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Abstract

Phase shift methods have proven to be very robust and
accurate for photometric 3D reconstruction. One problem
of these approaches is the existence of ambiguities arising
from the periodicity of the fringe patterns. While several
techniques for disambiguation exist, all of them require the
projection of a significant number of additional patterns.
For instance, a global Gray coding sequence or several sup-
plemental sinusoidal patterns of different periods are com-
monly used to complement the basic phase shift technique.
In this paper we propose a new pattern strategy to reduce
the total number of patterns projected by encoding multiple
phases into a single sequence. This is obtained by mixing
multiple equal-amplitude sinusoidal signals, which can be
efficiently computed using inverse Fourier transformation.
The initial phase for each fringe is then recovered indepen-
dently through Fourier analysis and the unique projected
coordinate is computed from the phase vectors using the
disambiguation approach based on multiple periods fringes
proposed by Lilienblum and Michaelis[6]. With respect to
competing approaches, our method is simpler and requires
fewer structured light patterns, thus reducing the measure-
ment time, while retaining high level of accuracy.

1. Introduction
The main challenge for any triangulation-based surface

reconstruction technique is the assignment of reliable corre-

spondences between features observed by two or more dif-

ferent points of view. Given the central role of this problem,

many and diverse strategies have been proposed in literature

over the past few decades [7]. When a sparse surface re-

construction is adequate, correspondences can be searched

and tracked among repeatable features readily present in the

scene, such as corners or edges. Unfortunately, in general

it is not possible to guarantee that the same features are ex-

tracted from each image, or that the feature density is suffi-

cient. Hence, complementary techniques, usually based on

photometric correlation, are used to obtain an approximate

reconstruction of the scene depth map. Structured light sys-

tems overcome these limitations as they do not rely on natu-

ral features, but instead use projected patterns of light in or-

der to find correspondences that are usually as dense as the

pixels of each image [4]. Among these, time-multiplexing

strategies such as n-ary and Gray codes, as well as hybrid

approaches, are by far the most utilized [5].

Simple binary coding assigns to every pixel a codeword

retrieved from the digitized sequence over time of pro-

jected black and white stripes; binary coding methods re-

quire log2(t) pattern images to generate t code strings. Ro-

bustness of binary codes is improved by using Gray codes,

where adjacent codes differ only in one bit. Both the tech-

niques generate unique codes along each scanline, but at

the same time are limited by their low resolution due to

the inherently discrete nature of the coding. Also, the large

number of projected patterns does not result in an increased

accuracy. Generally, this class of measurements proves to

be ineffective with objects having different reflective prop-

erties (such as slick metal parts or low reflective regions),

thus they must rely on the assumption of uniform albedo

[5].

Phase shifting methods, on the other hand, yield higher

resolutions since they are based on the projection of peri-

odic patterns with a given spatial period. Each projected

pattern is obtained by spatially shifting the preceding one of

a fraction of the period, and then captured by one or more

cameras. The images are then elaborated and the phase in-

formation at each pixel determined by means of M-step re-

lationships [10]. Since the phase is distributed continuously

within its period, phase shifting techniques provide sub-

pixel accuracy and achieve high measurement spatial res-

olution. Furthermore, the intensity change at each pixel for

subsequent patterns is relative to the underlying color and

reflectance, which makes phase shift locally insensitive to

texture variance to a certain degree. A major drawback is

that, in it basic formulation, phase shifted structured light

renders only relative phase values and thus it is ambigu-

ous. However, when both an extended measuring range and

a high resolution are required, a combined approach proves
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to be very powerful. The integration of Gray code and phase

shift brings together the advantages of both, providing dis-

ambiguation and high resolution, but the number of patterns

to be projected increases considerably, and each strategy in-

troduces a source of error [6].

Other high resolution shape measurement systems in-

clude optical profilometers. Non-contact phase profilom-

etry techniques relate each surface point to three coordi-

nates in a frame having the z axis orthogonal to a reference

plane, which then represents the reference for the measured

height [8, 12]. In classical phase measurement profilome-

try, gratings or sinusoidal patterns are projected and shifted

first onto the plane and then over the object to be measured.

