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APPLICATIONS




Image Segmentation

Image segmentation problem:
Decompose a given image into
segments, i.e. regions containing §

“similar” pixels. h

First step in many

computer vision problems

Example: Segments might be regions of the image depicting the
same object.

Semantics Problem: How should we infer objects from segments?




Segmentation via Image Labeling

(S. Yu and M. Berthod; CVIU 1995)




Markov Random Field Formulation

Model pixel label probability through Markov Random Fields

Probability of a particular labeling L is

1

P(L) = 7 exp (2 (—VCLC)) « || exp(~V.,).

cE€ cE$

where V,_ is the clique potential of L in clique ¢

Assuming a Gibbs distribution, the posteriory probability is

PIL|Y)x|] exp(—V..)

cE%

MAP solution is obtained by maximizing

F(L)=)_ —VeL.



Game-Theoretic Formulation

Use game theory to maximize f(L)

Relaxation scheme in which
« Pixels are players
« Labels are available strategies

Payoff of pixel i depends on the labels of its neighbours
wi(L) == > Ver,
ceC;

Theorem: L is a local maximum for f(L) iff is it a Nash
equilibrium for the defined game




Relaxation Scheme

1. Initialize £ = ({9 .. 1(O)
2. At iteration k, for each object i, choose a label
k
l; = argmax ui(li,L(_i))

LEAN{IM}

If u; (1, L@) > u;(L™™) accept the new label with
probability a, otherwise reject it

3. If L*)is a Nash point, stop, else go to step 2

Proposition: for any 0<a<1, L% converges to a Nash equilibrium

Note: randomization is necessary to avoid oscillations



Relation to Relaxation Labeling

If the potentials of cliques of size greater than 2 sum to zero
the game is a polymatrix game and is thus related to
relaxation labelling

The proposed relaxation scheme thus generalizes (discrete)
relaxation labeling to higher order clique potentials




Texture Segmentation




Example Segmentation




Integration of region and
boundary modules

(A. Chakraborty and J. S. Duncan; TPAMI 1999)




Integration of Region and Boundary

Goal is to integrate region-based approaches with boundary-
based approaches

Objectives of region-based and boundary-based are
incommensurable

Due to exponential explosion of pixel dependencies in the
general case, attempts to integrate the approaches into a
single objective function result in ad hoc solutions

Avoid the problem of single-objective by casting it into a game
theoretic framework in which the output of one module affects
the objective function of the other




Integration of Region and Boundary

Generalized two player game in which strategies are a
continuum

 The players are the region module and the boundary
module

« The strategies are the possible region and boundary
configurations

The payoff for each player is the posterior of the module

The selection of one module enters as a prior in the
computation of the posterior of the other module
(limited interaction)




Region and Boundary Modules

The region is modeled through a Markov Random Field

* Pixels labels x are estimated maximizing the posterior
conditioned to the intensity observations Y and the
boundary prior p

argmax P(x|Y,p) = argmax P(z|Y) P(p|z)

The boundary is modeled through a snake model

« Boundary curve p is estimated maximizing the posterior
conditioned to the gradient observations / and the
boundary prior x

argmax P(p|[, x) = argmax P(p)P(I|p) P(z|p)
b p




Synthetic Example

: egion a Boundary a ter Overlaid on
GT integration GT integration the template




Example segmentation

Input image Single function
integration
Game theoretic Overlaid on
integration | template




Comparison vs. Single Objective
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Example Segmentation

Input image . g Y Hand
segmented

No region GT

integration integration




Example Segmentation
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Segmentation Using Dominant Sets




Graph-based segmentation

An image is represented as an edge-weighted undirected graph, where
vertices correspond to individual pixels and the edge-weights reflect the
“similarity” between pairs of vertices.

OQur clustering algorithm basically consists of iteratively finding a dominant
set in the graph using replicator dynamics and then removing it from the
graph, until all vertices have been clustered.

