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Chapter 1

Introduction to HIPR

1.1 Welcome to HIPR!

You are looking at HIPR | The Hypermedia Image Processing Reference, a new source of on-line

assistance for users of image processing everywhere. If you are a new user then this section is

intended to help you explore the facilities of HIPR and so enable you to start using it e�ectively

as quickly as possible.

Hypermedia vs Hardcopy

There are in fact two versions of HIPR| a hypermedia version which must be viewed on a computer

screen, and a hardcopy (paper and ink) version which you can read like any other book. The �rst

part of this welcome is an introduction to using the hypermedia version, for those who have not

used hypermedia documents before.

Moving Around in Hypermedia Documents

Note that most of this section is not relevant to the hardcopy version of HIPR.

If you are viewing the hypermedia version of HIPR, then what you are seeing now is the Welcome

Page of HIPR. You are viewing it with the aid of a piece of software called a hypermedia browser,

probably one called Netscape although others can be used just as easily. The central portion of

the screen contains this text and around its edges are various other buttons and menus that will

be explained later. In fact you will probably not be able to see the whole Welcome Page since it is

quite large. To see more of the page, look to the left or right of the text for a scroll-bar. Clicking in

this with the left mouse button at di�erent points along its length will cause di�erent parts of the

Welcome Page to be displayed. Try clicking in the di�erent parts of the bar with di�erent mouse

buttons to see what e�ect they have. When you are happy with this method of moving around

within a page, return to this point again.

You may also be able to move around a page by pressing keyboard keys, which you might prefer.

If you are using Netscape or Mosaic then <Space> will scroll the page forward one screenfull, and

<BackSpace> or <Delete> will scroll backwards.

The Welcome Page is just one of many pages that make up HIPR. These pages are linked together

using hyperlinks. A hyperlink usually appears as a highlighted word or phrase that refers to another

part of HIPR, often to a place where an explanation of that word or phrase may be found. The

magic of hyperlinks is that simply clicking on this highlighted text with the mouse takes you to

the bit of HIPR that is being referred to. This is one of the most powerful features of HIPR, since

it allows rapid cross-references and explanations to be checked with the minimum of e�ort. In

Netscape, hyperlinks appear underlined by default.

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR
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Note that if you are reading the hardcopy version of HIPR, then hyperlinks simply appear in

parentheses as a cross-reference to the relevant page.

If you are using the hypermedia version of HIPR then you can try this out right now. For instance,

this link (p.6) merely takes you to the top of the Welcome Page. You can return here after trying

out the link using the scrollbar. You could have got there in the �rst place simply by using the

scroll-bar, but sometimes a hyperlink is more convenient even for just moving around within a page.

On the other hand this link (p.1) (don't follow it until you've read the rest of this paragraph!)

takes you to the Top-Level Page of HIPR, which is where you will usually enter HIPR when you

start using it for real. Near the top of that page is a hyperlink titled `Welcome to HIPR!' which

will bring you back here. Try it.

Hyperlinks don't have to be words or phrases | they can also be images. For instance if you go to

the bottom of this page you will see a small icon with a picture of a house in it. Clicking on this

will take you to the Top-Level Page again. Incidentally, this button, which appears at the bottom

of almost every page in HIPR, is a good way of reorienting yourself if you get `lost in hyperspace'.

Hyperlinks don't always just take you to another chunk of text. Sometimes they cause other sorts

of information to be displayed such as pictures, or even movies. They can also cause sound clips

to be played.

Once you have mastered moving around within a page using the scroll-bar or short-cut keys, and

moving around between pages using hyperlinks, you know all that you need to start exploring

HIPR by yourself without getting lost.

What Next?

HIPR includes a complete user guide that contains much more information than this Welcome

Page, and you should familiarize yourself with the most important parts of this next. In the

hardcopy version this means at least the �rst two chapters, while in the hypermedia version, the

same material is found in the sections titled `What is HIPR?', `Guide to Contents' and `How to

Use HIPR'. If you are using the hypermedia version then the User Guide can be accessed from the

Top-Level Page of HIPR (p.1).

1.2 What is HIPR?

Description

The Hypermedia Image Processing Reference (HIPR) was developed at the Department of Arti�cial

Intelligence in the University of Edinburgh in order to provide a set of computer-based tutorial

materials for use in taught courses on image processing and machine vision.

The package provides on-line reference and tutorial information on a wide range of image processing

operations, extensively illustrated with actual digitized images, and bound together in a hyper-

media format for easy browsing, searching and cross-referencing. Amongst the features o�ered by

HIPR are:

� Reference information on around 50 of the most common classes of image processing opera-

tions in use today.

� Detailed descriptions of how each operation works.

� Guidelines for the use of each operation, including their particular advantages and disad-

vantages, and suggestions as to when they are appropriate.

� Example input and output images for each operation illustrating typical results. The images

are viewable on screen and are also available to the student as an image library for further

exploration using an image processing package.

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR
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� A large number of student exercises.

� Encyclopedic glossary of common image processing concepts and terms, cross-referenced with

the image processing operation reference.

� Bibliographic information.

� Tables of equivalent operators for several common image processing packages: VISILOG,

Khoros, the Matlab image processing toolbox and HIPS.

� Software and detailed instructions for editing and extending the structure of HIPR.

Motivations

The motivation behind HIPR is to bridge the gap between image processing textbooks which

provide good technical detail, but do not generally provide very high quality or indeed very many

example images; and image processing software packages which readily provide plenty of interactiv-

ity with real images and real computers, but often lack much in the way of a tutorial component.

By providing example input and output images for all the image processing operations covered, and

making these easily available to the student through the use of hypermedia, HIPR presents image

processing in a much more `hands on' fashion than is traditional. It is the authors' belief that this

approach is essential for gaining real understanding of what can be done with image processing. In

addition, the use of hypertext structure allows the reference to be e�ciently searched, and cross-

references can be followed at the click of a mouse button. Since the package can easily be provided

over a local area network, the information is readily available at any suitably equipped computer

connected to that network.

Another important goal of the package was that it should be usable by people using almost any

sort of computer platform, so much consideration has been given to portability issues. The pack-

age should be suitable for many machine architectures and operating systems, including UNIX

workstations, PC/Windows and Apple Macintosh.

1.3 Guide to Contents

HIPR is split into �ve main parts. The ordering of these parts di�ers slightly between the hyper-

media and hardcopy versions of HIPR, but their content is very similar.

User Guide

The user guide provides a wealth of information about how to use, install and extend the HIPR

package. It also describes in detail the structure of the package, and some of the motivations and

philosophy behind the design. In this section:

Welcome to HIPR! (p.6) Where to start if you're completely new to HIPR.

What is HIPR? (p.7) Introduction to the motivation and philosophy behind HIPR and a brief

overview of the structure.

Guide to Contents (p.8) What you're reading.

How to Use HIPR (p.11)

General Overview (p.11) General background information about how HIPR is organized.

Hypermedia Basics (p.12) An introduction to hypermedia and using hypermedia browsers.

How to Use the Worksheets (p.15) Detail instructions for using the worksheets con-

tained in the Image Processing Operations section of HIPR.
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Getting the Most out of HIPR (p.18) How to use HIPR e�ectively, illustrated with ex-

amples of typical tasks that users might use HIPR for.

Advanced Topics (p.20)

The Directory Structure of HIPR (p.20) How the �les that make up HIPR are ar-

ranged into various sub-directories.

Images and Image Formats (p.22) Brief description of the image library and an explan-

ation of the image format used.

Filename Conventions (p.23) Describes the naming conventions used for the various

types of �les found in the HIPR distribution.

Producing the Hardcopy Version of HIPR (p.26) How to print out and/or regener-

ate the hardcopy version of HIPR.

Installation Guide (p.28) Instructions for installing HIPR on your system.

Making changes to HIPR (p.34) If HIPR doesn't quite suit your needs you can make

modi�cations to it. This and the following sections outline how it is done.

Local Information (p.40) This is a convenient place for the maintainer of your HIPR system

to add local information about the particular image processing setup you use.

Image Processing Operator Worksheets

The bulk of HIPR is in this section, which consists of detailed descriptions of around 50 of the most

commonly found image processing operations. The operations are grouped into nine categories:

Image Arithmetic (p.42) Applying the four standard arithmetic operations of addition, sub-

traction, multiplications and division to images. Also Boolean logical operations on images.

Point Operations (p.68) Operations that simply remap pixel values without altering the spatial

structure of an image.

Geometric Operations (p.89) Altering the shape and size of images.

Image Analysis (p.104) Statistical and other measures of image attributes.

Morphology (p.117) Operations based on the shapes of features in images.

Digital Filters (p.148) Largely operations that can be implemented using convolution (p.227).

Feature Detectors (p.183) Operations designed to identify and locate particular image features

such as edges or corners.

Image Transforms (p.205) Changing the way in which an image is represented, e.g. represent-

ing an image in terms of the spatial frequency components it contains.

Image Synthesis (p.220) Generating arti�cial images and adding arti�cial features to images.

The Image Library

All of the images used in HIPR are catalogued and described in this section.
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Other User Information and Resources

Additional reference information, including particularly the HIPR A to Z of Image Processing.

A to Z of Common Image Processing Concepts (p.225) A comprehensive introductory level

glossary of common image processing terms.

Common Software Implementations (p.244) Tables of equivalent operator names for several

common image processing packages.

HIPRscript Reference Manual (p.253) Describes the markup language that de�nes this pack-

age.

Bibliography (p.267) Useful general references and texts for image processing and machine

vision.

Acknowledgements (p.270) Our thanks to our many helpers.

The HIPR Copyright (p.272) Sets out the conditions of use of HIPR.

The User Licence (p.274) The legal contract for the use of HIPR.

About the Authors (p.280) That's us...

The Index

The main index for all of HIPR, and a very useful place to start looking for information. The

hypertext version includes `hyperlinks' to each indexed item.
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Chapter 2

How to Use HIPR

2.1 General Overview

HIPR is a reference package for image processing, particularly designed for use in conjunction with

image processing courses. Its key feature is that it is available in an easy-to-use hypermedia format,

complete with on-line example images to illustrate the e�ects of many di�erent image processing

operations. This section introduces some of the main concepts of HIPR.

The Most Important Bits of HIPR

Some sections of HIPR are of particular importance. If you intend to learn how to use HIPR

e�ectively then these are the sections that you should �rst familiarize yourself with:

How to Use HIPR This section of HIPR provides all the background information that you will

need in order to use HIPR e�ectively, including a detailed description of the format of the

image processing reference worksheets, and instructions on navigating around HIPR.

Image Processing Operations This is the core section of HIPR, providing reference `work-

sheets' on a large number of image processing operations in common usage today. The

structure of these worksheets is described in detail in the section on How to Use the Work-

sheets (p.15).

The A to Z The A to Z of Common Image Processing Concepts provides essential backup to the

reference information contained in the Image Processing Operations section. This section

provides background and tutorial information that describes jargon and concepts used in the

operator worksheets, with which it is extensively cross-referenced.

The Index Unsurprisingly perhaps, the index is often the most useful starting place for an in-

formation search. However, it is particularly useful when using the hypermedia version of

HIPR, because the index entries are actually hot-links that can be followed with simple mouse

clicks.

Of course, the remaining sections of HIPR are also important, but the above four are the most

relevant to beginning users.

Hypermedia vs. Hardcopy

There are two versions of HIPR: a hypermedia version and a hardcopy version. The former must

be viewed on a computer screen using a special piece of software known as a hypermedia browser,
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the latter is simply a traditional ink on paper document. They are virtually identical in content,

but there are di�erences in the ease of use of each version for di�erent tasks.

The hypermedia version of HIPR provides functionality such as following links between reference

sections at the click of a mouse button and easy searching of documents. It also has the advantage

that, if used on a local area network, the reference information is available on any computer

connected to that network, and to any number of users at the same time. Additionally, the

example images that accompany operator worksheets can be displayed easily on screen by simply

clicking on appropriate links in the hypertext.

The hardcopy version of HIPR obviously does not have these advantages, but nevertheless, there

are times when it is nice to have a printed version of the reference. For one thing, the hardcopy

reference does not occupy any space on the screen when you are working on something else.

Whether reading HIPR in hypermedia or hardcopy form, the overall structure of the reference is

the same, consisting of an introductory section, a large image processing operator reference section,

and �nally a series of appendices and an index. A more detailed overview of the structure of HIPR

is given in the Guide to Contents (p.8).

If you are using the hypermedia version of HIPR then you should be familiar with the operation of

your hypertext browser. Some useful hints and tips are given in the section on Hypermedia Basics.

2.2 Hypermedia Basics

What is Hypermedia?

Hypermedia is a relatively new term created to describe the fusion of two other new technologies:

multimedia and hypertext.

Multimedia refers to the capabilities of modern computers to provide information to a user in

a number of di�erent forms (sometimes called modalities) including images, graphics, video and

audio information, in addition to the standard textual output of older computers.

Hypertext refers to the idea of linking di�erent documents together using hyperlinks. A hyperlink

often appears in a hypertext document as a piece of highlighted text. The text usually consists of

a word or phrase that the user might require further information on. When the user activates the

hyperlink, typically by clicking on it using a mouse, the user's view of the document is changed

so as to show more information on the word or phrase concerned. This may mean that a di�erent

document is displayed on screen, perhaps positioned so that the relevant piece of text is at the

top of the viewing screen; or alternatively, the original text might `unfold' to include some extra

paragraphs providing the required information. The exact e�ect varies from implementation to

implementation. Through the use of hyperlinks, many documents or parts of documents can

be combined together to make a larger hypertext document. The hyperlinks make it very easy

to follow cross-references between documents and so to look up related information. This often

makes hypertext documents more suitable as reference manuals than conventional text manuals

which must be accessed in serial fashion.

Hypermedia documents are simply hypertext documents with multimedia capabilities in addition.

HIPR is a hypermedia document. Its basic structure is that of a hypertext document for ease of

cross-referencing and information �nding, but it also includes links to a library of images illus-

trating the e�ects of image processing operations, a multimedia capability. Of course, hypermedia

documents in general can include many more types of multimedia information than simply images.

Hypermedia in Practice

In practice, in order to read a hypermedia document using a computer, a user needs two things.

The �rst is the hypermedia document itself. This will be supplied in some machine-readable way

(in a disk �le typically) in a format that encodes the information content and hyperlink structure of
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the document. The second thing the user needs is some way of viewing the document in a human-

readable way. This is usually done by a program called a hypermedia browser. The browser

displays (or plays in the case of audio information) the information contained within the document

to the user and also handles the processing of hyperlinks when required.

The hypermedia format used by HIPR is known as HTML (HyperText Markup Language), which

is a language that has achieved great popularity recently since it is a cornerstone of the World

Wide Web. The World Wide Web (or WWW) is a hypermedia system on a global scale, that

links together documents and information all over the world via a collection of computer networks

known as the Internet. Documents available via WWW are all encoded in HTML format and so

a browser is necessary to display them on a computer screen. The most popular HTML browsers

in use at the time of writing are Mosaic, available from the National Center for Supercomputing

Applications (NCSA) in Illinois, and Netscape, available from Netscape Communications. HIPR

is intended to work particularly well with Netscape, but it will work almost as well with any

other graphical HTML browser (such as Mosaic). Note that only the HTML �les are supplied

with HIPR | it is necessary to obtain and install Netscape or a similar viewer yourself separately.

Fortunately, an increasingly large number of computer networks in universities and businesses have

Netscape installed already, in order to access WWW, and the same setup can be used for viewing

HIPR. Details of how to obtain Netscape if your system does not already have it are given in the

Installation Guide (p.28).

Using HIPR with Netscape

The preferred HTML browser for use with HIPR is Netscape

Netscape is widely used to access the World Wide Web and is one of the better graphical HTML

browsers available. It also has the advantage that it is available free from Netscape Communications

and for a number of popular computer platforms. However, there are several other HTML browsers

available and most of the graphically based ones should work just as well. For instance, Mosaic

was one of the �rst good graphical browsers, and until recently was by far the most popular one.

It is similar in appearance to Netscape (it was largely written by the same people) but it currently

lacks some of the advanced presentation features available with Netscape. We assume that you

will be using Netscape in this text, but most of the comments apply to Mosaic and other graphical

browsers equally well.

If you are using the hypermedia version of HIPR and have managed to get this far, then you

already know how to follow hyperlinks in text, and how to scroll the screen, but to summarize:

Hyperlinks appear as highlighted text. Their exact appearance varies according to how your

browser is set up, but typically in Netscape they will appear as underlined text, possibly in a

di�erent color from normal text. To follow a hyperlink simply point at the link using the mouse

and press the left mouse button once. The document at the other end of the hyperlink will then

be displayed.

Some hyperlinks (known as `imagelinks'), cause images to be displayed when they are clicked on.

In the hypermedia version of HIPR These image links appear as small pictures called thumbnails.

Clicking on the image causes the full sized image to be displayed. In the hardcopy version of HIPR,

imagelinks are simply printed as a �lename in a typewriter font. The �lename is the name of a

�le in the images sub-directory of HIPR that contains the full-sized image being referred to.

Note: On some Netscape setups, when the user clicks on an imagelink, the current document will

be replaced in the Netscape window with the full-sized image. The disadvantage of this is that

it makes it very di�cult to read the text describing the image while viewing that image! One

simple solution is to force Netscape to open a new full window when displaying the image (e.g.

by clicking on the imagelink with the middle mouse button on UNIX systems). However, a full

Netscape window is a rather cumbersome method of displaying images and so a better way is

to instruct Netscape to display images using a specialized external viewer. Ask the person who

installed HIPR on your system if it is possible to set this up. Details on how to do this are provided

in the Installation Guide in the section on Using External Image Viewers (p.30).

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



14

If the displayed document is more than one screen long then a dark vertical bar with arrows at

top and bottom will appear to the left or right of the the main document view. Clicking within

this bar with the left or middle mouse button `scrolls' the document up or down so that you can

see di�erent parts of it. Experiment with this to get an idea of how it works.

Possible Problems

Monochrome vs Grayscale vs Color Displays

Since HIPR contains large numbers of images and graphics, many of which are in color, a color

display is needed to show HIPR o� at its best. However, HIPR can be displayed reasonably well

with Netscape on grayscale or even monochrome (`black and white') screens. Most of the practical

examples of image processing in HIPR use grayscale images for demonstration purposes, and so

these will display perfectly well on grayscale screens. There may however be a few cases where it

is di�cult to di�erentiate between colors on a grayscale screen that are clearly distinct on a color

screen. On monochrome screens, Netscape will use `dithering' to approximate grayscales. This

means that some example images (particularly those containing lots of �ne detail) will not show

up very well.

Netscape Bugs

It has come to our attention recently that version 1.1N of Netscape running on Sun workstations

using Solaris 2.3 or 2.4 has a bug which may cause HIPR to crash occasionally. This seems to

occur particularly on screens containing lots of images. The problem only occurs when HIPR is

being accessed in local mode i.e. with a URL that begins file://localhost/.... Therefore one

way to avoid the problem is to access the pages via your WWW server (if you have one) using a

URL that begins http://.... Ask your system administrator to set this up. Note that this will

slow down access of HIPR pages slightly. Alternatively, and preferably, the problem seems to have

been �xed in the subsequent release of version 2.0 of Netscape, so you may prefer to download that

from the usual FTP sites. See the Installation Guide (p.28) for details.

Essential Hints and Tips

� If you have an internet connection, then extensive help on Netscape may be found by clicking

on the Help menu at the top of the screen, and then selecting Handbook.

� The Back button at the top of the screen can be used to take you back to the previous

document after following a hyperlink. If you follow multiple successive hyperlinks, then

Netscape remembers each one, and so successive use of the Back button will take you back

along the `chain'.

� The Forward button reverses the action of Back.

� At the top and/or bottom of many HIPR pages are `navigation buttons'. The use of these is

explained in the section on Worksheet Structure (p.17).

� It is possible to search for an item of text within a document by selecting Find... from the

Edit menu, and entering information into the pop-up search window. Note that only the

currently displayed document is searched. It is not possible to directly search the whole of

HIPR in one go. However, it is possible to search within the HIPR index (p.314) which is

almost as useful.

Other Useful Hints and Tips

� There are several `accelerator keys' that duplicate mouse actions, and that can make Netscape

faster to use. The most important ones are:

<Space> Scroll forward
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<BackSpace> Scroll backwards

<Alt>-<Left> Go back to previous document

<Alt>-<Right> Go forward to next document

<Alt>-h Display a list of previously visited documents and allow the user to jump back to

one

<Alt>-f Pop up the search window

� When the mouse pointer is positioned over a hyperlink (before any buttons are pressed), the

URL (Uniform Resource Locator) of the destination document is displayed at the bottom of

the screen. The most important bit of this is the text after the �nal `/' which is the name

of the destination document. This information is particularly useful when following a link

that leads to an image since it gives the name of the image �le within the HIPR images

directory (p.22).

� By default, Netscape keeps track of which documents you have visited before, and highlights

hyperlinks leading to these documents slightly di�erently from normal. Typically, such hy-

perlinks will have a di�erently colored underline, or a dashed underline. This option can be

disabled (consult the Netscape documentation for details).

2.3 How to Use the Worksheets

The Role of the Worksheets

The worksheets which make up the middle section of HIPR are probably the most important part

of the reference. They provide detailed information and advice covering most of the image pro-

cessing operations found in most image processing packages. Generally, each worksheet describes

one operator. However, in addition, many worksheets also describe similar operators or common

variants of the main operator. And since di�erent implementations of the same operator often

work in slightly di�erent ways, we attempt to describe this sort of variation as well.

The worksheets assume a basic knowledge of a few image processing concepts. However, most terms

that are not explained in the worksheets are cross-referenced (via hyperlinks where applicable) to

explanations in the A to Z (p.225) or elsewhere. This means that the worksheets are not swamped

with too much beginner level material, but that at the same time such material is easily available

to anyone who needs it.

Some of the worksheets also assume some mathematical knowledge, particularly in the descriptions

of how the various operators work. However this is rarely important for understanding why you

might use the operator.

Worksheet Organization

The worksheets are divided into nine categories:

� Image Arithmetic

� Point Operations

� Geometric Operations

� Image Analysis

� Morphology

� Digital Filters

� Feature Detectors
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� Image Transforms

� Image Synthesis

These categories are arranged in very approximate order of increasing di�culty (so that the easiest

and often most useful categories come �rst). The categories are largely independent however, and

may be tackled in any order.

Within each category, the individual worksheets are also arranged in approximate order of increas-

ing di�culty and decreasing usefulness. The worksheet ordering is slightly more important than

is the case with categories, since later worksheets tend to assume some understanding of earlier

worksheets. However, as usual, any references to information contained in earlier worksheets will

take the form of hyperlinks that can be quickly followed if necessary.

The Elements of a Worksheet

Each worksheet nominally consists of the same set of sections, although some of them are omitted

on some worksheets. The sections are:

Common Names

The main heading of each worksheet gives what we believe is the most appropriate name for the

operator concerned. This is usually the commonest name for the operator, but is sometimes chosen

to �t in with other operator names. The purpose of the Common Names section is to list alternative

names for the same or very similar operators.

Brief Description

This section provides a short one or two paragraph layperson's description of what the operator

does.

How it Works

Unsurprisingly, this section explains how the operator concerned actually works. Typically, the

section �rst describes the theory behind the operator, before moving onto details of how the

operation is implemented.

Guidelines for Use

This is one of the more important parts of the worksheets, and often the largest. This section

provides advice on how to use an operator, illustrated with examples of what the operator can do,

and examples of what can go wrong. An attempt is made to provide guidelines for deciding when

it is appropriate to use a particular operator, and for choosing appropriate parameter settings for

its use.

The Guidelines section contains imagelinks like this one: bld1heq2 which represent example im-

ages. In the hardcopy version of HIPR these simply appear as a �lename in typewriter font

that refers to an image in the images directory (p.22). However, in the hypermedia version of

HIPR, imagelinks appear as small pictures (known as thumbnails) which when clicked on cause

the corresponding full-sized image to be displayed. Try it.

The Guidelines section often provides worked through examples of common image processing tasks

that illustrate the operator being described.
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Common Variants

This section is optional, and describes related operators that are not su�ciently di�erent from the

current operator to merit a worksheet of their own, but have not been adequately covered in the

rest of the current worksheet.

Exercises

Exercises are provided to test understanding of the topics discussed on the worksheet. A proportion

of the questions involve practical exercises for which the use of an image processing package is

required. Suggestions for suitable test images from the image library (p.22) are also given.

References

This section lists bibliographic references in a number of popular image processing textbooks for

the operator concerned.

Local Information

This section is provided to allow the person in charge of installing HIPR to add information speci�c

to the local installation. Suitable information would include details about which operators in local

image processing packages correspond to the operator described. More details are given in the

section on adding local information (p.37).

Navigation Buttons

At the top of almost every page in the hypermedia version of HIPR appear up to four navigation

buttons. On pages that occupy more than about a screenful, the buttons are duplicated at the

bottom of the page. These navigation buttons help the user navigate around the worksheets

quickly, and have the following functions:

Home Go to the top-level page.

Left Arrow Go left one page, when in a linear series of topics. Note that this is not the same as

the Back button described elsewhere (p.14).

Right Arrow Go right one page, when in a linear series of topics. Note that this is not the same

as the Forward button described elsewhere (p.14).

Up Arrow Go up one level

To understand the operation of the navigation buttons, refer to Figure 2.1 which shows part of the

structure of HIPR.

As the �gure shows, the structure of HIPR is somewhat like the root system of a plant (or a tree

turned upside-down), with each node branching out into �ner detailed nodes. With this picture in

mind it should be fairly easy to see how the various navigation buttons work.

Note that the left and right arrow buttons are not equivalent to the Back and Forward buttons

provided by Netscape (at the top left of the screen). The Back button simply reverses the e�ect

of the last link followed (no matter whether it was via a navigation button or via a hyperlink in

the text of a worksheet). The Forward button can only be used after the Back button has been

used, in which case it undoes the backwards jump.

It is possible, by following too many hyperlinks in succession, to become `lost in hyperspace', i.e.

to become confused as to where you are in the HIPR structure. In this case it is quite a good idea
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Figure 2.1: The structure of part of the worksheet section of HIPR. The arrows show possible

transitions between HIPR pages, and the arrow type indicates how this transition is achieved.

to press the Back button repeatedly until you return to somewhere you recognize. Alternatively,

just hit the Home HIPR navigation button to get back to the top level again.

2.4 Getting the Most Out of HIPR

The best way to �nd out how to use HIPR e�ectively is to play around with it for a while. The

workings are for the most part fairly intuitive and simple. However, before doing this, users might

�nd it helpful to scan the following examples which attempt to illustrate how HIPR can be used

in common real-life situations.

You will probably �nd it handy to work through the examples yourself in order to make them

clearer. Most of the examples start from the top level worksheet, so you should jump there (p.1).

Note that if you are using Netscape or Mosaic, then click on this link with the middle mouse button

to produce a second window in which you can work while keeping this information visible in the

�rst window.

Examples

Q: I know that I am supposed to use the Canny edge detector for a problem, and I know that it's a

sort of feature detector, but I don't know what the `Gaussian width' parameter that the algorithm

asks for is, or how varying it a�ects the output. Can HIPR help?

A: Since you know that Canny is a feature detector, you can jump straight to the Feature Detectors

section of HIPR from the top level. After doing this you will see that the Canny edge detector is

one of the feature detectors listed and so you can click on that to bring up the Canny worksheet.

The `Guidelines for Use' section mentions that the e�ect of the Canny operator is controlled by

three parameters, one of which looks like the `Gaussian width' parameter. The `Guidelines' section

explains the e�ect of varying this, while the `How it Works' section explains more about what it

actually does.

Q: I have heard about the Prewitt edge detector and I would like to �nd out more about it, but I

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



19

can't �nd it listed in the operator worksheets section. Where can I �nd some information?

A: Not every operator has a worksheet named after it. This is because there are a lot of operators

that do very similar things, and often several alternative names for each operator. However, these

operators are usually mentioned as variants within another worksheet and if so they will be cross-

referenced in the index. So if you jump to the Index from the top level and search for the string

`Prewitt' (using Alt-F in Netscape for example), you will �nd references to two slightly di�erent

Prewitt operators. Clicking on either will take you to the relevant worksheet that describes them.

Q: I have been trying to use Histogram Equalization to enhance some images. On some pictures

the result is de�nitely clearer, but on others the detail that I am interested in disappears. What is

happening?

A: The place to �nd out about how to use an operator in practice is the `Guidelines for Use'

section of each worksheet. In this case, going to the Histogram Equalization worksheet (under

Point Operations from the top level), you will �nd that the `Guidelines' section explains why this

enhancement technique sometimes gives unexpected results on images with large areas of fairly

uniform background.

Q: I have just installed HIPR and I would like to add some information saying where I can be

contacted. How do I do this?

A: The section on Adding Local Information (p.37) describes how to do this. Briey though, you

would simply put the information you want to include in the General Local Information section.

Q: I am using the Khoros image processing package, and I want to �nd out if it has a Laplacian

of Gaussian operator. How can I �nd this out?

A: The appendix on Common Implementations at the end of HIPR has tables listing equivalent

operators for several popular image processing packages. In this case you would �nd that, the

appropriate convolution �lter is produced using vmarr (to produce a `Marr �lter').

2.5 Technical Support

While every e�ort has been made in the development of HIPR to create a package that is simple to

modify, and to give pointers to sources of the tools you may need to achieve this, it is impossible

to guarantee that every problem you may encounter will have been anticipated. The variety of

architectures on which HIPR can be used make it extremely di�cult to do this.

Unfortunately, neither the authors norWiley can provide direct technical support to anyone making

modi�cations to HIPR. An alternative source of possible help and advice has been created in the

form of a mailing list to which you can post questions and queries about HIPR. The authors

of HIPR monitor this list and will attempt to provide answers based on their own particular

experiences with the system. The list will be used to disseminate news about changes, upgrades

and bug-�xes to HIPR, so we strongly recommend that all installers of HIPR subscribe to the list.

We would also welcome any general comments about the product which you should like to make.

To subscribe to the mailing list send an e-mail to:

hipr-users-request@dai.ed.ac.uk

containing just the word: `subscribe' on a line by itself in the BODY of the message (not the

subject). You will be added to the list and you will then receive detailed information on how to

use the list to ask questions.

There is also a WWW page for HIPR users at:

http://www.dai.ed.ac.uk/staff/personal pages/rbf/HIPR/hipr users.htm

or you can contact Wiley directly at this email address: hipr@wiley.co.uk
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Chapter 3

Advanced Topics

3.1 Directory Structure of HIPR

This section describes the organization of the �les and directories that make up the installed HIPR

system. It is useful to have read this section before looking at the other advanced sections. Note

that, if you are using a Macintosh computer, then a `directory' is the same thing as a `folder'.

Overall Structure

HIPR consists of more than 2000 separate �les, divided over nine main sub-directories. These

sub-directories all branch o� from the HIPR root directory, which by default is called simply hipr.

Each sub-directory contains a di�erent sort of �le as described below. This overall structure is

shown graphically in Figure 3.1.

src/

tex/

html/

images/ eqns/ figs/
progs/

thumbs/

index/

hipr/

Figure 3.1: Directory structure of HIPR. Note that the directory names are all shown with a

trailing slash (/) which is a UNIX convention for denoting directories (as opposed to data �les).

The slash is not part of the actual name.

Each of the sub-directories will now be described briey in turn. Note that the names we mention

are the default ones | your system installer may have chosen to change them.

html

Contains the HTML (HyperText Markup Language) �les which de�ne the hypermedia version of

HIPR. When using a hypermedia browser such as Netscape to look at HIPR, you are actually

looking primarily at the �les in this directory.
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tex

Contains the hardcopy version of HIPR. As explained in the Generating Hardcopy (p.26) section,

the hardcopy is printed using PostScript �les, which are originally generated from LATEX source

�les. This directory contains both LATEX and PostScript versions.

src

As detailed in Making Changes to HIPR (p.34), both HTML �les and LATEX source �les are

generated from common sources �les written in a special HIPR format known as HIPRscript.

These source �les are stored in this directory.

eqns

Contains GIF image �les of all the equations used in HIPR. These are necessary because at the

time of writing, Netscape is unable to render mathematics directly and so equations are included

as inline images.

figs

Contains GIF �les and equivalent PostScript �les for all the �gures used in HIPR. The GIF �les

are used by Netscape, and the PostScript �les are used by LATEX.

images

All the full sized images that are used as examples of image processing operations are stored in

this directory.

thumbs

For each of the full sized images, there is a `thumbnail' sized version that is stored in this directory.

The thumbnails are used in the hypermedia version of HIPR for imagelinks to the full sized images.

progs

This directory contains the Perl scripts that are used to regenerate HTML and LATEX �les from

the HIPR sources �les. It also contains several UNIX scripts that can be used for regenerating

�gures, equations and thumbnail images. See HIPRscript Reference Manual (p.253) for details.

index

In the course of generating HTML and LATEX �les from HIPR source �les, the above Perl scripts

write information about index entries to this directory, from where it can be gathered in order to

produce the HIPR Index (p.314).
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3.2 Images and Image Formats

The HIPR Image Library

One of the major reasons for using HIPR is the fact that every image processing operation described

in the package is extensively illustrated using good quality on-line digitized images. Viewing these

images on a computer screen gives a much more realistic impression of what real image processing

is like than is provided by looking at typical pictures in image processing textbooks.

In addition, every single image is stored in the HIPR Image Library, from where they can be used

as input to real image processing packages. This extends the teaching potential of HIPR in a

number of ways:

� Students can compare the output of their own image processing package's operators with

the example output images included with HIPR to see how di�erent implementations di�er

slightly in functionality.

� They can also experiment with the e�ect of changing parameters to operators to see how this

changes the output. Suggestions of interesting things to try are given in the student exercises

section of many of the worksheets.

� Image processing operators can be tried out on additional images which are not used as test

examples for that operator in HIPR.

And we are sure that users of image processing will �nd many other uses for such a large and

varied collection of images. For example, as test images to new image processing algorithms.

Viewing Images with HIPR

As explained in earlier introductory sections (p.16), references to images in HIPR are made using

imagelinks. To summarize briey, in the hypermedia version of HIPR, these appear as small inline

images known as thumbnails. Clicking on a thumbnail causes a full sized version of that image

to be displayed. In the hardcopy version, imagelinks appear simply as a �lename in typewriter

font.

This is an example of an imagelink: ape1.

Viewing images with the hypermedia version of HIPR is easy | just click on the relevant imagelink.

If you wish to view the images outside of this environment then things are slightly more tricky. You

must use a piece of software called an image viewer and point it at the actual image �le containing

the image you wish to view. The details of how to do this vary considerably depending upon the

machine architecture on which you are using HIPR, and so we cannot tell you exactly how to go

about this. Typically though, you would proceed in one of two ways:

For the purposes of these examples assume that the image viewer is called `viewimage' and the

image is called `test.gif '.

� If you are using a command-line based system (i.e. one where you type commands at the

computer and hit ENTER to get them executed) such as MS-DOS or a UNIX shell, then you

would type something like:

viewimage test.gif

and press ENTER to display the image.

� If you are using a windows system that doesn't provide a command-line prompt, then you

would probably double-click on an icon representing the viewimage program, and you would

then use that program's �le browser to select the test.gif image to be displayed. Altern-

atively (e.g. on Macintoshes) you might just double-click on the icon representing the image
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�le itself and the windows system would automatically start up an appropriate viewer to

display that image.

Your system supervisor or course administrator should be able to advise you on the best way to

do this. You may �nd more information in the Local Information section (p.40) of HIPR.

The above discussion assumes that you know where the image �le to be displayed actually is and

what it is called. The location of images is discussed in the next section.

Two Types of Images

The images in HIPR can be divided into two di�erent categories: raw images and processed images.

Raw images are simply images that have been digitized for storage on a computer, but as yet have

had no (or very little) image processing done to them. Raw images are what are produced by

devices such as video cameras and scanners.

Processed images are simply raw images that have had at least one stage of image processing

applied to them.

This terminology is of relevance to image �le naming conventions (p.25) and to the Image Library

Catalogue (p.281).

Image Directories and Formats

Note that if you are using a Macintosh computer, then a `directory' is the same thing as a `folder'.

All the example images used in HIPR are stored in the same directory: the images directory.

This directory is just one of several which make up the HIPR system, all of which branch o� from

the HIPR root directory. This directory structure is explained in more detail in the section on

Directory Structure (p.20).

To get to the images directory from the html directory (which is where the HTML �les for the

hypermedia version of HIPR are stored), �rst go up one directory to the HIPR root directory.

Within this directory will be a sub-directory called images. This is the directory where all the

image �les will be found.

Again, your system supervisor should be able to help. Alternatively you might �nd details in

HIPR's Local Information section (p.40).

Within the image directory, the images are, by default, stored in GIF (Graphic Interchange

Format) �les. This is a very common and convenient image format that is understood by many

image viewers and image processing packages. However, your system supervisor may have chosen

to use a di�erent format if, for instance, the particular image processing package you use does

not accept GIF. Converting the image �les to a di�erent format is described in the Installation

Guide (p.31).