Phase information from the deformed fringe pattern is then

extracted by means of various techniques. Other, more

effective profilometry techniques include the well-known

Fourier Transform method [11] and other interesting deriva-

tives [13, 3]. Fourier-based profilometry can require as few

as one or two frames for depth estimation, which makes

real-time reconstruction possible. Nevertheless, in profilo-

metric methods phase variation caused by height modula-

tion must be limited: ambiguity of the phase limits the mea-

surement range, allowing for gauging of smooth-shaped ob-

jects only. Moreover, noise from camera, distortion of lens,

difficulties of calibration, aliasing and imperfectness of the

projecting unit influence the precision of most of these tech-

niques [2, 9].

Recently, some number theory based methods have been

proposed for disambiguation [14, 6]. In [6] the authors re-

late absolute, unambiguous phase values to projector coor-

dinates ξ ∈ R, and define ξ(u, v) to be the projector coor-

dinate at pixel (u, v). Then several phase shift sequences,

each with a different local period λi, are projected onto the

object to be measured. A phase image is obtained for each

sequence through the computation of periodic phase values

φi(ξ) ∈ [0, 1) at every pixel. In addition, the fringes of a

pattern are assigned sequential natural numbers ηi(ξ) ∈ N,

which represent a simple counting of the fringes from left to

right. A projector coordinate can then be directly obtained,

for all i = 1, 2, ..., n, from a fringe number and a phase

value:

ξ = (ηi(ξ) + φi(ξ))λi . (1)

Since the only available values during measurement are

λ and φ, it is clear that the system of equations becomes am-

biguous as the same value of ξ can be obtained for different

values of ηi. This happens when two different projector co-

ordinates yield the same phase values for all i. Therefore,

the authors follow a number-theoretic approach and identify

a general condition for generating unambiguous pattern se-

quences, by defining a maximum projector coordinate ξmax

up to which ambiguity can be excluded. Such a coordi-

nate is defined as the least common multiple of relatively

prime periods λi, and clearly for practical advantage it must

entirely cover the projector range. An efficient method is

given to calculate the fringe numbers from the ambiguous

phase values at each pixel, given the local period lengths.

This method takes advantage of a simple relationship be-

tween phase values and fringe numbers. Given any pair of

pattern sequences, the following equivalence holds for each

image pixel:

λiφi(u, v)− λjφj(u, v) = λjηj(u, v)− λiηi(u, v) . (2)

This makes it possible to construct a theoretical phase dif-

ference vector beforehand, and then use it to retrieve the

fringe numbers when real phase measurements become

available. In addition to providing an efficient way to obtain

the fringe numbers, this method allows to assign each point

a reliability value related to the deviation between measured

and expected values. The use of theoretical phase difference

vectors makes for a powerful test, which allows to identify

erroneous or weak measurements (such as mixed phase val-

ues) caused, for instance, by sharp edges, involuntary object

movements and light reflections. Once the unknown fringe

numbers are calculated, projector coordinates can be easily

retrieved for each pattern sequence with equation 1. The

independent measurements can then be averaged to obtain

a unique and absolute phase value at every pixel in an ef-

ficient way, leading to an increase in accuracy of the mea-

surements.

The big advantages of the multi-period method is its rel-

ative simplicity and high efficiency. The phase-coded im-

ages can be directly employed in general stereo reconstruc-

tion systems, ensuring high quality and density of the code.

Specifically, the lack of surface points is mainly due to oc-

clusions and camera disparity, and measurement errors are

very low thanks to the averaging and validation procedures

implicit to the approach, that exclude a large percentage of

errors and outliers before the actual surface reconstruction

takes place. The main drawback lies in the fact that, typi-

cally, three or more pattern sequences are needed to entirely

cover the projector range (typical values are 800 or 1024

projector pixels). This requires the projection of as many as

three times more patterns than required with classical phase

shifting.

In the next section we introduce a novel coding strategy

that retains the big advantages offered by the multi-period

method, but requires a significantly lower number of struc-

tured light patterns while achieving comparable levels of

accuracy.

2. Compound Phase Coding
The main idea behind the Compound Phase Coding strat-

egy is to project several fringe patterns in a single spatio-

temporal pattern. This is obtained by encoding the phases

of the fringe vector as phases of a Fourier term at different
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Figure 1. The composition of k fringe patterns, plus one unknown shift signal will produce a total of 2(k + 1) image patterns that will be

projected onto the surface to be reconstructed. The shift pattern (projector scaling) accounts for the unknown value of the albedo of the

surface.

frequencies. Each fringe is characterized by a different pe-

riod and all of them are relatively prime. This way, once

recovered the single initial phase shift for each fringe, we

are able to build an unambiguous code with a numerical

technique similar to the one suggested in [6].