Partition into dominant sets (G)

repeat
find a dominant set
remove it from graph

until all vertices have been clustered



Experimental setup

The similarity between pixels ¢ and 57 was measured by:

—|F @) - ané)

T2

w(i.7) = exp (
where o is a positive real number which affects the decreasing rate of w,
and:
e F (i) = (normalized) intensity of pixel i, for intensity segmentation
e F(i) = [v,vssin(h),vscos(h)](i), where h. s, v are the HSV values
of pixel z, for color segmentation

o F(i) =[|Ixf1],..., |+ f;.]](2) is a vector based on texture information
at pixel 7, the f; being DOOG filters at various scales and orientations,
for texture segmentation



Intensity Segmentation

Use Dominant set framework to cluster pixels into coherent segments
Affinity based on intensity/color/texture similarity

Dominant sets Neout




Intensity Segmentation

Felzenszwalb and Huttenlocher (2003).




Intensity Segmentation

Gdalyahu, Weinshall, and Werman (2001).




Intensity Segmentation

M. Pavan and M. Pelillo; TPAMI 2007



Color Segmentation

Onginal image Dominant sets Meut

M. Pavan and M. Pelillo; TPAMI 2007



Texture Segmentation

5

M. Pavan and M. Pelillo; TPAMI 2007




Texture Segmentation
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Out-of sample Segmentation

Pairwise clustering has problematic scaling behavior

Subsample the pixels and assigning out-of-sample pixels after
the clustering process has taken place

Recall that the sign of wg s, (1) provides an indication as to
whether i is tightly or loosely coupled with the vertices in S.

Accordingly, we use the following rule for predicting cluster mem-
bership of unseen data i;

It Wg ;1 (1) > 0, then assign vertex i to cCluster 5 .

Can be computed in linear time w.r.t. the size of S



Intensity Segmentation

RS

GOE = 0,06, LCE = 0.04 GOF =008, LCE = (.05

GOE = 0.11, LCE = 0.09 GCE = 0.36, LCE = 0.27

OE — 008, LOE — 008 GGOE — 03], LOK —0.22

M. Pavan and M. Pelillo; NIPS 2004



Color Segmentation

-

GCE =0.12. LCE =0.12 GCE — 019, LCE —0.13
i
_H '-Hh-"
-Ll i g
GCE =0.31, LCE = 0.26 GOE = 0.5, LC } 0.2G

.g::.f:

GO =008, LOE = 0.04 GOF =016, LOCE =016

M. Pavan and M. Pelillo; NIPS 2004



Alternative Approach

Recall that the probability of a surviving strategy at
equilibrium is related to the centrality of the element to the
cluster

Use the element with higher probability as a class prototype

Assign new elements to the class with the most similar
prototype

Constant time w.r.t. the size of the clusters
|deal for very large datasets (video)



Video Segmentation

';:] :I']';._i.[l.l'l.l e LS IRLSH s L

A. Torsello, M. Pavan, and M. Pelillo; EMMCVPR 2005



Video Segmentation

Orginal sequence
i T '+-. A




Hierarchical segmentation and
integration of boundary information

« Integrate boundary information into pixel affinity
« Key idea:
— Define a regularizer based on edge response
— Use it to impose a scale space on dominant sets

« Assume random walk from pixel to pixel that is more likely to
move along rather than across edges

"w._."-+"7.?- )
(i, 5) = et i (i,j) € En
‘ () otherwise,

« Let L be the Laplacian of the edge-response mesh
with weight y

« Alazy random walk is a stochastic process that
once in node i it moves to node j with probability




Diffusion Kernel

t=1 =300 t=1000  t=1300 t=2000 t=2300 t=3000




Regularized Quadratic Program

Define the regularized quadratic program

maximize fi(x) =x"[Ad— oy (I —e )] x
subject to x € A

Proposition: Let A1 (A), A2 (A), ..., An (A) represent the largest,
second largest,..., smallest eigenvalue of matrix A
Ar(d)

If o = —=—=—7=r then f is a strictly concave function in A.

: Ap (A : ,
Further, if @t = I_t”_,x,,[_ .}mj the only solution of the regularized

quadratic program belongs to the interior of A.