3.3 Filename Conventions

HIPR consists of a very large number of separate �les (more than 2000 in fact), spread over nine

main directories. In order to help keep track of this multitude we have adopted a standard naming

convention for �les. The purpose of the convention is to allow the user to ascertain as far as

possible what a particular �le is, merely by looking at its �lename.

In coming up with a convention we ran into some di�culties. The main problem was the require-

ment to maintain portability to MS-DOS with its severe restriction on �lename length. Speci�cally,

an MS-DOS �le can only consist of a maximum of eight characters, plus, optionally, a full-stop

(period) and a three character �lename extension. Because of this limit many �lenames are much
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more terse and cryptic than we would like, which makes understanding the convention we use even

more important.

The following sections detail the various categories of �les within HIPR and the naming conventions

that apply.

HIPR Source Files

Found in the src sub-directory.

The textual information in HIPR is split into many small chunks, each of which correspond to a

`page' in the hypermedia version. Each page has a name which is intended to convey its meaning

in eight characters or less. For instance the name of this page is filename. Then the �lename of

the HIPR source �le corresponding to that page is formed by adding the extension .hpr. Hence

the HIPR source �le for this page is called filename.hpr.

Many pages, particularly worksheet pages, also have a local information section which is included

into the main �le from a separate �le. These included �les have names formed by adding .loc to

the page name.

HTML Files

Found in the html sub-directory.

For every HIPR source �le there is a corresponding HTML �le with a similar name, but with the

extension .htm instead of .hpr.

So the HTML �le corresponding to this page is filename.htm.

The html directory also includes a few small GIF image �les that are used as decorations in the

hypermedia version of HIPR.

LATEX Files

Found in the tex sub-directory.

Similarly, for every HIPR source �le there is a corresponding LATEX �le with a similar name, but

with the extension .tex instead of .hpr.

The LATEX �le corresponding to this page is filename.tex.

There is also a �le called hipr top.ps which is a PostScript copy of the hardcopy version of HIPR.

See Producing the Hardcopy Version of HIPR (p.26) for details.

There may also be in this directory various �les with the extensions .aux, .log, .toc, .bbl, .blg

and .dvi. These are simply side products of the LATEX generation process.

Equation Files

Found in the eqns sub-directory.

Equation image �les for use with the hypermedia version of HIPR begin with the letters eqn...,

and have the extension .gif. The second part of the main name normally gives some indication

in which worksheet the equation is used. There may also be an index number if there is more than

one equation used in a that worksheet. For example, eqnrob1.gif is the �rst equation found in

the Roberts Cross (p.184) worksheet.

Some very common equations that are used in more than one worksheet have names that indicate

what they are rather than to which worksheet they belong to. So, for instance, eqntheta.gif is

an equation for the Greek letter �.
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This technique of including equations in the hypermedia version of HIPR as inline images is

necessary because, at the time of writing, Netscape cannot generate mathematical symbols itself.

Figure Files

Found in the figs sub-directory.

All �gures and diagrams for use with HIPR are included in two di�erent forms | an encapsulated

PostScript form for inclusion into the hardcopy version, and a GIF version for inclusion into the

hypermedia version. The PostScript �les have the extension .eps and the GIF �les have the

extension .gif. The rest of the �lename is the same for both formats, and is chosen to describe

the �gure. There are no special conventions for choosing this name, although the name often

reects the name of the worksheet that includes the �gure. For instance the �gure used in the

section on directory structure (p.20) is contained in �les called direct.gif and direct.eps.

Image Files

Found in the images sub-directory.

Images have one of the more complicated naming conventions | this is in an attempt to convey

as much information as possible in the �lename, while conforming to the MS-DOS constraint that

�lenames can only be 8 characters long. Images fall into two categories: raw and processed, with

slightly di�erent naming conventions. See the section on Images (p.23) for an explanation of these

terms.

By default images are stored in GIF format and have the extension .gif. However, your system

installer may have changed this (see the Installation Guide (p.28) for details) and so another

extension may be used.

For raw images, the main part of the image �lename (i.e. before the extension) is simply a

four-character identi�er for that image. Typically this identi�er takes the form of a three-letter

abbreviation indicating the type of image involved, plus a single digit di�erentiating di�erent

images within that category. For example scr1.gif is a picture of a jumble of objects, including

principally a screwdriver. fce3.gif is a picture of a face, and the third example in the face series.

For processed images, the main part of the image �lename is split into two four-character halves.

The �rst half is simply the four-character name of the raw image from which the processed image

was produced. The second half describes the image processing operation most relevant to the

production of the image. As with raw image names, this description consists of a three-letter

abbreviation indicating the type of image processing operation, and then a �nal single digit which

di�erentiates between di�erent examples of that operation applied to the raw image concerned.

Some examples might make this clearer:

wdg2.gif is a raw image showing the second of a family of two dimensional silhouetted `widgets'.

wdg2thr1.gif is the same image after it has been thresholded (p.69) using one set of parameters.

wdg2thr2.gif is the image after thresholding with a slightly di�erent set of parameters.

wdg2sob1.gif is the result of applying the Sobel edge detector (p.188) to wdg2.gif.

cln1.gif is a raw image containing a picture of a clown.

cln1sob1.gif is the result of applying the Sobel edge detector to cln1.gif.

This convention is a little confusing at �rst, but fortunately you will not have to worry about it

most of the time, since in the hypermedia version of HIPR at least, images are displayed merely

by clicking on their `thumbnails'. In addition, the Image Library Catalogue (p.281) lists all the

images in HIPR in a much more user-friendly fashion.
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Thumbnail Files

Found in the thumbs sub-directory.

For every image in the images sub-directory, there is a corresponding thumbnail image. These

thumbnails are just small versions of the GIF �les in the images directory and are GIF �les

themselves. They have similar names to their corresponding images, except that they have the

upper-case extension .GIF instead of .gif. This is to avoid confusion with the corresponding

full image. Note that on operating systems that ignore case in �lenames (such as MS-DOS),

this di�erence will not be apparent. As an example, the thumbnail associated with the image

wdg2thr1.gif is called wdg2thr1.GIF.

Index Files

Found in the index sub-directory.

Index �les are written by the HIPR generating programs in order to keep track of index entry

information. They are not normally of interest to the user and should not be altered. There is

one index �le for each HIPR source �le, with a similar name, except that they have the extension

.idx instead of .hpr.

Program Files

Found in the progs sub-directory.

The HTML and LATEX �les are generated from HIPR source �les using Perl scripts. These scripts

are called hiprgen.pl and hiprindx.pl.

3.4 Producing the Hardcopy Version of HIPR

As mentioned in earlier introductory sections, HIPR can be used in two main forms | on-line,

using a hypermedia browser such as Netscape, or as hardcopy, i.e. to be read like a book. You

may already have some copies of the hardcopy version, but there will almost certainly be times

when you want to generate more. This section describes how you go about doing that.

Printing HIPR on a PostScript Compatible Printer

The complete text of HIPR is included in the distribution package as a PostScript �le. The �le is

called hipr top.ps and can be found in the tex sub-directory of the hipr root directory. This �le

can simply be sent straight to any PostScript compatible printer for printing. The method of doing

this varies tremendously from system to system, so consult your own system's documentation for

details.

Obviously this method is only applicable if you have a PostScript printer (many laser printers are

PostScript compatible, however, or can be made so relatively easily). If you do not have access

to such a printer, then you might be able to arrange with a third party to print the �le | for

instance many small-scale printing shops provide this service. Alternatively, you may be able to

use LATEX to regenerate the printable �le in a format more suited to your particular printer (you

will probably still need a laser or inkjet printer however).

Regenerating HIPR Hardcopy using LATEX

The hardcopy version of HIPR is also included in the form of LATEX source �les. As with the

PostScript �le, these are found in the tex sub-directory of the hipr root directory.
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Note that we do not have the facilities to provide support for people with problems

installing LATEX, or running LATEX on the HIPR LATEX source �les. This facility is

provided `as is' and is under no guarantee. If you just want to print out hardcopy, then

we really suggest that you �nd someone who knows how to print the PostScript �le

included with HIPR. Having said that, the following sections do attempt to provide

some guidelines as to what can commonly go wrong, and what to do about it.

LATEX (usually pronounced `lay-tek' | the last `X' is actually a Greek `Chi') is a freely available

(and free) typesetting program that is widely used in many academic institutions and elsewhere,

around the world. The program works on input �les containing text that has been `marked up'

using LATEX formatting commands. You do not need to be able to understand these in order to

run LATEX on the HIPR LATEX �les, but essentially they consist of instructions and suggestions as

to how the text should be formatted and presented so as to look good on paper. The end result of

`running' LATEX on these �les is to produce a printable �le representing the marked up text.

Versions of LATEX are available for most modern computer platforms. Information on obtaining it

for your system is given in the Installation Guide (p.31).

If you have LATEX properly installed on your system then generating a printable �le is very simple.

There are basically three stages.

1. Run LATEX on the �le hipr top.tex in the tex sub-directory of the hipr root directory.

This will produce a number of �les, amongst them a DVI �le which will probably be called

hipr top.dvi. This �le contains the important bit.

2. Convert the DVI �le to a printable �le. Usually, you convert the DVI �le to a PostScript �le,

but it is possible to convert it to other printable formats as well, suitable for non-PostScript

compatible printers. The program you use to do this varies tremendously from computer

to computer, and even on a single computer system, there may be several slightly di�erent

conversion programs available. You will have to consult the documentation that comes with

the version of LATEX for your system for details. As an example, a popular DVI-to-PostScript

conversion program used on UNIX systems is called dvips.

3. Print the printable �le. Again the method of doing this varies from system to system, so

consult the documentation that came with your computer system and printer for details.

For example, the following sequence of commands would do the job on my UNIX system. (Assume

that I have already entered the tex directory.)

latex hipr top

dvips hipr top

lpr hipr top.ps

Other things to note:

� When LATEX runs, it may generate lots of messages, including several warning messages about

`Overfull nvboxes' and the like. These are mostly just LATEX being fussy and can safely be

ignored.

� However if LATEX stops with a question mark and reports an error, then you are in trouble. If

you know LATEX then you may be able to look at the source �les and �x the problem yourself.

If not, then the most likely reason for failure is that you have not properly installed either

HIPR or LATEX. Here are some things to try:

{ LATEX needs to be run from within the tex sub-directory ideally (this may not apply to

some window based systems).

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



28

{ It uses �les with extension .tex from the tex sub-directory, and �les with extension

.eps from the figs sub-directory. If the LATEX error message is claiming that it cannot

�nd one of these �les, then check to see that that �le exists and is readable (i.e. not

protected in some way).

{ The HIPR LATEX source �les require the epsf and fancyheadings LATEX macros to be

installed. See the Installation Guide for details.

{ You may have incorrectly installed some other part of the LATEX system. For instance

some fonts may not be available. Check with the LATEX documentation.

{ If you have been modifying bits of HIPR (as explained in Making Changes (p.34)), then

you may have caused an incorrect piece of LATEX to be generated. Most such errors are

picked up during the HIPR regeneration process, but there may be some errors that get

through. If possible, try to undo the changes that you have made until you get back to

a stage where everything works. Then progress forward again and try to �nd a di�erent

way of doing what you were trying to do originally.

� When LATEX has �nished, it may print a message that goes something like:

Label(s) may have changed. Re-run to get cross-references right.

If this happens, just re-run the LATEX program until the message goes away.

3.5 Installation Guide

Note that this section is really only relevant to the person responsible for installing and maintaining

HIPR on your system. Note also that the FTP addresses given on this page are correct at the time

of writing but cannot be guaranteed to remain so.

Be sure to read the architecture-speci�c instructions (in README xxx, xxx=UNIX, etc) for unpacking

HIPR's �les before working through these instructions.

Unpacking the Core HIPR Distribution

The HIPR software is distributed in a variety of ways. You may have received it on computer tape,

or on CD-ROM, or perhaps you have downloaded it directly over the Internet from an authorized

FTP site. Each of these distribution methods requires slightly di�erent approaches to unpacking

and installing the �les on your system. For each distribution type, the unpacking procedure is

described in a text �le called README xxx that will be included in unpacked, uncompressed form in

the same place as rest of the HIPR package. Consult this �le for the basic installation procedure.

No matter which distribution you start with, the end result of the unpacking process is the same

| you should end up with the HIPR directory structure as described in The Directory Structure of

HIPR (p.20) installed somewhere on your �lesystem. Note that if you wish HIPR to be accessible

from your local area network, then you should make sure that you install the HIPR root directory

in a location that is visible from that network.

Copyright Note

You should be careful when installing HIPR on your system, that it cannot be retrieved by remote

sites via the Internet from your machines. This would break the conditions of the HIPR copy-

right (p.272). In particular, you should make sure that HIPR is not accessible via the World Wide

Web. If you choose to run HIPR from a Web server at your site then you must ensure that the

server is con�gured so that only users on your local area network can access HIPR. You should

also not place HIPR upon FTP servers or other publicly accessible archives.
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Starting up HIPR

Once you have unpacked the core distribution, you are almost ready to begin using HIPR. If you

have a graphical HTML browser (e.g. Netscape) already installed on your system, then simply

point it at the �le hipr top.htm in the html sub-directory. How you do this depends upon exactly

where you have inserted the HIPR directories into your system. For instance, if you are using a

UNIX system, and the hipr root directory has been copied to /usr/docs, then you would give

Netscape the following URL (Uniform Resource Locator):

file://localhost/usr/docs/hipr/html/hipr_top.htm

Note that, if possible, you should not access HIPR via your system's World Wide Web server (if

one is installed), i.e. you should not use a URL beginning with http://.... This method may

work, but it will be much slower than access in local �le mode using the file://localhost...

URL. In addition, you may be breaking the HIPR copyright (p.272) if HIPR is available over the

World Wide Web to other sites.

If you wish to print out the hardcopy version of HIPR, then consult the section on Producing the

Hardcopy Version of HIPR (p.26).

HTML Browsers

The above section assumes that you have a HTML/WWW browser such as Netscape already

installed on your system. If you do not, then you will have to get one in order to use the online

version of HIPR.

The recommended HTML browser for use with HIPR is Netscape. This is most easily available via

FTP (File Transfer Protocol) from the Netscape Communications' FTP server and is free for non-

commercial use (consult the license that comes with it for details). The FTP server contains binary

executables for Netscape on a variety of computer platforms: PCs running Microsoft Windows,

Apple Macintoshes and a large number of di�erent UNIX systems running X Windows.

To use FTP you �rst need a connection to the Internet and appropriate FTP software. Your

Internet connection provider will be able to tell you how to get the FTP software if you don't have

it. Consult your documentation for details of how to use this software. Then:

1. Connect to ftp.netscape.com using your FTP software (e.g. type ftp ftp.netscape.com).

If you are in Europe you may �nd it faster to connect to ftp.enst.fr.

2. Log onto the remote FTP server, by giving ftp as your login name and your e-mail address

as the password.

3. Change to the /pub/navigator/2.02 sub-directory on the remote machine (e.g. type cd

/pub/navigator/2.02). Newer versions may also be provided in other directories by the

time you read this (for instance, a beta test release of version 3.0 is also available). (On

ftp.enst.fr you need to go to /pub/netscape/navigator/2.02.)

4. Change to the sub-directory dealing with the version of Netscape you require (e.g. type cd

unix).

5. Retrieve the README �le contained in that directory and follow the instructions contained

within for downloading and unpacking the Netscape executable (e.g. start by typing get

README). Note that you will have to put your FTP program into binary mode for transferring

the executable.

If you do not have an Internet connection then you will have to obtain the software from your local

computer vendor. The disadvantage of this is that you may have to pay for a commercial version

of something that is free over the Internet. Unfortunately we cannot supply Netscape in the HIPR

distribution, since this would violate its distribution license.
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A Note on Browser Compatibility

It is unfortunately not the case that all browsers, even all graphical browsers, are the same. The

HTML language is in a process of evolution, so there exist browsers which support features that

have not yet become standard HTML, and there exist browsers that do not yet completely support

the latest standard HTML de�nition. Netscape, the standard browser for use with HIPR, is one

of the more feature-laden browsers around, and we have made use of a few of these features (such

as centered text) even though they are not universally implemented yet. Other browsers, such as

Mosaic, do not, at the time of writing, support some of these features. Therefore certain bits of

HIPR may look odd when viewed with Mosaic, although all parts of HIPR should be adequately

displayed.

For a summary of some other problems that may occur with Netscape and with browsers in general,

see the section on Possible Problems (p.14) in the introduction to hypermedia browsers.

Using External Image Viewers

Netscape is able to display the GIF images that make up the HIPR image library by itself. However,

by default, such images are displayed in the same Netscape window that was previously showing

the hyperlink to that image. This means that when the user clicks on an image thumbnail in

order to display the full image, the full sized image replaces the thumbnail (and all the surrounding

explanatory text) in the Netscape window. Which makes it very di�cult to read the text describing

the image while viewing that image!

We have found that a better approach is to get Netscape to spawn o� an external image viewer to

display the full sized GIFs. This allows the user to continue to read any explanatory text, while

the full-sized image is displayed in a compact separate window.

TheHelpmenu of Netscape provides information on obtaining a suitable viewer and on con�guring

Netscape to use that viewer. However, we present here a brief summary of how this would be done

on a typical UNIX system.

1. First obtain a suitable image viewer. An excellent viewer for X-Window systems is xv,

obtainable via FTP from ftp.x.org (or a suitable mirror site) in the R5contrib directory.

2. Under the Options menu on Netscape select Preferences... and then Helpers. The two

�les you are interested in are the global and local mailcap �les. They tell Netscape how to

deal with data of di�erent types. Note down the locations of these �les.

3. Now you must edit one of these �les to tell Netscape to use an external viewer to display

GIF �les. If you edit the global �le, then the changes you make will apply to everyone who

uses the same global mailcap �le (typically everyone else on the same LAN). If you edit the

local �le, then the changes will only a�ect the user who owns that local �le. Entries in the

local �le have a higher priority than entries in the global �le, where there is a clash.

4. Assuming you will be using xv as the viewer, insert the following line into the appropriate

mailcap �le:

image/gif; xv %s

5. Restart Netscape. The browser should now use xv to display GIF �les. Note that this does

not a�ect the display of inline GIFs within HTML �les.

Image Processing Software

While strictly not part of HIPR, it is extremely useful to have an image processing software package

available on your system. A huge variety of these are available, and if you are using HIPR at all, it

is likely that you already have one installed on your system. We list here just a couple of packages

that are available free via the Internet.
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Khoros Khoros is a very powerful (and very large) visual programming environment that includes

extensive facilities for image processing and image manipulation. For more information, use

Netscape to connect to:

http://www.khoros.unm.edu/

NIH Image A free image processing package available for the Apple Macintosh. Available via

FTP from zippy.nimh.nih.gov or alw.nih.gov in the /pub/image sub-directory.

Additional information on obtaining some common image processing packages is given in the

appendix on Common Software Implementations (p.244).

Image Format Converters

Many image processing packages will perform image conversion for you so check to see if your

image processing package can help. Failing that, if you wish to convert the GIF images in the

HIPR image library into di�erent formats then you must obtain some image conversion software.

Again, we list only a few popular packages that are available for free over the Internet.

PBMplus Toolkit This toolkit is a very popular set of programs that allow you to convert

between just about any formats you like, via an intermediate format. It is available via FTP

from export.lcs.mit.edu in the directory /pub/contrib/pbmplusor from ftp.ee.lbl.gov.

Utah Raster Tools Another very popular conversion toolkit. It can be obtained via FTP from

wuarchive.wustl.edu in the directory /graphics/graphics/packages/urt.

Image Alchemy An MS-DOS version of this is available via FTP from wuarchive.wustl.edu

in the directory /msdos/graphics.

This information represents just a small part of the alt.binaries.pictures FAQ (Frequently Asked

Questions). The full version which lists many more utilities can be obtained via FTP from

rtfm.mit.edu in the directory /pub/usenet/alt.binaries.pictures.d as

/alt.binaries.pictures FAQ - OS specific info.

Obtaining LATEX and Associated Software

LATEX is a typesetting program, extremely popular in academic circles, that relies on a markup

language in order to allow the user to specify the structure of a document without having to worry

about its appearance too much. You need to install it (if you don't have it already) only if you

wish to regenerate the hardcopy version of HIPR, perhaps after making some changes to it. Note

that you don't need LATEX if all you want to do is print out the distributed hardcopy version since

there is a ready made PostScript �le for this purpose included in the HIPR distribution. Nor do

you need it to use the online version of HIPR. See the section on Producing the Hardcopy Version

of HIPR (p.26) for more information on how LATEX is used with HIPR.

LATEX is itself a large collection of programs and utilities and the installation process is unfortu-

nately not simple. It is however available for free and for a wide variety of machine architectures.

To obtain LATEX you will need to connect via FTP to your nearest CTAN site (Comprehensive

TeX Archive Network). The three major CTAN sites are:

� ftp.dante.de

� ftp.tex.ac.uk

� pip.shsu.edu
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There is a slightly user-friendly front end to these archives which can be accessed using Netscape

at

http://jasper.ora.com/ctan.html

Note that LATEX itself is `just' a collection of macros which sits on top of another program called

TeX, which you will also probably have to retrieve from the same archive.

There are some other programs which you will also need to obtain from the same archive. Firstly,

you require a program to translate the DVI �les that LATEX outputs into something you can print,

normally PostScript. The recommended program to do this is called dvips. You also need to make

sure that you get hold of the epsf and fancyheadingsmacro packages for use with LATEX, or you

will �nd that things don't work. Finally you may �nd it convenient to obtain a DVI previewer which

will allow you to display the LATEX output on screen without printing it. A common previewer for

UNIX systems running X-Windows is called xdvi.

Finally, you should be aware that there is a relatively new version of LATEX called LaTeX2e. This

should be compatible with the LATEX �les contained in HIPR. If it isn't then use the older version

of LATEX.

Extra Requirements for HIPRscript

The HIPRscript Reference Manual (p.253) describes in detail how it is possible to make changes

to the core HIPR documentation by editing the appropriate HIPRscript source �les and then

regenerating HTML and LATEX output �les. To do this you need to have the language Perl installed

on your system, so that you can run the HIPRscript translation program hiprgen.pl. Perl is a

very widely available, fast and extremely portable language and for those reasons hiprgen.pl was

written in that language. It is signi�cantly more portable than `C' for instance.

Perl is obtainable via FTP from a great many sites and for a variety of machines. There are

currently two versions available: Version 4 (patchlevel 36), also known as Version 4.036; and

Version 5. Either version should work with hiprgen.pl.

If you have a UNIX or VMS machine then you should obtain Perl from one of the following sites

(this list was taken from the comp.lang.perl FAQ).

Site Directory

----------- -------------------------------

North America:

ftp.netlabs.com /pub/outgoing/perl[VERSION]/

ftp.cis.ufl.edu /pub/perl/src/[VERSION]/

prep.ai.mit.edu /pub/gnu/perl5.000.tar.gz

ftp.uu.net /languages/perl/perl5.000.tar.gz

ftp.khoros.unm.edu /pub/perl/perl5.000.tar.gz

ftp.cbi.tamucc.edu /pub/duff/Perl/perl5.000.tar.gz

ftp.metronet.com /pub/perl/sources/

genetics.upenn.edu /perl5/perl5_000.zip

Europe:

ftp.cs.ruu.nl /pub/PERL/perl5.0/perl5.000.tar.gz

ftp.funet.fi /pub/languages/perl/ports/perl5/perl5.000.tar.gz

ftp.zrz.tu-berlin.de /pub/unix/perl/perl5.000.tar.gz

src.doc.ic.ac.uk /packages/perl5/perl5.000.tar.gz

Australia:

sungear.mame.mu.oz.au /pub/perl/src/5.0/perl5.000.tar.gz

South America (mirror of prep.ai.mit.edu:/pub/gnu):
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ftp.inf.utfsm.cl /pub/gnu/perl5.000.tar.gz

If you have a non-UNIX or VMS machine, then use one of the following sites:

Machine/OS Site Directory

---------- ----------- ----------------

MS-DOS ftp.ee.umanitoba.ca /pub/msdos/perl/perl4

MS-DOS ftp.einet.net /pub/perl5

MS-DOS ftp.khoros.unm.edu /pub/perl/msdos

MS-DOS ftp.ee.umanitoba.ca /pub/msdos/perl/perl5

Windows/NT ftp.cis.ufl.edu

Macintosh nic.switch.ch /software/mac/perl

Macintosh ftp.maths.tcd /pub/Mac/perl-4.035

OS/2 ftp.cis.ufl.edu /pub/perl/src/os2

Amiga ftp.wustl.edu /pub/aminet/dev/lang

Amiga ftp.doc.ic.ac.uk /pub/aminet/dev/lang

When installing Perl, you may �nd it useful to consult the comp.lang.perl FAQ which is available

from that newsgroup on USENET, or via Netscape at:

ftp://rtfm.mit.edu/pub/usenet-by-hierarchy/news/answers/perl-faq

Con�guring HIPRscript for your System

Before you can use HIPRscript, you may have to make some minor modi�cations to hiprgen.pl

and hiprindx.pl in the progs sub-directory. Most notably, on non-UNIX systems, you should

change the pathnames that allow HIPRscript to locate the other HIPR directories from the src

sub-directory.

If you edit the hiprgen.pl, you will see at the top a list of variable de�nitions like this:

# Directory where various files are to be found. Note that trailing slash

# IS required!

$IMAGE_DIR = '../images/';

$TEX_DIR = '../tex/';

$HTML_DIR = '../html/';

$EQNS_DIR = '../eqns/';

$FIGS_DIR = '../figs/';

$THUMB_DIR = '../thumbs/';

$INDEX_DIR = '../index/';

These variables by default hold UNIX relative pathnames from src to the other HIPR sub-

directories. If these are not appropriate for your system then you must change them to suit.

For instance, on MS-DOS systems, you would change this section to:

# Directory where various files are to be found. Note that trailing slash

# IS required!

$IMAGE_DIR = '..\images\';

$TEX_DIR = '..\tex\';

$HTML_DIR = '..\html\';

$EQNS_DIR = '..\eqns\';

$FIGS_DIR = '..\figs\';

$THUMB_DIR = '..\thumbs\';

$INDEX_DIR = '..\index\';

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



34

The change here being that the UNIX `/' directory separator has become a `n' suitable for MS-

DOS. Simply change these pathnames to something more suitable for your system. Before you

do this, however, check to see that Perl doesn't automatically work out what you mean without

you having to change anything (Perl was developed on UNIX systems and may understand the

meaning of UNIX pathname syntax on other systems).

Once you have changed hiprgen.pl, edit hiprindx.pl and make the same changes there (note

that fewer lines will need to be altered).

There are some other things you may like to change in the hiprgen.pl, but we recommend that

you don't unless you know Perl and have a good idea what you are doing. No other changes should

be necessary anyway. The comments in the hiprgen.pl �le describe what the other introductory

parts of the �le do, if you're interested.

Automatic Generation of Figures, Equations and Thumbnails

Figures, equations and nimageref tags all require the presence of external �les as described in the

HIPRscript Reference Manual (p.265). If you have a UNIX system, then it is possible (although

�ddly) to get HIPRscript to generate some of these �les automatically. To do so you will need to

do several things:

� The shell scripts hfig2gif, heqn2gif and himg2thm should all be copied from the progs

directory to a directory somewhere on the path de�ned by the $PATH environment variable.

Alternatively you can just add the full pathname of the progs sub-directory onto the end of

the $PATH environment variable, which saves having to copy any �les.

� The �le pstoppm.ps should also be copied from the progs sub-directory and put somewhere

appropriate. It doesn't really matter where, although you should note that it is not a directly

executable �le (it is actually a PostScript program for use with GhostScript).

� The shell scripts hfig2gif and heqn2gif should be edited to reect the location of pstoppm.ps.

Instructions on doing this are given in those �les.

� You need to have the PostScript previewer GhostScript installed on your system. You can

obtain information about GhostScript on the World Wide Web by pointing Netscape at

http://www.cs.wisc.edu/ ghost/index.html

� You also need to have the giftrans program installed and on your path. This can be

obtained via FTP from ftp.rz.uni-karlsruhe.de in the directory /pub/net/www/tools.

� You must have LATEX installed on your system as described above.

� You must have the PBMplus library installed on your system as described above.

� Finally, edit the hfig2gif, heqn2gif and himg2thm scripts so that the names of the various

utilities used by them correspond to the names of utilities installed on your system.

If you have done all of this, then edit hiprgen.pl as described in the HIPRscript Reference

Manual (p.265) in order to enable automatic equation, �gure and/or thumbnail generation, and

test it out. Good luck!

The UNIX scripts have been tried out on Sun SparcStations running both SunOS 4.1.3 and Solaris

2.3. They should however work on most other varieties of UNIX without any changes.

3.6 Making Changes to HIPR

Note that this section is really only relevant to the person responsible for installing and maintaining

HIPR on your system.
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Introduction

The HIPR system is intended to be immediately usable by a wide variety of people using a wide

variety of di�erent computer systems and image processing software. Given this fact, it is almost

inevitable that there will be things that you don't like about it! Perhaps the images are in the

wrong format, or perhaps you would like to add some extra information to the worksheets for

students to read. Perhaps you would even like to add an extra worksheet yourself, explaining some

unusual operator which is particularly relevant to your situation. HIPR allows you to do all of this

| if you're prepared to put in a little work.

WARNING!

Note that the facilities described here for altering HIPR to further suit your needs

are provided `as is'. We are not able to o�er technical support to anyone having

di�culties making any of the modi�cations we discuss. While we have tried to make

the task as simple and robust as possible, the large number of di�erent architectures

on which HIPR can be used make it impossible to describe every situation. As a

result you make any such changes entirely at your own risk. For your own protection

we recommend that you maintain a backup copy of the original HIPR installation

which you can turn back to should any attempted modi�cation go wrong.

How HIPR is Generated

As mentioned elsewhere (p.11), the HIPR package is provided in two forms: a hypermedia version

and a hardcopy version. The hypermedia version consists of a collection of HTML �les (HyperText

Markup Language) and associated GIF and image �les, that can be displayed using a graphical

HTML browser such as Netscape. The hardcopy version is supplied in PostScript form, which in

turn is generated from LATEX source �les (also supplied) as described in the section on Generating

Hardcopy (p.26).

Since both hypermedia and hardcopy versions ought to contain exactly the same up-to-date text,

it would be a time-consuming and error-prone process if one had to make separate changes to both

versions when any change to the information content of HIPR were made. Therefore, HIPR is

initially written in a specialist intermediate language known as HIPRscript. The HIPRscript �les

are then automatically translated into both HTML and LATEX versions (and the LATEX version is

subsequently turned into PostScript for printing). The HIPRscript source �les are contained in the

src sub-directory. The programs to perform the conversion are contained in the progs directory

and are written in a language called Perl.

The completely professional way to make major changes to HIPR is therefore to �rst edit the

HIPRscript �les and then to run the conversion program. This ensures that both hypermedia and

hardcopy versions contain up-to-date material. It also helps enforce a certain consistency of style.

However, running the HIPRscript conversion programs requires that a number of additional utilities

be installed on your system (as detailed in the relevant section of the Installation Guide (p.32)), and

these may prove to be di�cult or time-consuming to set up, particularly on non-UNIX machines.

Fortunately, many changes can be made without resorting to the full machinery of HIPRscript.

The following sections describe a number of common ways in which you might want to change

the HIPR system, and how you should go about doing it in the easiest way possible. If, having

read these sections, you decide that you want to delve even further into the deeper mysteries of

HIPRscript, then the HIPRscript Reference Manual (p.253) should contain all you need.
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3.7 Changing the Default Image Format

The example image library supplied with HIPR contains over 700 images, all in the GIF (Graphic

Interchange Format) image format. GIF was chosen because it is widely used, e�cient to store

(it is a compressed format) and also readily converted into other formats using standard image

manipulation tools.

The image viewer supplied with your hypermedia browser will almost certainly be able to display

GIF images, since GIF is a very popular format on the World Wide Web, and the browsers were

initially developed for that environment.

In addition it is highly likely that your image processing software will be able to read in GIF images

directly since they are such a common format, so you may be able to use the image library as a

starting point for further exploration of image operators without altering the image �les at all.

In an ideal world that would be that. However, in practice there are multitudes of di�erent image

formats in use today, and there do exist some image processing packages that are not able to

import GIF images directly. For these reasons it is sometimes necessary to convert images from

GIF format into some other format. There are three main approaches that you could take.

Firstly, if HIPR works �ne as a reference manual using GIF images and you only want to use a few

images for input into your image processing software, then it is easiest to keep the GIF images as

they are for use with HIPR and just make duplicate versions of the images you are interested in, in

a di�erent format as necessary. Software to perform this conversion is widely available, and may

even be included with your image processing package. Some suggestions for converters are given in

the Installation Guide (p.31). No messing around with HIPRscript is required for this approach.

Secondly, if you have the disk space, you might just consider making a duplicate image directory

containing copies of all the image �les in the required new format. The hypermedia version of

HIPR will continue to use the GIF images, but for further exploration you can direct students to

use the alternate image directory. Since converting over 700 images by hand is very tedious, it is

a good idea to automate the conversion process by writing some sort of script or batch �le. Since

the details of how you would do this are extremely software- and machine-dependent we cannot

tell you exactly what to do here.

Finally, and only pursue this route if you are aware that it involves a major amount of work, and if

you really don't have enough �lespace to maintain a duplicate image library in a di�erent format,

you can choose to convert all the images into another format. The disadvantage of doing that is

that you also have to change every single image reference in the HIPR HTML �les to reect the

new �le su�x of your images (which will presumably no longer be .gif). In addition, you must

ensure that your hypermedia browser is able to display that image �le format and knows how to do

so (consult your Netscape documentation for details of how to link image viewers to �le su�xes).

If you want to take this approach then do the following:

1. First check that all the HIPRscript utilities are installed correctly and that you are com-

fortable making small changes to HIPR using the HIPRscript programs as detailed under

Making Changes using HIPRscript (p.253).

2. Make sure that your hypermedia browser is capable of displaying the image format you would

like to use. Normally this will involve making sure that Netscape recognizes the new image

�le extension as an image �le and knows which viewer to spawn in order to display it. Check

your browser documentation for details. Look particularly for information on mailcap and

MIME types.

3. Convert all the images into the new format. This will probably involve a change to the

�lename extensions of the images, but you should keep the rest of the �lename the same. e.g.

if you were turning the images from GIF into TIFF format, you would probably change the

�lename wdg2.gif into wdg2.tiff or wdg2.tif. As mentioned above you may �nd it useful

to �nd some way of automating the conversion process. Be very careful that while converting
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images you don't accidentally lose some! It is a very good idea to maintain a backup of all

the GIF �les somewhere until the conversion job is entirely �nished.

4. Now edit the �le hiprgen.pl in the progs sub-directory. Near the top of the �le should be

a line saying:

$IMAGE EXT = 'gif'

Change this to reect the new image �lename extension. Do not include the `.' here. Do not

change anything else. Save the �le.

5. Now regenerate every HTML �le in HIPR. See Making Changes using HIPRscript (p.253)

for details.

6. Test to see that it works! If it doesn't then we are afraid that you are on your own. In the

worst case, however, it should be possible to return to where you started from by simply

reversing the above steps.

3.8 Adding Local Information

Introduction

HIPR contains a large amount of information about image processing expressed in fairly general

terms. However, image processing is very much a practical subject and the details of how you

actually do a particular image processing task depend on the details of the system and software

you are using. Since we cannot possibly know all the details of your particular system, HIPR

provides a convenient way of allowing HIPR maintainers to add local information into HIPR.

Local information can be used to describe such things as how to start up the local image processing

package, or who to ask for help. It can also be inserted into a particular operator's worksheet in

order to highlight peculiarities of the local implementation of that operator. These are only a few

of the ways in which local information can be used.

Where to Add Local Information

There are two main places where local information can be added. Information that applies to

HIPR in general, e.g. how to start up image processing packages, or who to contact for help,

should be added to the introductory section entitled Local Information (p.40). On the other hand

local information that pertains to a particular operator worksheet should be added to the Local

Information section at the bottom of that worksheet.

The HTML and LATEX �les for general local information are generated from a HIPRscript �le called

local.hpr. This �le is in fact just a wrapper for a �le called local.loc which is where the actual

information should go. The local.loc �le is also contained in the src sub-directory.

Speci�c local information for each operator is also contained in �les with a .loc extension. There

is one such �le for each operator, so that for instance, the local information for the morphological

dilation (p.118) worksheet is contained in a �le called dilate.loc.

In general therefore, local information sections in HIPR are generated from source �les contained

in the src sub-directory with the extension .loc. These �les are just standard HIPRscript �les

with a non-standard �lename extension (all other HIPRscript �les have the extension .hpr). The

HIPRscript translation process takes this information and inserts it into appropriate HTML and

LATEX �les.