Let λ1, . . . , λk be k periods and let ξ be the projector

coordinate at some pixel. If the periods are coprime and the

projector coordinates do not exceed
∏k

j=1 λj , then we have

a unique phase code for ξ [6]. Namely, this code is given by

the vector φ =
(
φ1 . . . φk

) ∈ [0, 1)k, where φj = (ξ
mod λj)/λj .

Our aim is to map φ into a signal sequence of gray-scale

values that can then be measured by the cameras to obtain

the unique code of each fringe. We take the hint from phase

shift methods that phase encodings are more robust than

amplitude codings, but extend multi-period coding by de-

coupling the phase used to encode the message from the

frequency of the sinusoidal signal used to transport it. This

is done by projecting the sum of equal-amplitude sinusoidal

signals at frequencies 1
k+1 , 2

k+1 , . . . , k
k+1 , where k is the

number of periods necessary to encode the coordinate xi,

and by encoding the phase parameters as the phases of the

corresponding sinusoidal signal.

Given a phase code φ ∈ [0, 1)k, we create a (k + 1)-
dimensional complex vector x ∈ C

k+1, where

xj =

{
0 , if j = 0 ,

e−2πiφj , if 1 ≤ j ≤ k .

Here, i =
√−1. Note that given xj for any 1 ≤ j ≤ k, we

can compute the phase φj as

φj = frac(1 +
1
2π

arg(�(xj),�(xj))) , (3)

for any value of s, where frac(·) is the fractional part of the

argument, and �(z), �(z) are the imaginary and real parts

of z ∈ C, respectively.

Each complex number xj represents the amplitude and

phase of a sinusoidal component with frequency j
k+1 cy-

cles per sample. Hence we can reconstruct the intensity se-

quence of that coordinate by computing the Inverse Discrete

Fourier Transform of x, obtaining the vector y ∈ C
k+1,

where

yn =
1

k + 1

k∑
j=0

xje
2πi j

k+1 n , n = 0, . . . , k ,

. We can then project separately the real and imaginary part

of this vector as two time sequences obtaining a single set

of 2(k + 1) patterns to be projected to uniquely encode the

xi projector coordinate (see Figure 1).

Hence, given y ∈ C
k+1, we transform it into a real vec-

tor z ∈ R
2(k+1), where z2j−1 = �(yj) and z2j = �(yj)

for 1 ≤ j ≤ k + 1. Afterwards we scale and shift each

component of z in order to bound them within [0, 255], ob-

taining the sequence of gray-scale values to project in cor-

respondence to ξ. Note that by applying a shift we affect the

information at frequency 0, while by scaling, we modify the

amplitudes of all frequencies, without influencing the phase

values.

The acquisition process introduces an additional linear

deformation on z, which depends on the physical properties

of the object being scanned. Again this does not affect the

phases.

Let z ∈ R
2(k+1) be the acquired gray-scale values and

let y ∈ C
k+1 be its representation into a complex vector.

Then, the net effect of the projector scaling and the change

in the reflectivity properties of the surface is a translation

and scale of the observations, i.e. the relation beween the

intended signal y and the observed signal y is

y = δ + sy

for some real values δ and s. The phase code is finally re-

covered from y by computing the Discrete Fourier Trans-

1672



��
�����

�	
�

���

�

���

����
����	
�
�
���������

������	��������
�����	


����	


���������
�����
���

Figure 2. A total of 2K+2 images of illuminated objects are captured and single phase values are calculated for each composed fringe

signal. Those values are subsequently used to get an unambiguous coding. Note that the intensity profile of each projected pattern is not

sinusoidal.

form, namely

xj =
k+1∑
n=0

yne−2πi n
k+1 j ,

and by applying (3) to the result x ∈ C
k+1, obtaining φ

(see Figure 2).

This process allows to recover the phase code for each

projector coordinate by taking only 2(k+1) measurements,

where k is the number of signal periods. Nevertheless,

one can also force a larger number of samples in order

to increase accuracy, by appending null components to x.