Selection of relevant scales

How do we chose the « at which to separate the levels?
A good choice should be stable: cohesiveness should not change
much.
n
Consider the entropy of the selected cluster H(x) = — Z x; log x;
i=1

— Itis a measure of the size and compactness of the cluster

Cut on plateaus of the entropy




Hierarchical Segments

A. Torsello and M. Pelillo; EMMCVPR 2009



Hierarchical Segments
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Medical Image Analysis




Analysis of fMRI images

Problems

» detect coherent subregions in cortical areas on the basis of
similarities between fMRI time series

« Localization of activation foci, i.e., functional networks
related to a specific cognitive task




Experimental Setup

Patient assigned a word matching Stroop task

This task requires a subject to respond to a particular stimulus
dimension while a competing stimulus dimension has to be
suppressed.

neutral congruent incongruent
XXXX RED
Top row answers: NO GREEN
BLUE BLUE BLUE
Bottom row answers: YES A BLUE GREEN
BLUE BLUE BLUE

Brain response is tracked through time




Parcellation

Parcellation is the process of
subdividing a ROl into functional
subregions

Apply replicator equation on the
matrix of correlation of each voxel
time-series

Extract clusters that form
connected and compact , |
components 25 omm

Results are consistent with brain
physiology




Within-Subject Variability

Inter- and intra-subject variability is low

b) Subject 2 Subject 3 Subject 4

Session 7 Session | Session 2

a
AL P

Session 1 Session 4 Session O




Meta-Analysis:
Recognition of Networks

The reconstruction of functional networks require the analysis
of co-activation of foci

1. Extract foci from activation maxima
2. Computation of co-activation maxima




Activated Foci

Activation foci are calculated from the list of activation maxima




Dominant Networks

Use replicator equation on co-activation matrix to extract co-
activated foci which form
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Content-Based Image Retrieval

M. Wang, Z.-L. Ye, Y. Wang, and S.-X. Wang. Dominant sets
clustering for image retrieval. Signal Processing, 2008




Content-Based Image Retrieval

Content-based image retrieval focus on searching
Images in database similar to the query image

There exists a semantic gap between the limited descriptive
power of low-level visual features and high-level concepts.

Relevance feedback: Use user feedback to improve relevance
of images retrieved from a query image



Approach

. Use feature vector distance

for initial query image

. User labels into relevant (/)
and irrelevant (/') sets

. Construct training set (g,y)

+1 if gel
Yi=\ 1 if gel

. Train SVM to obtain distance

d(g) between features of
relevant images and classifier
surface

N
dig)=> a'yK(g,.g)+b"

i=1

5. Rearrange distances d(g) by
descenting order

6. Cluster images into similarity
clusters with dominant sets
and report in order of
importance within each cluster

7. If further refinement
necessary, repeat steps 2to 7

Dominant sets are used to
reassess relevance order in the
positive set (step 6)



Approach

Query Image DSC
Feature | | Stored Feature | _ i || Dominant sets
Extraction Extraction Clustering
Compute Similari Sort Results || Display &
P Y Feedback

SVM
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Matching and Inlier Selection




Matching Problem

The matching problem is one of finding correspondences within a set
of elements, or features

Central to any recognition task where the object to be recognized is
naturally divided into several parts

Correspondences are allowed to compete with one another in a
matching game, a non-cooperative game where

« potential associations between the items to be matched
correspond to strategies

« payoffs reflect the degree of compatibility between competing
hypotheses

The solutions of the matching problem correspond to ESS’s
(dominant sets in the association space)

The framework can deal with general many-to-many matching
problems even in the presence of asymmetric compatibilities.



Matching game

Let O1 and O2 be the two sets of features that we want to match and A
O1 x O2 the set of feasible associations that satisfy the unary constraints.
Each feasible association represents a possible matching hypothesis.

Let C : A x A— R+ be a set of pairwise compatibilities that measure the
support that one association gives to the other.

A submatch (or simply a match) is a set of associations, which satisfies the
pairwise feasibility constraints, and two additional criteria:
_ High internal compatibility, i.e. the associations belonging to the match are
mutually highly compatible

_ low external compatibility, i.e. associations outside the match are scarcely
compatible with those inside.

The proposed approach generalizes the association graph technique
described by Barrow and Burstall to continuous structural constraints



Properties of Matching Games

Domain-specific information is confined to the definition of the
compatibility function.