Therefore, one way of adding local information is to edit the appropriate .loc �les, and then

regenerate the corresponding HTML and LATEX �les using hiprgen.pl, as described in Making

Changes Using HIPRscript (p.253).
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An alternative way is just to edit the appropriate LATEX and HTML �les directly to add the

information. This has the disadvantage that two sets of �les must be edited to keep hypermedia

and hardcopy version up to date with one another, and also, if at some time in the future you do

decide to use HIPRscript, your changes will be overwritten. See Editing LATEX and HTML Files

Directly (p.38) for more details.

Both these methods have problems, so to make things easier we have provided a third way to add

local information, as described in the next section.

Local .txt �les

Since using HIPRscript is not trivial, and editing long HTML and LATEX �les by hand may be

di�cult and tedious, we have set things up to make it easy to add information in a limited way

without having to run HIPRscript or edit HTML or LATEX �les directly.

By default, each of the standard supplied .loc �les contains little more than a link to a plain

text �le with a .txt extension. There is one such �le for each operator, so that for instance the

dilation (p.118) worksheet mentioned above is associated with a �le called dilate.txt. The .txt

�les are all contained in a sub-directory of the src directory, called local.

The .txt �les are included directly by both LATEX and HTML �les, so they cannot contain any

LATEX, HTML or HIPRscript tags | they can only contain plain text.

Adding local information using these �les is simple. Just edit the appropriate �le and add whatever

information you require, in plain text. It is not necessary to regenerate any HTML or LATEX �les

for these changes to become visible. The disadvantage of this method is that the advanced markup

available using HIPRscript is not available. To use this you must edit the .loc �les and then

regenerate LATEX and HTML �les as described in Making Changes Using HIPRscript (p.253).

3.9 Editing HTML and LATEX Directly

Why Direct Edit?

HIPR consists of hypermedia and hardcopy versions, realized by HTML and LATEX �les respect-

ively. Both these �le types are originally generated from common source �les written in HIPRscript.

Using HIPRscript source �les ensures that both HTML and LATEX �les contain the same inform-

ation and in addition halves the amount of work required to make changes. Therefore, if at all

possible, it is usually easier to make changes to HIPR by �rst modifying the HIPRscript source �les

and then regenerating the corresponding HTML and LATEX �les using the translation programs

supplied with HIPR.

However, installing the extra utilities necessary to get the HIPRscript translation working is not

trivial, and in fact is very di�cult on non-UNIX machines. In addition, whereas many people

already understand HTML and LATEX, HIPRscript is a new language which you must learn in

order to use. For these two reasons therefore, it is sometimes easier to make changes to HIPR

by directly editing the HTML and LATEX �les themselves. This is particularly true if the changes

involved are small or you don't anticipate having to make changes very often.

Hints and Tips

Obviously, before you can make changes to HTML and/or LATEX �les, it is necessary to know a bit

about those languages. HTML manuals are readily available on the World Wide Web. If you are

connected to the internet, then simply clicking on the Help menu of your browser should provide

access to such a manual. LATEX manuals are more conventionally found in hardcopy form. The

standard textbook is Leslie Lamport's book LATEX, published by Addison-Wesley (ISBN 0-201-

15790-X).
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HIPR is split up into a large number of �les. Before you can make a change to the way HIPR

looks it is necessary to work out which of those �les contains the information you want to change.

The easiest way to do this is by using the hypermedia version of HIPR. Simply go to the page you

intend to modify and read o� the name of the �le in the message window showing you the current

URL. The last bit of this gives the name of the relevant HTML �le in the html sub-directory. The

corresponding LATEX �le will have the �le extension .tex and will be found in the tex sub-directory.

We recommend that when you make changes to HIPR you change both hypermedia and hardcopy

versions in order to avoid confusion. This involves making similar changes to corresponding HTML

and LATEX �les.

When you make changes to HIPR by directly editing the HTML and LATEX �les, you are leaving

the original HIPRscript �les unchanged. Therefore if at some point in the future you regenerate

HIPR from the HIPRscript �les, your changes may be overwritten. For this reason, if you think

you might be using HIPRscript at some time in the future, then you should probably start using

it straight away.

Figures are included as inline GIF �les in HTML, but as encapsulated PostScript in LATEX. There-

fore there are two picture �les corresponding to each �gure. They will both be found in the figs

sub-directory and will have similar names, but the GIF �le will have the extension .gif, whereas

the PostScript �le will have the extension .eps. If you wish to add or replace a �gure then you

should ensure that the picture is present in both formats.

It is not really practical to alter equations in HTML by direct editing. This is because most current

browsers cannot display the necessary symbols, and so equations are included as inline graphics.

These graphics are generated directly from the HIPRscript by the translation programs. Therefore

if you want to add or modify equations that contain non-ASCII symbols, then you will �nd it

easiest to use HIPRscript.
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Chapter 4

Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.
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Part II

Image Processing Operator

Worksheets
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Chapter 5

Image Arithmetic

Image arithmetic applies one of the standard arithmetic operations or a logical operator to two or

more images. The operators are applied in a pixel-by-pixel fashion which means that the value of

a pixel in the output image depends only on the values of the corresponding pixels in the input

images. Hence, the images normally have to be of the same size. One of the input images may be

a constant value, for example when adding a constant o�set to an image.

Although image arithmetic is the most simple form of image processing, there is a wide range

of applications. A main advantage of arithmetic operators is that the process is very simple and

therefore fast.

In many applications the processed images are taken from the same scene at di�erent points of

time, as, for example, in reduction of random noise by adding (p.43) successive images of the same

scene or motion detection by subtracting (p.45) two successive images.

Logical operators (p.234) are often used to combine two (mostly binary) images. In the case of

integer images, the logical operator is normally applied in a bitwise fashion. Then we can, for

example, use a binary mask (p.235) to select a particular region of an image.
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5.1 Pixel Addition

Brief Description

In its most straightforward implementation, this operator takes as input two identically sized

images and produces as output a third image of the same size as the �rst two, in which each pixel

value (p.239) is the sum of the values of the corresponding pixel from each of the two input images.

More sophisticated versions allow more than two images to be combined with a single operation.

A common variant of the operator simply allows a speci�ed constant to be added to every pixel.

How It Works

The addition of two images is performed straightforwardly in a single pass. The output pixel values

are given by:

Q(i; j) = P1(i; j) + P2(i; j)

Or if it is simply desired to add a constant value C to a single image then:

Q(i; j) = P1(i; j) + C

If the pixel values in the input images are actually vectors rather than scalar values (e.g. for color

images (p.225)) then the individual components (e.g. red, blue and green components (p.240)) are

simply added separately to produce the output value.

If the image format being used only supports, say 8-bit integer pixel values (p.232), then it is very

easy for the result of the addition to be greater than the maximum allowed pixel value. The e�ect

of this depends upon the particular implementation. The overowing pixel values might just be

set to the maximum allowed value, an e�ect known as saturation (p.241). Alternatively the pixel

values might wrap around from zero again. If the image format supports pixel values with a much

larger range, e.g. 32-bit integers or oating point numbers, then this problem does not occur so

much.

Guidelines for Use

Image addition crops up most commonly as a sub-step in some more complicated process rather

than as a useful operator in its own right. As an example we show how addition can be used

to overlay the output from an edge detector (p.230) on top of the original image after suitable

masking (p.235) has been carried out.

The image wdg2 shows a simple at dark object against a light background. Applying the Canny

edge detector (p.192) to this image, we obtain wdg2can1. Suppose that our task is to overlay

this edge data on top of the original image. The image wdg2add2 is the result of straightforwardly

adding the two images. Since the sum of the edge pixels and the underlying values in the original is

greater than the maximum possible pixel value, these pixels are (in this implementation) wrapped

around. Therefore these pixels have a rather low pixel value and it is hard to distinguish them

from the surrounding pixels. In order to avoid the pixel overow we need to replace pixels in the

original image with the corresponding edge data pixels, at every place where the edge data pixels

are non-zero. The way to do this is to mask o� a region of the original image before we do any

addition.

The mask is made by thresholding (p.69) the edge data at a pixel value of 128 in order to produce

wdg2thr1. This mask is then inverted (p.63) and subsequently ANDed (p.55) with the original

image to produce wdg2and1.

Finally, the masked image is added to the unthresholded edge data to produce wdg2add1. This

image now clearly shows that the Canny edge detector has done an extremely good job of localizing
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the edges of the original object accurately. It also shows how the response of the edge detector

drops o� at the fuzzier left hand edge of the object.

Other uses of addition include adding a constant o�set to all pixels in an image so as to brighten

that image. For example, adding a constant value of 50 to egg1 yields egg1add1. It is important

to realize that if the input images are already quite bright, then straight addition may produce a

pixel value overow. Image egg1add2 shows the results of adding 100 to the above image. Most of

the background pixels are greater than the possible maximum (255) and therefore are (with this

implementation of addition) wrapped (p.241) around from zero. If we implement the operator in

such a way that pixel values exceeding the maximum value are set to 255 (i.e. using a hard limit)

we obtain egg1add4. This image looks more natural than the wrapped around one. However, due

to the saturation (p.241), we lose a certain amount of information, since all the values exceeding

the maximum value are set to the same graylevel.

In this case, the pixel values should be scaled down (p.48) before addition. The image egg1add3 is

the result of scaling the original with 0.8 and adding a constant value of 100. Although the image

is brighter than the original, it has lost contrast due to the scaling. In most cases, scaling (p.48) the

image with a factor larger than 1 without using addition at all provides a better way to brighten

an image, as it increases the image contrast. For comparison, egg1sca1 is the original image

multiplied with 1.3.

Blending (p.53) provides a slightly more sophisticated way of merging two images which ensures

that saturation cannot happen.

When adding color images it is important to consider how the color information has been encoded.

The section on 8-bit color images (p.226) describes the issues to be aware of when adding such

images.

Exercises

1. Add the above Canny edge image (p.192) to its original, using di�erent implementation's of

pixel addition which handle the pixel overow in di�erent ways. Which one yields the best

results for this implementation?

2. Use skeletonization (p.145) to produce a skeleton of art7. Add the skeleton to the original.

Which problems do you face and how might they be solved?

3. Add a constant value of 255 to eir1. Use two di�erent implementations, one wrapping

around from zero all pixel values exceeding the maximum value and one using a hard limit

of 255. Comment on the results.

References
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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5.2 Pixel Subtraction

The pixel subtraction operator takes two images as input and produces as output a third image

whose pixel values (p.239) are simply those of the �rst image minus the corresponding pixel values

from the second image. It is also often possible to just use a single image as input and subtract

a constant value from all the pixels. Some versions of the operator will just output the absolute

di�erence between pixel values, rather than the straightforward signed output.

How It Works

The subtraction of two images is performed straightforwardly in a single pass. The output pixel

values are given by:

Q(i; j) = P1(i; j)� P2(i; j)

Or if the operator computes absolute di�erences between the two input images then:

Q(i; j) = jP1(i; j)� P2(i; j)j

Or if it is simply desired to subtract a constant value C from a single image then:

Q(i; j) = P1(i; j)� C

If the pixel values in the input images are actually vectors rather than scalar values (e.g. for color

images (p.225)) then the individual components (e.g. red, blue and green components (p.240)) are

simply subtracted separately to produce the output value.

Implementations of the operator vary as to what they do if the output pixel values are negative.

Some work with image formats that support negatively-valued pixels, in which case the negat-

ive values are �ne (and the way in which they are displayed will be determined by the display

colormap (p.235)). If the image format does not support negative numbers then often such pixels

are just set to zero (i.e. black typically). Alternatively, the operator may `wrap' (p.241) negative

values, so that for instance �30 appears in the output as 226 (assuming 8-bit pixel values (p.232)).
If the operator calculates absolute di�erences and the two input images use the same pixel value

type, then it is impossible for the output pixel values to be outside the range that may be repres-

ented by the input pixel type and so this problem does not arise. This is one good reason for using

absolute di�erences.

Guidelines for Use

Image subtraction is used both as a sub-step in complicated image processing sequences, and also

as an important operator in its own right.

A common use is to subtract background variations in illumination from a scene so that the

foreground objects in it may be more easily analyzed. For instance, son1 shows some text which

has been badly illuminated during capture so that there is a strong illumination gradient across

the image. If we wish to separate out the foreground text from the background page, then the

obvious method for black on white text is simply to threshold (p.69) the image on the basis of

intensity. However, simple thresholding fails here due to the illumination gradient. A typical failed

attempt looks like son1thr1.

Now it may be that we cannot adjust the illumination, but we can put di�erent things in the scene.

This is often the case with microscope imaging, for instance. So we replace the text with a sheet

of white paper and without changing anything else we capture a new image, as shown in son2.

This image is the light�eld. Now we can subtract the light�eld image from the original image to

attempt to eliminate variation in the background intensity. Before doing that an o�set of 100 is

added (p.43) to the �rst image to in order avoid getting negative numbers and we also use 32-bit
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integer pixel values (p.239) to avoid overow problems. The result of the subtraction is shown in

son1sub1. Note that the background intensity of the image is much more uniform than before,

although the contrast in the lower part of the image is still poor. Straightforward thresholding can

now achieve better results than before, as shown in son1thr3, which is the result of thresholding

at a pixel value of 80. Note that the results are still not ideal, since in the poorly lit areas of the

image the contrast (i.e. di�erence between foreground and background intensity) is much lower

than in the brightly lit areas, making a suitable threshold di�cult or impossible to �nd. Compare

these results with the example described under pixel division (p.50).

Absolute image di�erencing is also used for change detection. If the absolute di�erence between

two frames of a sequence of images is formed, and there is nothing moving in the scene, then

the output will mostly consist of zero value pixels. If however, there is movement going on, then

pixels in regions of the image where the intensity changes spatially, will exhibit signi�cant absolute

di�erences between the two frames.

As an example of such change detection, consider scr1, which shows an image of a collection

of screws and bolts. The image scr2 shows a similar scene with one or two di�erences. If we

calculate the absolute di�erence between the frames as shown in scr1sub1, then the regions that

have changed become clear. The last image here has been contrast-stretched (p.75) in order to

improve clarity.

Subtraction can also be used to estimate the temporal derivative of intensity at each point in a

sequence of images. Such information can be used, for instance, in optical ow calculations.

Simple subtraction of a constant from an image can be used to darken an image, although scal-

ing (p.48) is normally a better way of doing this.

It is important to think about whether negative output pixel values can occur as a result of the

subtraction, and how the software will treat pixels that do have negative values. An example

of what may happen can be seen in son1sub2, which is the above light�eld directly subtracted

from the text images. In the implementation of pixel subtraction which was used, negative values

are wrapped around (p.241) starting from the maximum value. Since we don't have exactly the

same reectance of the paper when taking the images of the light�eld and the text, the di�erence

of pixels belonging to background is either slightly above or slightly below zero. Therefore the

wrapping results in background pixels with either very small or very high values, thus making the

image unsuitable for further processing (for example, thresholding (p.69)). If we alternatively set

all negative values to zero, the image would become completely black, because subtracting the

pixels in the light�eld from the pixels representing characters in the text image yields negative

results, as well.

In this application, a suitable way to deal with negative values is to use absolute di�erences, as

can be seen in son1sub3 or as a gamma corrected (p.85) version in son1sub4. Thresholding this

image yields similar good results as the earlier example.

If negative values are to be avoided then it may be possible to �rst add (p.43) an o�set to the �rst

input image. It is also often useful if possible to convert the pixel value type to something with a

su�ciently large range to avoid overow, e.g. 32-bit integers or oating point numbers.

Exercises

1. Take images of your watch at two di�erent times, without moving it in between, and use

subtraction to highlight the di�erence in the display.

2. Use art4 to investigate the following method for edge detection (p.230). First apply

erosion (p.123) to the image and then subtract the result from the original. What is the

di�erence in the edge image if you use dilation (p.118) instead of erosion? What e�ects

have size and form of the structuring element (p.241) on the result. How does the technique

perform on grayscale images (p.232)?
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5.3 Pixel Multiplication and Scaling

Brief Description

Like other image arithmetic operators, multiplication comes in two main forms. The �rst form takes

two input images and produces an output image in which the pixel values (p.239) are just those

of the �rst image, multiplied by the values of the corresponding values in the second image. The

second form takes a single input image and produces output in which each pixel value is multiplied

by a speci�ed constant. This latter form is probably the more widely used and is generally called

scaling.

This graylevel scaling should not be confused with geometric scaling (p.90).

How It Works

The multiplication of two images is performed in the obvious way in a single pass using the formula:

Q(i; j) = P1(i; j)� P2(i; j)

Scaling by a constant is performed using:

Q(i; j) = P1(i; j)� C

Note that the constant is often a oating point number, and may be less than one, which will

reduce the image intensities. It may even be negative if the image format supports that.

If the pixel values are actually vectors rather than scalar values (e.g. for color images (p.225)) then

the individual components (e.g. reffrgbgfred, blue and green componentsg) are simply multiplied

separately to produce the output value.

If the output values are calculated to be larger than the maximum allowed pixel value, then they

may either be truncated at that maximum value, or they can `wrap around' (p.241) and continue

upwards from the minimum allowed number again.

Guidelines for Use

There are many specialist uses for scaling. In general though, given a scaling factor greater than

one, scaling will brighten an image. Given a factor less than one, it will darken the image. Scaling

generally produces a much more natural brightening/darkening e�ect than simply adding (p.43)

an o�set to the pixels, since it preserves the relative contrast of the image better. For instance,

pum1dim1 shows a picture of model robot that was taken under low lighting conditions. Simply

scaling every pixel by a factor of 3, we obtain pum1mul1, which is much clearer. However, when

using pixel multiplication, we should make sure that the calculated pixel values don't exceed the

maximum possible value. If we, for example, scale the above image by a factor of 5 using a 8-bit

representation (p.232), we obtain pum1mul2. All the pixels which, in the original image, have

a value greater than 51 exceed the maximum value and are (in this implementation) wrapped

around (p.241) from 255 back to 0.

The last example shows that it is important to be aware of what will happen if the multiplications

result in pixel values outside the range that can be represented by the image format being used.

It is also very easy to generate very large numbers with pixel-by-pixel multiplication. If the image

processing software supports it, it is often safest to change to an image format with a large range,

e.g. oating point, before attempting this sort of calculation.

Scaling is also often useful prior to other image arithmetic in order to prevent pixel values going out

of range, or to prevent integer quantization ruining the results (as in integer image division (p.50)).

Pixel-by-pixel multiplication is generally less useful, although sometimes a binary image (p.225)

can be used to multiply another image in order to act as a mask (p.235). The idea is to multiply
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by 1 those pixels that are to be preserved, and multiply by zero those that are not. However for

integer format images it is often easier and faster to use the logical operator AND (p.55) instead.

Another use for pixel by pixel multiplication is to �lter images in the frequency domain. We

illustrate the idea using the example of hse1. First, we obtain hse1fou1 by applying the Fourier

transform (p.209) to the original image, and then we use pixel multiplication to attenuate certain

frequencies in the Fourier domain. In this example we use a simple lowpass �lter which (as a

scaled version) can be seen in hse1msk3. The result of the multiplication is shown in hse1fou2.

Finally, an inverse Fourier transform is performed to return to the spatial domain. The �nal result

hse1fil1 shows the smoothing e�ect of a lowpass �lter. More details and examples are given in

the worksheets dealing with frequency �ltering (p.167).

Exercises

1. Overlay tol1 and its skeleton (p.145) tol1skl1 using pixel addition (p.43) (the skeleton was

derived from tol1thr1, which was produced by thresholding the input image at 110). Use

image multiplication (p.48) to scale the images prior to the addition in order to avoid the

pixel values being out of range. What e�ect does this have on the contrast of the input

images.

2. Use thresholding (p.69) to segment the simple image wdg4 into foreground and background.

Use scaling to set the foreground pixel value to 2, and the background pixel value to 0. Then

use pixel-by-pixel multiplication to multiply this image with the original image. What has

this process achieved and why might it be useful?

References

E. DaviesMachine Vision: Theory, Algorithms and Practicalities, Academic Press, 1990, Chap. 2.

A. Marion An Introduction to Image Processing, Chapman and Hall, 1991, p 244.
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5.4 Pixel Division

Brief Description

The image division operator normally takes two images as input and produces a third whose pixel

values are just the pixel values (p.239) of the �rst image divided by the corresponding pixel values

of the second image. Many implementations can also be used with just a single input image, in

which case every pixel value in that image is divided by a speci�ed constant.

How It Works

The division of two images is performed in the obvious way in a single pass using the formula:

Q(i; j) = P1(i; j)� P2(i; j)

Division by a constant is performed using:

Q(i; j) = P1(i; j)� C

If the pixel values are actually vectors rather than scalar values (e.g. for color images (p.225))

than the individual components (e.g. red, blue and green components (p.240)) are simply divided

separately to produce the output value.

The division operator may only implement integer division, or it may also be able to handle oating

point division. If only integer division is performed, then results are typically rounded down to the

next lowest integer for output. The ability to use images with pixel value types other than simply

8-bit integers (p.232) comes in very handy when doing division.

Guidelines for Use

One of the most important uses of division is in change detection, in a similar way to the use of

subtraction (p.45) for the same thing. Instead of giving the absolute change for each pixel from one

frame to the next, however, division gives the fractional change or ratio between corresponding

pixel values (hence the common alternative name of ratioing). The images scr1 and scr2 are

of the same scene except two objects have been slightly moved between the exposures. Dividing

the former by the latter using a oating point pixel type and then contrast stretching (p.75)

the resulting image yields scr1div1. After the division, pixels which didn't change between the

exposures have a value of 1, whereas if the pixel value increased after the �rst exposure the result

of the division is clustered between 0 and 1, otherwise it is between 1 and 255 (provided the

pixel value in the second image is not smaller than 1). That is the reason why we can only see

the new position of the moved part in the contrast-stretched image. The old position can be

visualized by histogram equalizing (p.78) the division output, as shown in scr1div2. Here, high

values correspond to the new position, low values correspond to the old position, assuming that

the intensity of the moved object is lower than the background intensity. Intermediate graylevels

in the equalized image correspond to areas of no change. Due to noise, the image also shows the

position of objects which were not moved.

For comparison, the absolute di�erence (p.45) between the two images, as shown in scr1sub1,

produces approximately the same pixel values at the old and the new position of a moved part.

Another application for pixel division is to separate the actual reectance of an object from the un-

wanted inuence of illumination. This image son1 shows a poorly illuminated piece of text. There is

a strong illumination gradient across the image which makes conventional foreground/background

segmentation using standard thresholding (p.69) impossible. The image son1thr1 shows the result

of straightforward intensity thresholding at a pixel value of 128. There is no global threshold value

that works over the whole of the image.
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Suppose that we cannot change the lighting conditions, but that we can take several images with

di�erent items in the view�eld. This situation arises quite a lot in microscopy, for instance. We

choose to take a picture of a blank sheet of white paper which should allow us to capture the

incident illumination variation. This light�eld image is shown in son2.

Now, assuming that we are dealing with a at scene here, with points on the surface of the

scene described by coordinates x and y, then the reected light intensity B(x,y) depends upon the

reectance R(x,y) of the scene at that point and also on the incident illumination I(x,y) such that:

B(x; y) / I(x; y)�R(x; y)

Using subscripts to distinguish the blank (light�eld) image and the original image, we can write:

Borig(x; y)

Bblank(x; y)
/ Iorig(x; y)�Rorig(x; y)

Iblank(x; y)�Rblank(x; y)

But since I(x,y) is the same for both images, and assuming the reectance of the blank paper to

be uniform over its surface, then:

Borig(x; y)

Bblank(x; y)
/ Rorig(x; y)

Therefore the division should allow us to segment the letters out nicely. In image son1div1 we see

the result of dividing the original image by the light�eld image. Note that oating point format

images were used in the division, which were then normalized (p.75) to 8-bit integers (p.232) for

display. Virtually all the illumination gradient has been removed. The image son1thr2 shows the

result of thresholding (p.69) this image at a pixel value of 160. While not fantastic, with a little

work using morphological operations (p.236), the text could become quite legible. Compare the

result with that obtained using subtraction (p.45).

As with other image arithmetic operations (p.42), it is important to be aware of whether the

implementation being used does integer or oating point arithmetic. Dividing two similar images,

as done in the above examples, results mostly in very small pixel values, seldom greater than 4 or

5. To display the result, the image has to be normalized to 8-bit integers. However, if the division

is performed in an integer format the result is quantized before the normalization, hence a lot of

information is lost. Image scr1div3 shows the result of the above change detection if the division

is performed in integer format. The maximum result of the division was less than 3, therefore

the integer image contains only three di�erent values, i.e. 0, 1 and 2 before the normalization.

One solution is to multiply the �rst image (the numerator image) by a scaling factor (p.48) before

performing the division. Of course this is not generally possible with 8-bit integer images since

signi�cant scaling will simply saturate all the pixels in the image. The best method is, as was

done in the above examples, to switch to a non-byte image type, and preferably to a oating point

format. The e�ect is that the image is not quantized until the normalization and therefore the

result does contain more graylevels. If oating point cannot be used, then use, say, 32-bit integers,

and scale up the numerator image before dividing.

Exercises

1. Take two images of an (analogue) watch at di�erent times, without moving it in between.

Use division to detect the change in the image and compare the result with the one achieved

with pixel subtraction (p.45). How easily can one detect small motions (i.e. minutes hand

vs seconds hand)?

2. Describe a possible application where determining the percentage change between two images

of similar scenes using ratioing is a better idea than determining the di�erence between the

images using subtraction.
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5.5 Blending

Brief Description

This operator forms a blend of two input images of the same size. Similar to pixel addition (p.43),

the value of each pixel in the output image is a linear combination of the corresponding pixel

values (p.239) in the input images. The coe�cients of the linear combination are user-speci�ed

and they de�ne the ratio by which to scale (p.48) each image before combining them. These

proportions are applied such that the output pixel values do not exceed the maximum pixel value.

How It Works

The resulting image is calculated using the formula

Q(i; j) = X � P1(i; j) + (1�X)� P2(i; j)

P1 and P2 are the two input images. In some applications P2 can also be a constant, thus allowing

a constant o�set value to be added to a single image.

X is the blending ratio which determines the inuence of each input image in the output. X can

either be a constant factor for all pixels in the image or can be determined for each pixel separately

using a mask. The size of the mask must then be identical with the size of the images.

Some implementations only support graylevel images. If multi-spectral images (p.237) are suppor-

ted the calculation is done for each band separately.

Guidelines for Use

Image blending is used for similar applications as image addition (p.43) with the di�erence that

we don't have to worry whether the values of the output image exceed the allowed maximum. In

most cases the operator is a part of some more complicated process. As an example we use image

blending to overlay the output of an edge detector (p.230) on top of the original image, (compare

with the results achieved with image addition).

The image wdg2 shows a simple at dark object against a light background. Applying the Canny

edge detector (p.192) to this image we obtain wdg2can1. We get wdg2bld1 if we apply the blending

operator with X = 0.5, where the original image is P1 and the edge image is P2. The result clearly

shows the disadvantage of image blending over image addition: since each of the input images is

scaled with 0.5 before they are added up, the contrast of each image is halved. That is why it

is hard to see the di�erence between the object and the background of the original image. If the

contrast in one image is more important than the other, we can improve the result by choosing a

blending ratio other than 0.5, thus keeping more of the contrast in the image where it is needed.

To get wdg2bld2 the same two images as above were blended with X=0.7.

The bad result in the �rst example is mainly due to the low initial contrast in the input images.

So, we will have a better result if the input images are of high contrast. To produce wdg2str1,

the input images were contrast-enhanced with contrast stretching (p.75) and then blended with X

= 0.5. Although this already yields a better result, we still lose some contrast with respect to the

original input images.

To maintain the full contrast in the output image we can de�ne a special mask. The mask is made

by thresholding (p.69) the edge image at a pixel value of 128 and setting the non-zero values to

one. Now, we blend the graylevel edge image (now corresponding to P1) and the original image

using the thresholded image as a blending mask X(i,j). The image wdg2bld3 shows the result,

which is identical to the one achieved with image addition (p.43), but now achieved via a slightly

simpler process.
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Blending can also be used to achieve nice e�ects in photographs. We obtained moo1bld1 by

blending moo1 with the resized version of fce6 using the X=0.5.

Exercises

1. Examine the e�ects of using blending ratios other than 0.5 when blending moo1 and fce6.

2. Take an image and add a constant value (e.g. 100) using image blending and image addition.

Comment on the di�erences of the results.

3. Produce a skeleton from art6 using skeletonization (p.145). Assess the result by combining

the two images using the blending operator.
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5.6 Logical AND/NAND

Brief Description

AND and NAND are examples of logical operators (p.234) having the truth-tables shown in Fig-

ure 5.1.

AND NAND

A B Q

0

0

1

1

0

0

1

1

0

0

0

1

A B Q

0

0

1

1

0

0

1

1

1

1

1

0

Figure 5.1: Truth-tables for AND and NAND.

As can be seen, the output values of NAND are simply the inverse of the corresponding output

values of AND.

The AND (and similarly the NAND) operator typically takes two binary (p.225) or integer graylevel

images (p.232) as input, and outputs a third image whose pixel values are just those of the �rst

image, ANDed with the corresponding pixels from the second. A variation of this operator takes

just a single input image and ANDs each pixel with a speci�ed constant value in order to produce

the output.

How It Works

The operation is performed straightforwardly in a single pass. It is important that all the input

pixel values being operated on have the same number of bits in them or unexpected things may

happen. Where the pixel values (p.239) in the input images are not simple 1-bit numbers, the

AND operation is normally (but not always) carried out individually on each corresponding bit in

the pixel values, in bitwise fashion (p.235).

Guidelines for Use

The most obvious application of AND is to compute the intersection of two images. We illustrate

this with an example where we want to detect those objects in a scene which did not move between

two images, i.e. which are at the same pixel positions in the �rst and the second image. We

illustrate this example using scr3 and scr4. If we simply AND the two graylevel images in a

bitwise fashion we obtain scr3and1. Although we wanted the moved object to disappear from

the resulting image, it appears twice, at its old and at its new position. The reason is that the

object has rather low pixel values (similar to a logical 0) whereas the background has a high values

(similar to a logical 1). However, we normally associate an object with logical 1 and the background

with logical 0, therefore we actually ANDed the negatives of two images, which is equivalent to

NOR (p.58) them. To obtain the desired result we have to invert (p.63) the images before ANDing

them, as it was done in scr3and2. Now, only the object which has the same position in both

images is highlighted. However, ANDing two graylevel images might still cause problems, as it is

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



56

not guaranteed that ANDing two high pixel values in a bitwise fashion yields a high output value

(for example, 128 AND 127 yields 0). To avoid these problems, it is best to produce a binary

versions from the grayscale images using thresholding (p.69). scr3thr1 and scr4thr1 are the

thresholded versions of the above images and scr3and3 is the result of ANDing their negatives.

Although ANDing worked well for the above example, it runs into problems in a scene like pap1.

Here, we have two objects with the average intensity of one being higher than the background

and the other being lower. Hence, we can't produce a binary image containing both objects using

simple thresholding. As can be seen in the following images, ANDing the grayscale images is not

successful either. If in the second scene the light part was moved, as in pap2, then the result of

ANDing the two images is pap1and1. It shows the desired e�ect of attenuating the moved object.

However, if the second scene is somehow like pap3, where the dark object was moved, we obtain

pap1and2. Here, the old and the new positions of the dark object are visible.

In general, applying the AND operator (or other logical operators) to two images in order to detect

di�erences or similarities between them is most appropriate if they are binary or can be converted

into binary format using thresholding.

As with other logical operators, AND and NAND are often used as sub-components of more

complex image processing tasks. One of the common uses for AND is for masking (p.235). For

example, suppose we wish to selectively brighten a small region of car1 to highlight a particular

car. There are many ways of doing this and we illustrate just one. First a paint program (p.233)

is used to identify the region to be highlighted. In this case we set the region to black as shown

in car1msk1. This image can then be thresholded (p.69) to just select the black region, producing

the mask shown in car1thr1. The mask image has a pixel value of 255 (11111111 binary) in the

region that we are interested in, and zero pixels (00000000 binary) elsewhere. This mask is then

bitwise ANDed with the original image to just select out the region that will be highlighted. This

produces car1and1. Finally, we brighten this image by scaling (p.48) it by a factor of 1.1, dim the

original image using a scale factor of 0.8, and then add (p.43) the two images together to produce

car1add1.

AND can also be used to perform so called bit-slicing on an 8-bit image. To determine the inuence

of one particular bit on an image, it is ANDed in a bitwise fashion with a constant number, where

the relevant bit is set to 1 and the remaining 7 bits are set to 0. For example, to obtain the bit-

plane 8 (corresponding to the most signi�cant bit) of ape1, we AND the image with 128 (10000000

binary) and threshold (p.69) the output at a pixel value of 1. The result, shown in ape1and8, is

equivalent to thresholding the image at a value of 128. Images ape1and7, ape1and6 and ape1and4

correspond to bit-planes 7, 6 and 4. The images show that most image information is contained in

the higher (more signi�cant) bits, whereas the less signi�cant bits contain some of the �ner details

and noise. The image ape1and1 shows bit-plane 1.

Exercises

1. NAND cir2 and cir3. Compare the result with the result of ANDing the negatives (p.63)

of the two input images.

2. AND scr3thr1 and scr4thr1 as well as the negatives (p.63) of pap1 and pap2. Compare

the results with the ones obtained in the previous section.

3. Extract all 8 bit planes from pen1 and str1. Comment on the number of visually signi�cant

bits in each image.

4. What would be the e�ect of ANDing an 8-bit graylevel image (p.232) with a constant value

of 240 (11110000 in binary)? Why might you want to do this?

5. What would be the e�ect of ANDing an 8-bit graylevel image with a constant value of 15

(00001111 in binary)? Why might you want to do this? Try this out on bal1 and comment

on what you see.
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5.7 Logical OR/NOR

Brief Description

OR and NOR are examples of logical operators (p.234) having the truth-tables shown in Figure 5.2.
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0
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0

0
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0
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0
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1

1

0

0

Figure 5.2: Truth-tables for OR and NOR.

As can be seen, the output values of NOR are simply the inverses of the corresponding output

values of OR.

The OR (and similarly the NOR) operator typically takes two binary (p.225) or graylevel (p.232)

images as input, and outputs a third image whose pixel values are just those of the �rst image,

ORed with the corresponding pixels from the second. A variation of this operator takes just a

single input image and ORs each pixel with a speci�ed constant value in order to produce the

output.

How It Works

The operation is performed straightforwardly in a single pass. It is important that all the input

pixel values being operated on have the same number of bits in them or unexpected things may

happen. Where the pixel values (p.239) in the input images are not simple 1-bit numbers, the OR

operation is normally (but not always) carried out individually on each corresponding bit in the

pixel values, in bitwise fashion (p.235).

Guidelines for Use

We can illustrate the function of the OR operator using scr3 and scr4. The images show a scene

with two objects, one of which was moved between the exposures. We can use OR to compute

the union of the images, i.e. highlighting all pixels which represent an object either in the �rst or

in the second image. First, we threshold (p.69) the images, since the process is simpli�ed by use

binary input. If we OR the resulting images scr3thr1 and scr4thr1 we obtain scr3or2. This

image shows only the position of the object which was at the same location in both input images.

The reason is that the objects are represented with logically 0 and the background is logically 1.

Hence, we actually OR the background which is equivalent to NANDing the objects. To get the

desired result, we �rst have to invert (p.63) the input images before ORing them. Then, we obtain

scr3or1. Now, the output shows the position of the stationary object as well as that of the moved

object.

As with other logical operators, OR and NOR are often used as sub-components of more complex

image processing tasks. OR is often used to merge two images together. Suppose we want to
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overlay wdg2 with its histogram (p.105), shown in wdg2hst1. First, an image editor (p.233) is

used to enlarge the histogram image until it is the same size as the grayscale image as shown in

wdg2hst2. Then, simply ORing the two gives wdg2or1. The performance in this example is quite

good, because the images contain very distinct graylevels. If we proceed in the same way with

bld1 we obtain bld1or1. Now, it is di�cult to see the characters of the histogram (which have

high pixel values) at places where the original image has high values, as well. Compare the result

with that described under XOR (p.60).

Note that there is no problem of overowing pixel values with the OR operator, as there is with

the addition operator (p.43).

ORing is usually safest when at least one of the images is binary, i.e. the pixel values are 0000...

and 1111... only. The problem with ORing other combinations of integers is that the output result

can uctuate wildly with a small change in input values. For instance 127 ORed with 128 gives

255, whereas 127 ORed with 126 gives 127.

Exercises

1. NOR cir2 and cir3 and AND their negatives (p.63). Compare the results.

2. Why can't you use thresholding (p.69) to produce a binary image containing both objects

of pap2 and pap3? Use graylevel ORing to combine the two images. Can you detect all the

locations of the objects in the two images? What changes if you invert (p.63) the images

before combining them.

3. In the example above, how could you make the histogram appear in black instead of white?

Try it.

4. Summarize the conditions under which you would use OR to combine two images rather

than, say, addition (p.43) or blending (p.53).
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5.8 Logical XOR/XNOR

Brief Description

XOR and XNOR are examples of logical operators (p.234) having the truth-tables shown in Fig-

ure 5.3.
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Figure 5.3: Truth-tables for XOR and XNOR.

