

e 
ne

ga
tiv

e 
ra

te

number of noise edgelets

HH ESS
HH

WT ESS
WT

WT SIMM

Figure 2. Grouping results on synthetic images.

compatibilities between the opposite directions of the di-
rected edges. This way we have two symmetric matrices
obtained in using different approaches that can be used with
our approaches. This would allow us to factor out the rel-
ative quality of the two measures from our evaluation, and
concentrate on the clustering approaches.

5.1. Sensitivity analysis

To begin, we assessed the difference in sensitivity to
noise of the four approaches. To this end, we applied the
grouping algorithm to images corrupted by an increasing
amount of random noise, The ground-truth figures consisted
of 4 simple geometrical shapes: a circle, a square, a trian-
gle and a star. 50 edges where selected at random from
the boundary of the first 3 shapes, while 70 where selected
from the star. Then, we added an increasing amount of
randomly positioned and oriented edgelets, from 0 to 300
added edgelets, and applied the four grouping algorithms to
the corrupted images. The experiments where repeated 10
times and Figure 2 shows the average false positive (FPR)
and false negative (FNR) rates of the experiments. Here
HH refers to the results obtained with Hérault and Horaud’s
mean field annealing approach, WT the algorithm proposed
by Williams and Thornber using the asymmetric affinities,
while HH ESS and WT ESS refer to our approach applied
on the Hérault and Horaud and Williams and Thornber’s
affinities, respectively. Finally, WT SIMM refers to the
proposed algorithm applied to the symmetrized version of

Williams and Thornber’s measure.
The results show that the proposed game-theoretic ap-

proach, with each affinity measure, performs consistently
better than the grouping algorithms specifically proposed
for the measures. Moreover, our approach outperforms the
mean-field annealing algorithm irrespective of the measure
used, both in terms of FPR and FNR. The algorithm of
Williams and Thornber, on the other hand, constantly se-
lects only a small fraction of the edge elements belonging
to the figure and very little belonging to the noise, thereby
producing a low FPR, but a FNR that is several times larger
than what we obtained with our approach.

It is interesting to note that the symmetric HH mea-
sure performs similarly to the asymmetric WT measure.
Note, however, that the symmetrized WT measure used in
conjunction with the proposed approach, performed much
worse than its asymmetric counterpart. This means that the
similarity between the performance of the HH and WT mea-
sures is due to the relative suitability of the measures to the
grouping approach and should not be read as an argument
against asymmetric compatibilities, since clearly making
use of the asymmetry in the WT measure actually improves
the results.

5.2. Textured background

Arguably, random noise is not a good model of the
background of real images. In fact, any texture present in
the background produces more structured responses from
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Figure 3. Grouping results on images with textured background.

an edge detector and the presence of structured noise can
severely affect the performance of the clustering algorithm.

Figure 3 shows the results of applying the clustering ap-
proaches under study to a few images obtained by superim-
posing four hand-segmented figure over a structured back-
ground. In this case, the manual segmentation provides us
with ground truth information. Here, noise is added by
extracting edge elements from a texture and fusing them
with the elements extracted from the figure. For each im-
age, 70 edges where selected from the figure and 300 from
the texture, hence reproducing the maximum noise-level of
the previous experiment. Note that the top row of Figure 3
shows the hand-segmented images superimposed over the
texture, however the edge elements are extracted separately,
so that noise edgelets can be found even inside the figure’s
boundary. Figure 4 shows the FPR’s and FNR’s obtained
with the three algorithms. Williams and Thornber’s algo-
rithm confirms its tendency to select only a few very con-
sistent edges, losing many edgelets belonging to the figure
and giving few false negatives but having a number of un-
detected edges belonging to the figure several times higher
than our proposed approach. The mean field annealing ap-
proach, on the other hand, achieved a FNR comparable to

our approach, but suffered from a much higher FPR assign-
ing almost twice as many background edges to the figure.
The proposed approach, on the other hand, confirms its ten-
dency to outperform the other approaches both in terms of
false positives and false negatives regardless of the affin-
ity measure adopted. The poor performance obtained using
symmetrized version of Williams and Thornber’s measure
confirms our idea that differences in performance using the
two measures are to be ascribed to the relative suitability of
the measures and not to the utility of asymmetric measures.

Finally, Figure 5 shows the result obtained by the four
clustering approaches to real images. The results confirm
the observations, with Williams and Thornber’s approach
selecting only a few edges and missing completely corners,
hence approximating a somewhat “round” shape regardless
of the actual shape of the figure, while the game-theoretic
approach outperforms the other algorithms selecting larger
parts of the main figure, and smaller or more structured parts
of the background.

6. Conclusions

In this paper, we presented a new framework for
grouping with asymmetric affinities derived from a game-
theoretic formalization of the competition between the hy-
potheses of group membership, In this framework the el-
ements belonging to the group are those that survive. We
proved a characterization of the evolutionally stable points
of the distribution of the group membership hypotheses in
the case of both binary and weighted affinities. Interest-
ingly, in the latter case the set of surviving hypotheses are
in a one-to-one correspondence to an extension to directed
graphs of dominant sets. We applied the proposed algo-
rithm to the grouping of responses of edge detectors. Exper-
iments on both synthetic and natural images showed that our
approach outperforms both state-of-the-art clustering-based
perceptual grouping approaches with symmetric compati-
bilities, and other approaches explicitly designed to make
use of asymmetric compatibilities.
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