We are able to deal with many-to-many, one-to-many, many-
to-one and one-to-one relations incorporating any hard binary
constraints with the compatibilities (setting them to 0)

Theorem: Consider a matching-game with compatibilities C =
(cij) with C; 2 Oandc =0.Ifx € Ais an ESS then C; > O for all i,

j € a(x)




Matching Examples

a =007 =04

Many-to-many vs One-to-one

o = 0067 =049

Chirality constraint

A. Albarelli, S. Rota-Bulo, A. Torsello, and M. Pelillo; ICCV 2009



Matching Examples

n=01x =045 o =057 =024

Effect of selectivity parameter o

A. Albarelli, S. Rota-Bulo, A. Torsello, and M. Pelillo; ICCV 2009



GT Matcher and Sparsity

The game-theoretic matcher deviates from the quadratic
assignment tradition in that it is very selective: it limits to
a cohesive set of association even if feasible
associations might still be available

The matcher is tuned towards low false positives rather
than low false negatives such as quadratic assignment

Quadratic assignment is greedy while the game
theoretic matcher favours sparsity in the solutions



Matching and Inlier selection

There is a domain in which this property is particularly useful:
Inlier selection

When estimating a transformation acting on some data, we
often need to find correspondences between observations
before and after the transformation

Inlier selection is the process of selecting correspondences
that are consistent with a single global transformation to be
estimated even in the presence of several outlier observations

Examples of problems include surface registration or point-
feature matching



Matching and Inlier selection

Typical matching strategies are based on random
selection (RANSAC) or the use of local information such
as feature descriptors.

Global coherence checks are only introduced after a first
estimation (filtering)

Filtering approaches are not very robust w.r.t. outliers
(or structured noise)

The game theoretic approach drives the selection of
correspondences that satisfy a global compatibility
criterion



Estimation of Similarity
Transformation

_ Lowe GT
Input images SIFT features (RANSAC) matcher




Frobenius Norm of transformation matrix

20

16

Estimation of Similarity
Transformation

] 1 1 l ] _I Gltm T
Gtm-w

1 2 3 4 S 6 7 8 9

Gaussian noise (standard deviation)



Surface Registration

DARCES SpinImages GT matcher
Descriptors are used just to i N . \%‘ 3 Nl
reduce the set of feasible RS g i

associations A

Compatibilities are related to
rigidity constraints
(difference in distances
between corresponding
points)

No initial motion estimation
required (coarse)

A. Albarelli, E.Rodola, and A. Torsello; CVPR 2010



Surface Registration

AT Eoige uni®] AT |eige wnd =]

AT |jechgs unbis]
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Point-Matching for Multi-View
Bundle Adjustment

Define (local) compatibility between candidate
correspondences through a weak (affine) camera model

We use the orientation and scale information in the feature
descriptors to infer an affine transformation between the
corresponding features Correspondence imply transformation

Two correspondences are compatible if they define similar
transformations

N((ar.az). (br.by)) = e +m*(|22=2hlb—b2)



Experiments

Dinoc sequence

Temple sequence

Game-Theaoretic Bundler Kaymatcher Game-Theorstic Bundler Keymatcher

Matches 145873 Q245 25785 2237
[ 1 pix 2483 648408 22 8040 24 8720

< 5 pix 5494 48.3658 62.7737 618957

2 5 pix 2021 45.1401 148214 134314

B 2.3086 4 5255 23577 23732
Ay B 0008313 0.009581 0.014050 0014079

5. dewv. 0002548 0.006738 0.000511 0.000825

hax 0.013444 0.030681 0.014652 0015442
Avg. levels 842 Q.27




Experiments

Ganesha stereg

Screws stereo

Game-Theoretic

Bundlzr Keymaicher

Giame-Theoretic

Bundler Keymaicher

Matches 280 200 21 46
[ = 1 pix a8 2824 20 0 0
= 5 pix 1.7175 80 347718 8.75876
= B pix Q 0 65 2284 93.2432
Aug. 0321248 1.67583 5.88237 10.2208
Aa 0001014 0.007424 0.020822 0.0320095
Ay 0.023078 0.0TET1S 0.1058485 0117885
Leveks 14 - 12 -

A. Albarelli, E.Rodola, and A. Torsello; SDPVT 2010



Experiments

Reprojection emers (Dino sequence) Reprojection errors (Screws sterec)
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Detection of Anomalous Behaviour

and
Selection of Discriminative Features




Represents human activities as
sequence of atomic actions

Divide sequences into fixed length
pieces (n-grams)