More precisely, by appending M null components, we need

2(M + k + 1) measurements in order to recall the phase

code φ.

It should be noted that a drawback of this approach is

that encoding multiple signals in a single pattern reduces

the effective projector intensity range available to encode

each phase, increasing the effects of the discretization error.

However, experiments show that the error introduced by this

is limited.

3. Experimental results
In order to validate the proposed technique we need to

compare its accuracy to the results obtained with a state of

the art phase shift technique. To this extent we choose to

compare our measurements with those given by the Multi-

Period Phase Shift proposed in [6]. The reasons for this

choice are two-fold: Multi-Period Phase Shift is very ac-

curate, as it uses information for each fringe projected in

order to reduce the average error; in addition, once the

phase vector from the composite signal is obtained, mea-

surement quality is directly comparable as both techniques

share the same numerical disambiguation step. In the fol-

lowing sections we will show both quantitative results, by

evaluating the measurement error over a planar target, and

qualitative results, by showing relative average distances

between the measurements obtained by the two techniques

with generic objects and by comparing the corresponding

estimated quality.

3.1. Experimental setup

All the following experiments have been run on a test

rig for structured light techniques that has been internally

developed in our lab (figure 3). The rig is made up of a

motorized plate for object positioning, four cameras and an

illumination source mounted on a motorized liftable plat-

form. Specifically the cameras are equipped with a 1/2

inch CMOS sensor which offers a full 1280x1024 resolu-

tion. The cameras are monochrome, thus no Bayer filters

are placed over the sensor. While four cameras are avail-

able, in this experiment set we use only one pair of cameras

to reconstruct the surfaces. Thus the system falls into the

category of two calibrated cameras and one uncalibrated

light source. The illumination source is a 800x600 color

DLP projector which we use to project the monochromatic

patterns. The system is controlled by a standard PC housed

into the base of the rig. This PC is a 2.8 GHz AMD quad

core system with 2 Gigabytes of ram.

Intrinsic and extrinsic parameters of the cameras have

been obtained through a standard calibration procedure us-

ing a planar checkerboard and OpenCV[1] calibration soft-

Figure 3. The general purpose structured light scanner used.
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Figure 4. Accuracy comparison between the Compound Phase Coding method and the Multi-Period Phase Shift technique. In figure 4(a)

we used periods of 7, 11 and 13 pixels (30 patterns for Multi-Period Phase Shift), and in figure 4(b) we used periods of length 9, 11 and

13 (34 patterns for Multi-Period Phase Shift). Note that the Multi-Period technique appears as a flat continuous red line and its standard

deviation as dashed red lines. Vertical bars are standard deviations in the measurement of the error for the compound technique.

ware. It must be noted that our system is not a full fledged

production scanner, thus it does not guarantees extreme ac-

curacy or resolution: in fact we estimate its precision in

about 30μm. This level of accuracy is adequate with respect

to our experiments, as we are not interested in showing the

absolute precision of our setup, but rather the relative per-

formance of the coding schemes, showing that the proposed

approach can be used as an effective replacement for slower

approaches without suffering from a significant loss in ac-

curacy.

3.2. Planar target measurements

In this first set of experiments we measured the surface

of a 200 by 200 mm squared piece of float glass which we

previously sprayed with a very thin layer of acrylic paint.