The XOR function is only true if just one (and only one) of the input values is true, and false

otherwise. XOR stands for eXclusive OR. As can be seen, the output values of XNOR are simply

the inverse of the corresponding output values of XOR.

The XOR (and similarly the XNOR) operator typically takes two binary (p.225) or graylevel

images (p.232) as input, and outputs a third image whose pixel values (p.239) are just those of the

�rst image, XORed with the corresponding pixels from the second. A variation of this operator

takes a single input image and XORs each pixel with a speci�ed constant value in order to produce

the output.

How It Works

The operation is performed straightforwardly in a single pass. It is important that all the input

pixel values being operated on have the same number of bits in them, or unexpected things may

happen. Where the pixel values in the input images are not simple 1-bit numbers, the XOR

operation is normally (but not always) carried out individually on each corresponding bit in the

pixel values, in bitwise fashion (p.235).

Guidelines for Use

We illustrate the function of XOR using scr3 and scr4. Since logical operators work more reliably

with binary input we �rst threshold (p.69) the two images, thus obtaining scr3thr1 and scr4thr1.

Now, we can use XOR to detect changes in the images, since pixels which didn't change output

0 and pixels which did change result in 1. The image scr3xor1 shows the result of XORing the

thresholded images. We can see the old and the new position of the moved object, whereas the

stationary object almost disappeared from the image. Due to the e�ects of noise, we can still see

some pixels around the boundary of the stationary object, i.e. pixels whose values in the original

image were close to the threshold.

In a scene like pap1, it is not possible to apply a threshold in order to obtain a binary image, since

one of the objects is lighter than the background whereas the other one is darker. However, we can

combine two grayscale images by XORing them in a bitwise fashion. pap3 shows a scene where the
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dark object was moved and in pap2 the light object changed its position. XORing each of them

with the initial image yields pap1xor1 and pap1xor2, respectively. In both cases, the moved part

appears at the old as well as at the new location and the stationary object almost disappears. This

technique is based on the assumption that XORing two similar grayvalues produces a low output,

whereas two distinct inputs yield a high output. However, this is not always true, e.g. XORing 127

and 128 yields 255. These e�ects can be seen at the boundary of the stationary object, where the

pixels have an intermediate graylevel and might, due to noise (p.221), di�er slightly between two

of the images. Hence, we can see a line with high values around the stationary object. A similar

problem is that the output for the moved pen is much higher than the output for the moved piece of

paper, although the contrast between their intensities and that of the background value is roughly

the same. Because of these problems it is often better to use image subtraction (p.45) or image

division (p.50) for change detection.

As with other logical operators, XOR and XNOR are often used as sub-components of more

complex image processing tasks. XOR has the interesting property that if we XOR A with B

to get Q, then the bits of Q are the same as A where the corresponding bit from B is zero, but

they are of the opposite value where the corresponding bit from B is one. So for instance using

binary notation, 1010 XORed with 1100 gives 0110. For this reason, B could be thought of as a

bit-reversal mask. Since the operator is symmetric, we could just as well have treated A as the

mask and B as the original.

Extending this idea to images, it is common to see an 8-bit XOR image mask (p.235) containing

only the pixel values 0 (00000000 binary) and 255 (11111111 binary). When this is XORed pixel-

by-pixel with an original image it reverses the bits of pixels values where the mask is 255, and

leaves them as they are where the mask is zero. The pixels with reversed bits normally `stand out'

against their original color and so this technique is often used to produce a cursor that is visible

against an arbitrary colored background. The other advantage of using XOR like this is that to

undo the process (for instance when the cursor moves away), it is only necessary to repeat the

XOR using the same mask and all the ipped pixels will become unipped. Therefore it is not

necessary to explicitly store the original colors of the pixels a�ected by the mask. Note that the

ipped pixels are not always visible against their unipped color | light pixels become dark pixels

and dark pixels become light pixels, but middling gray pixels become middling gray pixels!

The image wdg2 shows a simple graylevel image. Suppose that we wish to overlay this image with

its histogram (p.105) shown in wdg2hst1 so that the two can be compared easily. One way is to

use XOR. We �rst use an image editor (p.233) to enlarge the histogram until it is the same size

as the �rst image. The result is shown in wdg2hst2. To perform the overlay we simply XOR this

image with the �rst image in bitwise fashion to produce wdg2xor1. Here, the text is quite easy

to read, because the original image consists of large and rather light or rather dark areas. If we

proceed in the same way with bld1 we obtain bld1xor1. Note how the writing is dark against

light backgrounds and light against dark backgrounds and hardly visible against gray backgrounds.

Compare the result with that described under OR (p.58). In fact XORing is not particularly good

for producing easy to read text on gray backgrounds | we might do better just to add a constant

o�set to the image pixels that we wish to highlight (assuming wraparound under addition overow)

| but it is often used to quickly produce highlighted pixels where the background is just black

and white or where legibility is not too important.

Exercises

1. XOR cir2 and cir3. Compare the result with the output of XORing their negatives (p.63).

Do you see the same e�ect as for other logical operators?

2. Use the technique discussed above to produce a cursor on fce1. Place the cursor on dif-

ferent location of the image and examine the performance on a background with high, low,

intermediate and mixed pixel values.
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5.9 Invert/Logical NOT

Brief Description

Logical NOT or invert is an operator which takes a binary (p.225) or graylevel image (p.232) as

input and produces its photographic negative, i.e. dark areas in the input image become light and

light areas become dark.

How It Works

To produce the photographic negative of a binary image we can employ the logical NOT operator.

Its truth-table is shown in Figure 5.4.

A

0

Q

1

0

NOT

1

Figure 5.4: Truth-table for logical NOT.

Each pixel in the input image having a logical 1 (often referred to as foreground) has a logical 0

(associated with the background in the output image and vice versa. Hence, applying logical NOT

to a binary image changes its polarity (p.225).

The logical NOT can also be used for a graylevel image being stored in byte pixel format (p.239)

by applying it in a bitwise (p.234) fashion. The resulting value for each pixel is the input value

subtracted from 255:

Q(i; j) = 255� P (i; j)

Some applications of invert also support integer or oat pixel format. In this case, we can't use

the logical NOT operator, therefore the pixel values of the inverted image are simply given by

Q(i; j) = �P (i; j)

If this output image is normalized (p.75) for an 8-bit display, we again obtain the photographic

negative of the original input image.

Guidelines for Use

When processing a binary image with a logical (p.234) or morphological (p.117) operator, its

polarity (p.225) is often important. Hence, the logical NOT operator is often used to change the

polarity of a binary image as a part of some larger process. For example, if we OR (p.58) cir2neg1

and cir3neg1 the resulting image, cir2or2, shows the union of the background, because it is

represented with a logical 1. However, if we OR cir2 and cir3 which are the inverted versions of

the above image we obtain cir2or1. Now, the result contains the union of the two circles.
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We illustrate another example of the importance of the polarity of a binary image using the

dilation (p.118) operator. Dilation expands all white areas in a binary image. Hence, if we dilate

art4, the object, being represented with a logical 1, grows and the holes in the object shrink.

We obtain art4dil1. If we dilate art4neg1 which was obtained by applying logical NOT to the

original image, we get art4dil2. Here, the background is expanded and the object became smaller.

Invert can be used for the same purpose on grayscale images, if they are processed with a morpho-

logical or logical operator.

Invert is also used to print the photographic negative of an image or to make the features in an

image appear clearer to a human observer. This can, for example, be useful for medical images,

where the objects often appear in black on a white background. Inverting the image makes the

objects appear in white on a dark background, which is often more suitable for the human eye.

From the original image cel7 of a tissue slice, we obtain the photographic negative cel7neg1.

Exercises

1. Apply the erode (p.123) operator to art1 and art3. Which polarity of the image allows you

to suppress the circles?

2. Compare the results of ORing (p.58) scr3 and scr4 and ORing their photographic negatives.

3. Take the photographic negative of egg1. Does it improve the visibility of the features in the

image?
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5.10 Bitshift Operators

Brief Description

The bitshift operator works on images represented in byte or integer pixel format (p.239), where

each pixel value is stored as a binary number with a �xed amount of bits. Bitshifting shifts the

binary representation of each pixel to the left or to the right by a pre-de�ned number of positions.

Shifting a binary number by one bit is equivalent to multiplying (p.48) (when shifting to the left)

or dividing (p.50) (when shifting to the right) the number by 2.

How It Works

The operation is performed straightforwardly in a single pass. If the binary representation of a

number is shifted in one direction, we obtain an empty position on the opposite side. There are

generally three possibilities of how to �ll in this empty position: we can pad the empty bits with a

0 or a 1 or we can wrap around the bits which are shifted out of the binary representation of the

number on the other side. The last possibility is equivalent to rotating the binary number.

The choice of technique used depends on the implementation of the operator and on the application.

In most cases, bitshifting is used to implement a fast multiplication or division. In order to obtain

the right results for this application, we have to pad the empty bits with a 0. Only in the case of

dividing a negative number by a power of 2, do we need to �ll the left bits with a 1, because a

negative number is represented as the two's-complement of the positive number, i.e. the sign bit

is a 1. The result of applying bitshifting in this way is illustrated in the following formula:

Shifting i bits to the right , Q(i; j) = P (i; j)� 2i

Shifting i bits to the left , Q(i; j) = P (i; j)� 2i

An example is shown in Figure 5.5.

If bitshifting is used for multiplication, it might happen that the result exceeds the maximum

possible pixel value. This is the case when a 1 is shifted out of the binary representation of the

pixel value. This information is lost and the e�ect is that the value is wrapped around (p.241)

from zero.

Guidelines for Use

The main application for the bitshift operator is to divide or multiply an image by a power of 2.

The advantage over the normal pixel division (p.50) and pixel multiplication (p.48) operators is

that bitshifting is computationally less expensive.

For example, if we want to add (p.43) two images we can use bitshifting to make sure that the result

will not exceed the maximum pixel value. We illustrate this example using tol1 and tol1skl1

where the latter is the skeleton (p.145) gained from the thresholded (p.69) version of the former.

To better visualize the result of the skeletonization we might want to overlay these two images.

However, if we add them straightforwardly we obtain pixel values greater than the maximum value.

First shifting both images to the right by one bit yields tol1shi1 and tol1skl2, which then can

be added without causing any overow problems. The result can be seen in tol1add1. Here, we

can see that shifting a pixel to the right does, as a normal pixel division, decrease the contrast in

the image.

On the other hand, shifting the binary representation of a pixel to the left increases the image

contrast, like the pixel multiplication. For example, pum1dim1 is an image taken under poor

lighting conditions. Shifting each pixel in the image to the left by one bit, which is identical to

multiplying it with 2, yields pum1shi1. Although the operator worked well in this example, we have

to be aware that the result of the multiplication might exceed the maximum pixel value. Then, the

e�ect for the pixel value is that it is wrapped around (p.241) from 0. For example, if we shift each
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100 1 0 0 1 0

1 1 0 0 1 0 0 0

1 0 0 1 1 0 1 0

10110011

Binary Decimal

2 bits

1 bit

50

50 x 4 = 200

-102

-102 / 2 = -51

Figure 5.5: Examples for using bitshifting for multiplication and division. Note that the bottom

example uses a signed-byte convention where a byte represents a number between �128 and +127

pixel in the above image by two bits, at some pixels a 1 is shifted out of the binary representation

of the image, resulting in a loss of information. This can be seen in pum1shi2. In general, we

should make sure that the values in the input image are su�ciently small or we have to be careful

when we interpret the resulting image. Alternatively, we can change the pixel value (p.239) format

prior to applying the bitshift operator, e.g. change from byte format to integer format.

Although multiplication and division are the main applications for bitshifting it might also be

used for other, often very specialized, purposes. For example, we can store two 4-bit images in a

byte array if we shift one of the two images by 4 bits and mask out the unused bits. Using the

logical OR operator (p.58) we can combine the two images into one without losing any information.

Sometimes it might also be useful to rotate the binary representation of each bit, apply some other

operator to the image and �nally rotate the pixels back to the initial order.

Exercises

1. Use pixel addition (p.43) to overlay wdg2 and its edge image wdg2can1. Apply the bitshift

operator to the original image in order to increase its contrast. Convert the image into an

integer format prior to the shifting to preserve all image information. Compare the result of

the addition with the one you get without the bitshifting.

2. What is the result of dividing �7 (binary:1001) by 2 using bitshifting. What is the result of

dividing +7 (binary:0111) by 2?
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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Chapter 6

Point Operations

Single-point processing is a simple method of image enhancement. This technique determines a

pixel value in the enhanced image dependent only on the value of the corresponding pixel in the

input image. The process can be described with the mapping function

s =M(r)

where r and s are the pixel values in the input and output images, respectively. The form of the

mapping function M determines the e�ect of the operation. It can be previously de�ned in an

ad-hoc manner, as for thresholding (p.69) or gamma correction (p.87), or it can be computed from

the input image, as for histogram equalization (p.78). For example, a simple mapping function is

de�ned by the thresholding operator:

s =

�
0 if r < T

L� 1 if r > T

The corresponding graph is shown in Figure 6.1.

T(r)

s

L-1

T r L-1

Figure 6.1: Graylevel transformation function for thresholding.

Point operators are also known as LUT-transformations, because the mapping function, in the case

of a discrete image, can be implemented in a look-up table (LUT) (p.235).

A subgroup of the point processors is the set of anamorphosis operators. This notion describes

all point operators with a strictly increasing or decreasing mapping function. Examples include

the logarithm operator (p.82), exponential operator (p.85) and contrast stretching (p.75), to name

just a few.

An operator where M changes over the image is adaptive thresholding (p.72). This is not a pure

point operation anymore, because the mapping function, and therefore the output pixel value,

depends on the local neighborhood of a pixel.
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6.1 Thresholding

Brief Description

In many vision applications, it is useful to be able to separate out the regions of the image corres-

ponding to objects in which we are interested, from the regions of the image that correspond to

background. Thresholding often provides an easy and convenient way to perform this segmentation

on the basis of the di�erent intensities or colors in the foreground and background regions of an

image.

In addition, it is often useful to be able to see what areas of an image consist of pixels whose values

lie within a speci�ed range, or band of intensities (or colors). Thresholding can be used for this as

well.

How It Works

The input to a thresholding operation is typically a grayscale (p.232) or color image (p.225). In

the simplest implementation, the output is a binary image (p.225) representing the segmentation.

Black pixels correspond to background and white pixels correspond to foreground (or vice versa).

In simple implementations, the segmentation is determined by a single parameter known as the

intensity threshold. In a single pass, each pixel in the image is compared with this threshold. If the

pixel's intensity (p.239) is higher than the threshold, the pixel is set to, say, white in the output.

If it is less than the threshold, it is set to black.

In more sophisticated implementations, multiple thresholds can be speci�ed, so that a band of

intensity values can be set to white while everything else is set to black. For color (p.225) or

multi-spectral images (p.237), it may be possible to set di�erent thresholds for each color channel,

and so select just those pixels within a speci�ed cuboid in RGB space (p.240). Another common

variant is to set to black all those pixels corresponding to background, but leave foreground pixels

at their original color/intensity (as opposed to forcing them to white), so that that information is

not lost.

Guidelines for Use

Not all images can be neatly segmented into foreground and background using simple thresholding.

Whether or not an image can be correctly segmented this way can be determined by looking at

an intensity histogram (p.105) of the image. We will consider just a grayscale histogram here, but

the extension to color is trivial.

If it is possible to separate out the foreground of an image on the basis of pixel intensity, then the

intensity of pixels within foreground objects must be distinctly di�erent from the intensity of pixels

within the background. In this case, we expect to see a distinct peak in the histogram (p.105)

corresponding to foreground objects such that thresholds can be chosen to isolate this peak ac-

cordingly. If such a peak does not exist, then it is unlikely that simple thresholding will produce

a good segmentation. In this case, adaptive thresholding (p.72) may be a better answer.

Figure 6.2 shows some typical histograms along with suitable choices of threshold.

The histogram for image wdg2 is wdg2hst1. This shows a nice bi-modal distribution | the lower

peak represents the object and the higher one represents the background. The picture can be

segmented using a single threshold at a pixel intensity value of 120. The result is shown in

wdg2thr3.

The histogram for image wdg3 is wdg3hst1. Due to the severe illumination gradient across the

scene, the peaks corresponding to foreground and background have run together and so simple

thresholding does not give good results. Images wdg3thr1 and wdg3thr2 show the resulting bad

segmentations for single threshold values of 80 and 120 respectively (reasonable results can be

achieved by using adaptive thresholding (p.72) on this image).
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Figure 6.2: A) shows a classic bi-modal intensity distribution. This image can be successfully

segmented using a single threshold T1. B) is slightly more complicated. Here we suppose the

central peak represents the objects we are interested in and so threshold segmentation requires two

thresholds: T1 and T2. In C), the two peaks of a bi-modal distribution have run together and so

it is almost certainly not possible to successfully segment this image using a single global threshold

Thresholding is also used to �lter the output of or input to other operators. For instance, in the

former case, an edge detector (p.230) like Sobel (p.188) will highlight regions of the image that

have high spatial gradients. If we are only interested in gradients above a certain value (i.e. sharp

edges), then thresholding can be used to just select the strongest edges and set everything else

to black. As an example, wdg2sob2 was obtained by �rst applying the Sobel operator to wdg2 to

produce wdg2sob1 and then thresholding this using a threshold value of 60.

Thresholding can be used as preprocessing to extract an interesting subset of image structures

which will then be passed along to another operator in an image processing chain. For example,

image cel4 shows a slice of brain tissue containing nervous cells (i.e. the large gray blobs, with

darker circular nuclei in the middle) and glia cells (i.e. the isolated, small, black circles). We

can threshold this image so as to map all pixel values between 0 and 150 in the original image

to foreground (i.e. 255) values in the binary image, and leave the rest to go to background, as

in cel4thr1. The resultant image can then be connected-components-labeled (p.114) in order to

count the total number of cells in the original image, as in cel4lab1. If we wanted to know how

many nerve cells there are in the original image, we might try applying a double threshold in order to

select out just the pixels which correspond to nerve cells (and therefore have middle level grayscale

intensities) in the original image. (In remote sensing and medical terminology, such thresholding

is usually called density slicing.) Applying a threshold band of 130 - 150 yields cel4thr2. While

most of the foreground of the resulting image corresponds to nerve cells, the foreground features

are so disconnected (because nerve cell nuclei map to background intensity values along with the

glia cells) that we cannot apply connected components labeling. Alternatively, we might obtain

a better assessment of the number of nerve cells by investigating some attributes (e.g. size, as

measured by a distance transform (p.206)) of the binary image containing both whole nerve cells

and glia. In reality, sophisticated modeling and/or pattern matching is required to segment such

an image.

Exercises

1. How would you set up the lighting for a simple scene containing just at metal parts viewed

from above so as to ensure the best possible segmentation using simple thresholding?

2. In medical imagery of certain mouse nervous tissue, healthy cells assume a medium graylevel

intensity, while dead cells become dense and black. The images cla3, clb3 and clc3 were

each taken on a di�erent day during an experiment which sought to quantify cell death.

Investigate the intensity histogram (p.105) of these images and choose a threshold which

allows you to segment out the dead cells. Then use connected components labeling (p.114)

to count the number of dead cells on each day of the experiment.

3. Thresholding is often used in applications such as remote sensing where it is desirable to select
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out, from an image, those regions whose pixels lie within a speci�ed range of pixel values.

For instance, it might be known that wheat �elds give rise to a particular range of intensities

(in some spectral band) that is fairly unusual elsewhere. In the multi-spectral image aer1,

assume that wheat �elds are visible as yellow patches. Construct a set of thresholds for each

color channel which allow you to segment out the wheat �elds (note, you may need to reset

your display).

4. How should the intensity threshold be chosen so that a small change in this threshold value

causes as little change as possible to the resulting segmentation? Think about what the

intensity histogram must look like at the threshold value.

5. Discuss whether you expect thresholding to be of much use in segmenting natural scenes.

References

E. DaviesMachine Vision: Theory, Algorithms and Practicalities, Academic Press, 1990, Chap. 4.

R. Gonzalez and R. Woods Digital Image Processing, Addison-Wesley Publishing Company,

1992, Chap. 7.

D. Vernon Machine Vision, Prentice-Hall, 1991, pp 49 - 51, 86 - 89.

Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



72

6.2 Adaptive Thresholding

Brief Description

Thresholding is used to segment an image by setting all pixels whose intensity values are above a

threshold to a foreground value and all the remaining pixels to a background value.

Whereas the conventional thresholding (p.69) operator uses a global threshold for all pixels, ad-

aptive thresholding changes the threshold dynamically over the image. This more sophisticated

version of thresholding can accommodate changing lighting conditions in the image, e.g. those

occurring as a result of a strong illumination gradient or shadows.

How It Works

Adaptive thresholding typically takes a grayscale (p.232) or color (p.225) image as input and, in

the simplest implementation, outputs a binary image (p.225) representing the segmentation. For

each pixel in the image, a threshold has to be calculated. If the pixel value is below the threshold

it is set to the background value, otherwise it assumes the foreground value.

There are two main approaches to �nding the threshold: (i) the Chow and Kanenko approach and

(ii) local thresholding. The assumption behind both methods is that smaller image regions are

more likely to have approximately uniform illumination, thus being more suitable for thresholding.

Chow and Kanenko divide an image into an array of overlapping subimages and then �nd the

optimum threshold for each subimage by investigating its histogram. The threshold for each single

pixel is found by interpolating the results of the subimages. The drawback of this method is that

it is computational expensive and, therefore, is not appropriate for real-time applications.

An alternative approach to �nding the local threshold is to statistically examine the intensity values

of the local neighborhood of each pixel. The statistic which is most appropriate depends largely

on the input image. Simple and fast functions include the mean of the local intensity distribution,

T = mean

the median value,

T = median

or the mean of the minimum and maximum values,

T =
max�min

2

The size of the neighborhood has to be large enough to cover su�cient foreground and background

pixels, otherwise a poor threshold is chosen. On the other hand, choosing regions which are

too large can violate the assumption of approximately uniform illumination. This method is less

computationally intensive than the Chow and Kanenko approach and produces good results for

some applications.

Guidelines for Use

Like global thresholding (p.69), adaptive thresholding is used to separate desirable foreground

image objects from the background based on the di�erence in pixel intensities of each region.

Global thresholding uses a �xed threshold for all pixels in the image and therefore works only if

the intensity histogram (p.105) of the input image contains neatly separated peaks corresponding
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to the desired subject(s) and background(s). Hence, it cannot deal with images containing, for

example, a strong illumination gradient.

Local adaptive thresholding, on the other hand, selects an individual threshold for each pixel based

on the range of intensity values in its local neighborhood. This allows for thresholding of an image

whose global intensity histogram doesn't contain distinctive peaks.

A task well suited to local adaptive thresholding is in segmenting text from the image son1.

Because this image contains a strong illumination gradient, global thresholding produces a very

poor result, as can be seen in son1thr1.

Using the mean of a 7�7 neighborhood, adaptive thresholding yields son1adp1. The method

succeeds in the area surrounding the text because there are enough foreground and background

pixels in the local neighborhood of each pixel; i.e. the mean value lies between the intensity values

of foreground and background and, therefore, separates easily. On the margin, however, the mean

of the local area is not suitable as a threshold, because the range of intensity values within a local

neighborhood is very small and their mean is close to the value of the center pixel.

The situation can be improved if the threshold employed is not the mean, but (mean�C), where

C is a constant. Using this statistic, all pixels which exist in a uniform neighborhood (e.g. along

the margins) are set to background. The result for a 7�7 neighborhood and C=7 is shown in

son1adp2 and for a 75�75 neighborhood and C=10 in son1adp3. The larger window yields the

poorer result, because it is more adversely a�ected by the illumination gradient. Also note that

the latter is more computationally intensive than thresholding using the smaller window.

The result of using the median (p.153) instead of the mean can be seen in son1adp4. (The

neighborhood size for this example is 7�7 and C = 4). The result shows that, in this application,

the median is a less suitable statistic than the mean.

Consider another example image containing a strong illumination gradient wdg3. This image can

not be segmented with a global threshold, as shown in wdg3thr1, where a threshold of 80 was

used. However, since the image contains a large object, it is hard to apply adaptive thresholding,

as well. Using the (mean � C) as a local threshold, we obtain wdg3adp1 with a 7�7 window and C

= 4, and wdg3adp2 with a 140�140 window and C = 8. All pixels which belong to the object but

do not have any background pixels in their neighborhood are set to background. The latter image

shows a much better result than that achieved with a global threshold, but it is still missing some

pixels in the center of the object. In many applications, computing the mean of a neighborhood

(for each pixel!) whose size is of the order 140�140 may take too much time. In this case, the

more complex Chow and Kanenko approach to adaptive thresholding would be more successful.

If your image processing package does not contain an adaptive threshold operator, you can simulate

the e�ect with the following steps:

1. Convolve the image with a suitable statistical operator, i.e. the mean or median.

2. Subtract the original from the convolved image.

3. Threshold the di�erence image with C.

4. Invert the thresholded image.

Exercises

1. In the above example using son1, why does the mean produce a better result than the

median? Can you think of any example where the median is more appropriate?

2. Think of an appropriate statistic for �nding dark cracks on a light object using adaptive

thresholding.

3. If you want to recover text from an image with a strong illumination gradient, how does

the local thresholding method relate to the technique of removing the illumination gradient
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using pixel subtraction (p.45)? Compare the results achieved with adaptive thresholding,

pixel subtraction and pixel division (p.50).
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6.3 Contrast Stretching

Brief Description

Contrast stretching (often called normalization) is a simple image enhancement technique that

attempts to improve the contrast in an image by `stretching' the range of intensity values it contains

to span a desired range of values, e.g. the the full range of pixel values (p.239) that the image type

concerned allows. It di�ers from the more sophisticated histogram equalization (p.78) in that it

can only apply a linear scaling function to the image pixel values. As a result the `enhancement' is

less harsh. (Most implementations accept a graylevel image (p.232) as input and produce another

graylevel image as output.)

How It Works

Before the stretching can be performed it is necessary to specify the upper and lower pixel value

limits over which the image is to be normalized. Often these limits will just be the minimum

and maximum pixel values that the image type concerned allows. For example for 8-bit graylevel

images the lower and upper limits might be 0 and 255. Call the lower and the upper limits a and

b respectively.

The simplest sort of normalization then scans the image to �nd the lowest and highest pixel values

currently present in the image. Call these c and d. Then each pixel P is scaled using the following

function:

Pout = (Pin � c)

�
b� a

d� c

�
+ a

The problem with this is that a single outlying pixel with either a very high or very low value can

severely a�ect the value of c or d and this could lead to very unrepresentative scaling. Therefore

a more robust approach is to �rst take a histogram (p.105) of the image, and then select c and

d at, say, the 5th and 95th percentile in the histogram (that is, 5% of the pixel in the histogram

will have values lower than c, and 5% of the pixels will have values higher than d). This prevents

outliers a�ecting the scaling so much.

Another common technique for dealing with outliers is to use the intensity histogram to �nd the

most popular intensity level in an image (i.e. the histogram peak) and then de�ne a cuto� fraction

which is the minimum fraction of this peak magnitude below which data will be ignored. In other

words, all intensity levels with histogram counts below this cuto� fraction will be discarded (driven

to intensity value 0) and the remaining range of intensities will be expanded to �ll out the full

range of the image type under consideration.

Some implementations also work with color images (p.225). In this case all the channels will be

stretched using the same o�set and scaling in order to preserve the correct color ratios.

Guidelines for Use

Normalization is commonly used to improve the contrast in an image without distorting relative

graylevel intensities too signi�cantly.

We begin by considering an image wom1 which can easily be enhanced by the most simple of

contrast stretching implementations because the intensity histogram (p.105) forms a tight, narrow

cluster between the graylevel intensity values of 79 - 136, as shown in wom1hst1. After contrast

stretching, using a simple linear interpolation between c = 79 and d = 136, we obtain wom1str1.

Compare the histogram of the original image with that of the contrast-stretched version wom1hst2.

While this result is a signi�cant improvement over the original, the enhanced image itself still

appears somewhat at. Histogram equalizing (p.78) the image increases contrast dramatically, but
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yields an arti�cial-looking result wom1heq1. In this case, we can achieve better results by contrast

stretching the image over a more narrow range of graylevel values from the original image. For

example, by setting the cuto� fraction parameter to 0.03, we obtain the contrast-stretched image

wom1str2 and its corresponding histogram wom1hst3. Note that this operation has e�ectively

spread out the information contained in the original histogram peak (thus improving contrast in

the interesting face regions) by pushing those intensity levels to the left of the peak down the

histogram x-axis towards 0. Setting the cuto� fraction to a high value, e.g. 0.8, yields the contrast

stretched image wom1str3. As shown in the histogram wom1hst4, most of the information to the

left of the peak in the original image is mapped to 0 so that the peak can spread out even further

and begin pushing values to its right up to 255.

As an example of an image which is more di�cult to enhance, consider moo2 which shows a low

contrast image of a lunar surface.

The image moo2hst2 shows the intensity histogram of this image. Note that only part of the y-axis

has been shown for clarity. The minimum and maximum values in this 8-bit image are 0 and

255 respectively, and so straightforward normalization to the range 0 - 255 produces absolutely

no e�ect. However, we can enhance the picture by ignoring all pixel values outside the 1% and

99% percentiles, and only applying contrast stretching to those pixels in between. The outliers are

simply forced to either 0 or 255 depending upon which side of the range they lie on.

moo2str1 shows the result of this enhancement. Notice that the contrast has been signi�cantly

improved. Compare this with the corresponding enhancement achieved using histogram equaliza-

tion (p.78).

Normalization can also be used when converting from one image type (p.239) to another, for

instance from oating point pixel values to 8-bit integer pixel values. As an example the pixel

values in the oating point image might run from 0 to 5000. Normalizing this range to 0-255 allows

easy conversion to 8-bit integers. Obviously some information might be lost in the compression

process, but the relative intensities of the pixels will be preserved.

Exercises

1. Derive the scaling formula given above from the parameters a, b, c and d.

2. Suppose you had to normalize an 8-bit image to one in which the pixel values were stored as

4-bit integers. What would be a suitable destination range (i.e. the values of a and b)?

3. Contrast-stretch the image sap1. (You must begin by selecting suitable values for c and

d.) Next, edge-detect (i.e. using the Sobel (p.188), Roberts Cross (p.184) or Canny (p.192)

edge detector) both the original and the contrast stretched version. Does contrast stretching

increase the number of edges which can be detected?

4. Imagine you have an image taken in low light levels and which, as a result, has low contrast.

What are the advantages of using contrast stretching to improve the contrast, rather than

simply scaling (p.48) the image by a factor of, say, three?
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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6.4 Histogram Equalization

Brief Description

Histogram modeling techniques (e.g. histogram equalization) provide a sophisticated method for

modifying the dynamic range and contrast of an image by altering that image such that its intensity

histogram (p.105) has a desired shape. Unlike contrast stretching (p.75), histogram modeling oper-

ators may employ non-linear and non-monotonic transfer functions to map between pixel intensity

values (p.239) in the input and output images. Histogram equalization employs a monotonic, non-

linear mapping which re-assigns the intensity values of pixels in the input image such that the

output image contains a uniform distribution of intensities (i.e. a at histogram). This technique

is used in image comparison processes (because it is e�ective in detail enhancement) and in the

correction of non-linear e�ects introduced by, say, a digitizer or display system.

How It Works

Histogram modeling is usually introduced using continuous, rather than discrete, process functions.

Therefore, we suppose that the images of interest contain continuous intensity levels (in the interval

[0,1]) and that the transformation function f which maps an input image A(x; y) onto an output

image B(x; y) is continuous within this interval. Further, it will be assumed that the transfer law

(which may also be written in terms of intensity density levels, e.g. DB = f(DA)) is single-valued

and monotonically increasing (as is the case in histogram equalization) so that it is possible to

de�ne the inverse law DA = f�1(DB). An example of such a transfer function is illustrated in

Figure 6.3.

DB = f(DA)

DA

D

D

hA(D) hB
(D

)

DA
 dDA

D
B

 d
D

B

Figure 6.3: A histogram transformation function.

All pixels in the input image with densities in the region DA to DA + dDA will have their pixel

values re-assigned such that they assume an output pixel density value in the range from DB to

DB + dDB . The surface areas hA(DA)dDA and hB(DB)dDB will therefore be equal, yielding:

hB(DB) = hA(DA)� d(DA)

where d(x) =
df(x)
dx

.
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This result can be written in the language of probability theory if the histogram h is regarded as

a continuous probability density function p describing the distribution of the (assumed random)

intensity levels:

pB(DB) = pA(DA)� d(DA)

In the case of histogram equalization, the output probability densities should all be an equal

fraction of the maximum number of intensity levels in the input image DM (where the minimum

level considered is 0). The transfer function (or point operator) necessary to achieve this result is

simply:

d(DA) = DM � pA(DA)

Therefore,

f(DA) = DM

Z DA

0

pA(u)du = DM � FA(DA)

where FA(DA) is simply the cumulative probability distribution (i.e. cumulative histogram) of

the original image. Thus, an image which is transformed using its cumulative histogram yields an

output histogram which is at!

A digital implementation of histogram equalization is usually performed by de�ning a transfer

function of the form:

f(DA) = max(0; round[DM � nk=N2)]� 1)

where N is the number of image pixels and nk is the number of pixels at intensity level k or less.

In the digital implementation, the output image will not necessarily be fully equalized and there

may be `holes' in the histogram (i.e. unused intensity levels). These e�ects are likely to decrease

as the number of pixels and intensity quantization levels in the input image are increased.

Guidelines for Use

To illustrate the utility of histogram equalization, consider moo2 which shows an 8-bit grayscale

image (p.232) of the surface of the moon. The histogram moo2hst2 con�rms what we can see by

visual inspection: this image has poor dynamic range. (Note that we can view this histogram as a

description of pixel probability densities by simply scaling the vertical axis by the total number of

image pixels and normalizing the horizontal axis using the number of intensity density levels (i.e.

256). However, the shape of the distribution will be the same in either case.)

In order to improve the contrast of this image, without a�ecting the structure (i.e. geometry) of

the information contained therein, we can apply the histogram equalization operator. The resulting

image is moo2heq1 and its histogram is shown moo2hst1. Note that the histogram is not at (as

in the examples from the continuous case) but that the dynamic range and contrast have been

enhanced. Note also that when equalizing images with narrow histograms and relatively few gray

levels, increasing the dynamic range has the adverse e�ect of increasing visual grainyness. Compare

this result with that produced by the linear contrast stretching (p.75) operator moo2str1.

In order to further explore the transformation de�ned by the histogram equalization operator,

consider the image of the Scott Monument in Edinburgh, Scotland bld1. Although the contrast

on the building is acceptable, the sky region is represented almost entirely by light pixels. This

causes most histogram pixels bld1hst1 to be pushed into a narrow peak in the upper graylevel

region. The histogram equalization operator de�nes a mapping based on the cumulative histogram

bld1cuh1 which results in the image bld1heq1. While histogram equalization has enhanced the
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contrast of the sky regions in the image, the picture now looks arti�cial because there is very little

variety in the middle graylevel range. This occurs because the transfer function is based on the

shallow slope of the cumulative histogram in the middle graylevel regions (i.e. intensity density

levels 100 - 230) and causes many pixels from this region in the original image to be mapped to

similar graylevels in the output image.

We can improve on this if we de�ne a mapping based on a sub-section of the image which contains

a better distribution of intensity densities from the low and middle range graylevels. If we crop

the image so as to isolate a region which contains more building than sky bld1crp1, we can then

de�ne a histogram equalization mapping for the whole image based on the cumulative histogram

bld1cuh2 of this smaller region. Since the cropped image contains a more even distribution of

dark and light pixels, the slope of the transfer function is steeper and smoother, and the contrast

of the resulting image bld1heq2 is more natural. This idea of de�ning mappings based upon

particular sub-sections of the image is taken up by another class of operators which perform Local

Enhancements as discussed below.

Common Variants

Histogram Speci�cation

Histogram equalization is limited in that it is capable of producing only one result: an image with

a uniform intensity distribution. Sometimes it is desirable to be able to control the shape of the

output histogram in order to highlight certain intensity levels in an image. This can be accom-

plished by the histogram specialization operator which maps a given intensity distribution a(x; y)

into a desired distribution c(x; y) using a histogram equalized image b(x; y) as an intermediate

stage.

The �rst step in histogram specialization, is to specify the desired output density function and write

a transformation g(c). If g�1 is single-valued (which is true when there are no un�lled levels in the

speci�ed histogram or errors in the process of rounding o� g�1 to the nearest intensity level), then

c = g�1(b) de�nes a mapping from the equalized levels of the original image, b(x; y) = f [a(x; y)].

It is possible to combine these two transformations such that the image need not be histogram

equalized explicitly:

c = g
�1[f(a)]

Local Enhancements

The histogram processing methods discussed above are global in the sense that they apply a trans-

formation function whose form is based on the intensity level distribution of an entire image.