Represent full actions as a bag of
n-grams

£&— n-gram —>
211121131212
d
n-grams = { 212, 123, 232, 321,212} —




Representing Activities

Classification &
Anomaly Detection

a,(OHO-0) _ a Class Discovery
f Representation f LI-'—'—L & =

. (00
©

Characterization
axO-O-00 atl pas ,

N —

Common activities are found by extracting dominant sets from
the set of bags of n-grams representing the actions

Similarities between actions A and B is

Ayt — i
hA + hB

Sim(A,B)=1-k»

Anomalous events are those that do not fit anv cluster




Deciding the (Ab)Normality

Decide the (ab)normality of a new instance based on its
closeness to the members of the closest activity-class

This is done with respect to the average closeness between
all the members of the class

A new action i is regular wrt the closest class S if ws(i) > T
where T is learned from the training set



Example Activity Classification

Person Removes Package Delivery Vehicle Exists
a)  EntersLoading Dock b) from Backdoor of Vehicle Loading Dock

Visualization of Discovered Activity Classes
In Loading Dock Environment

i --:.'- . 1 T..._'.- I:==!:.“.- B
? & A imil -: ¥ = 1 _ L

11111

Un-Clustered Similarity Matrix  Clustered Similarity Matrix

R. Hamid et al. Artificial Intelligence 2009



Example Anomalous Activity

a b C

Fig. 14. Anomalous Activities - (a) shows a delivery vehicle leaving the loading
dock with its back door still open. (b) shows an unusual number of people unloading
a delivery vehicle. (¢) shows a person cleaning the loading dock floor.

R. Hamid et al. Artificial Intelligence 2009



Selection of Discriminative Features

Adopt a similar approach to the selection of discriminative
features among a large number of highly similar features

Extract clusters of similar features and iteratively throw them
away, leaving only uncommon and discriminative features

Uses the fact that dominant set is not a partitioning scheme,
but an unsupervised one-class classifier



Application to Surface Registration

e B 3 - viy j . IR

(a) Fiust dimension (b} Second dimenswon (c) Third dimenson

. E
() Farst poss (2] Second pass ([} Third poss

A. Albarelli, E.Rodola, and A. Torsello; ECCV 2010



Application to Surface Registration
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Recognition with Textured
Background

1

A. Albarelli, E.Rodola, and A. Torsello; ICPR 2010




Recognition with Textured
Background

I
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Repeated Games and
Online Learning




Repeated Games

Previous assumptions:
— players had complete knowledge of the game
— the game was played only once

What happens if the payoffs are not known, but the game
can be repeated?

Can a player learn a good strategy from the past plays?



Repeated Games

Previous approach:
— just compute an optimal/equilibrium strategy

Another approach:

— learn how to play a game by playing it many times,
and updating your strategy based on experience

Why?
— Some of the game’s utilities (especially the other
players’) may be unknown to you

— The other players may not be playing an
equilibrium strategy

— Computing an optimal strategy can be hard
— Learning is what humans typically do



Iterated Prisoner's Dilemma

Prisoner's dilemma

What strategies should one apply?
Can | adapt to a player willing to cooperate and cooperate myself?

Although the Prisoner's dilemma has only one Nash equilibrium
(everyone defect), cooperation can be sustained in the repeated
Prisoner's dilemma if the players are interested enough in future
outcomes of the game to take some loss in early plays.



Tit for Tat

It was first introduced by Anatol Rapoport in Robert Axelrod's two
tournaments, held around 1980.

Although extremely simple it won both

An agent using this strategy will initially cooperate, then respond in
kind to an opponent's previous action: If the opponent previously was
cooperative, the agent is cooperative. If not, the agent is not.

Properties

1. Unless provoked, the agent will always cooperate

2. If provoked, the agent will retaliate

3. The agent is quick to forgive

4. The agent must have a good chance of competing against the
opponent more than once.

Note: used by BitTorrent to optimize download speed.
(optimistic chocking)




Fictitious Play

One widely used model of learning is the process of fictitious play and its
variants.(G.W. Brown 1951).