We made several sets of measurements with both the Com-

pound Phase Coding technique and the Multi-Period Phase

Shift technique. Since the exact pose of the test object is

unknown and the surface cannot be perfectly flat, we ap-

proximated the ground truth with the best fitting plane (in

the least squares sense) with respect to the measured points

of the object. This way we estimate the expected measure-

ment error of each technique as the average of the absolute

value of the distance from the fitting plane of each mea-

sured point. We had a wide range of choices regarding the

number of different signals to project and their periods. We

chose to execute the test with two configurations: 3 sig-

nals of periods respectively 7, 11 and 13 pixels and other

3 signals of periods 9, 11 and 13 pixels. Since our pro-

jector has an horizontal resolution of 800 pixels both con-

figurations allow to obtain a globally unambiguous coding

of the object. Given those signal configurations, we pro-

jected respectively 30 and 34 patterns for testing the Multi-

Period Phase Shift technique. Since we always used 3 sig-

nals, the Compound Phase Shift technique strictly requires

only 8 patterns to be projected: nevertheless we repeated

the measurement with a growing number of additional pat-

terns in order to study the effect of the supplementary in-

formation on the final accuracy. Finally, each experimen-

tal measure was repeated for a total of 10 times. In figure

4 we compare the performance of the proposed approach

against the baseline multi-period approach. Accuracy of

the multi-phase approach is slightly better in 4(b), proba-

bly due to the higher number of patterns projected (34 in-

stead of 30). The blue line shows the trend of the average

error of the proposed Compound Phase Coding technique

as the number of projected pattern is increased. It should be

noted that even with the minimal number of projected pat-

terns the accuracy is quite good: in fact, on average our dis-

tances from the fitting plane are only about three microme-

ters higher than those obtained using the Multi-Period tech-

nique, which requires almost four times as many patterns.

Moreover, by projecting additional patterns, the quality of

the measurements can be further enhanced: for instance, by

doubling the number of projected patterns the distance from

the Multi-Period approach is approximately halved. Finally,

as we expected, using the same number of patterns pro-

jected by the Multi-Period technique, the two approaches

yield equivalent performances. Of course, the whole point

of the proposed technique is to reduce the number of pro-

jected patterns. In this sense, our approach allows to control

the time/precision trade-off, obtaining good reconstructions

even with just 8 patterns.
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Cube and Disc Cone and Spheres Toy House

Technique Multi Comp 8 Comp 16 Multi Comp 8 Comp 16 Multi Comp 8 Comp 16

Captured points 109347 108306 109034 46749 46263 46505 37457 36880 37133

Average deviation 0.025 0.089 0.063 0.030 0.085 0.067 0.036 0.088 0.068

Average distance - 32.00 25.09 - 21.15 16.19 - 23.26 20.87

Figure 5. Comparison between reconstructions obtained with the Multi-Period Phase Shift and the Compound Phase Coding on several test

objects. Compound Phase Coding has been tested using both 8 and 16 samples. Multi-Period Phase Shift has been tested with 34 samples

in order to obtain the best quality. Distances are in microns and objects are 5 to 10 cm wide.

3.3. Generic objects measurements

In this set of experiments we measured the surface of

several generic scenes built with simple wooden objects in a

volume of about 200 mm of diameter in each direction. The

set of objects was selected to maximize the range of surface

orientations and conditions. Again we compared our re-

sults with those obtained by the Multi-Period approach: in

this case we take the Multi-Period results as a direct com-

parison, as no ground-truth or knowledge of the surface of

the objects (which are hand-made) is available. Compound

Phase Coding was tested both with 8 and 16 projected pat-

terns. Since we projected signals with periods of respec-

tively 9, 11 and 13 pixels Multi-Period Phase Shift was

tested with 34 samples. For each experiment we evaluated

three quantities, namely:

• The number of points acquired. That is the number of

surface points that pass both the consistency and the

quality check. The first verifies that the phase vec-

tor is consistent with the code assigned to the point,

the latter ensures that the phase difference vector con-

tains only integer values (as expected with respect to

constraint 2). Specifically, for these experiments we

rejected points associated to phase difference vectors

where at least one entry deviates from the nearest inte-

ger by more than 0.2;

• The average deviation. That is the average distance

from each entry in the phase difference vector and the

nearest integer. Since each element of the phase differ-

ence vector should be integer a lower value suggests

a higher quality in the measurement obtained. This

parameter has been calculated over all the points ob-

tained, even those filtered by the consistency and qual-

ity checks;

• The average distance. That is the average of the ab-

solute distances between points obtained by the Multi-

Period and Compound techniques. Note that this mea-

sure is possible because we implemented both algo-

rithms in a way that allowed us to produce depth maps

that are exactly overlapped along the x and y axis and

differ only for the depth values assigned along the z

axis.