Although this method can enhance the overall contrast and dynamic range of an image (thereby

making certain details more visible), there are cases in which enhancement of details over small

areas (i.e. areas whose total pixel contribution to the total number of image pixels has a neg-

ligible inuence on the global transform) is desired. The solution in these cases is to derive a

transformation based upon the intensity distribution in the local neighborhood of every pixel in

the image.

The histogram processes described above can be adapted for local enhancement. The procedure

involves de�ning a neighborhood around each pixel and, using the histogram characteristics of this

neighborhood, to derive a transfer function which maps that pixel into an output intensity level.

This is performed for each pixel in the image. (Since moving across rows or down columns only adds

one new pixel to the local histogram, updating the histogram from the previous calculation with

new data introduced at each motion is possible.) Local enhancement may also de�ne transforms

based on pixel attributes other than histogram, e.g. intensity mean (to control variance) and

variance (to control contrast) are common.
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Exercises

1. Suppose that you have a 128�128 square pixel image with an 8 gray level (p.232) intensity

range, within which the lighter intensity levels predominate as shown in the table below. A)

Sketch the histogram (p.105) (number of pixels vs gray level) to describe this distribution.

B) How many pixels/gray levels would there be in an equalized version of this histogram? C)

Apply the discrete transformation described above and plot the new (equalized) histogram.

(How well does the histogram approximate a uniform distribution of intensity values?)

Gray Level Number of Pixels

0 34

1 50

2 500

3 1500

4 2700

5 4500

6 4000

7 3100

2. Suppose you have equalized an image once. Show that a second pass of histogram equalization

will produce exactly the same result as the �rst.

3. Interpreting images derived by means of a non-monotonic or non-continuous mapping can be

di�cult. Describe the e�ects of the following transfer functions:

(a) f has a horizontal plateau,

(b) f contains a vertical jump,

(c) f has a negative slope.

(Hint: it can be useful to sketch the curve, as in Figure 6.3, and then map a few points from

histogram A to histogram B.)

4. Apply local histogram equalization to the image bld1. Compare this result with those derived

by means of the global transfer function shown in the above examples.

5. Apply global and local histogram equalization to the montage image soi1. Compare your

results.
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6.5 Logarithm Operator

Brief Description

The dynamic range of an image can be compressed by replacing each pixel value (p.239) with

its logarithm. This has the e�ect that low intensity pixel values are enhanced. Applying a pixel

logarithm operator to an image can be useful in applications where the dynamic range may too

large to be displayed on a screen (or to be recorded on a �lm in the �rst place).

How It Works

The logarithmic operator is a simple point processor (p.68) where the mapping function is a logar-

ithmic curve. In other words, each pixel value is replaced with its logarithm. Most implementations

take either the natural logarithm or the base 10 logarithm. However, the basis does not inuence

the shape of the logarithmic curve, only the scale of the output values which are scaled (p.48) for

display on an 8-bit system. Hence, the basis does not inuence the degree of compression of the

dynamic range. The logarithmic mapping function is given by

Q(i; j) = c log(jP (i; j)j)

Since the logarithm is not de�ned for 0, many implementations of this operator add the value 1 to

the image before taking the logarithm. The operator is then de�ned as

Q(i; j) = c log(1 + jP (i; j)j)

The scaling constant c is chosen so that the maximum output value is 255 (providing an 8-bit

format (p.232)). That means if R is the value with the maximum magnitude in the input image,

c is given by

c =
255

log(1 + jRj)

The degree of compression (which is equivalent to the curvature of the mapping function) can be

controlled by adjusting the range of the input values. Since the logarithmic function becomes more

linear close to the origin, the compression is smaller for an image containing small input values.

The mapping function is shown for two di�erent ranges of input values in Figure 6.4.

Guidelines for Use

The most common application for the dynamic range compression is for the display of the Fourier

Transform (p.209). We will illustrate this using cln1. The maximum magnitude value of its

Fourier Transform is 7:9� 106, and the second largest value is approximately 10 times smaller. If

we simply linearly scale (p.48) this image, we obtain cln1fur1. Due to the large dynamic range,

we can only recognize the largest value in the center of the image. All remain values appear as

black on the screen. If we instead apply the logarithmic operator to the Fourier image, we obtain

cln1fur2. Here, smaller pixel values are enhanced and therefore the image shows signi�cantly

more details.

The logarithmic operator enhances the low intensity pixel values, while compressing high intensity

values into a relatively small pixel range. Hence, if an image contains some important high intensity

information, applying the logarithmic operator might lead to loss of information. For example,

stp1fur1 is the linearly scaled (p.48) Fourier Transform of stp1. The image shows one bright

spot in the center and two darker spots on the diagonal. We can infer from the image that these

three frequencies are the main components of the image with the DC-value having the largest

magnitude. Applying the logarithmic transform to the Fourier image yields stp1fur2. Here, we

can see that the image contains many more frequencies. However, it is now hard to tell which are
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Figure 6.4: Logarithmic mapping functions at two di�erent scales.

the dominating ones, since all high magnitudes are compressed into a rather small pixel value range.

The magnitude of compression is large in this case because there are extremely high intensity values

in the output of the Fourier Transform (in this case up to 7�106). We can decrease the compression

rate by scaling (p.48) down the Fourier image before applying the logarithmic transform. Image

stp1fur6 is the result of �rst multiplying each pixel with 0.0001 and then taking its logarithm.

Now, we can recognize all the main components of the Fourier image and can even see the di�erence

in their intensities.

Thus, a logarithmic transform is appropriate when we want to enhance the low pixel values at

the expense of loss of information in the high pixel values. For example, the man in man8 was

photographed in front of a bright background. The dynamic range of the �lm material is too

small, so that the graylevels on the subject's face are clustered in a small pixel value range. A

logarithmic transform spreads them over a wider range, while the higher values are compressed.

The result can be seen in man8log1.

On the other hand, applying a logarithmic transform to svs1 is less appropriate, because most

of its details are contained in the high pixel values. Applying the logarithmic operator yields

svs1log1. This image shows that a lot of information is lost during the transform.

Common Variants

The logarithmic operator is a member of the family of anamorphosis operators (p.68), which are

LUT transformations with a strictly increasing or decreasing mapping function.

An anamorphosis operator which is similar to the logarithmic transform is the square-root operator.
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Its mapping function is de�ned as

Q(i; j) =
p
P (i; j)

Both operators increase the contrast of low pixel values at the cost of the contrast of high pixel

values. Hence, both are suitable to enhance details contained in the high values. However, they

produce slightly di�erent enhancements, since the shapes of their curves are not identical.

Exercises

1. Apply the logarithmic operator to wom2. Does this process improve the image. What is the

reason? What is the result using fce4?

2. Is it generally a good idea to apply the logarithmic operator to astronomical images? Try it

on str2.
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6.6 Exponential/`Raise to Power' Operator

Brief Description

The exponential and `raise to power' operators are two anamorphosis (p.68) operators which can

be applied to grayscale images (p.232). Like the logarithmic transform (p.82), they are used to

change the dynamic range of an image. However, in contrast to the logarithmic operator, they

enhance high intensity pixel values.

How It Works

The exponential operator is a point process (p.68) where the mapping function is an exponential

curve. This means that each pixel intensity value in the output image is equal to a basis value

raised to the value of the corresponding pixel value (p.239) in the input image. Which basis number

is used depends on the desired degree of compression of the dynamic range. In order to enhance

the visibility of a normal photograph, values just above 1 are suitable. For display, the image

must be scaled (p.48) such that the maximum value becomes 255 (assuming an 8-bit display). The

resulting image is given by

Q(i; j) = c b
P (i;j)

where P and Q are the input and output images, respectively, b is the basis and c is the scaling

factor. As we can see from the formula, Q=0 yields P=c. To avoid the resulting o�set, many

implementations subtract 1 from the exponential term before the scaling. Hence, we get the

following formula:

Q(i; j) = c (bP (i;j) � 1)

Figure 6.5 shows the mapping function for b = 10 and b = 1.01.

We can see from the �gure that the curvature of the base 10 exponential function is far too high to

enhance the visibility of normal image. We can control the curvature of the mapping function either

by choosing the appropriate basis or by scaling down the image prior to applying the exponential

operator. This is because, over a low range of input values, an exponential function with a high

basis has the same shape as an exponential function with smaller basis over a larger range of input

values.

In the case of the `raise to the power' operator, the pixel intensity values in the input image act

as the basis which is raised to a (�xed) power. The operator is de�ned by the following formula:

Q(i; j) = c P (i; j)r

If r > 1, the `raise to power' operator is similar to the exponential operator in the sense that it

increases the bandwidth of the high intensity values at the cost of the low pixel values. However,

if r < 1, the process enhances the low intensity value while decreasing the bandwidth of the high

intensity values. This is similar to the e�ect achieved with the logarithmic transform (p.82).

Examples for r = 0.5, r=2 and r=6 can be seen in Figure 6.6.

Guidelines for Use

The exponential operator is the dual of the logarithmic transform (p.82). Hence, one application of

the exponential operator is to undo changes originating from the logarithmic operator. In this case,

the basis for the exponential operator should be the same as it was for the logarithmic transform.
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Figure 6.5: Exponential mapping functions for b = 10; c = 2:55� 10253 (solid line) and b = 1.01,

c = 20.2 (dotted line).
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Figure 6.6: Mapping function of `raise to power' operator for r=0.5 (dashed line), r = 2 (solid line)

and r=6 (dotted line).

For example, man8log1 was obtained from man8 by applying a base 10 logarithm. If we need to

restore the original version, we can do this by replacing each pixel with 10 to the power of its

value. However, we have to be careful which image to use as input. If we take the above scaled and

quantized image, the result of the exponential operator (after normalizing to the range 0 - 255) is
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man8exp1. The reason for this is summarized in the equation below:

Q2(i; j) = 10Q1(i;j) = 10k log(P (i;j)) = P (i; j)k

where P is the original image, Q1 is the image after the logarithmic transform and Q2 is the �nal

result.

The e�ect can be seen in the shape of the base 10 exponential function, as shown in Figure 6.5. To

get the original image we need to apply the exponential operator to the unscaled image, containing

the values directly after the logarithmic operation, i.e. in this case the log values will all be

smaller than 3. If we store the unscaled image in a oating-point format (p.239) and then apply

the exponential operator we obtain the correct original image: man8exp2.

Like the logarithmic operator, the exponential and `raise to power' operators might be used to

compress the dynamic range or generally enhance the visibility of an image. Because they can be

used to enlarge the range of high intensity pixel values relative to the range of the low intensity

values, these operators are suitable for enhancement of images containing details represented by a

rather narrow range of high intensity pixel values. For example, in fce4, we might be interested

in enhancing the details of the face, because it is slightly over-exposed. Applying an exponential

transform with the base 1.005 yields fce4exp1. We can see that the contrast in the high pixel

values has been increased at the cost of the contrast in the low pixel values. This e�ect is magni�ed

if we increase the basis to 1.01. As can be seen in fce4exp2, the resulting image now appears to

be too dark.

For comparison, fce4pow1 and fce4pow2 show the original image after a `raise to power' operation

with r = 1.5 and r = 2.5, respectively. We can see that both exponential and `raise to power'

operator perform similarly at this (rather low) rate of compression. One di�erence, however, is

that the `raise to power' operator does not depend on the scale of the image. The exponential

operator, on the other hand, compresses the dynamic range more if the image contains pixels with

very high intensity values (e.g. an image in oating point format (p.239) with high pixel intensity

values).

The exponential transform is not always appropriate to enhance the visibility of an image. For

example, wom2 is an under-exposed image and we would like to enhance the contrast of the low

pixel values. The exponential operator, however, makes the situation even worse, as can be seen

in wom2exp1. In this example, the logarithmic operator (p.82) would be more suitable.

The `raise to power' operator is also known as gamma correction. In this case, the operator is used

to correct for the non-linear response of a photographic �lm. The relation between the exposure

of the �lm E and the resulting intensity value in the image I can be approximated, over a wide

range of E, with the `raise to power' operator:

I = E


where  is called the gamma of the �lm. A typical value for gamma lies between 0.7 and 1.0. The

gamma correction usually takes the gamma value as parameter and performs a `raise to power'

transform with r=1/gamma so that the relation between the initial exposure of the �lm and the

intensity value in the corrected image becomes linear.

Exercises

1. Summarize the conditions under which the exponential and `raise to power' operators are

appropriate.

2. Apply the exponential operator to leg1 and trn1. Which of the two images has improved?

Try the logarithmic operator for comparison.

3. Apply the exponential and the `raise to power' operator to svs1. What are the e�ects? Can

you see any di�erences between the two resulting images?
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Chapter 7

Geometric Operations

A geometric operation maps pixel information (i.e. the intensity values at each pixel location

(x1; y1)) in an input image to another location (x2; y2) in an output image. For basic operators

described in this package, these functions are �rst order polynomials which take the form:

���� x2y2
���� =

���� a11 a12

a21 a22

�����
���� x1y1

����+
���� b1b2

����
Translation (p.97) can be accomplished by specifying values for the B matrix, while scaling (p.90),

rotation (p.93) and reection (p.95) are de�ned by instantiating variables in the A matrix. A

general a�ne transformation (p.100) (which uses both matrices) can be used to perform a com-

bination of these operations at once, and is often used in applications, e.g. remote sensing, where

we wish to correct for geometric distortions in the image introduced by perspective irregularities.

Geometric operators are also used to improve the visualization of the image, e.g. zooming an

interesting region of the image, or as a part of an image processing chain where, e.g. translation

is required in order to register two images.
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7.1 Geometric Scaling

Brief Description

The scale operator performs a geometric transformation which can be used to shrink or zoom the

size of an image (or part of an image). Image reduction, commonly known as subsampling, is

performed by replacement (of a group of pixel values (p.239) by one arbitrarily chosen pixel value

from within this group) or by interpolating between pixel values in a local neighborhoods. Image

zooming is achieved by pixel replication or by interpolation. Scaling is used to change the visual

appearance of an image, to alter the quantity of information stored in a scene representation, or

as a low-level preprocessor in multi-stage image processing chain which operates on features of a

particular scale. Scaling is a special case of a�ne transformation (p.100).

How It Works

Scaling compresses or expands an image along the coordinate directions. As di�erent techniques

can be used to subsample and zoom, each is discussed in turn.

Figure 7.1 illustrates the two methods of sub-sampling. In the �rst, one pixel value within a

local neighborhood is chosen (perhaps randomly) to be representative of its surroundings. (This

method is computationally simple, but can lead to poor results if the sampling neighborhoods are

too large.) The second method interpolates between pixel values within a neighborhood by taking

a statistical sample (such as the mean) of the local intensity values.

2

2

2 2

2 2

Single
Pixel
Selection

Interpolation

22
6 666

66 6 6

2 2

2
2

4 4
4 4

Figure 7.1: Methods of subsampling. a) Replacement with upper left pixel. b) Interpolation using

the mean value.

An image (or regions of an image) can be zoomed either through pixel replication or interpolation.

Figure 7.2 shows how pixel replication simply replaces each original image pixel by a group of pixels

with the same value (where the group size is determined by the scaling factor). Alternatively,

interpolation of the values of neighboring pixels in the original image can be performed in order

to replace each pixel with an expanded group of pixels. Most implementations o�er the option of

increasing the actual dimensions of the original image, or retaining them and simply zooming a

portion of the image within the old image boundaries.
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Figure 7.2: Methods of zooming. a) Replication of a single pixel value. b) Interpolation.

Guidelines for Use

Image sampling is a fundamental operation of any image processing system. In a digital computer,

images are represented as arrays of �nite size numbers. The size of the image array is determined

by the number of sampling points (p.238) measured. The information at each sampling position

in the array represents the average irradiance over the small sampling area and is quantized into a

�nite number of bits.

How many sampling points and quantization levels are required to make a good approximation

to the continuous image? The resolution of the image increases as we increase the number of

sampling and quantization levels. However, large values for these parameters also increase the

image storage space and processing requirements. Therefore, the decision of how to set these

parameters must involve striking a compromise between these competing objectives. Fortunately,

sampling theory gives us some boundaries within which to make an otherwise largely qualitative

decision. If we model images as bandlimited signals, Fourier analysis tells us that sampling at

frequencies greater than twice the image bandwidths allows us to recover images without error (by

lowpass �ltering (p.148) the sampled image). However if the sampling frequencies are below this

Nyquist limit, then the spectrum will be distorted and information will be lost. This phenomenon

is known as aliasing.

We can witness this e�ect by subsampling the test image tst2. The e�ect of reducing the sampling

grid size by a half is shown in tst2sca1. The maximum number of intensity levels, or quantization

levels, is held constant in this example. Also, since the display area used in each example is

the same, pixels in the lower resolution images are duplicated in order to �ll out the display �eld.

Reducing the resolution by a factor of 4, 8, and 16 are shown in tst2sca2, tst2sca3 and tst2sca4,

respectively.

Next we consider the di�erent methods of implementing subsampling using a series of examples

based on the basic image wat1str1. This image is �rst subsampled using (i) pixel replacement,

as shown in wat1psh1 and (ii) pixel interpolation, as shown in wat1pin1. (In each case the image

is reduced by a factor of 4.) Notice how the latter produces a smoother image with less loss of

information on the upper watch face.

We can zoom in on a region of the watch image using both (i) pixel replication wat1exp1 and

(ii) interpolation wat1pin2. Again the interpolation method produced a slightly smoother result,

but the di�erences in quality are rather insigni�cant as the neighborhood size used was small (i.e.
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2) to keep the computation time down when processing such a large image. (Note, the zooming

facilities used here produced di�erent sized outputs; i.e. pixel replication created an image which

was increased in size by the scale factor and pixel interpolation cropped the zoomed image to

remain within the boundaries of the original image. To aid viewing, the pixel replicated image was

manually cropped to cut it down to the approximate size of the interpolated image.)

Zooming another, smaller image cam1 shows more clearly the e�ects of increasing the neighborhood

size. Using a scaling factor of 3, pixel replication produces cam1exp1 and pixel interpolation yields

cam1pin1. At this scale factor, we begin to see the undesirable e�ects of block edge features

appearing in the replicated image.

Scaling algorithms are implemented on hardware (e.g. a zooming facility is provided on most frame

grabbers) as well as software. Subsampling has utility in applications where information can be

reduced without losing the main characteristics of the image, while image expansion is often used

to examine details and local image information.

Exercises

1. Using the binary images art5, art6inv1 and art7, make a collage by scaling each image so

that the object in the second image can �t within the object in the �rst image, and the third

within the second.

2. Explore the e�ects of subsampling noisy images. Using the image fce5noi3 { which has been

contaminated with salt and pepper noise (p.221) and fce5noi5 { which has been corrupted

by Gaussian noise (p.221). Subsample each image using both the pixel replacement and pixel

interpolation methods. Does one algorithm cope with noise better than the other? Which

type of noise is more corrupting to the subsampled image.

3. Using objects of di�erent sizes, determine the scale of subsampling at which the objects are

no longer visible in the output images. Experiment with images bri1 and mof1. Repeat this

analysis for both types of subsampling.
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7.2 Rotate

Brief Description

The rotation operator performs a geometric transform which maps the position (x1; y1) of a picture

element (p.238) in an input image onto a position (x2; y2) in an output image by rotating it through

a user-speci�ed angle � about an originO. In most implementations, output locations (x2; y2) which

are outside the boundary of the image are ignored. Rotation is most commonly used to improve

the visual appearance of an image, although it can be useful as a preprocessor in applications where

directional operators are involved. Rotation is a special case of a�ne transformation (p.100).

How It Works

The rotation operator performs a transformation of the form:

x2 = cos(�) � (x1 � x0)� sin(�) � (y1 � y0) + x0

y2 = sin(�) � (x1 � x0)� cos(�) � (y1 � y0) + y0

where (x0; y0) are the coordinates of the center of rotation (in the input image) and � is the angle

of rotation. Even more than the translate (p.97) operator, the rotation operation produces output

locations (x2; y2) which do not �t within the boundaries of the image (as de�ned by the dimensions

of the original input image). In such cases, destination elements which have been mapped outside

the image are ignored by most implementations. Pixel locations out of which an image has been

rotated are usually �lled in with black pixels.

The rotation algorithm, unlike that employed by translation (p.97), can produce coordinates

(x2; y2) which are not integers. In order to generate the intensity (p.239) of the pixels at each

integer position, di�erent heuristics (or re-sampling techniquesg may be employed. For example,

two common methods include:

� Allow the intensity level at each integer pixel position to assume the value of the nearest

non-integer neighbor (x2; y2).

� Calculate the intensity level at each integer pixel position based on a weighted average of the

n nearest non-integer values. The weighting is proportional to the distance or pixel overlap

of the nearby projections.

The latter method produces better results but increases the computation time of the algorithm.

Guidelines for Use

A rotation is de�ned by an angle � and an origin of rotation O. For example, consider the image

art4ctr1 whose subject is centered. We can rotate the image through 180 degrees about the image

(and circle) center at (x = 150; y = 150) to produce art4rot1.

If we use these same parameter settings but a new, smaller image, such as the 222�217 size

arti�cial, black-on-white image art1, we achieve poor results, as shown in art1rot1, because the

speci�ed axis of rotation is su�ciently displaced from the image center that much of the image is

swept o� the page. Likewise, rotating this image through a � value which is not an integer multiple

of 90 degrees (e.g. in this case � equals 45 degrees) rotates part of the image o� the visible output

and leaves many empty pixel values, as seen in art1rot2. (Here, non-integer pixel values were

re-sampled using the �rst technique mentioned above.)

Like translation (p.97), rotation may be employed in the early stages of more sophisticated image

processing operations. For example, there are numerous directional operators in image processing
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(e.g. many edge detection (p.230) and morphological operators (p.236)) and, in many imple-

mentations, these operations are only de�ned along a limited set of directions: 0, 45, 90, etc. A

user may construct a hybrid operator which operates along any desired image orientation direc-

tion by �rst rotating an image through the desired direction, performing the edge detection (or

erosion (p.123), dilation (p.118), etc.), and then rotating the image back to the original orientation.

(See Figure 7.3.)

Rotate Translate

Subtract Unrotate

Input

Output

Figure 7.3: A variable-direction edge detector.

As an example, consider art2 whose edges were detected by the directional operator de�ned using

translation (p.97) giving art2sub1. We can perform edge detection along the opposite direction

to that shown in the image by employing a 180 degree rotation in the edge detection algorithm.

The result is shown in art2trn2. Notice the slight degradation of this image due to rotation

re-sampling.

Exercises

1. Consider images wdg4 and wdg5which contain L-shaped parts of di�erent sizes. a) Rotate and

translate (p.97) one of the images such that the bottom left corner of the \L" is in the same

position in both images. b) Using a combination of histograming (p.105), thresholding (p.69)

and pixel arithmetic (e.g. pixel subtraction (p.45)) determine the approximate di�erence in

size of the two parts.

2. Make a collage based on a series of rotations and pixel additions (p.43) of image art9. You

should begin by centering the propeller in the middle of the image. Next, rotate the image

through a series of 45 degree rotations and add each rotated version back onto the original.

(Note: you can improve the visual appearance of the result if you scale (p.48) the intensity

values of each rotated propeller a few shades before adding it onto the collage.)

3. Investigate the e�ects of re-sampling when using rotation as a preprocessing tool in an image

erosion application. First erode the images wdg2 and blb1 using a 90 degree directional

erosion (p.123) operator. Next, rotate the image through 90 degrees before applying the

directional erosion operator along the 0 degree orientation. Compare the results.
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7.3 Reect

Brief Description

The reection operator geometrically transforms an image such that image elements, i.e. pixel

values (p.239), located at position (x1; y1) in an original image are reected about a user-speci�ed

image axis or image point into a new position (x2; y2) in a corresponding output image. Reection

is mainly used as an aid to image visualization, but may be used as a preprocessing operator in

much the same way as rotation (p.93). Reection is a special case of a�ne transformation (p.100).

How It Works

Reection can be performed about an image axis or a point in the image. In the case of the former,

some commonly used transformations are the following:

� Reection about a vertical axis of abscissa x0 in the input image:

x2 = �x1 + (2 � x0)

y2 = y1

� Reection about a horizontal axis of ordinate y0:

x2 = x1

y2 = �y1 + (2 � y0)

� Reection about an axis oriented in any arbitrary direction �, and passing through (x0; y0):

x2 = x1 + 2 �� � (�sin(�))

y2 = y1 + 2 �� � (cos(�))

where � = (x1 � x0) � sin(�)� (y1 � y0) � cos(�).

Note that if (x0; y0) is not in the center of the input image, part of the image will be reected out

of the visible range of the image. Most implementations �ll in image areas out of which pixels have

been reected with black pixels.

� From this discussion, it is easy to see that horizontal and vertical reection about a point

(x0; y0) in the input image are given by:

x2 = �x1 + (2 � x0)

y2 = �y1 + (2 � y0)

Guidelines for Use

The simplest reection we can de�ne reects an image about an axis located in the center of an

image. For example, we can reect art4ctr1 about a vertical axis in the center of the image

to produce art4ref1. Similarly, art7ref1 shows the reection of art7 about a horizontal axis

passing through the image center.

Reection about a point in the center of the image maps wat1str1 into wat1ref1. This result, of

course, could also be achieved by rotating the image through 180 degrees about its center.
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A popular application for reection is symmetry analysis. For example, consider the image ape1.

A quick examination of this face might lead us to believe that the left and right halves were mirror

images of each other. However, if we reect this image (about a carefully selected axis running

vertically between the eyes) and then create two new images such that (i) the �rst contains the

original left half of the face, joined in the middle to a reection of the left half and (ii) the second

contains a similar description of the right half of the face, we see that this is not the case. A

comparison of the left ape1ref1 and right ape1ref2 reection images reveals di�erences in the fur

color, eye shape/expression, nose orientation, whisker alignment, etc.

Exercises

1. Consider image art9. What sort of reection might have produced art9ref1?

2. Using images art2, son1div1 and moo1, compare the reection and rotation operators in

terms of their computational speed and the quality of the resultant image.

3. Perform a symmetry analysis (as in the example above) of the images wom1str2 and wom3.

Alignment of the axis of reection with the center of the face is tricky. You might want to

consider putting it at a position equi-distant between both eyes.

4. How might one inspect symmetric objects using reection? Try your answer on an image

containing a square with a corner missing).
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7.4 Translate

Brief Description

The translate operator performs a geometric transformation which maps the position of each picture

element (p.238) in an input image into a new position in an output image, where the dimensionality

of the two images often is, but need not necessarily be, the same. Under translation, an image

element located at (x1; y1) in the original is shifted to a new position (x2; y2) in the corresponding

output image by displacing it through a user-speci�ed translation (�x; �y). The treatment of

elements near image edges varies with implementation. Translation is used to improve visualization

of an image, but also has a role as a preprocessor in applications where registration of two or more

images is required. Translation is a special case of a�ne transformation (p.100).

How It Works

The translation operator performs a transformation of the form:

x2 = x1 + �x

y2 = y1 + �y

Since the dimensions of the input image are well de�ned, the output image is also a discrete space

of �nite dimension. If the new coordinates (x2; y2) are outside the image, the translate operator

will normally ignore them, although, in some implementations, it may link the higher coordinate

points with the lower ones so as to wrap the result around back onto the visible space of the image.

Most implementations �ll the image areas out of which an image has been shifted with black pixels.

Guidelines for Use

The translate operator takes two arguments, (�x; �y), which specify the desired horizontal and

vertical pixel displacements, respectively. For example, consider the arti�cial image art4ctr1, in

which the subject's center lies in the center of the 300�300 pixel image. We can naively translate

the subject into the lower, right corner of the image by de�ning a mapping (i.e. a set of values)

for (�x; �y) which will take the subject's center from its present position at x = 150; y = 150 to

an output position of (x0 = 300; y0 = 300), as shown in art4trn1. In this case, information is lost

because pixels which were mapped to points outside the boundaries de�ned by the input image

were ignored. If we perform the same translation, but wrap the result, all the intensity information

is retained, giving image art4trn2.

Both of the mappings shown above disturb the original geometric structure of the scene. It is

often the case that we perform translation merely to change the position of a scene object, not its

geometric structure. In the above example, we could achieve this e�ect by translating the circle

center to a position located at the lower, right corner of the image less the circle radius art4trn3.

At this point, we might build a collage by adding (p.43)) another image(s) whose subject(s) has

been appropriately translated, such as in art7trn1, to the previous result. This simple collage is

shown in art7add1.

Translation has many applications of the cosmetic sort illustrated above. However, it is also very

commonly used as a preprocessor in application domains where registration of two or more images

is required. For example, feature detection (p.183) and spatial �ltering (p.148) algorithms may

calculate gradients in such a way as to introduce an o�set in the positions of the pixels in the output

image with respect to the corresponding pixels from the input image. In the case of the Laplacian

of Gaussian (p.173) spatial sharpening �lter, some implementations require that the �ltered image

be translated by half the width of the Gaussian kernel with which it was convolved (p.227) in

order to bring it into alignment with the original. Likewise, the unsharp �lter (p.178), requires

translation to achieve a re-registration of images. The result of subtracting (p.45) the smoothed
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version of the image wdg1 away from the original image (after translating the smoothed image by

the o�set induced by the �lter before we subtract to re-align the two images) yields the edge image

wdg1usp2.

We again view the e�ects of mis-alignment if we consider translating art2 by one pixel in the x

and y directions and then subtracting this result from the original. The resulting image, shown

in art2sub1, contains a description of all the places (along the direction of translation) where the

intensity gradients are di�erent; i.e. it highlights edges (and noise (p.221)). The image cln1 was

used in examples of edge detection (p.230) using the Roberts Cross (p.184), Sobel (p.188) and

Canny (p.192) operators. Compare this result to the translation-based edge-detector illustrated

here cln1trn1. Note that if we increase the translation parameter too much, e.g., by 6 pixels in

each direction, as in cln1trn2, edges become severely mis-aligned and blurred.

Exercises

1. Investigate which arguments to the translation operator could perform the following trans-

lations: a) art2 into art2trn1. b) art3 into art3trn1.

2. We can create more interesting arti�cial images by combining the translate operation with

other operators. For example, art7 has been translated and then pixel added (p.43) back

onto itself to produce art7add2. a) Produce an arti�cial image of this sort using art6. b)

Combine art5 and art7 using translation and pixel addition into a collage.

3. Describe how you might derive a simple isotropic (p.233) edge detector (p.230) using a series

of translation and subtraction (p.45) operations.

4. Would it be possible to make a simple sharpening �lter (p.178) based on translation and pixel

addition (p.43) or subtraction (p.45)? On what types of images might such a �lter work?

5. How could one use translation to implement convolution (p.227) with the kernel shown in

Figure 7.4.
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Figure 7.4: Convolution kernel.

Can one implement every convolution using this approach?
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More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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7.5 A�ne Transformation

Brief Description

In many imaging systems, detected images are subject to geometric distortion introduced by per-

spective irregularities wherein the position of the camera(s) with respect to the scene alters the

apparent dimensions of the scene geometry. Applying an a�ne transformation to a uniformly dis-

torted image can correct for a range of perspective distortions by transforming the measurements

from the ideal coordinates to those actually used. (For example, this is useful in satellite imaging

where geometrically correct ground maps are desired.)

An a�ne transformation is an important class of linear 2-D geometric transformations which maps

variables (e.g. pixel intensity values (p.239) located at position (x1; y1) in an input image) into new

variables (e.g. (x2; y2) in an output image) by applying a linear combination of translation (p.97),

rotation (p.93), scaling (p.90) and/or shearing (i.e. non-uniform scaling in some directions) oper-

ations.

How It Works

In order to introduce the utility of the a�ne transformation, consider the image prt3, wherein a

machine part is shown lying in a fronto-parallel plane. The circular hole of the part is imaged as

a circle, and the parallelism and perpendicularity of lines in the real world are preserved in the

image plane. We might construct a model of this part using these primitives; however, such a

description would be of little use in identifying the part from prt4. Here the circle is imaged as

an ellipse, and orthogonal world lines are not imaged as orthogonal lines.

This problem of perspective can be overcome if we construct a shape description which is invari-

ant to perspective projection. Many interesting tasks within model based computer vision can be

accomplished without recourse to Euclidean shape descriptions (i.e. those requiring absolute dis-

tances, angles and areas) and, instead, employ descriptions involving relative measurements (i.e.

those which depend only upon the con�guration's intrinsic geometric relations). These relative

measurements can be determined directly from images. Figure 7.5 shows a hierarchy of planar

transformations which are important to computer vision.

The transformation of the part face shown in the example image above is approximated by a planar

a�ne transformation. (Compare this with the image prt5 where the distance to the part is not

large compared with its depth and, therefore, parallel object lines begin to converge. Because

the scaling varies with depth in this way, a description to the level of projective transformation

is required.) An a�ne transformation is equivalent to the composed e�ects of translation (p.97),

rotation (p.93), isotropic scaling (p.90) and shear.

The general a�ne transformation is commonly written in homogeneous coordinates as shown below:

���� x2y2
���� = A�

���� x1y1
����+B

By de�ning only the B matrix, this transformation can carry out pure translation (p.97):

A =

���� 1 0

0 1

���� ; B =

���� b1b2
����

Pure rotation (p.93) uses the A matrix and is de�ned as:

A =

���� cos(�) �sin(�)
sin(�) cos(�)

���� ; B =

���� 00
����

Similarly, pure scaling (p.90) is:
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Transformation Before After

Projective

Affine

Similarity

Euclidean

Figure 7.5: Hierarchy of plane to plane transformation from Euclidean (where only rotations and

translations are allowed) to Projective (where a square can be transformed into any more general

quadrilateral where no 3 points are collinear). Note that transformations lower in the table inherit

the invariants of those above, but because they possess their own groups of de�nitive axioms as

well, the converse is not true.

A =

���� a 0

0 a

���� ; B =

���� 00
����

(Note that several di�erent a�ne transformations are often combined to produce a resultant trans-

formation. The order in which the transformations occur is signi�cant since a translation followed

by a rotation is not necessarily equivalent to the converse.)

Since the general a�ne transformation is de�ned by 6 constants, it is possible to de�ne this

transformation by specifying the new output image locations (x2; y2) of any three input image

coordinate (x1; y1) pairs. (In practice, many more points are measured and a least squares method

is used to �nd the best �tting transform.)

Guidelines for Use

Most implementations of the a�ne operator allow the user to de�ne a transformation by specifying

to where 3 (or less) coordinate pairs from the input image (x1; y1) re-map in the output image

(x2; y2). (It is often the case, as with the implementation used here, that the user is restricted to re-

mapping corner coordinates of the input image to arbitrary new coordinates in the output image.)
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Once the transformation has been de�ned in this way, the re-mapping proceeds by calculating,

for each output pixel location (x2; y2), the corresponding input coordinates (x1; y1). If that input

point is outside of the image, then the output pixel is set to the background value. Otherwise, the

value of (i) the input pixel itself, (ii) the neighbor nearest to the desired pixel position, or (iii) a

bilinear interpolation of the neighboring four pixels is used.

We will illustrate the operation of the a�ne transformation by applying a series of special-case

transformations (e.g. pure translation (p.97), pure rotation (p.93) and pure scaling (p.90)) and

then some more general transformations involving combinations of these.

Starting with the 256�256 binary (p.225) arti�cial image rlf1, we can apply a translation using the
a�ne operator in order to obtain the image rlf1aff1. In order to perform this pure translation,

we de�ne a transformation by re-mapping a single point (e.g. the input image lower-left corner

(0; 0) ) to a new position at (64; 64).

A pure rotation requires re-mapping the position of two corners to new positions. If we specify that

the lower-left corner moves to (256; 0) and the lower-right corner moves to (256; 256), we obtain

rlf1aff2. Similarly, reection (p.95) can be achieved by swapping the coordinates of two opposite

corners, as shown in rlf1aff3.

Scaling (p.90) can also be applied by re-mapping just two corners. For example, we can send the

lower-left corner to (64; 64), while pinning the upper-right corner down at (256; 256), and thereby

uniformly shrink the size of the image subject by a quarter, as shown in rlf1aff5. Note that

here we have also translated the image. Re-mapping any 2 points can introduce a combination of

translation, rotation and scaling.

A general a�ne transformation is speci�ed by re-mapping 3 points. If we re-map the input image

so as to move the lower-left corner up to (64; 64) along the 45 degree oblique axis, move the upper-

right corner down by the same amount along this axis, and pin the lower-right corner in place, we

obtain an image which shows some shearing e�ects rlf1aff4. Notice how parallel lines remain

parallel, but perpendicular corners are distorted.

A�ne transformations are most commonly applied in the case where we have a detected image

which has undergone some type of distortion. The geometrically correct version of the input image

can be obtained from the a�ne transformation by re-sampling the input image such that the

information (or intensity) at each point (x1; y1) is mapped to the correct position (x2; y2) in a

corresponding output image.