In it, each player presumes that her/his opponents are playing stationary
(possibly mixed) strategies.

In this process, agents behave as if they think they are facing an unknown
but stationary (possibly mixed) distribution of opponents strategies

The players choose their actions in each period to maximize that period’s
expected payoff given their assessment of the distribution of opponent’s
actions.

The assessment is based on the observed frequencies of the other
players past strategies.

At each round, each player thus best responds to the empirical frequency
of play of his opponent.



Convergence of Fictitious Play

Such a method is of course adequate if the opponent indeed
uses a stationary strategy, while it is flawed if the opponent's
strategy is non stationary. The opponent's strategy may for
example be conditioned on the fictitious player's last move.

One key question about fictitious play is whether or not
this play converges

— if it does,then the stationarity assumption employed by
players makes sense, at least asymptotically

— if it does not, then it seems implausible that players will
maintain that assumption



Convergence of Fictitious Play

Convergence properties of Fictitious Play

« |If sis a strict Nash equilibrium, and s is played at time t in the
process of fictitious play, s is played at all subsequent times.
(strict Nash equilibria are absorbing)

« Any pure strategy steady state of fictitious play must be a Nash
equilibrium

 If the empirical distributions over each player's choices
converge, the strategy profile corresponding to the product of
these distributions is a Nash equilibrium

« The empirical distributions converge if the game is zero-sum
(Miyasawa 1961) or solvable by iterated strict dominance
(Nachbar, 1990)




Convergence of Fictitious Play

Fictitious play might not converge (Shapley 1964)

Modified Rock-Scissors-Paper

- Rock  Scissors  Paper
~ Rock 00 1,0 0,1
~ Scissors 0,1 0,0 1,0
 Paper 10 0,1 0,0

if the players start by choosing (Rock, Scissors), the play will
cycle indefinitely.




Sequential Prediction

In a sequential prediction problem a predictor (or
forecaster) observes a sequence of symbols

S1,52,53,...

eachtimet=1, 2, ..., before the t" symbol of the
sequence is revealed, the forecaster guesses its value s on

the basis of the previous t—-1 observations.

GOAL: limit the number of prediction mistakes without
making any statistical assumptions on the way the data
sequence is generated




Stationary Stochastic Process

In the classical statistical learning theory, the sequence of
outcomes, is assumed to be a realization of a
Stationary stochastic process

Statistical properties of the process, and effective prediction
rules are estimated on the basis of past observations

In such a setup, the risk of a prediction rule may be defined
as the expected value of some loss function

Different rules are compared based on their risk.



Game against the Environment

We want to abandon the idea of a stationary
stochastic process in favor of an unknown (even
adversarial) mechanism

The forecaster plays a game against the
environment, which can, in principle, respond to the
forecaster's previous predictions

The goal of the forecaster is to maximize the payoff
associated with his predictions

The goal of the environment is to minimize the
forecaster's payoff



Learning with Experts

Without a probabilistic model,
the notion of risk cannot be
defined

There is no obvious baseline
against which to measure the
forecaster’s performance

We provide such baseline
by introducing
reference forecasters,
also called experts.




Experts

At time t experts provide an advice in the form of a vector

of predicted symbols
St = (Sl,ta ceey Sn,t)T P y

Think of experts as classifiers, observing the environment
and giving a prediction

Experts are not perfect (each expert can be wrong on any
observation)

We want to get good prediction (high payoff) based on
expert advice

A good prediction is consistent with the performance of the
best experts



Game against the Environment

The forecaster does not have
« knowledge of the game (payoff function)
« knowledge of the environment's strategy profile

The forecaster knows the payoffs received by each
strategy against each previous play of the environment

However the knowledge is based on the actual pure
strategies selected by the environment, not its strategy
profile



Prediction Game

The game is played repeatedly in a sequence of rounds.
1. The environment chooses mixed strategy y/,and plays
(pure) strategy y according to the distribution y

2. The experts provide their predictions

3. The forecaster chooses an expert according to mixed
strategy x,

The forecaster is permitted to observe the payoff
u1(6i7 yt) that is, the payoff it would have obtained had it
played following pure strategy (expert) i