In Figure 5 we report the values of those three quantities

in different scenes. In general, the number of points ac-

quired by the Compound Phase Coding with only 8 patterns

is slightly smaller than the number of valid points given by

the Multi-Period technique. This distance, while small, is

almost completely eliminated when using 16 patterns. The

average deviation resulting by applying our technique is al-

ways slightly higher, nevertheless it should be remarked that

those values are all quite small: in fact, for any practical pur-

pose a deviation smaller than 0.1 can always be associated

with a valid measured point. Finally, the average distances

between the two techniques also assess the suitability of our

technique as a fast replacement for traditional Multi-Period:

in fact, the results obtained are generally compatible with

the measurement error estimated in the experiments done in

section 3.2, a result that should be expected since both tech-

niques are subject to measurement errors. It should also

be noted that the higher average distance obtained with the

scene “Cube and Disc” is probably due to the presence of

sharp edges and of two large surfaces at a grazing angle

with both the cameras and the light source. Conversely, the

higher smoothness offered by the scene “Cone and Spheres”

allows for a more precise reconstruction.

In Figure 6 we show a more qualitative example of

the difference in accuracy of reconstruction between our

method and a complete Multi-Period phase shift. In this ex-

periment we used the less accurate instance of Compound
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Figure 6. A surface reconstruction example complete with deviation assessment. In the first colum, the object as viewed by the left and

right camera. In the second column, the deviance maps of Multi-Period Phase Shift (top) and Compound Phase Coding (bottom). In the

last colums, two respective close-ups of the reconstructed surfaces.

Phase Coding, thus only 8 patterns were projected. In the

first column we reproduced the scene viewed from the left

and right camera. In the second column we calculated a map

of the maximum deviation from integer values of the phase

difference vectors of the Multi-period method (top) and the

Compound method (bottom). In these maps we used the

standard Matlab color scale, thus a full blue pixel indicates

a low deviation and a bright red pixel a maximum deviation

(in this case 0.5). Uncoded pixels are represented in dark

red. Both techniques exhibit a fairly low deviation, with

high values mainly on the borders, which is due to the cam-

era integration of the projected signal and the background

on boundary pixels. The other high deviation area on the

side of the cube is probably due to inter-reflection between

the two objects.

The last two columns show a close-up of the surfaces

reconstructed with both methods. In general the surface

reconstructed with the Compound technique is a bit more

noisy, but the overall level of detail is maintained, even with

details at a relatively high frequency being clearly visible

on both reconstructions: for instance, in the close-up of the

disc object (third column) a very small bulge is visible in

both the reconstructions in proximity of the lower rim of

the hemisphere.

Finally, in Figure 7, we compare the reconstructed

phases obtained after the application of the Discrete Fourier

Transform to the captured structured light images before

and after the coding step. As in the previous experiments

we choose periods of 9, 10 and 13 pixels and we projected

34 patterns for the Multi-Period method and 8 pattern for

our approach. In the first column we show respectively the

complete coding for the Multi-Period (top) and for the Com-

pound (middle) methods. In order to highlight the differ-

ences between the two codings, we show in the third line

of this column the difference image between them: as ex-

pected they are almost identical and the only slight differ-

ences are found in boundary regions, where the measure-

ments are less precise.

In the other two columns we show the phase related to

two different signals calculated by the two techniques (we

show only two signals for space reasons). For the purpose of

a simple comparison between them, we plotted a magnified

graph of the small red lines in the phase images. In those

graphs the red line represents the phase extracted by the

Multi-Period method and the blue line the phase extracted

by our technique. It can be seen that the values obtained are

very similar, and that they diverge by a very small amount

only in proximity of critical areas such as the interface be-

tween the disc and the hemisphere.

4. Conclusions
In this paper we have proposed a novel compound phase

coding technique that is able to perform a complete and ac-

curate surface reconstruction requiring the projection of as

few as 8 patterns. This is obtained by encoding multiple

phase information in a single pattern sequence as phases

of sinusoidal signals at integer frequencies, thus encoding

and decoding the compound signal using standard Fourier

analysis. The comparison with another well known tech-

nique assesses the ability of the approach to obtain accu-

rate reconstruction even with very few patterns. In addi-

tion, the time/quality trade-off can be easily controlled by

adding more patterns. In fact, we show that measurement

error decreases consistently by adding more information, to

the point that our method reaches the performance of other

state-of-the-art approaches when feeded with a comparable

quantity of data.
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Figure 7. A comparison of the coding and of the phase values extracted by our technique and by Multi-Period phase shift. In the first colum

we show the final codings and their difference. In the other columns we display the respective phase images for two reconstructed signals.

The two magnified plots in the last row correspond to the small red segment. Note that the obtained phases are very similar even in the

proximity of critical areas.
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