One of the more interesting applications of this technique is in remote sensing. However, because

most images are transformed before they are made available to the image processing community, we

will demonstrate the a�ne transformation with the terrestrial image rot1str1, which is a contrast-

stretched (p.75) (cuto� fraction = 0.9) version of rot1. We might want to transform this image so

as to map the door frame back into a rectangle. We can do this by de�ning a transformation based

on a re-mapping of the (i) upper-right corner to a position 30% lower along the y-axis, (ii) the

lower-right corner to a position 10% lower along the x-axis, and (iii) pinning down the upper-left

corner. The result is shown in rot1aff1. Notice that we have de�ned a transformation which

works well for objects at the depth of the door frame, but nearby objects have been distorted

because the a�ne plane transformation cannot account for distortions at widely varying depths.

It is common for imagery to contain a number of perspective distortions. For example, the original

image boa1 shows both a�ne and projective type distortions due to the proximity of the camera

with respect to the subject. After a�ne transformation, we obtain boa1aff1. Notice that the front

face of the captain's house now has truly perpendicular angles where the vertical and horizontal

members meet. However, the far background features have been distorted in the process and,

furthermore, it was not possible to correct for the perspective distortion which makes the bow

appear much larger than the hull,

Exercises

1. It is not always possible to accurately represent the distortion in an image using an a�ne
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transformation. In what sorts of imaging scenarios would you expect to �nd non-linearities

in a scanning process and/or di�erences in along-scans vs across-scans?

2. Apply an a�ne transformation to the image hse1. a) Experiment with di�erent combinations

of basic translation (p.97), rotation (p.93) and scaling (p.90) and then apply a transform

which combines several of these operations. b) Rotate a translated version of the image and

compare your result with the result of translating a rotated version of the image.
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Chapter 8

Image Analysis

Many of the other categories of image processing operators demonstrated in HIPR transform an

input image to form a new image without attempting to extract usable global information from

the image. The operators included in this section do extract globally useful information, such as:

� Pixel Value Distribution (p.105), the number of pixels having each value.

� Classi�ed Pixels (p.107), the category of scene entity that the corresponding pixel is taken

from.

� Connected Components (p.114), the groups of pixels all of which have the same label or

classi�cation.

It is possible to represent some of this information as an image (i.e. an image whose pixels are

the category or index number of the scene structure), but the information need not always be so

represented, nor even necessarily be representable as an image. For example, while not included

here, one might analyze a binary image (p.225) of an isolated object to determine the area or

various moments of the shape. Another example would be to link together connected edge (p.230)

fragments to make a list of edge pixels.

This category of operation is often considered part of the middle level image interpretation (i.e.

a signal-to-symbol transformations or feature extraction), and whose results might ultimately be

used in higher level image interpretation (i.e. symbol-to-symbol transformations such as scene

description, object location, etc.).
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8.1 Intensity Histogram

Brief Description

In an image processing context, the histogram of an image normally refers to a histogram of the

pixel intensity values (p.239). This histogram is a graph showing the number of pixels (p.238) in

an image at each di�erent intensity value found in that image. For an 8-bit grayscale image (p.232)

there are 256 di�erent possible intensities, and so the histogram will graphically display 256 num-

bers showing the distribution of pixels amongst those grayscale values. Histograms can also be

taken of color images (p.225) | either individual histograms of red, green and blue channels can

be taken, or a 3-D histogram can be produced, with the three axes representing the red, blue

and green (p.240) channels, and brightness at each point representing the pixel count. The exact

output from the operation depends upon the implementation | it may simply be a picture of the

required histogram in a suitable image format, or it may be a data �le of some sort representing

the histogram statistics.

How It Works

The operation is very simple. The image is scanned in a single pass and a running count of the

number of pixels found at each intensity value is kept. This is then used to construct a suitable

histogram.

Guidelines for Use

Histograms have many uses. One of the more common is to decide what value of threshold to use

when converting a grayscale image (p.232) to a binary (p.225) one by thresholding (p.69). If the

image is suitable for thresholding then the histogram will be bi-modal | i.e. the pixel intensities

will be clustered around two well-separated values. A suitable threshold for separating these two

groups will be found somewhere in between the two peaks in the histogram. If the distribution is

not like this then it is unlikely that a good segmentation can be produced by thresholding.

The intensity histogram for the input image wdg2 is wdg2hst1. The object being viewed is dark

in color and it is placed on a light background, and so the histogram exhibits a good bi-modal

distribution. One peak represents the object pixels, one represents the background. The histogram

wdg2hst3 is the same, but with the y-axis expanded to show more detail. It is clear that a threshold

value of around 120 should segment the picture nicely, as can be seen in wdg2thr2.

The histogram of image wdg3 is wdg3hst1. This time there is a signi�cant incident illumination

gradient across the image, and this blurs out the histogram. The bi-modal distribution has been

destroyed and it is no longer possible to select a single global threshold that will neatly segment

the object from its background. Two failed thresholding segmentations are shown in wdg3thr1

and wdg3thr2 using thresholds of 80 and 120, respectively.

It is often helpful to be able to adjust the scale on the y-axis of the histogram manually. If the

scaling is simply done automatically, then very large peaks may force a scale that makes smaller

features indiscernible.

The histogram is used and altered by many image enhancement operators. Two operators which are

closely connected to the histogram are contrast stretching (p.75) and histogram equalization (p.78).

They are based on the assumption that an image has to use the full intensity range to display the

maximum contrast. Contrast stretching takes an image in which the intensity values don't span

the full intensity range and stretches its values linearly. This can be illustrated with cla3. Its

histogram, cla3hst1 shows that most of the pixels have rather high intensity values. Contrast

stretching the image yields cla3str1 which has a clearly improved contrast. The corresponding

histogram is cla3hst2. If we expand the y-axis, as was done in cla3hst3, we can see that now

the pixel values are distributed over the entire intensity range. Due to the discrete character of
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the pixel values, we can't increase the number of distinct intensity values. That is the reason why

the stretched histogram shows the gaps between the single values.

The image wom2 also has low contrast. However, if we look at its histogram, wom2hst1, we see that

the entire intensity range is used and we therefore cannot apply contrast stretching. On the other

hand, the histogram also shows that most of the pixels values are clustered in a rather small area,

whereas the top half of the intensity values is used by only a few pixels. The idea of histogram

equalization (p.78) is that the pixels should be distributed evenly over the whole intensity range,

i.e. the aim is to transform the image so that the output image has a at histogram. The image

wom2heq1 results from the histogram equalization and wom2hst2 is the corresponding histogram.

Due to the discrete character of the intensity values, the histogram is not entirely at. However,

the values are much more evenly distributed than in the original histogram and the contrast in the

image was essentially increased.

Exercises

1. Suppose that you had a scene of three objects of di�erent distinct intensities against an

extremely bright background. What would the corresponding histogram look like?

2. How could you get a program to automatically work out the ideal threshold for an image

from its histogram? What do you think might be the problems?

3. If there is a very high peak right at the top end of the histogram, what does this suggest?
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8.2 Classi�cation

Brief Description

Classi�cation includes a broad range of decision-theoretic approaches to the identi�cation of im-

ages (or parts thereof). All classi�cation algorithms are based on the assumption that the image

in question depicts one or more features (e.g., geometric parts in the case of a manufacturing

classi�cation system, or spectral regions in the case of remote sensing, as shown in the examples

below) and that each of these features belongs to one of several distinct and exclusive classes. The

classes may be speci�ed a priori by an analyst (as in supervised classi�cation) or automatically

clustered (i.e. as in unsupervised classi�cation) into sets of prototype classes, where the analyst

merely speci�es the number of desired categories. (Classi�cation and segmentation have closely

related objectives, as the former is another form of component labeling (p.114) that can result in

segmentation of various features in a scene.)

How It Works

Image classi�cation analyzes the numerical properties of various image features and organizes data

into categories. Classi�cation algorithms typically employ two phases of processing: training and

testing. In the initial training phase, characteristic properties of typical image features are isolated

and, based on these, a unique description of each classi�cation category, i.e. training class, is

created. In the subsequent testing phase, these feature-space partitions are used to classify image

features.

The description of training classes is an extremely important component of the classi�cation pro-

cess. In supervised classi�cation, statistical processes (i.e. based on an a priori knowledge of prob-

ability distribution functions) or distribution-free processes can be used to extract class descriptors.

Unsupervised classi�cation relies on clustering algorithms to automatically segment the training

data into prototype classes. In either case, the motivating criteria for constructing training classes

is that they are:

� independent, i.e. a change in the description of one training class should not change the value

of another,

� discriminatory, i.e. di�erent image features should have signi�cantly di�erent descriptions,

and

� reliable, all image features within a training group should share the common de�nitive de-

scriptions of that group.

A convenient way of building a parametric description of this sort is via a feature vector (v1; v2; ::; vn),

where n is the number of attributes which describe each image feature and training class. This

representation allows us to consider each image feature as occupying a point, and each training

class as occupying a sub-space (i.e. a representative point surrounded by some spread, or devi-

ation), within the n-dimensional classi�cation space. Viewed as such, the classi�cation problem is

that of determining to which sub-space class each feature vector belongs.

For example, consider an application where we must distinguish two di�erent types of objects (e.g.

bolts and sewing needles) based upon a set of two attribute classes (e.g. length along the major

axis and head diameter). If we assume that we have a vision system capable of extracting these

features from a set of training images, we can plot the result in the 2-D feature space, shown in

Figure 8.1.

At this point, we must decide how to numerically partition the feature space so that if we are given

the feature vector of a test object, we can determine, quantitatively, to which of the two classes it

belongs. One of the most simple (although not the most computationally e�cient) techniques is to

employ a supervised, distribution-free approach known as the minimum (mean) distance classi�er.

This technique is described below.
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Figure 8.1: Feature space: + sewing needles, o bolts.

Minimum (Mean) Distance Classi�er

Suppose that each training class is represented by a prototype (or mean) vector:

mj = 1=Nj

X
x�!j

x for j = 1; 2; :::;M

where Nj is the number of training pattern vectors from class !j . In the example classi�cation

problem given above, mneedle = [0:86; 2:34]T and mbolt = [5:74; 5:85]T as shown in Figure 8.2.

Based on this, we can assign any given pattern x to the class of its closest prototype by determining

its proximity to each mj . If Euclidean distance (p.229) is our measure of proximity, then the

distance to the prototype is given by

Dj(x) = kx�mjk for j = 1; 2; :::;M

It is not di�cult to show that this is equivalent to computing

dj(x) = x
T
mj � 1=2(mT

j
mj) for j = 1; 2; :::;M

and assign x to class !j if dj(x) yields the largest value.

Returning to our example, we can calculate the following decision functions:

dneedle(x) = 0:86x1 + 2:34x2 � 3:10

dbolt(x) = 5:74x1 + 5:85x2 � 33:59

Finally, the decision boundary which separates class !i from !j is given by values for x for which

di(x) � dj(x) = 0
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Figure 8.2: Feature space: + sewing needles, o bolts, * class mean

In the case of the needles and bolts problem, the decision surface is given by:

dneedle=bolt(x) = �4:88x1 � 3:51x2 + 30:49 = 0

As shown in Figure 8.3, the surface de�ned by this decision boundary is the perpendicular bisector

of the line segment joining mi and mj .
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Figure 8.3: Feature space: + sewing needles, o bolts, * class mean, line = decision surface

In practice, the minimum (mean) distance classi�er works well when the distance between means
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is large compared to the spread (or randomness) of each class with respect to its mean. It is simple

to implement and is guaranteed to give an error rate within a factor of two of the ideal error

rate, obtainable with the statistical, supervised Bayes' classi�er. The Bayes' classi�er is a more

informed algorithm as the frequencies of occurrence of the features of interest are used to aid the

classi�cation process. Without this information the minimum (mean) distance classi�er can yield

biased classi�cations. This can be best combatted by applying training patterns at the natural

rates at which they arise in the raw training set.

Guidelines for Use

To illustrate the utility of classi�cation (using the minimum (mean) distance classi�er), we will con-

sider a remote sensing application. Here, we have a collection of multi-spectral images (p.237) (i.e.

images containing several bands, where each band represents a single electro-magnetic wavelength

or frequency) of the planet Earth collected from a satellite. We wish to classify each image

pixel (p.238) into one of several di�erent classes (e.g. water, city, wheat �eld, pine forest, cloud,

etc.) on the basis of the spectral measurement of that pixel.

Consider a set of images of the globe (centered on America) which describe the visible bvs1

and infra-red bir1 spectrums, respectively. From the histograms of the visible band image

bvs1hst1 and infra-red band image bir1hst1, we can see that it would be very di�cult to �nd a

threshold (p.69), or decision surface, with which to segment the images into training classes (e.g.

spectral classes which correspond to physical phenomena such as cloud, ground, water, etc.). It is

often the case that having a higher dimensionality representation of this information (i.e. using

one 2-D histogram instead of two 1-D histograms) facilitates segmentation of regions which might

overlap when projected onto a single axis, as shown for some hypothetical data in Figure 8.4.
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Figure 8.4: 2-D feature space representation of hypothetical data. (The projection of the data

onto the X-axis is equivalent to a 1-D histogram.)

Since the images over America are registered, we can combine them into a single two-band image

and �nd the decision surface(s) which divides the data into distinct classi�cation regions in this

higher dimensional representation. To this aim, we use a k-means algorithm to �nd the training

classes of the 2-D spectral images. (This algorithm converts an input image into vectors of equal

size (where the size of each vector is determined by the number of spectral bands in the input

image) and then determines the k prototype mean vectors by minimizing of the sum of the squared
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distances from all points in a class to the class center m.)

If we choose k=2 as a starting point, the algorithm �nds two prototype mean vectors, shown with

a * symbol in the 2-D histogram bvi1tdh1. This �gure also shows the linear decision surface which

separates out our training classes.

Using two training classes, such as those found for the image over America, we can classify a similar

multi-spectral image of Africa avs1 (visible) and air1 (infra-red) to yield the result: avi2cls1.

(Note that the image size has been scaled (p.90) by a factor of two to speed up computation, and

a border has been placed around the image to mask out any background pixels.) We can see that

one of the classes created during the training process contains pixels corresponding to land masses

over north and south Africa, whereas the pixels in the other class represent water or clouds.

Classi�cation accuracy using the minimum (mean) distance classi�er improves as we increase the

number of training classes. The images avi2cls4 and avi2cls5 show the results of the classi�ca-

tion procedure using k=4 and k=6 training classes. The equivalent with a color assigned to each

class is shown in avi2cls2 and avi2cls3 for k=4 and k=6, respectively. Here we begin to see the

classi�cation segmenting out regions which correspond to distinct physical phenomena.

Common Variants

Classi�cation is such a broad ranging �eld, that a description of all the algorithms could �ll several

volumes of text. We have already discussed a common supervised algorithm, therefore in this

section we will briey consider a representative unsupervised algorithm. In general, unsupervised

clustering techniques are used less frequently, as the computation time required for the algorithm

to learn a set of training classes is usually prohibitive. However, in applications where the features

(and relationships between features) are not well understood, clustering algorithms can provide a

viable means for partitioning a sample space.

A general clustering algorithm is based on a split and merge technique, as shown in Figure 8.5.

Using a similarity measure (e.g. the dot product of two vectors, the weighted Euclidean distance,

etc.), the input vectors can be partitioned into subsets, each of which should be su�ciently distinct.

Subsets which do not meet this criterion are merged. This procedure is repeated on all of the subsets

until no further splitting of subsets occurs or until some stopping criteria is met.

Exercises

1. In the classi�cation of natural scenes, there is often the problem that features we want to

classify occur at di�erent scales. For example, in constructing a system to classify trees, we

have to take into account that trees close to the camera will appear large and sharp, while

those at some distance away may be small and fuzzy. Describe how one might overcome this

problem.

2. The following table gives some training data to be used in the classi�cation of ower types.

Petal length and width are given for two di�erent owers. Plot this information on a graph

(utilizing the same scale for the petal length and petal width axes) and then answer the

questions below.

Petal Length Petal Width Class

4 3 1

4.5 4 1

3 4 1

6 1 2

7 1.5 2

6.5 2 2

a) Calculate the mean, or prototype, vectors mi for the two ower types described above.

b) Determine the decision functions di for each class. c) Determine the equation of the

boundary (i.e. d12 = d1(x) � d2(x)) and plot the decision surface on your graph. d) Notice
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Figure 8.5: General clustering algorithm

that substitution of a pattern from class !1 into your answer from the previous section yields

a positive valued d12(x), while a pattern belonging to the class !2 yields a negative value.

How would you use this information to determine a new pattern's class membership?

3. Experiment with classifying some remotely sensed images: e.g. evs1 and eir1 are the visible

and infra-red images of Europe, uvs1 and uir1 are those of the United Kingdom and svs1

and sir1 are those of Scandinavia. Begin by combining the two single-band spectral images

of Europe into a single multi-band image (p.237). (You may want to scale (p.90) the image

so as to cut down the processing time.) Then, create a set of training classes, where k equals

6,8,10... (Remember that although the accuracy of the classi�cation improves with greater

numbers of training classes, the computational requirements increase as well.) Then try

classifying all three images using these training sets.
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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8.3 Connected Components Labeling

Brief Description

Connected components labeling scans an image and groups its pixels (p.238) into components

based on pixel connectivity (p.238), i.e. all pixels in a connected component share similar pixel

intensity values (p.239) and are in some way connected with each other. Once all groups have

been determined, each pixel is labeled with a graylevel or a color (color labeling) according to the

component it was assigned to.

Extracting and labeling of various disjoint and connected components in an image is central to

many automated image analysis applications.

How It Works

Connected component labeling works by scanning an image, pixel-by-pixel (from top to bottom

and left to right) in order to identify connected pixel regions, i.e. regions of adjacent pixels which

share the same set of intensity values V. (For a binary image V=f1g; however, in a graylevel image
V will take on a range of values, for example: V=f51, 52, 53, ..., 77, 78, 79, 80g.)
Connected component labeling works on binary (p.225) or graylevel images (p.232) and di�erent

measures of connectivity (p.238) are possible. However, for the following we assume binary input

images and 8-connectivity. The connected components labeling operator scans the image by moving

along a row until it comes to a point p (where p denotes the pixel to be labeled at any stage in the

scanning process) for which V=f1g. When this is true, it examines the four neighbors of p which

have already been encountered in the scan (i.e. the neighbors (i) to the left of p, (ii) above it, and

(iii and iv) the two upper diagonal terms). Based on this information, the labeling of p occurs as

follows:

� If all four neighbors are 0, assign a new label to p, else

� if only one neighbor has V=f1g, assign its label to p, else

� if one or more of the neighbors have V=f1g, assign one of the labels to p and make a note

of the equivalences.

After completing the scan, the equivalent label pairs are sorted into equivalence classes and a

unique label is assigned to each class. As a �nal step, a second scan is made through the image,

during which each label is replaced by the label assigned to its equivalence classes. For display,

the labels might be di�erent graylevels or colors.

Guidelines for Use

To illustrate connected components labeling, we start with a simple binary image (p.225) containing

some distinct arti�cial objects art8. After scanning this image and labeling the distinct pixels

classes with a di�erent grayvalue, we obtain the labeled output image art8lab1. Note that this

image was scaled (p.48), since the initial grayvalues (1 - 8) would all appear black on the screen.

However, the pixels initially assigned to the lower classes (1 and 2) are still indiscernible from the

background. If we assign a distinct color to each graylevel we obtain art8lab2.

The full utility of connected components labeling can be realized in an image analysis scenario

wherein images are pre-processed via some segmentation (e.g. thresholding (p.69)) or classi�ca-

tion (p.107) scheme. One application is to use connected components labeling to count the objects

in an image. For example, in the above simple scene the 8 objects yield 8 di�erent classes.

If we want to count the objects in a real world scene like clc3, we �rst have to threshold the

image in order to produce a binary input image (the implementation being used only takes binary
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images). Setting all values above a value of 150 to zero yields clc3thr1. The white dots correspond

to the black, dead cells in the original image. The connected components of this binary image can

be seen in clc3lab1. The corresponding colormap (p.235) shows that the highest value is 163, i.e.

the output contains 163 connected components. In order to better see the result, we now would

like to assign a color to each component. The problem here is that we cannot �nd 163 colors

where each of them is di�erent enough from all others to be distinguished by the human eye. Two

possible ways to assign the colors are as follows:

� We only use a few colors (e.g. 8) which are clearly di�erent from each other and assign each

graylevel of the connected component image to one of these colors. The result can be seen in

clc3lab2. We can now easily distinguish two di�erent components, provided that they were

not assign the same color. However, we lose a lot of information because the (in this case)

163 graylevels are reduced to 8 di�erent colors.

� We can assign a di�erent color to each grayvalue, many of them being quite similar. A

typical result for the above image would be clc3lab3. Although, we sometimes cannot tell

the border between two components when they are very close to each other, we do not lose

any information.

More sophisticated techniques combine both methods. They make sure that two nearby compon-

ents always have distinct colors by taking into account the colors of the neighbors of the component

which is going to be assigned a color.

If we compare the above color-labeled images with the original, we can see that the number of

components is quite close to the number of dead cells in the image. However, we obtain a small

di�erence since some cells merge together into one component or dead cells are suppressed by the

threshold.

We encounter greater problems when trying to count the number of turkeys in tur1gry1. Labeling

the thresholded image tur1thr1 yields tur1lab1 as a graylevel or tur1lab2 as a color labeled

version. Although we managed to assign one connected component to each turkey, the number of

components (196) does not correspond to the number of turkeys.

The two last examples showed that the connected component labeling is the easy part of the auto-

mated analysis process, whereas the major task is to obtain a good binary image which separates

the objects from the background.

Finally, we consider the problem of labeling data output from a classi�cation (p.107) processes.

We can classify multi-spectral images (p.237) (e.g. a two-band image consisting of avs2 (visible

range) and air2 (infra-red range)) in order to �nd k groupings of the data based on the pixel

intensities clusters. This result is shown in the image avi2cls1, where the multi-spectral image was

classi�ed into two groups. If we now apply connected components labeling, connected geographic

regions which belong to the same intensity classes can be labeled. The result contains 49 di�erent

components, most of them being only a few pixels large. The color labeled version can be seen in

avi2lab1. One could now use this image to further investigate the regions, e.g. if some components

changed their size compared to a reference image or if other regions merged together.

Common Variants

A collection of morphological operators (p.117) exists for extracting connected components and

labeling them in various ways. A simple method for extracting connected components of an image

combines dilation (p.118) and the mathematical intersection operation. The former identi�es pixels

which are part of a continuous region sharing a common set of intensity values V=f1g and the

latter eliminates dilations centered on pixels with V=f0g. The structuring element (p.241) used

de�nes the desired connectivity.

More sophisticated variants of this include a set of geodesic functions for measuring the exact shape

of distinct objects in an image. These operators are based on the notion of geodesic distance d

which is de�ned as the shortest distance (p.229) between two points located within an image object
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such that the entire path between the points is included in the object. One way to obtain this

information is to apply a series of dilations of size 1. (Distance (p.206) measuring operators are

described in fuller detail elsewhere.)

For example, consider the image tol1crp1 which shows a triangular block. Applying a geodesic

operator to the image produces a labeled image bld1lab1 wherein the graylevel intensity labeling

across the surface of the block encodes geodesic distance, i.e. light pixels represent larger distances.

Exercises

1. How would the scanning algorithm described above label an object containing a hole? How

would the morphological approach? Investigate how your implementation handles the image

cir1.

2. Apply connected components labeling to an image counting problem. Starting from pen1,

produce a suitable binary image (p.225) (i.e. threshold (p.69) the image) and then apply

connected components labeling with the aim of obtaining a distinct label for each penguin.

(Note, this may require some experimentation with threshold values.)

3. The remote sensing example given in the test used a rather convoluted set of operations (e.g.,

classi�cation (p.107), thresholding (p.69) and then labeling). See if you can obtain similar

results by simply thresholding one of the original images, such as avs1 and/or air1, and

then applying labeling directly.

4. Classifying (p.107) the above two-band satellite image of Africa using the classi�cation para-

meter k=4 yields avi2cls5. Use labeling to identify each connected component in this image.

If your implementation of the operator does not support graylevel images use threshold-

ing (p.69) to produce four binary images, each containing one of the four classes. Then apply

connected component labeling to each of the binary images.

5. Try using thresholding and connected components analysis to segment the image aer1 into

urban and rural areas. You might investigate thresholding within a particular color band(s)

to create two binary �les containing a description of (i) rural areas, i.e. �elds, trees, hills,

etc. around the image perimeter and (ii) urban areas, i.e. roads, houses, etc. in the image

interior.
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Chapter 9

Morphology

Morphological operators often take a binary image (p.225) and a structuring element (p.241) as

input and combine them using a set operator (intersection, union, inclusion, complement). They

process objects in the input image based on characteristics of its shape, which are encoded in the

structuring element. The mathematical details are explained in Mathematical Morphology (p.236).

Usually, the structuring element is sized 3�3 and has its origin at the center pixel. It is shifted over
the image and at each pixel of the image its elements are compared with the set of the underlying

pixels. If the two sets of elements match the condition de�ned by the set operator (e.g. if the set of

pixels in the structuring element is a subset of the underlying image pixels), the pixel underneath

the origin of the structuring element is set to a pre-de�ned value (0 or 1 for binary images). A

morphological operator is therefore de�ned by its structuring element and the applied set operator.

For the basic morphological operators the structuring element (p.241) contains only foreground

pixels (i.e. ones) and `don't care's'. These operators, which are all a combination of erosion (p.123)

and dilation (p.118), are often used to select or suppress features of a certain shape, e.g. removing

noise from images or selecting objects with a particular direction.

The more sophisticated operators take zeros as well as ones and `don't care's' in the structuring

element. The most general operator is the hit and miss (p.133), in fact, all the other morphological

operators can be deduced from it. Its variations are often used to simplify the representation of

objects in a (binary) image while preserving their structure, e.g. producing a skeleton of an object

using skeletonization (p.145) and tidying up the result using thinning (p.137).

Morphological operators can also be applied to graylevel images (p.232), e.g. to reduce noise (p.221)

or to brighten the image. However, for many applications, other methods like a more general spatial

�lter (p.148) produces better results.
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9.1 Dilation

Brief Description

Dilation is one of the two basic operators in the area of mathematical morphology (p.236), the other

being erosion (p.123). It is typically applied to binary images (p.225), but there are versions that

work on grayscale images (p.232). The basic e�ect of the operator on a binary image is to gradually

enlarge the boundaries of regions of foreground pixels (p.238) (i.e. white pixels, typically). Thus

areas of foreground pixels grow in size while holes within those regions become smaller.

How It Works

Useful background to this description is given in the mathematical morphology (p.236) section of

the Glossary.

The dilation operator takes two pieces of data as inputs. The �rst is the image which is to be dilated.

The second is a (usually small) set of coordinate points known as a structuring element (p.241)

(also known as a kernel (p.233)). It is this structuring element that determines the precise e�ect

of the dilation on the input image.

The mathematical de�nition of dilation for binary images is as follows:

Suppose that X is the set of Euclidean coordinates corresponding to the input binary

image, and that K is the set of coordinates for the structuring element.

Let Kx denote the translation of K so that its origin is at x.

Then the dilation of X by K is simply the set of all points x such that the intersection

of Kx with X is non-empty.

The mathematical de�nition of grayscale dilation is identical except for the way in which the set

of coordinates associated with the input image is derived. In addition, these coordinates are 3-D

rather than 2-D.

As an example of binary dilation, suppose that the structuring element is a 3�3 square, with the

origin at its center, as shown in Figure 9.1. Note that in this and subsequent diagrams, foreground

pixels are represented by 1's and background pixels by 0's.

Set of coordinate points = 

(-1, -1),

(-1, 0),

(-1, 1),

(0, 0), (1, 0),

(0, 1), (1, 1) }

{

1 1 1

111

1 1 1

(0, -1), (1, -1),

Figure 9.1: A 3�3 square structuring element

To compute the dilation of a binary input image by this structuring element, we consider each of

the background pixels in the input image in turn. For each background pixel (which we will call

the input pixel) we superimpose the structuring element on top of the input image so that the

origin of the structuring element coincides with the input pixel position. If at least one pixel in

the structuring element coincides with a foreground pixel in the image underneath, then the input
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pixel is set to the foreground value. If all the corresponding pixels in the image are background,

however, the input pixel is left at the background value.

For our example 3�3 structuring element, the e�ect of this operation is to set to the foreground

color any background pixels that have a neighboring foreground pixel (assuming

8-connectedness (p.238)). Such pixels must lie at the edges of white regions, and so the practical

upshot is that foreground regions grow (and holes inside a region shrink).

Dilation is the dual of erosion (p.123) i.e. dilating foreground pixels is equivalent to eroding the

background pixels.

Guidelines for Use

Most implementations of this operator expect the input image to be binary, usually with foreground

pixels at pixel value 255, and background pixels at pixel value 0. Such an image can often be

produced from a grayscale image using thresholding (p.69). It is important to check that the

polarity (p.225) of the input image is set up correctly for the dilation implementation being used.

The structuring element may have to be supplied as a small binary image, or in a special matrix

format, or it may simply be hardwired into the implementation, and not require specifying at all.

In this latter case, a 3�3 square structuring element is normally assumed which gives the expansion
e�ect described above. The e�ect of a dilation using this structuring element on a binary image is

shown in Figure 9.2.
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Figure 9.2: E�ect of dilation using a 3�3 square structuring element

The 3�3 square is probably the most common structuring element used in dilation operations,

but others can be used. A larger structuring element produces a more extreme dilation e�ect,

although usually very similar e�ects can be achieved by repeated dilations using a smaller but

similarly shaped structuring element. With larger structuring elements, it is quite common to use

an approximately disk shaped structuring element, as opposed to a square one.

The image wdg2thr3 shows a thresholded (p.69) image of wdg2. The basic e�ect of dilation on

the binary is illustrated in wdg2dil1. This image was produced by two dilation passes using a

disk shaped structuring element of 11 pixels radius. Note that the corners have been rounded o�.

In general, when dilating by a disk shaped structuring element, convex boundaries will become

rounded, and concave boundaries will be preserved as they are.

Dilations can be made directional by using less symmetrical structuring elements. e.g. a structuring

element that is 10 pixels wide and 1 pixel high will dilate in a horizontal direction only. Similarly,

a 3�3 square structuring element with the origin in the middle of the top row rather than the

center, will dilate the bottom of a region more strongly than the top.

Grayscale dilation with a at disk shaped structuring element will generally brighten the image.
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Bright regions surrounded by dark regions grow in size, and dark regions surrounded by bright

regions shrink in size. Small dark spots in images will disappear as they are `�lled in' to the

surrounding intensity value. Small bright spots will become larger spots. The e�ect is most

marked at places in the image where the intensity changes rapidly and regions of fairly uniform

intensity will be largely unchanged except at their edges. Figure 9.3 shows a vertical cross-section

through a graylevel image and the e�ect of dilation using a disk shaped structuring element.

Intensity Intensity

X Coordinate X Coordinate

Width of dilating kernel:

Figure 9.3: Graylevel dilation using a disk shaped structuring element. The graphs show a vertical

cross-section through a graylevel image (p.232).

The image blb1dil1 shows the basic e�ects of graylevel dilation. This was produced from blb1 by

two erosion passes using a 3�3 at square structuring element. The highlights on the bulb surface

have increased in size and have also become squared o� as an artifact of the structuring element

shape. The dark body of the cube has shrunk in size since it is darker than its surroundings, while

within the outlines of the cube itself, the darkest top surface has shrunk the most. Many of the

surfaces have a more uniform intensity since dark spots have been �lled in by the dilation. The

e�ect of �ve passes of the same dilation operator on the original image is shown in blb1dil2.

There are many specialist uses for dilation. For instance it can be used to �ll in small spurious holes

(`pepper noise' (p.221)) in images. The image fce5noi2 shows an image containing pepper noise,

and fce5dil1 shows the result of dilating this image with a 3�3 square structuring element. Note
that although the noise has been e�ectively removed, the image has been degraded signi�cantly.

Compare the result with that described under closing (p.130).

Dilation can also be used for edge detection (p.230) by taking the dilation of an image and then

subtracting (p.45) away the original image, thus highlighting just those new pixels at the edges

of objects that were added by the dilation. For example, starting with wdg2thr3 again, we �rst

dilate it using 3�3 square structuring element, and then subtract away the original image to leave

just the edge of the object as shown in wdg2ded1.

Finally, dilation is also used as the basis for many other mathematical morphology operators, often

in combination with some logical operators (p.234). A simple example is region �lling which is

illustrated using reg1. This image and all the following results were zoomed (p.90) with a factor of

16 for a better display, i.e. each pixel during the processing corresponds to a 16�16 pixel square

in the displayed images. Region �lling applies logical NOT (p.63), logical AND (p.55) and dilation

iteratively. The process can be described by the following formula:

Xk = dilate(Xk�1; J) \ Anot

where Xk is the region which after convergence �lls the boundary, J is the structuring element

and Anot is the negative of the boundary. This combination of the dilation operator and a logical

operator is also known as conditional dilation.
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Imagine that we know X0, i.e. one pixel which lies inside the region shown in the above image,

e.g. reg1fst1. First, we dilate the image containing the single pixel using a structuring element

as shown in Figure 9.1, resulting in reg1dil1. To prevent the growing region from crossing the

boundary, we AND it with reg1neg1 which is the negative of the boundary. Dilating the resulting

image, reg1and1, yields reg1dil2. ANDing this image with the inverted boundary results in

reg1and2. Repeating these two steps until convergence, yields reg1and3, reg1and4, reg1and5,

reg1and6 and �nally reg1and7. ORing (p.58) this image with the initial boundary yields the �nal

result, as can be seen in reg1fil1.

Many other morphological algorithms make use of dilation, and some of the most common ones

are described here (p.117). An example in which dilation is used in combination with other

morphological operators is the pre-processing for automated character recognition described in the

thinning (p.137) section.

Exercises

1. What would be the e�ect of a dilation using the cross-shaped structuring element shown in

Figure 9.4?

1

111

1

Figure 9.4: Cross-shaped structuring element

2. What would happen if the boundary shown in the region �lling example is disconnected at

one point? What could you do to �x that problem?

3. What would happen if the boundary in the region �lling example is 8-connected (p.238)?

What should the structuring element look like in this case?

4. How might you use conditional dilation to determine a connected component (p.238) given

one point of this component?

5. What problems occur when using dilation to �ll small noisy holes in objects?
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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9.2 Erosion

Brief Description

Erosion is one of the two basic operators in the area of mathematical morphology (p.236), the

other being dilation (p.118). It is typically applied to binary images (p.225), but there are versions

that work on grayscale images (p.232). The basic e�ect of the operator on a binary image is to

erode away the boundaries of regions of foreground pixels (p.238) (i.e. white pixels, typically).

Thus areas of foreground pixels shrink in size, and holes within those areas become larger.

How It Works

Useful background to this description is given in the mathematical morphology (p.236) section of

the Glossary.

The erosion operator takes two pieces of data as inputs. The �rst is the image which is to be eroded.

The second is a (usually small) set of coordinate points known as a structuring element (p.241)

(also known as a kernel (p.233)). It is this structuring element that determines the precise e�ect

of the erosion on the input image.

The mathematical de�nition of erosion for binary images is as follows:

Suppose that X is the set of Euclidean coordinates corresponding to the input binary

image, and that K is the set of coordinates for the structuring element.

Let Kx denote the translation of K so that its origin is at x.

Then the erosion of X by K is simply the set of all points x such that Kx is a subset of

X.

The mathematical de�nition for grayscale erosion is identical except in the way in which the set

of coordinates associated with the input image is derived. In addition, these coordinates are 3-D

rather than 2-D.

As an example of binary erosion, suppose that the structuring element is a 3�3 square, with the

origin at its center as shown in Figure 9.5. Note that in this and subsequent diagrams, foreground

pixels are represented by 1's and background pixels by 0's.

Set of coordinate points = 

(-1, -1),

(-1, 0),

(-1, 1),

(0, 0), (1, 0),

(0, 1), (1, 1) }

{

1 1 1

111

1 1 1

(0, -1), (1, -1),

Figure 9.5: A 3�3 square structuring element

To compute the erosion of a binary input image by this structuring element, we consider each of

the foreground pixels in the input image in turn. For each foreground pixel (which we will call

the input pixel) we superimpose the structuring element on top of the input image so that the

origin of the structuring element coincides with the input pixel coordinates. If for every pixel in

the structuring element, the corresponding pixel in the image underneath is a foreground pixel,
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then the input pixel is left as it is. If any of the corresponding pixels in the image are background,

however, the input pixel is also set to background value.

For our example 3�3 structuring element, the e�ect of this operation is to remove any foreground

pixel that is not completely surrounded by other white pixels (assuming 8-connectedness (p.238)).

Such pixels must lie at the edges of white regions, and so the practical upshot is that foreground

regions shrink (and holes inside a region grow).

Erosion is the dual of dilation (p.118), i.e. eroding foreground pixels is equivalent to dilating the

background pixels.

Guidelines for Use

Most implementations of this operator will expect the input image to be binary, usually with

foreground pixels at intensity value 255, and background pixels at intensity value 0. Such an

image can often be produced from a grayscale image using thresholding (p.69). It is important to

check that the polarity (p.225) of the input image is set up correctly for the erosion implementation

being used.