Prediction Game

The goal of the forecaster is to do almost as well as the best
expert against the actual sequence of plays ¥1,-..,YT

That is, the cumulative payoff

T
Z w1 (2, Yt)
t=1

Should not be “much worse” that the best (mixed) expert in

hindsight T
max »  ui(z,ye)
t=1




Learnability

There are two main questions regarding this prediction
game

1. Is there a solution? l.e., is there a strategy that will
work even in this adversarial environment?

2. Can we learn such solution based on the previous
plays?



Minimax and Learnability

The environment's goal

is to minimize the - Zero-sum two player game
forecaster's payoff

We are within the hypotheses of the Minimax theorem
There exists a strategy x such that Vy € Ajur(x,y) > v

The value v is the best the forecaster can be guaranteed
since there exists a strategy y such that Vo € A, uqi(z,y) <wv

Moreover, (x,y) is a Nash equilibrium




Regret

We define the external regret of having played strategy
sequence x=(x,,...,X;) W.r.t. expert e as the loss in payoff we

incurred in by not having followed e's advice
T

Re(x) = > ui(e,ye) — wa(xs, i)

t=1

The learner's goal is to minimize the maximum regret w.r.t.
any expert



Minimax and Learnability

If the forecaster predicts according to a Nash equilibrium x, he
is guaranteed a payoff v even against and adversarial
environment

Theorem: Let G be a zero-sum game with value v. If the
forecaster plays for T steps a procedure with external regret
R, then its average payoff is at least v-R/T

Algorithm can thus seek to minimize the external regret



Regret-Based Learning

Assume {0,1} utilities, and let consider loss L(x,y)=1-u(x,y)
rather than utility u(x,y)

Greedy algorithm

The greedy algorithm at each time t selects the (mixed)
strategy x that, if played for the first t-7 plays, would have
given the minimum regret

The greedy algorithm's loss is

where L . is the loss incurred by the best expert

No deterministic algorithm can obtain a better ratio than N!



Weighted Majority Forecaster

The idea is to assign weights w; to expert j that reflect its past

performance, and pick an expert with probability proportional to
its weight

Randomized Weighted Majority (RWM) Algorithm
Initially: w,=7 and p. =1/N, for i=1,...,n.

Attime t: If L= 1letw,=w_(1 —n); else w,=w,,
Use mixed profile 1

S o (w1, ..., wy)

Randomized Weighted Majority achieves loss
log(N)
n

Lrwym < (14 n)Lmin +




Experts and Boosting

In general experts can be any (weak) predictor/classifier

Finding an optimal strategy over expert advices is equivalent
to finding an optimal combination of classifiers

Boosting is the problem of converting a weak learning
algorithm that performs just slightly better than random
guessing into one that performs with arbitrarily good
accuracy

Boosting works by running the weak learning algorithm
many times on many distributions, and to combine the
selected hypotheses into a final hypothesis




Boosting

(Y. Freund and R. E. Schapire, 1996)
Boosting proceeds in rounds alternating

1. The booster constructs a distribution p® on the
sample space X and passes it to the weak learner

2. The weak learner produces an hypothesis h € H with
error at most 72 - y;

After T rounds the hypotheses h'),...,h(") are combined into a
final hypothesis h

Main questions
— How do we chose p®?
— How do we combine the hypotheses?



Boosting and Games

Define a two player game where
— the booster's strategies are related to the possible samples
— the weak learner's strategies are the available hypotheses
— The booster's payoff is defined as follows:

target concept
0 if hy(zi) = clz; ™

1 otherwise

u(ﬂji, hj) =

The boosters's goal is to feed a bad distributions to the weak learner

Due to the minimax theorem we have

u(z,h') = Pr (h(z) #c(z)) <v<1/2-7<1/2

Less than half of the hypotheses are wrong!
Combine them by weighted majority (weighted according to h*)




Boosting and Games

Alternate the game

1. The weak learner returns a guaranteed optimal
hypothesis h, satisfying

Pr  (hu(z) = c(x) = 1/2+ 7

r~pt—1)*

2. The booster responds by using randomized weighted
majority approach to compute distribution p,* over

samples

After T repetitions, the boosted hypothesis h* on a new
sample x is obtained by majority voting among h.(x),...,h-(x)
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