The structuring element may have to be supplied as a small binary image, or in a special matrix

format, or it may simply be hardwired into the implementation, and not require specifying at all.

In this latter case, a 3�3 square structuring element is normally assumed which gives the shrinking
e�ect described above. The e�ect of an erosion using this structuring element on a binary image

is shown in Figure 9.6.
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Figure 9.6: E�ect of erosion using a 3�3 square structuring element

The 3�3 square is probably the most common structuring element used in erosion operations, but

others can be used. A larger structuring element produces a more extreme erosion e�ect, although

usually very similar e�ects can be achieved by repeated erosions using a smaller similarly shaped

structuring element. With larger structuring elements, it is quite common to use an approximately

disk shaped structuring element, as opposed to a square one.

The image wdg2ero1 is the result of eroding wdg2thr3 four times with a disk shaped structuring

element 11 pixels in diameter. It shows that the hole in the middle of the image increases in size as

the border shrinks. Note that the shape of the region has been quite well preserved due to the use

of a disk shaped structuring element. In general, erosion using a disk shaped structuring element

will tend to round concave boundaries, but will preserve the shape of convex boundaries.

Erosions can be made directional by using less symmetrical structuring elements. For example, a

structuring element that is 10 pixels wide and 1 pixel high will erode in a horizontal direction only.

Similarly, a 3�3 square structuring element with the origin in the middle of the top row rather

than the center, will erode the bottom of a region more severely than the top.
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Grayscale erosion with a at disk shaped structuring element will generally darken the image.

Bright regions surrounded by dark regions shrink in size, and dark regions surrounded by bright

regions grow in size. Small bright spots in images will disappear as they are eroded away down to

the surrounding intensity value, and small dark spots will become larger spots. The e�ect is most

marked at places in the image where the intensity changes rapidly, and regions of fairly uniform

intensity will be left more or less unchanged except at their edges. Figure 9.7 shows a vertical

cross-section through a graylevel image and the e�ect of erosion using a disk shaped structuring

element. Note that the at disk shaped kernel causes small peaks in the image to disappear and

valleys to become wider.

Intensity

X Coordinate X Coordinate

Intensity

Width of eroding kernel:

Figure 9.7: Graylevel erosion using a disk shaped structuring element. The graphs show a vertical

cross-section through a graylevel image (p.232).

The image blb1ero1 illustrates graylevel erosion. It was produced from blb1 by two erosion passes

using a 3�3 at square structuring element. Note that the highlights have disappeared, and that

many of the surfaces seem more uniform in appearance due to the elimination of bright spots. The

body of the cube has grown in size since it is darker than its surroundings. The e�ect of �ve passes

of the same erosion operator on the original image is shown in blb1ero2.

There are many specialist uses for erosion. One of the more common is to separate touching objects

in a binary image so that they can be counted using a labeling algorithm (p.114). The image mon1

shows a number of dark disks (coins in fact) silhouetted against a light background. The result

of thresholding (p.69) the image at pixel value 90 yields mon1thr1. It is required to count the

coins. However, this is not going to be easy since the touching coins form a single fused region

of white, and a counting algorithm would have to �rst segment this region into separate coins

before counting, a non-trivial task. The situation can be much simpli�ed by eroding the image.

The image mon1ero1 shows the result of eroding twice using a disk shaped structuring element 11

pixels in diameter. All the coins have been separated neatly and the original shape of the coins

has been largely preserved. At this stage a labeling algorithm (p.114) can be used to count the

coins. The relative sizes of the coins can be used to distinguish the various types by, for example,

measuring the area of each distinct region.

The image mon1ero2 is derived from the same input picture, but a 9�9 square structuring element
is used instead of a disk (the two structuring elements have approximately the same area). The

coins have been clearly separated as before, but the square structuring element has led to distortion

of the shapes, which is some situations could cause problems in identifying the regions after erosion.

Erosion can also be used to remove small spurious bright spots (`salt noise' (p.221)) in images. The

image fce5noi1 shows an image with salt noise, and fce5ero1 shows the result of erosion with a

3�3 square structuring element. Note that although the noise has been removed, the rest of the

image has been degraded signi�cantly. Compare this with the same task using opening (p.127).

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



126

We can also use erosion for edge detection (p.230) by taking the erosion of an image and then

subtracting (p.45) it away from the original image, thus highlighting just those pixels at the edges

of objects that were removed by the erosion. An example of a very similar technique is given in

the section dealing with dilation (p.119).

Finally, erosion is also used as the basis for many other mathematical morphology operators.

Exercises

1. What would be the e�ect of an erosion using the cross-shaped structuring element shown in

Figure 9.8?

1

111

1

Figure 9.8: Cross-shaped structuring element

2. Is there any di�erence in the �nal result between applying a 3�3 square structuring element
twice to an image, and applying a 5�5 square structuring element just once to the image?

Which do you think would be faster and why?

3. When using large structuring elements, why does a disk shaped structuring element tend to

preserve the shapes of convex objects better than a square structuring element?

4. Use erosion in the way described above to detect the edges of wdg2thr3. Is the result di�erent

to the one obtained with dilation (p.118)?
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9.3 Opening

Brief Description

Opening and closing (p.130) are two important operators from mathematical morphology (p.236).

They are both derived from the fundamental operations of erosion (p.123) and dilation (p.118).

Like those operators they are normally applied to binary images (p.225), although there are also

graylevel (p.232) versions. The basic e�ect of an opening is somewhat like erosion in that it tends

to remove some of the foreground (bright) pixels from the edges of regions of foreground pixels.

However it is less destructive than erosion in general. As with other morphological operators,

the exact operation is determined by a structuring element (p.241). The e�ect of the operator

is to preserve foreground regions that have a similar shape to this structuring element, or that

can completely contain the structuring element, while eliminating all other regions of foreground

pixels.

How It Works

Very simply, an opening is de�ned as an erosion followed by a dilation using the same structuring

element for both operations. See the sections on erosion (p.123) and dilation (p.118) for details of

the individual steps. The opening operator therefore requires two inputs: an image to be opened,

and a structuring element.

Graylevel opening consists simply of a graylevel erosion followed by a graylevel dilation.

Opening is the dual of closing, i.e. opening the foreground pixels with a particular structuring

element is equivalent to closing the background pixels with the same element.

Guidelines for Use

While erosion can be used to eliminate small clumps of undesirable foreground pixels, e.g. `salt

noise' (p.221), quite e�ectively, it has the big disadvantage that it will a�ect all regions of foreground

pixels indiscriminately. Opening gets around this by performing both an erosion and a dilation on

the image. The e�ect of opening can be quite easily visualized. Imagine taking the structuring

element and sliding it around inside each foreground region, without changing its orientation. All

pixels which can be covered by the structuring element with the structuring element being entirely

within the foreground region will be preserved. However, all foreground pixels which cannot be

reached by the structuring element without parts of it moving out of the foreground region will be

eroded away. After the opening has been carried out, the new boundaries of foreground regions will

all be such that the structuring element �ts inside them, and so further openings with the same

element have no e�ect. The property is known as idempotence (p.233). The e�ect of an opening

on a binary image using a 3�3 square structuring element is illustrated in Figure 9.9.

As with erosion and dilation, it is very common to use this 3�3 structuring element. The e�ect in
the above �gure is rather subtle since the structuring element is quite compact and so it �ts into

the foreground boundaries quite well even before the opening operation. To increase the e�ect,

multiple erosions are often performed with this element followed by the same number of dilations.

This e�ectively performs an opening with a larger square structuring element.

Consider art3 which is a binary image containing a mixture of circles and lines. Suppose that we

want to separate out the circles from the lines, so that they can be counted. Opening with a disk

shaped structuring element 11 pixels in diameter gives art3opn1. Some of the circles are slightly

distorted, but in general, the lines have been almost completely removed while the circles remain

almost completely una�ected.

The image art2 shows another binary image. Suppose that this time we wish to separately

extract the horizontal and vertical lines. The result of an opening with a 3�9 vertically oriented

structuring element is shown in art2opn1. The image art2opn2 shows what happens if we use a
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Figure 9.9: E�ect of opening using a 3�3 square structuring element

9�3 horizontally oriented structuring element instead. Note that there are a few glitches in this

last image where the diagonal lines cross vertical lines. These could easily be eliminated, however,

using a slightly longer structuring element.

Unlike erosion and dilation, the position of the origin of the structuring element does not really

matter for opening and closing the result is independent of it.

Graylevel opening can similarly be used to select and preserve particular intensity patterns while

attenuating others. As a simple example we start with ape1 and then perform graylevel opening

with a at 5�5 square structuring element to produce ape1opn1. The important thing to notice

here is the way in which bright features smaller than the structuring element have been greatly

reduced in intensity, while larger features have remained more or less unchanged in intensity. Thus

the �ne grained hair and whiskers in the image have been much reduced in intensity, while the

nose region is still at much the same intensity as before. Note that the image does have a more

matt appearance than before since the opening has eliminated small specularities and texture

uctuations.

Similarly, opening can be used to remove `salt noise' (p.221) in images. The image fce5noi1

shows an image containing salt noise, and fce5opn1 shows the result of opening with a 3�3 square
structuring element. The noise has been entirely removed with relatively little degradation of the

underlying image. However, if the noise consists of dark points (i.e. `pepper noise' (p.221)) as it

can be seen in fce5noi2, graylevel opening yields fce5opn2. Here, no noise has been removed. At

some places where two nearby noise pixels have merged into one larger point, the noise level has

even been increased. In this case of `pepper noise', graylevel closing (p.130) is a more appropriate

operator.

As we have seen, opening can be very useful for separating out particularly shaped objects from

the background, but it is far from being a universal 2-D object recognizer/segmenter. For instance

if we try and use a long thin structuring element to locate, say, pencils in our image, any one such

element will only �nd pencils at a particular orientation. If it is necessary to �nd pencils at other

orientations then di�erently oriented elements must be used to look for each desired orientation.

It is also necessary to be very careful that the structuring element chosen does not eliminate too

many desirable objects, or retain too many undesirable ones, and sometimes this can be a delicate

or even impossible balance.

Consider, for example, cel4, which contains two kinds of cell: small, black ones and larger, gray

ones. Thresholding (p.69) the image at a value of 210 yields cel4thr3, in which both kinds of

cell are separated from the background. We want to retain only the large cells in the image,

while removing the small ones. This can be done with straightforward opening. Using a 11 pixel

circular structuring element yields cel4opn1. Most of the desired cells are in the image, whereas

none of the black cells remained. However, we cannot �nd any structuring element which allows

us to detect the small cells and remove the large ones. Every structuring element that is small
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enough to allow the dark cells remain in the image would not remove the large cells, either. This is

illustrated in cel4opn2, which is the result of applying a 7 pixel wide circular structuring element

to the thresholded image.

Common Variants

It is common for opening to be used in conjunction with closing to achieve more subtle e�ects, as

described in the section on closing (p.132).

Exercises

1. Apply opening to cel4 using square structuring elements (p.241) of increasing size. Compare

the results obtained with the di�erent sizes. If your implementation of the operator does not

support graylevel opening, threshold (p.69) the input image.

2. How can you detect the small cells in the above example cel4 while removing the large cells?

Use the closing operator with structuring elements at di�erent sizes in combination with

some logical operator.

3. Describe two 2-D object shapes (di�erent from the ones shown in the image below) art1

between which simple opening could distinguish, when the two are mixed together in a loose

at pile. What would be the appropriate structuring elements to use?

4. Now describe two 2-D shapes that opening couldn't distinguish between.

5. Can you explain why the position of the origin within the structuring element does not a�ect

the result of the opening, when it does make a di�erence for both erosion and dilation?
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9.4 Closing

Brief Description

Closing is an important operator from the �eld of mathematical morphology (p.236). Like its dual

operator opening (p.127), it can be derived from the fundamental operations of erosion (p.123) and

dilation (p.118). Like those operators it is normally applied to binary images (p.225), although

there are graylevel (p.232) versions. Closing is similar in some ways to dilation in that it tends to

enlarge the boundaries of foreground (bright) regions in an image (and shrink background color

holes in such regions), but it is less destructive of the original boundary shape. As with other mor-

phological operators (p.117), the exact operation is determined by a structuring element (p.241).

The e�ect of the operator is to preserve background regions that have a similar shape to this struc-

turing element, or that can completely contain the structuring element, while eliminating all other

regions of background pixels.

How It Works

Closing is opening performed in reverse. It is de�ned simply as a dilation followed by an erosion

using the same structuring element for both operations. See the sections on erosion (p.123) and

dilation (p.118) for details of the individual steps. The closing operator therefore requires two

inputs: an image to be closed and a structuring element.

Graylevel closing consists straightforwardly of a graylevel dilation followed by a graylevel erosion.

Closing is the dual of opening, i.e. closing the foreground pixels with a particular structuring

element, is equivalent to closing the background with the same element.

Guidelines for Use

One of the uses of dilation is to �ll in small background color holes in images, e.g. `pepper

noise' (p.221). One of the problems with doing this, however, is that the dilation will also distort

all regions of pixels indiscriminately. By performing an erosion on the image after the dilation, i.e.

a closing, we reduce some of this e�ect. The e�ect of closing can be quite easily visualized. Ima-

gine taking the structuring element and sliding it around outside each foreground region, without

changing its orientation. For any background boundary point, if the structuring element can be

made to touch that point, without any part of the element being inside a foreground region, then

that point remains background. If this is not possible, then the pixel is set to foreground. After

the closing has been carried out the background region will be such that the structuring element

can be made to cover any point in the background without any part of it also covering a foreground

point, and so further closings will have no e�ect. This property is known as idempotence (p.233).

The e�ect of a closing on a binary image using a 3�3 square structuring element is illustrated in

Figure 9.10.

As with erosion and dilation, this particular 3�3 structuring element is the most commonly used,
and in fact many implementations will have it hardwired into their code, in which case it is

obviously not necessary to specify a separate structuring element. To achieve the e�ect of a closing

with a larger structuring element, it is possible to perform multiple dilations followed by the same

number of erosions.

Closing can sometimes be used to selectively �ll in particular background regions of an image.

Whether or not this can be done depends upon whether a suitable structuring element can be

found that �ts well inside regions that are to be preserved, but doesn't �t inside regions that are

to be removed.

The image art4 is an image containing large holes and small holes. If it is desired to remove the

small holes while retaining the large holes, then we can simply perform a closing with a disk-shaped

structuring element with a diameter larger than the smaller holes, but smaller than the large holes.
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Figure 9.10: E�ect of closing using a 3�3 square structuring element

The image art4clo1 is the result of a closing with a 22 pixel diameter disk. Note that the thin

black ring has also been �lled in as a result of the closing operation.

In real world applications, closing can, for example, be used to enhance binary images (p.225) of

objects obtained from thresholding (p.69). Consider that we want compute the skeleton (p.145)

of phn1. To do this we �rst need to transform the graylevel (p.232) image into a binary image.

Simply thresholding the image at a value of 100 yields phn1thr1. We can see that the threshold

classi�ed some parts of the receiver as background. The image phn1clo1 is the result of closing

the thresholded, image with a circular structuring element of size 20. The merit of this operator

becomes obvious when we compare the skeletons of the two binary images. The image phn1ske1

is the skeleton of the image which was only thresholded and phn1ske2 is the skeleton of the image

produced by the closing operator. We can see that the latter skeleton is less complex and it better

represents the shape of the object.

Unlike erosion and dilation, the position of the origin of the structuring element does not really

matter for opening and closing. The result is independent of it.

Graylevel closing can similarly be used to select and preserve particular intensity patterns while

attenuating others.

The image ape1 is our starting point.

The result of graylevel closing with a at 5�5 square structuring element is shown in ape1clo1.

Notice how the dark specks in between the bright spots in the hair have been largely �lled in to

the same color as the bright spots, while the more uniformly colored nose area is largely the same

intensity as before. Similarly the gaps between the white whiskers have been �lled in.

Closing can also be used to remove `pepper noise' (p.221) in images.

The image fce5noi2 is an image containing pepper noise.

The result of a closing with a 3�3 square structuring element is shown in fce5clo1. The noise

has been completely removed with only a little degradation to the underlying image. If, on the

other hand, the noise consists of bright spots (i.e. `salt noise' (p.221)), as can be seen in fce5noi1,

closing yields fce5clo2. Here, no noise has been removed. The noise has even been increased at

locations where two nearby noise pixels have merged together into one larger spot. Compare these

results with the ones achieved on the same image using opening (p.127).

Although closing can sometimes be used to preserve particular intensity patterns in an image while

attenuating others, this is not always the case. Some aspects of this problem are discussed under

opening (p.127).
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Common Variants

Opening and closing are themselves often used in combination to achieve more subtle results. If

we represent the closing of an image f by C(f), and its opening by O(f), then some common

combinations include:

Proper Opening Min(f, /emfCg(O(C(f))))

Proper Closing Max(f, O(C(O(f))))

Automedian Filter Max(O(C(O(f))), Min(f, C(O(C(f)))))

These operators are commonly known as morphological �lters.

Exercises

1. Use closing to remove the lines from pcb2, whereas the circles should remain. Do you manage

to remove all the lines?

Now use closing to remove the circles while keeping the lines. Is it possible to achieve this

with only one structuring element (p.241)?

2. Can you use closing to remove certain features (e.g. the diagonal lines) from shu2? Try it

out.

3. Combine closing and opening (p.127) to remove the `salt'n'pepper' noise (p.221)

from fce5noi3.
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9.5 Hit-and-Miss Transform

Brief Description

The hit-and-miss transform is a general binary morphological operation that can be used to look

for particular patterns of foreground and background pixels in an image. It is actually the basic

operation of binary morphology since almost all the other binary morphological operators can

be derived from it. As with other binary morphological operators it takes as input a binary

image (p.225) and a structuring element (p.241), and produces another binary image as output.

How It Works

The structuring element used in the hit-and-miss is a slight extension to the type that has been

introduced for erosion (p.123) and dilation (p.118), in that it can contain both foreground and

background pixels (p.238), rather than just foreground pixels, i.e. both ones and zeros. Note that

the simpler type of structuring element used with erosion and dilation is often depicted containing

both ones and zeros as well, but in that case the zeros really stand for `don't care's', and are just

used to �ll out the structuring element to a convenient shaped kernel, usually a square. In all our

illustrations, these `don't care's' are shown as blanks in the kernel in order to avoid confusion. An

example of the extended kind of structuring element is shown in Figure 9.11. As usual we denote

foreground pixels using ones, and background pixels using zeros.

1

1

10

0 0

Figure 9.11: Example of the extended type of structuring element used in hit-and-miss operations.

This particular element can be used to �nd corner points, as explained below.

The hit-and-miss operation is performed in much the same way as other morphological operators,

by translating the origin of the structuring element to all points in the image, and then comparing

the structuring element with the underlying image pixels. If the foreground and background pixels

in the structuring element exactly match foreground and background pixels in the image, then the

pixel underneath the origin of the structuring element is set to the foreground color. If it doesn't

match, then that pixel is set to the background color.

For instance, the structuring element shown in Figure 9.11 can be used to �nd right angle convex

corner points in images. Notice that the pixels in the element form the shape of a bottom-left

convex corner. We assume that the origin of the element is at the center of the 3�3 element.

In order to �nd all the corners in a binary image we need to run the hit-and-miss transform four

times with four di�erent elements representing the four kinds of right angle corners found in binary

images. Figure 9.12 shows the four di�erent elements used in this operation.

After obtaining the locations of corners in each orientation, We can then simply OR (p.58) all

these images together to get the �nal result showing the locations of all right angle convex corners

in any orientation. Figure 9.13 shows the e�ect of this corner detection on a simple binary image.

Implementations vary as to how they handle the hit-and-miss transform at the edges of images

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



134

1

1

10

0 0

1 1 11

1

0 0

0 1

1

0

00

1

1

00

0

Figure 9.12: Four structuring elements used for corner �nding in binary images using the hit-and-

miss transform. Note that they are really all the same element, but rotated by di�erent amounts.
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Figure 9.13: E�ect of the hit-and-miss based right angle convex corner detector on a simple binary

image. Note that the `detector' is rather sensitive.

where the structuring element overlaps the edge of the image. A simple solution is to simply

assume that any structuring element that overlaps the image does not match underlying pixels,

and hence the corresponding pixel in the output should be set to zero.

The hit-and-miss transform has many applications in more complex morphological operations. It

is being used to construct the thinning (p.137) and thickening (p.142) operators, and hence for all

applications explained in these worksheets.

Guidelines for Use

The hit-and-miss transform is used to look for occurrences of particular binary patterns in �xed

orientations. It can be used to look for several patterns (or alternatively, for the same pattern in

several orientations as above) simply by running successive transforms using di�erent structuring

elements, and then ORing (p.58) the results together.

The operations of erosion (p.123), dilation (p.118), opening (p.127), closing (p.130), thinning (p.137)

and thickening (p.142) can all be derived from the hit-and-miss transform in conjunction with

simple set operations.

Figure 9.14 illustrates some structuring elements that can be used for locating various binary

features.

We illustrate two of these applications on an image skeleton (p.145).

We start with art7skl1 which is the skeleton of art7.

The image art7ham1 shows the triple points (i.e. points where three lines meet) of the skeleton.
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Figure 9.14: Some applications of the hit-and-miss transform. 1 is used to locate isolated points

in a binary image. 2 is used to locate the end points on a binary skeleton (p.145) Note that this

structuring element must be used in all its rotations so four hit-and-miss passes are required. 3a

and 3b are used to locate the triple points (junctions) on a skeleton. Both structuring elements

must be run in all orientations so eight hit-and-miss passes are required.

Note that the hit-and-miss transform itself merely outputs single foreground pixels at each triple

point (the rest of the output image being black). To produce our example here, this image was

then dilated (p.118) once using a cross-shaped structuring element in order to mark these isolated

points clearly, and this was then ORed (p.58) with the original skeleton in order to produce the

overlay.

The image art7ham2 shows the end points of the skeleton. This image was produced in a similar

way to the triple point image above, except of course that a di�erent structuring element was used

for the hit-and-miss operation. In addition, the isolated points produced by the transform were

dilated with a square in order to mark them, rather than with a cross.

The successful use of the hit-and-miss transform relies on being able to think of a relatively small

set of binary patterns that capture all the possible variations and orientations of a feature that is

to be located. For features larger than a few pixels across this is often not feasible.

Exercises

1. How can the hit-and-miss transform be used to perform erosion?

2. How can the hit-and-miss transform, together with the NOT (p.63) operation, be used to

perform dilation?

3. What is the smallest number of di�erent structuring elements (p.241) that you would need to

use to locate all foreground points in an image which have at least one foreground neighbor,

using the hit-and-miss transform? What do the structuring elements look like?
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.
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More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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9.6 Thinning

Brief Description

Thinning is a morphological operation that is used to remove selected foreground pixels from

binary images (p.225), somewhat like erosion (p.123) or opening (p.127). It can be used for several

applications, but is particularly useful for skeletonization (p.145). In this mode it is commonly

used to tidy up the output of edge detectors (p.230) by reducing all lines to single pixel thickness.

Thinning is normally only applied to binary images, and produces another binary image as output.

The thinning operation is related to the hit-and-miss transform (p.133), and so it is helpful to have

an understanding of that operator before reading on.

How It Works

Like other morphological operators, the behavior of the thinning operation is determined by a

structuring element (p.241). The binary structuring elements used for thinning are of the extended

type described under the hit-and-miss transform (p.133) (i.e. they can contain both ones and

zeros).

The thinning operation is related to the hit-and-miss transform and can be expressed quite simply

in terms of it. The thinning of an image I by a structuring element J is:

thin(I; J) = I � hit-and-miss(I; J)

where the subtraction is a logical subtraction de�ned by X � Y = X \NOT Y .

In everyday terms, the thinning operation is calculated by translating the origin of the structuring

element to each possible pixel position (p.238) in the image, and at each such position comparing

it with the underlying image pixels. If the foreground and background pixels in the structuring

element exactly match foreground and background pixels in the image, then the image pixel un-

derneath the origin of the structuring element is set to background (zero). Otherwise it is left

unchanged. Note that the structuring element must always have a one or a blank at its origin if it

is to have any e�ect.

The choice of structuring element determines under what situations a foreground pixel will be set

to background, and hence it determines the application for the thinning operation.

We have described the e�ects of a single pass of a thinning operation over the image. In fact,

the operator is normally applied repeatedly until it causes no further changes to the image (i.e.

until convergence). Alternatively, in some applications, e.g. pruning, the operations may only be

applied for a limited number of iterations.

Thinning is the dual of thickening (p.142), i.e. thickening the foreground is equivalent to thinning

the background.

Guidelines for Use

One of the most common uses of thinning is to reduce the thresholded (p.69) output of an edge

detector such as the Sobel operator (p.188), to lines of a single pixel thickness, while preserving

the full length of those lines (i.e. pixels at the extreme ends of lines should not be a�ected). A

simple algorithm for doing this is the following:

Consider all pixels on the boundaries of foreground regions (i.e. foreground points that

have at least one background neighbor). Delete any such point that has more than one

foreground neighbor, as long as doing so does not locally disconnect (i.e. split into two)

the region containing that pixel. Iterate until convergence.
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This procedure erodes away the boundaries of foreground objects as much as possible, but does

not a�ect pixels at the ends of lines.

This e�ect can be achieved using morphological thinning by iterating until convergence with the

structuring elements shown in Figure 9.15, and all their 90� rotations (4�2 = 8 structuring elements

in total).

In fact what we are doing here is determining the octagonal skeleton of a binary shape | the set

of points that lie at the centers of octagons that �t entirely inside the shape, and which touch the

boundary of the shape at at least two points. See the section on skeletonization (p.145) for more

details on skeletons and on other ways of computing it. Note that this skeletonization method is

guaranteed to produce a connected skeleton.

0 0 0

1

1 1 1

1 1

1

0 0

0

Figure 9.15: Structuring elements for skeletonization by morphological thinning. At each iteration,

the image is �rst thinned by the left hand structuring element, and then by the right hand one,

and then with the remaining six 90� rotations of the two elements. The process is repeated in

cyclic fashion until none of the thinnings produces any further change. As usual, the origin of the

structuring element is at the center.

Figure 9.16 shows the result of this thinning operation on a simple binary image.
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Figure 9.16: Example skeletonization by morphological thinning of a simple binary shape, using

the above structuring elements. Note that the resulting skeleton is connected.

Note that skeletons produced by this method often contain undesirable short spurs produced by

small irregularities in the boundary of the original object. These spurs can be removed by a

process called pruning, which is in fact just another sort of thinning. The structuring element for

this operation is shown in Figure 9.17, along with some other common structuring elements.

Note that many implementations of thinning have a particular structuring element `hardwired'

into them (usually the skeletonization structuring elements), and so the user does not need to be

concerned about selecting one.
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Figure 9.17: Some applications of thinning. 1 simply �nds the boundary of a binary object, i.e.

it deletes any foreground points that don't have at least one neighboring background point. Note

that the detected boundary is 4-connected (p.238). 2 does the same thing but produces an 8-

connected (p.238) boundary. 3a and 3b are used for pruning. At each thinning iteration, each

element must be used in each of its four 90� rotations. Pruning is normally carried out for only a

limited number of iterations to remove short spurs, since pruning until convergence will actually

remove all pixels except those that form closed loops.

The image wdg2sob1 is the result of applying the Sobel operator (p.188) to wdg2. Note that the

detected boundaries of the object are several pixels thick.

We �rst threshold the image at a graylevel value (p.239) of 60 producing wdg2sob2 in order to

obtain a binary image (p.225).

Then, iterating the thinning algorithm until convergence, we get wdg2thn1. The detected lines

have all been reduced to a single pixel width. Note however that there are still one or two `spurs'

present, which can be removed using pruning.

The image wdg2thn2 is the result of pruning (using thinning) for �ve iterations. The spurs are

now almost entirely gone.

Thinning is often used in combination with other morphological operators tp extract a simple

representation of regions. A common example is the automated recognition of hand-written char-

acters. In this case, morphological operators are used as pre-processing to obtain the shapes of

the characters which then can be used for the recognition. We illustrate a simple example us-

ing txt3crp1, which shows a Japanese character. Note that this and the following images were

zoomed (p.90) by a factor of 4 for a better display. Hence, a 4�4 pixel square here corresponds

to 1 pixel during the processing. Since we want to work on binary images (p.225), we start o�

by thresholding (p.69) the image at a value of 180, obtaining txt3thr1. A simple way to obtain

the skeleton (p.145) of the character is to thin the image with the structuring elements shown in

Figure 9.18 until convergence. The result is shown in txt3thn1.

The character is now reduced to a single pixel-wide line. However, the line is broken at some

locations, which might cause problems during the recognition process. To improve the situation

we can �rst dilate (p.118) the image to connect the lines before thinning it. Dilating the image

twice with a 3�3 square structuring element yields txt3dil1, then the result of the thinning is

txt3thn2. The corresponding images for three dilations are txt3dil2 and txt3thn3. Although

the line is now connected the process also had negative e�ects on the skeleton: we obtain spurs on

the end points of the lines and the skeleton changes its shape at high curvature locations. We try

to prune the spurs by thinning the image using the structuring elements shown in Figure 9.18.

Pruning the image which was obtained after 2 dilations and thinning yields txt3prn1, using

two iterations for each orientation of the structuring element. For the example obtained after 3

dilations we get txt3prn2 using 4 iterations of pruning. The spurs have now disappeared, however,

the pruning has also suppressed pixels at the end of correct lines. If we want to restore these parts

of the image, we can combine the dilation (p.118) operator with a logical AND (p.55) operator.

First, we need to know the end points of the skeleton so that we know where to start the dilation.

We �nd these by applying a hit-and-miss (p.133) operator using the structuring element shown

in Figure 9.18. The end points of the latter of the two pruned, images are shown in txt3end1.

Now, we dilate this image using a 3�3 structuring element. ANDing it with the thinned, but not

pruned image prevents the dilation from spreading out in all direction, hence it limits the dilation
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Figure 9.18: Shows the structuring elements used in the character recognition example. 1 shows

the structuring element used in combination with thinning to obtain the skeleton. 2 was used in

combination with thinning to prune the skeleton and with the hit-and-miss operator to �nd the

end points of the skeleton. Each structuring element was used in each of its 45� rotations.

along the original character. This process is known as conditional dilation. After repeating this

procedure 5 times, we obtain txt3end2. Although one of the parasitic branches has disappeared,

the ones appearing close to the end of the lines remain.

Our �nal step is to OR (p.58) this image with the pruning output thus obtaining txt3mor1. This

simple example illustrates that we can successfully apply a variety of morphological operators to

obtain information about the shape of a character. However, in a real world application, more

sophisticated algorithms and structuring elements would be necessary to get good results.

Thinning more complicated images often produces less spectacular results.

For instance cln1sob1 is the output from the Sobel operator (p.188) applied to cln1.

The image cln1sob3 is the same image thresholded (p.69) at a graylevel value of 200.

And cln1thn1 is the e�ect of skeletonization by thinning. The result is a lot less clear than before.

Compare this with the results obtained using the Canny operator (p.192).

Exercises

1. What is the di�erence of a thinned line obtained from the slightly di�erent skeleton struc-

turing elements in Figure 9.15 and Figure 9.18?

2. The conditional dilation in the character recognition example `followed' the original character

not only towards the initial end of the line but also backwards. Hence it also might restore

unwanted spurs which were located in this direction. Can you think of a way to avoid that

using a second condition?

3. Can you think of any situation in the character recognition example, in which the pruning

structuring element shown in Figure 9.18 might cause problems?

4. Find the boundaries of wdg2 using morphological edge detection (p.230). First threshold (p.69)

the image, then apply thinning using the structuring element shown in Figure 9.17. Compare

the result with wdg2thn2 which was obtain using the Sobel operator (p.188) and morpholo-

gical post-processing (see above).

5. Compare and contrast the e�ect of the Canny operator with the combined e�ect of Sobel

operator plus thinning and pruning.

6. If an edge detector has produced long lines in its output that are approximately x pixels

thick, what is the longest length spurious spur (prune) that you could expect to see after

thinning to a single pixel thickness? Test your estimate out on some real images.

7. Hence, approximately how many iterations of pruning should be applied to remove spurious

spurs from lines that were thinned down from a thickness of x pixels?
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9.7 Thickening

Brief Description

Thickening is a morphological operation that is used to grow selected regions of foreground pixels in

binary images (p.225), somewhat like dilation (p.118) or closing (p.130). It has several applications,

including determining the approximate convex hull of a shape, and determining the skeleton by

zone of inuence. Thickening is normally only applied to binary images, and it produces another

binary image as output.

The thickening operation is related to the hit-and-miss transform (p.133), and so it is helpful to

have an understanding of that operator before reading on.

How It Works

Like other morphological operators, the behavior of the thickening operation is determined by

a structuring element (p.241). The binary structuring elements used for thickening are of the

extended type described under the hit-and-miss transform (p.133) (i.e. they can contain both ones

and zeros).

The thickening operation is related to the hit-and-miss transform and can be expressed quite simply

in terms of it. The thickening of an image I by a structuring element J is:

thicken(I; J) = I [ hit-and-miss(I; J)

Thus the thickened image consists of the original image plus any additional foreground pixels

switched on by the hit-and-miss transform.

In everyday terms, the thickening operation is calculated by translating the origin of the struc-

turing element to each possible pixel position (p.238) in the image, and at each such position

comparing it with the underlying image pixels. If the foreground and background pixels in the

structuring element exactly match foreground and background pixels in the image, then the image

pixel underneath the origin of the structuring element is set to foreground (one). Otherwise it is

left unchanged. Note that the structuring element must always have a zero or a blank at its origin

if it is to have any e�ect.

The choice of structuring element determines under what situations a background pixel will be set

to foreground, and hence it determines the application for the thickening operation.

We have described the e�ects of a single pass of a thickening operation over the image. In fact,

the operator is normally applied repeatedly until it causes no further changes to the image (i.e.

until convergence). Alternatively, in some applications, the operations may only be applied for a

limited number of iterations.

Thickening is the dual of thinning (p.137), i.e. thinning the foreground is equivalent to thickening

the background. In fact, in most cases thickening is performed by thinning the background.

Guidelines for Use

We will illustrate thickening with two applications, determining the convex hull, and �nding the

skeleton by zone of inuence or SKIZ.

The convex hull of a binary shape can be visualized quite easily by imagining stretching an elastic

band around the shape. The elastic band will follow the convex contours of the shape, but will

`bridge' the concave contours. The resulting shape will have no concavities and contains the

original shape. Where an image contains multiple disconnected shapes, the convex hull algorithm

will determine the convex hull of each shape, but will not connect disconnected shapes, unless their

convex hulls happen to overlap (e.g. two interlocked `U'-shapes).
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An approximate convex hull can be computed using thickening with the structuring elements

shown in Figure 9.19. The convex hull computed using this method is actually a `45� convex

hull' approximation, in which the boundaries of the convex hull must have orientations that are

multiples of 45�. Note that this computation can be very slow.
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0

Figure 9.19: Structuring elements for determining the convex hull using thickening. During each

iteration of the thickening, each element should be used in turn, and then in each of their 90�

rotations, giving 8 e�ective structuring elements in total. The thickening is continued until no

further changes occur, at which point the convex hull is complete.

The image art8 is an image containing a number of cross-shaped binary objects.

Applying the 45� convex hull algorithm described above results in art8thk1. This process took

a considerable amount of time | over 100 thickening passes with each of the eight structuring

elements!

Another application of thickening is to determine the skeleton by zone of inuence, or SKIZ. The

SKIZ is a skeletal structure that divides an image into regions, each of which contains just one of

the distinct objects in the image. The boundaries are drawn such that all points within a particular

boundary are closer to the binary object contained within that boundary than to any other. As

with normal skeletons (p.145), various possible distance metrics (p.229) can be used. The SKIZ is

also sometimes called the Voronoi diagram.

One method of calculating the SKIZ is to �rst determine the skeleton of the background, and then

prune this until convergence to remove all branches except those forming closed loops, or those

intersecting the image boundary. Both of these concepts are described (applied to foreground

objects) under thinning (p.137). Since thickening is the dual of thinning, we can accomplish the

same thing using thickening. The structuring elements used in the two processes are shown in

Figure 9.20.
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Figure 9.20: Structuring elements used in determining the SKIZ. 1a and 1b are used to perform the

skeletonization of the background. Note that these elements are just the duals of the corresponding

skeletonization by thinning elements. On each thickening iteration, each element is used in turn,

and in each of its 90� rotations. Thickening is continued until convergence. When this is �nished,

structuring elements 2a and 2b are used in similar fashion to prune the skeleton until convergence

and leave behind the SKIZ.

We illustrate the SKIZ using the same starting image as for the convex hull.

art8thk2 shows the image after the skeleton of the background has been found. art8thk3 is the

same image after pruning until convergence. This is the SKIZ of the original image.

Since the SKIZ considers each foreground pixel as an object to which it assigns a zone of inuence,

it is rather sensitive to noise (p.221). If we, for example, add some `salt noise' (p.221) to the above
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image, we obtain art8noi1. The SKIZ of that image is given by art8thk4. Now, we not only

have a zone of inuence for each of the crosses, but also for each of the noise points.

Since thickening is the dual to thinning (p.137), it can be applied for the same range of tasks as

thinning. Which operator is used depends on the polarity (p.225) of the image, i.e. if the object

is represented in black and the background is white, the thickening operator thins the object.

Exercises

1. What would the convex hull look like if you used the structuring element (p.241) shown in

Figure 9.21? Determine the convex hull of art8 using this structuring element and compare

it with the result obtained with the structuring element shown in Figure 9.19.

1

1

1

0

Figure 9.21: Alternative structuring element to determine convex hull. This structuring element

is used together with its 90� rotations.

2. Why is �nding the approximate convex hull using thickening so slow?

3. Can you think of (or �nd out about) any uses for the SKIZ?

4. Use thickening and other morphological operators (p.117) (e.g. erosion (p.123) and open-

ing (p.127)) to process hse4. Reduce all lines to a single pixel width and try to obtain their

maximum length.
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9.8 Skeletonization/Medial Axis Transform

Brief Description

Skeletonization is a process for reducing foreground regions in a binary image (p.225) to a skeletal

remnant that largely preserves the extent and connectivity of the original region while throwing

away most of the original foreground pixels. To see how this works, imagine that the foreground

regions in the input binary image are made of some uniform slow-burning material. Light �res

simultaneously at all points along the boundary of this region and watch the �re move into the

interior. At points where the �re traveling from two di�erent boundaries meets itself, the �re will

extinguish itself and the points at which this happens form the so called `quench line'. This line is

the skeleton. Under this de�nition it is clear that thinning (p.137) produces a sort of skeleton.

Another way to think about the skeleton is as the loci of centers of bi-tangent circles that �t entirely

within the foreground region being considered. Figure 9.22 illustrates this for a rectangular shape.

Figure 9.22: Skeleton of a rectangle de�ned in terms of bi-tangent circles.

The terms medial axis transform (MAT) and skeletonization are often used interchangeably but we

will distinguish between them slightly. The skeleton is simply a binary image showing the simple

skeleton. The MAT on the other hand is a graylevel image (p.232) where each point on the skeleton

has an intensity which represents its distance to a boundary in the original object.

How It Works

The skeleton/MAT can be produced in two main ways. The �rst is to use some kind of morpholo-

gical thinning (p.137) that successively erodes away pixels from the boundary (while preserving the

end points of line segments) until no more thinning is possible, at which point what is left approx-

imates the skeleton. The alternative method is to �rst calculate the distance transform (p.206) of

the image. The skeleton then lies along the singularities (i.e. creases or curvature discontinuities)

in the distance transform. This latter approach is more suited to calculating the MAT since the

MAT is the same as the distance transform but with all points o� the skeleton suppressed to zero.

Note: The MAT is often described as being the `locus of local maxima' on the distance transform.

This is not really true in any normal sense of the phrase `local maximum'. If the distance transform

is displayed as a 3-D surface plot with the third dimension representing the grayvalue (p.239), the

MAT can be imagined as the ridges on the 3-D surface.
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Guidelines for Use

Just as there are many di�erent types of distance transform (p.206) there are many types of

skeletonization algorithm, all of which produce slightly di�erent results. However, the general

e�ects are all similar, as are the uses to which the skeletons are put.

The skeleton is useful because it provides a simple and compact representation of a shape that

preserves many of the topological and size characteristics of the original shape. Thus, for instance,

we can get a rough idea of the length of a shape by considering just the end points of the skeleton and

�nding the maximally separated pair of end points on the skeleton. Similarly, we can distinguish

many qualitatively di�erent shapes from one another on the basis of how many `triple points' there

are, i.e. points where at least three branches of the skeleton meet.

In addition, to this, the MAT (not the pure skeleton) has the property that it can be used to

exactly reconstruct the original shape if necessary.

As with thinning, slight irregularities in a boundary will lead to spurious spurs in the �nal image

which may interfere with recognition processes based on the topological properties of the skeleton.

Despurring or pruning (p.137) can be carried out to remove spurs of less than a certain length but

this is not always e�ective since small perturbations in the boundary of an image can lead to large

spurs in the skeleton.

Note that some implementations of skeletonization algorithms produce skeletons that are not guar-

anteed to be continuous, even if the shape they are derived from is. This is due to the fact that

the algorithms must of necessity run on a discrete grid. The MAT is actually the locus of slope

discontinuities in the distance transform.

Here are some example skeletons and MATs produced from simple shapes. Note that the MATs

have been contrast-stretched (p.75) in order to make them more visible.

Starting with art5. Skeleton is art5skl1, MAT is art5mat1.

Starting with art6. Skeleton is art6skl1, MAT is art6mat1.

Starting with art7. Skeleton is art7skl1, MAT is art7mat1.

Starting with wdg2thr3. Skeleton is wdg2skl1, MAT is wdg2mat1.

The skeleton and the MAT are often very sensitive to small changes in the object. If, for example,

the above rectangle changes to art5cha1, the corresponding skeleton becomes art5ske3. Using

a di�erent algorithm which does not guarantee a connected skeleton yields art5ske2. Sometimes

this sensitivity might be useful. Often, however, we need to extract the binary image (p.225) from

a grayscale image (p.232). In these cases, it is often di�cult to obtain the ideal shape of the object

so that the skeleton becomes rather complex. We illustrate this using phn1. To obtain a binary

image we threshold (p.69) the image at a value of 100, thus obtaining phn1thr1. The skeleton of

the binary image, shown in phn1ske1, is much more complex than the one we would obtain from

the ideal shape of the telephone receiver. This example shows that simple thresholding is often

not su�cient to produce a useful binary image. Some further processing might be necessary before

skeletonizing the image.

The skeleton is also very sensitive to noise (p.221). To illustrate this we add some `pepper

noise' (p.221) to the above rectangle, thus obtaining art5noi1. As can be seen in art5ske5,

the corresponding skeleton connects each noise point to the skeleton obtained from the noise free

image.

Common Variants

It is also possible to skeletonize the background as opposed to the foreground of an image. This

idea is closely related to the dual of the distance transform mentioned in the thickening (p.142)

worksheet. This skeleton is often called the SKIZ (Skeleton by Inuence Zones).
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Exercises

1. What would the skeleton of a perfect circular disk look like?

2. Why does the skeleton of wdg2thr3 look so strange? Can you say anything general about

the e�ect of holes in a shape on the skeleton of that shape?

3. Try to improve the binary image (p.225) of the telephone receiver so that its skeleton becomes

less complex and better represents the shape of the receiver.

4. How can the MAT be used to reconstruct the original shape of the region it was derived

from?

5. Does a skeleton always go right to the edge of the shape it represents?
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Chapter 10

Digital Filters

In image processing �lters are mainly used to suppress either the high frequencies in the image,

i.e. smoothing the image, or the low frequencies, i.e. enhancing or detecting edges in the image.

An image can be �ltered either in the frequency (p.232) or in the spatial (p.240) domain.

The �rst involves transforming the image into the frequency domain, multiplying it with the

frequency �lter (p.167) function and re-transforming the result into the spatial domain. The �lter

function is shaped so as to attenuate some frequencies and enhance others. For example, a simple

lowpass function is 1 for frequencies smaller than the cut-o� frequency and 0 for all others.

The corresponding process in the spatial domain (p.240) is to convolve (p.227) the input image

f(i,j) with the �lter function h(i,j). This can be written as

g(i; j) = h(i; j)� f(i; j)

The mathematical operation is identical to the multiplication in the frequency space, but the

results of the digital implementations vary, since we have to approximate the �lter function with

a discrete and �nite kernel (p.233).

The discrete convolution can be de�ned as a `shift and multiply' operation, where we shift the

kernel over the image and multiply its value with the corresponding pixel values of the image. For

a square kernel (p.233) with size M� M, we can calculate the output image with the following

formula:

g(i; j) =

M
2X

m=�M
2

M
2X

n�=M
2

h(m;n) f(i�m; j � n)

Various standard kernels exist for speci�c applications, where the size and the form of the kernel

determine the characteristics of the operation. The most important of them are discussed in this

chapter. The kernels for two examples, the mean (p.150) and the Laplacian (p.173) operator, can

be seen in Figure 10.1.
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Figure 10.1: Convolution kernel for a mean �lter and one form of the discrete Laplacian.
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In contrast to the frequency domain, it is possible to implement non-linear �lters (p.237) in the

spatial domain. In this case, the summations in the convolution function are replaced with some

kind of non-linear operator:

g(i; j) = Om;n[h(m;n) f(i�m; j � n)]

For most non-linear �lters the elements of h(i,j) are all 1. A commonly used non-linear operator is

the median (p.153), which returns the `middle' of the input values.
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10.1 Mean Filter

Brief Description

Mean �ltering is a simple, intuitive and easy to implement method of smoothing images, i.e.

reducing the amount of intensity variation between one pixel and the next. It is often used to

reduce noise in images.

How It Works

The idea of mean �ltering is simply to replace each pixel value in an image with the mean (`aver-

age') value of its neighbors, including itself. This has the e�ect of eliminating pixel values which

are unrepresentative of their surroundings. Mean �ltering is usually thought of as a convolution

�lter (p.227). Like other convolutions it is based around a kernel (p.233), which represents the

shape and size of the neighborhood to be sampled when calculating the mean. Often a 3�3 square
kernel is used, as shown in Figure 10.2, although larger kernels (e.g. 5�5 squares) can be used

for more severe smoothing. (Note that a small kernel can be applied more than once in order to

produce a similar but not identical e�ect as a single pass with a large kernel.)
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Figure 10.2: 3�3 averaging kernel often used in mean �ltering

Computing the straightforward convolution of an image with this kernel carries out the mean

�ltering process.

Guidelines for Use

Mean �ltering is most commonly used as a simple method for reducing noise (p.221) in an image.

We illustrate the �lter using fce5.

The image fce5noi4 shows the original corrupted by Gaussian noise (p.221) with a mean of zero

and a standard deviation (�) of 8.

The image fce5mea3 shows the e�ect of applying a 3�3 mean �lter. Note that the noise is less

apparent, but the image has been `softened'. If we increase the size of the mean �lter to 5�5, we
obtain an image with less noise and less high frequency detail, as shown in fce5mea6.

The same image more severely corrupted by Gaussian noise (with a mean of zero and a � of 13) is

shown in fce5noi5.

The image fce5mea4 is the result of mean �ltering with a 3�3 kernel.

An even more challenging task is provided by fce5noi3. It shows an image containing `salt and

pepper' shot noise (p.221).
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The image fce5mea1 shows the e�ect of smoothing the noisy image with a 3�3 mean �lter. Since

the shot noise pixel values are often very di�erent from the surrounding values, they tend to

signi�cantly distort the pixel average calculated by the mean �lter.

Using a 5�5 �lter instead gives fce5mea2. This result is not a signi�cant improvement in noise

reduction and, furthermore, the image is now very blurred.

These examples illustrate the two main problems with mean �ltering, which are:

� A single pixel with a very unrepresentative value can signi�cantly a�ect the mean value of

all the pixels in its neighborhood.

� When the �lter neighborhood straddles an edge, the �lter will interpolate new values for

pixels on the edge and so will blur that edge. This may be a problem if sharp edges are

required in the output.

Both of these problems are tackled by the median �lter (p.153), which is often a better �lter for

reducing noise than the mean �lter, but it takes longer to compute.

In general the mean �lter acts as a lowpass frequency �lter (p.167) and, therefore, reduces the

spatial intensity derivatives present in the image. We have already seen this e�ect as a `softening'

of the facial features in the above example. Now consider the image sta2 which depicts a scene

containing a wider range of di�erent spatial frequencies. After smoothing once with a 3�3 mean

�lter we obtain sta2mea1. Notice that the low spatial frequency information in the background

has not been a�ected signi�cantly by �ltering, but the (once crisp) edges of the foreground subject

have been appreciably smoothed. After �ltering with a 7�7 �lter, we obtain an even more dramatic
illustration of this phenomenon in sta2mea2. Compare this result to that obtained by passing a

3�3 �lter over the original image three times in sta2mea3.

Common Variants

Variations on the mean smoothing �lter discussed here include Threshold Averaging wherein

smoothing is applied subject to the condition that the center pixel value is changed only if the

di�erence between its original value and the average value is greater than a preset threshold. This

has the e�ect that noise is smoothed with a less dramatic loss in image detail.

Other convolution �lters that do not calculate the mean of a neighborhood are also often used for

smoothing. One of the most common of these is the Gaussian smoothing �lter (p.156).

Exercises

1. The mean �lter is computed using a convolution. Can you think of any ways in which the

special properties of the mean �lter kernel can be used to speed up the convolution? What

is the computational complexity of this faster convolution?

2. Use an edge detector on the image bri2 and note the strength of the output. Then apply

a 3�3 mean �lter to the original image and run the edge detector again. Comment on the

di�erence. What happens if a 5�5 or a 7�7 �lter is used?

3. Applying a 3�3 mean �lter twice does not produce quite the same result as applying a 5�5
mean �lter once. However, a 5�5 convolution kernel can be constructed which is equivalent.

What does this kernel look like?

4. Create a 7�7 convolution kernel which has an equivalent e�ect to three passes with a 3�3
mean �lter.

5. How do you think the mean �lter would cope with Gaussian noise which was not symmetric

about zero? Try some examples.
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10.2 Median Filter

Brief Description

The median �lter is normally used to reduce noise in an image, somewhat like the mean �l-

ter (p.150). However, it often does a better job than the mean �lter of preserving useful detail in

the image.

How It Works

Like the mean �lter (p.150), the median �lter considers each pixel in the image in turn and looks

at its nearby neighbors to decide whether or not it is representative of its surroundings. Instead

of simply replacing the pixel value with the mean of neighboring pixel values, it replaces it with

the median of those values. The median is calculated by �rst sorting all the pixel values from

the surrounding neighborhood into numerical order and then replacing the pixel being considered

with the middle pixel value. (If the neighborhood under consideration contains an even number

of pixels, the average of the two middle pixel values is used.) Figure 10.3 illustrates an example

calculation.
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Figure 10.3: Calculating the median value of a pixel neighborhood. As can be seen, the central

pixel value of 150 is rather unrepresentative of the surrounding pixels and is replaced with the

median value: 124. A 3�3 square neighborhood is used here | larger neighborhoods will produce

more severe smoothing.

Guidelines for Use

By calculating the median value of a neighborhood rather than the mean �lter (p.150), the median

�lter has two main advantages over the mean �lter:

� The median is a more robust average than the mean and so a single very unrepresentative

pixel in a neighborhood will not a�ect the median value signi�cantly.

� Since the median value must actually be the value of one of the pixels in the neighborhood,

the median �lter does not create new unrealistic pixel values when the �lter straddles an

edge. For this reason the median �lter is much better at preserving sharp edges than the

mean �lter.

The image fce5noi4 shows an image that has been corrupted by Gaussian noise (p.221) with

mean 0 and standard deviation (�) 8. The original image is fce5 for comparison. Applying a
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3�3 median �lter produces fce5med2. Note how the noise has been reduced at the expense of a

slight degradation in image quality. The image fce5noi5 has been corrupted by even more noise

(Gaussian noise with mean 0 and � 13), and fce5med3 is the result of 3�3 median �ltering. The

median �lter is sometimes not as subjectively good at dealing with large amounts of Gaussian

noise as the mean �lter (p.150).

Where median �ltering really comes into its own is when the noise produces extreme `outlier' pixel

values, as for instance in fce5noi3 which has been corrupted with `salt and pepper' noise (p.221),

i.e. bits have been ipped with probability 1%. Median �ltering this with a 3�3 neighborhood

produces fce5med1, in which the noise has been entirely eliminated with almost no degradation

to the underlying image. Compare this with the similar test on the mean �lter (p.150).

Consider another example wherein the original image sta2 has been corrupted with higher levels

(i.e. p=5% that a bit is ipped) of salt and pepper noise (p.221) sta2noi1. After smoothing with

a 3�3 �lter, most of the noise has been eliminated sta2med1. If we smooth the noisy image with a

larger median �lter, e.g. 7�7, all the noisy pixels disappear, as shown in sta2med2. Note that the

image is beginning to look a bit `blotchy', as graylevel regions are mapped together. Alternatively,

we can pass a 3�3 median �lter over the image three times in order to remove all the noise with

less loss of detail sta2med3.

In general, the median �lter allows a great deal of high spatial frequency detail to pass while re-

maining very e�ective at removing noise on images where less than half of the pixels in a smoothing

neighborhood have been e�ected. (As a consequence of this, median �ltering can be less e�ective

at removing noise from images corrupted with Gaussian noise (p.221).)

One of the major problems with the median �lter is that it is relatively expensive and complex

to compute. To �nd the median it is necessary to sort all the values in the neighborhood into

numerical order and this is relatively slow, even with fast sorting algorithms such as quicksort.

The basic algorithm can, however,be enhanced somewhat for speed. A common technique is to

notice that when the neighborhood window is slid across the image, many of the pixels in the

window are the same from one step to the next, and the relative ordering of these with each other

will obviously not have changed. Clever algorithms make use of this to improve performance.

Exercises

1. Using the image bri2, explore the e�ect of median �ltering with di�erent neighborhood sizes.

2. Compare the relative speed of mean (p.150) and median �lters using the same sized neigh-

borhood and image. How does the performance of each scale with size of image and size of

neighborhood?

3. Unlike the mean �lter (p.150), the median �lter is non-linear. This means that for two images

A(x) and B(x):

median[A(x) +B(x]) 6= median[A(x)] +median[B(x)]

Illustrate this to yourself by performing smoothing and pixel addition (p.43) (in the order

indicated on each side of the above equation!) to a set of test images. Carry out this

experiment on some simple images, e.g. stp1 and stp2.
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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10.3 Gaussian Smoothing

Brief Description

The Gaussian smoothing operator is a 2-D convolution operator (p.227) that is used to `blur'

images and remove detail and noise. In this sense it is similar to the mean �lter (p.150), but it

uses a di�erent kernel (p.233) that represents the shape of a Gaussian (`bell-shaped') hump. This

kernel has some special properties which are detailed below.

How It Works

The Gaussian distribution in 1-D has the form:

G(x) =
1p
2��

e
�

x2

2�2

where � is the standard deviation of the distribution. We have also assumed that the distribution

has a mean of zero (i.e. it is centered on the line x=0). The distribution is illustrated in Figure 10.4.
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Figure 10.4: 1-D Gaussian distribution with mean 0 and �=1

In 2-D, an isotropic (i.e. circularly symmetric) Gaussian has the form:

G(x; y) =
1

2��2
e
�

x2+y2

2�2

This distribution is shown in Figure 10.5.

The idea of Gaussian smoothing is to use this 2-D distribution as a `point-spread' function, and this

is achieved by convolution. Since the image is stored as a collection of discrete pixels we need to

produce a discrete approximation to the Gaussian function before we can perform the convolution.

In theory, the Gaussian distribution is non-zero everywhere, which would require an in�nitely large

convolution kernel, but in practice it is e�ectively zero more than about three standard deviations

from the mean, and so we can truncate the kernel at this point. Figure 10.6 shows a suitable

integer-valued convolution kernel that approximates a Gaussian with a � of 1.4.
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Figure 10.5: 2-D Gaussian distribution with mean (0,0) and �=1
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Figure 10.6: Discrete approximation to Gaussian function with �=1.4

Once a suitable kernel has been calculated, then the Gaussian smoothing can be performed using

standard convolution methods (p.227). The convolution can in fact be performed fairly quickly

since the equation for the 2-D isotropic Gaussian shown above is separable into x and y components.

Thus the 2-D convolution can be performed by �rst convolving with a 1-D Gaussian in the x

direction, and then convolving with another 1-D Gaussian in the y direction. (The Gaussian is in

fact the only completely circularly symmetric operator which can be decomposed in such a way.)

Figure 10.7 shows the 1-D x component kernel that would be used to produce the full kernel shown

in Figure 10.6. The y component is exactly the same but is oriented vertically.

A further way to compute a Gaussian smoothing with a large standard deviation is to convolve an

image several times with a smaller Gaussian. While this is computationally complex, it can have

applicability if the processing is carried out using a hardware pipeline.

The Gaussian �lter not only has utility in engineering applications. It is also attracting attention

from computational biologists because it has been attributed with some amount of biological plaus-

ibility, e.g. some cells in the visual pathways of the brain often have an approximately Gaussian

response.
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Figure 10.7: One of the pair of 1-D convolution kernels used to calculate the full kernel shown in

Figure 10.6 more quickly.

Guidelines for Use

The e�ect of Gaussian smoothing is to blur an image, in a similar fashion to the mean �lter (p.150).

The degree of smoothing is determined by the standard deviation of the Gaussian. (Larger stand-

ard deviation Gaussians, of course, require larger convolution kernels in order to be accurately

represented.)

The Gaussian outputs a `weighted average' of each pixel's neighborhood, with the average weighted

more towards the value of the central pixels. This is in contrast to the mean �lter's uniformly

weighted average. Because of this, a Gaussian provides gentler smoothing and preserves edges

better than a similarly sized mean �lter.

One of the principle justi�cations for using the Gaussian as a smoothing �lter is due to its frequency

response. Most convolution-based smoothing �lters act as lowpass frequency �lters (p.167). This

means that their e�ect is to remove low spatial frequency components from an image. The frequency

response of a convolution �lter, i.e. its e�ect on di�erent spatial frequencies, can be seen by taking

the Fourier transform (p.209) of the �lter. Figure 10.8 shows the frequency responses of a 1-D

mean �lter with width 7 and also of a Gaussian �lter with � = 3.
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Figure 10.8: Frequency responses of Box (i.e. mean) �lter (width 7 pixels) and Gaussian �lter (�

= 3 pixels). The spatial frequency axis is marked in cycles per pixel, and hence no value above 0.5

has a real meaning.

Both �lters attenuate high frequencies more than low frequencies, but the mean �lter exhibits

oscillations in its frequency response. The Gaussian on the other hand shows no oscillations.

In fact, the shape of the frequency response curve is itself (half a) Gaussian. So by choosing

an appropriately sized Gaussian �lter we can be fairly con�dent about what range of spatial

frequencies are still present in the image after �ltering, which is not the case of the mean �lter.

This has consequences for some edge detection techniques, as mentioned in the section on zero

crossings (p.199). (The Gaussian �lter also turns out to be very similar to the optimal smoothing

�lter for edge detection under the criteria used to derive the Canny edge detector (p.192).)

We use ben2 to illustrate the e�ect of smoothing with successively larger and larger Gaussian
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�lters.

The image ben2gau1 shows the e�ect of �ltering with a Gaussian of � = 1.0 (and kernel size 5�5).

The image ben2gau2 shows the e�ect of �ltering with a Gaussian of � = 2.0 (and kernel size 9�9).

The image ben2gau3 shows the e�ect of �ltering with a Gaussian of � = 4.0 (and kernel size

15�15).
We now consider using the Gaussian �lter for noise reduction. For example, consider the image

fce5noi4 which has been corrupted by Gaussian noise (p.221) with a mean of zero and � = 8.

Smoothing this with a 5�5 Gaussian yields fce5gsm1. (Compare this result with that achieved by

the mean (p.150) and median (p.153) �lters.)

Salt and pepper noise (p.221) is more challenging for a Gaussian �lter. Here we will smooth the

image sta2noi2, which has been corrupted by 1% salt and pepper noise (i.e. individual bits have

been ipped with probability 1%). The image sta2gsm1 shows the result of Gaussian smoothing

(using the same convolution as above). Compare this with the original sta2. Notice that much

of the noise still exists and that, although it has decreased in magnitude somewhat, it has been

smeared out over a larger spatial region. Increasing the standard deviation continues to reduce/blur

the intensity of the noise, but also attenuates high frequency detail (e.g. edges) signi�cantly, as

shown in sta2gsm2. This type of noise is better reduced using median �ltering (p.153), conservative

smoothing (p.161) or Crimmins Speckle Removal (p.164).

Exercises

1. Starting from the Gaussian noise (p.221) (mean 0, � = 13) corrupted image fce5noi5, com-

pute both mean �lter (p.150) and Gaussian �lter smoothing at various scales, and compare

each in terms of noise removal vs loss of detail.

2. At how many standard deviations from the mean does a Gaussian fall to 5% of its peak

value? On the basis of this suggest a suitable square kernel size for a Gaussian �lter with �

= s.

3. Estimate the frequency response for a Gaussian �lter by Gaussian smoothing an image, and

taking its Fourier transform (p.209) both before and afterwards. Compare this with the

frequency response of a mean �lter (p.150).

4. How does the time taken to smooth with a Gaussian �lter compare with the time taken to

smooth with a mean �lter (p.150) for a kernel of the same size? Notice that in both cases

the convolution can be speeded up considerably by exploiting certain features of the kernel.
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Information relevant to your local image processing setup can be added here by the person who
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More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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10.4 Conservative Smoothing

Brief Description

Conservative smoothing is a noise reduction technique that derives its name from the fact that

it employs a simple, fast �ltering algorithm that sacri�ces noise suppression power in order to

preserve the high spatial frequency detail (e.g. sharp edges) in an image. It is explicitly designed

to remove noise spikes | i.e. isolated pixels of exceptionally low or high pixel intensity (e.g. salt

and pepper noise (p.221)) and is, therefore, less e�ective at removing additive noise (e.g. Gaussian

noise (p.221)) from an image.

How It Works

Like most noise �lters, conservative smoothing operates on the assumption that noise has a high

spatial frequency (p.240) and, therefore, can be attenuated by a local operation which makes each

pixel's intensity roughly consistent with those of its nearest neighbors. However, whereas mean

�ltering (p.150) accomplishes this by averaging local intensities and median �ltering (p.153) by

a non-linear rank selection technique, conservative smoothing simply ensures that each pixel's

intensity is bounded within the range of intensities de�ned by its neighbors.

This is accomplished by a procedure which �rst �nds the minimum and maximum intensity values

of all the pixels within a windowed region around the pixel in question. If the intensity of the

central pixel lies within the intensity range spread of its neighbors, it is passed on to the output

image unchanged. However, if the central pixel intensity is greater than the maximum value, it is

set equal to the maximum value; if the central pixel intensity is less than the minimum value, it is

set equal to the minimum value. Figure 10.9 illustrates this idea.
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Figure 10.9: Conservatively smoothing a local pixel neighborhood. The central pixel of this �gure

contains an intensity spike (intensity value 150). In this case, conservative smoothing replaces it

with the maximum intensity value (127) selected amongst those of its 8 nearest neighbors.

If we compare the result of conservative smoothing on the image segment of Figure 10.9 with the

result obtained by mean �ltering (p.150) and median �ltering (p.153), we see that it produces a

more subtle e�ect than both the former (whose central pixel value would become 125) and the

latter (124). Furthermore, conservative smoothing is less corrupting at image edges than either of

these noise suppression �lters.
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Guidelines for Use

Images are often corrupted by noise from several sources, the most frequent of which are additive

noise (e.g. Gaussian noise (p.221)) and impulse noise (e.g. salt and pepper noise (p.221)). Linear

�lters, such as the mean �lter (p.150), are the primary tool for smoothing digital images degraded

by additive noise. For example, consider the image fce5noi5 which has been corrupted with

Gaussian noise with mean 0 and deviation 13. The image fce5mea4 is the result after mean

�ltering (p.150) with a 3�3 kernel. Comparing this result with the original image fce5, it is

obvious that in suppressing the noise, edges were blurred and detail was lost.

This example illustrates a major limitation of linear �ltering, namely that a weighted average

smoothing process tends to reduce the magnitude of an intensity gradient. Rather than employing

a �lter which inserts intermediate intensity values between high contrast neighboring pixels, we can

employ a non-linear noise suppression technique, such as the median �ltering (p.153) or conservative

smoothing, to preserve spatial resolution by re-using pixel intensity values already in the original

image. For example, consider fce5med3 which is the Gaussian noise corrupted image considered

above passed through a median �lter (p.153) with a 3�3 kernel. Here, noise is dealt with less

e�ectively, but detail is better preserved than in the case of mean �ltering (p.150).

If we classify smoothing �lters along this Noise Suppression vs Detail Preservation continuum, con-

servative smoothing would be rated near the tail end of the former category. The image fce5csm2

shows the same image conservatively smoothed, using a 3�3 neighborhood. Maximum high spatial

frequency (p.240) detail is preserved, but at the price of noise suppression. Conservative smoothing

is unable to reduce much Gaussian noise as individual noisy pixel values do not vary much from

their neighbors.

The real utility of conservative smoothing (and median �ltering (p.153)) is in suppressing salt and

pepper (p.221), or impulse, noise. A linear �lter cannot totally eliminate impulse noise, as a single

pixel which acts as an intensity spike can contribute signi�cantly to the weighted average of the

�lter. Non-linear �lters can be robust to this type of noise because single outlier pixel intensities

can be eliminated entirely.

For example, consider fce5noi3which has been corrupted by 1% salt and pepper noise (p.221) (i.e.

bits have been ipped with probability 1%). After mean �ltering (p.150), the image is still noisy, as

shown in fce5mea1. After median �ltering (p.153), all noise is suppressed, as shown in fce5med1.

Conservative smoothing produces an image which still contains some noise in places where the

pixel neighborhoods were contaminated by more than one intensity spike fce5csm1. However, no

image detail has been lost; e.g. notice how conservative smoothing is the only operator which

preserved the reection in the subject's eye.

Conservative smoothing works well for low levels of salt and pepper noise (p.221). However, when

the image has been corrupted such that more than 1 pixel in the local neighborhood has been

e�ected, conservative smoothing is less successful. For example, smoothing the image sta2noi1

which has been infected with 5% salt and pepper noise (i.e. bits ipped with probability 5%), yields

sta2csm1. The original image is sta2. Compare this result to that achieved by smoothing with

a 3�3 median �lter (p.153) sta2med1. You may also compare the result achieved by conservative

smoothing to that obtained with 10 iterations of the Crimmins Speckle Removal (p.164) algorithm

sta2crm1. Notice that although the latter is e�ective at noise removal, it smoothes away so much

detail that it is of little more general utility than the conservative smoothing operator on images

badly corrupted by noise.

Exercises

1. Explore the e�ects of conservative smoothing on images corrupted by increasing amounts of

Gaussian noise. At what point does the algorithm become incapable of producing signi�cant

noise suppression?

2. Compare conservative smoothing with Crimmins Speckle Removal (p.164) on an image which

is corrupted by low levels (e.g. 0.1%) of salt and pepper noise (p.221). Use the image
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wom1noi1 and use the original wom1str2 as a benchmark for assessing which algorithm re-

duces the most noise while preserving image detail. (Note, you should not need more than 8

iterations of Crimmins to clean up this image.)

3. When low-pass �ltering (p.167) (e.g. by smoothing with a mean �lter (p.150)), the mag-

nitudes of intensity gradients in the original image decrease as the size of the kernel increases.

Consider the e�ects of increasing the neighborhood size used by the conservative smooth-

ing algorithm. Does this trend exist? Could repeated calls to the conservative smoothing

operator yield increased smoothing?

4. Conservative smoothing is a morphological operator (p.236). Viewed as such, we can de�ne

other neighborhoods (or structuring elements (p.241)) besides the square con�gurations used

in the examples. Consider the e�ects of conservatively smoothing an edge (of di�erent ori-

entations) using the structuring elements from Figure 10.10.

Figure 10.10: Six di�erent structuring elements, for use in exercise 3. These local neighborhoods

can be used in conservative smoothing by moving the central (white) portion of the structuring

element over the image pixel of interest and then computing the maximum and minimum (and,

hence the range of) intensities of the image pixels which are covered by the blackened portions of

the structuring element. Using this range, a pixel can be conservatively smoothed as described in

this worksheet.
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A. Jain Fundamentals of Digital Image Processing, Prentice-Hall, 1986, Chap. 7.

D. Vernon Machine Vision, Prentice-Hall, 1991, Chap. 4.

Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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10.5 Crimmins Speckle Removal

Brief Description

Crimmins Speckle Removal reduces speckle from an image using the Crimmins complementary

hulling algorithm. The algorithm has been speci�cally designed to reduce the intensity of salt and

pepper noise (p.221) in an image. Increased iterations of the algorithm yield increased levels of

noise removal, but also introduce a signi�cant amount of blurring of high frequency (p.240) details.

How It Works

Crimmins Speckle Removal works by passing an image through a speckle removing �lter which uses

the complementary hulling technique to reduce the speckle index of that image. The algorithm uses

a non-linear noise reduction technique which compares the intensity of each pixel in an image with

those of its 8 nearest neighbors and, based upon the relative values, increments or decrements the

value of the pixel in question such that it becomes more representative of its surroundings. The

noisy pixel alteration (and detection) procedure used by Crimmins is more complicated than the

ranking procedure used by the non-linear median �lter (p.153). It involves a series of pairwise

operations in which the value of the `middle' pixel within each neighborhood window is compared,

in turn, with each set of neighbors (N-S, E-W, NW-SE, NE-SW) in a search for intensity spikes.

The operation of the algorithm is illustrated in Figure 10.11 and described in more detail below.

For each iteration and for each pair of pixel neighbors, the entire image is sent to a Pepper Filter

and Salt Filter as shown above. In the example case, the Pepper Filter is �rst called to determ-

ine whether each image pixel is darker than, i.e. by more than 2 intensity levels, its northern

neighbors. Comparisons where this condition proves true cause the intensity value of the pixel un-

der examination to be incremented twice (lightened), otherwise no change is e�ected. Once these

changes have been recorded, the entire image is passed through the Pepper Filter again and the

same series of comparisons are made between the current pixel and its southern neighbor. This

sequence is repeated by the Salt Filter, where the conditions lighter than and darken than are,

again, instantiated using 2 intensity levels.

Note that, over several iterations, the e�ects of smoothing in this way propagate out from the

intensity spike to infect neighboring pixels. In other words, the algorithm smoothes by reducing

the magnitude of a locally inconsistent pixel, as well as increasing the magnitude of pixels in the

neighborhood surrounding the spike. It is important to notice that a spike is de�ned here as a pixel

whose value is more than 2 intensity levels di�erent from its surroundings. This means that after 2

iterations of the algorithm, the immediate neighbors of such a spike may themselves become spikes

with respect to pixels lying in a wider neighborhood.

Guidelines for Use

We begin examining the Crimmins Speckle Removal algorithm using the image wom1str2, which

is a contrast-stretched (p.75) version of wom1. We can corrupt this image with a small amount

(i.e. p=0.1% that a bit is ipped) of salt and pepper noise (p.221) wom1noi1 and then use several

iterations of the Crimmins Speckle Removal algorithm to clean it up. The results after 1, 4 and

8 iterations of the algorithm are: wom1crm1, wom1crm2, wom1crm3. It took 8 iterations to produce

the relatively noise-free version that is shown in the latter image.

In this case, it is instructive to examine the images where signi�cant noise still exists. For example,

we can quantify what we see qualitatively (that the intensity of the speckle noise is decreasing with

increased iterations of the algorithm) by measuring the intensity values of a particular (arbitrarily

chosen) noisy pixel in each of the noisy images. If we zoom (p.90) a small portion of (i) the original

noisy corrupted image wom1crp1, (ii) the speckle �ltered image after 1 iteration wom1crp2 and (iii)

4 iterations wom1crp3, we �nd that the pepper intensity spike just under the eye takes on intensity

values 51, 67, and 115 respectively. This con�rms what we would expect from an algorithmic

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



165

Reduce Pepper Noise

Reduce Pepper Noise

Reduce Salt Noise

Reduce Salt Noise

   Repeat for E−W, 
SE−NW, & NE−SW
   neighbour pairs...

Input Image

Output Image

If Centre_Pixel darker_than Northern_Neighbor
           then lighten Centre_Pixel

If Centre_Pixel darker_than Southern_Neighbor
           then lighten Centre_Pixel

If Centre_Pixel lighter_than Northern_Neighbor
           then darken Centre_Pixel

If Centre_Pixel lighter_than Southern_Neighbor
           then darken Centre_Pixel

Figure 10.11: Crimmins Speckle Removal Algorithm.

analysis: each iteration of Crimmins Speckle Removal reduces the magnitude of a noise spike by

16 intensity levels (2 for each of 8 neighbor directions).

We can also see from this example that a noisy spike (i.e. any pixel whose magnitude is di�erent

than its neighbors by more than 2 levels) is reduced by driving its pixel intensity value towards

those of its neighbors and driving the neighboring values towards that of the spike (although

the latter phenomena occurs rather more slowly). By increasing the number of iterations of the

algorithm, we increase the extent of this e�ect, and hence, incur blurring. (If we keep increasing

the number of iterations, we would obtain an image with very little contrast, as all sharp gradients

will be smoothed down to a magnitude of 2 intensity levels.)

An extreme example of this can be demonstrated using the image fce5noi3 which has been cor-

rupted by p=1% (that a bit is ipped) salt and pepper noise (p.221). The original is fce5. In order

to remove all the noise, as shown in fce5crm1, 13 iterations of Crimmins Speckle Removal (p.164)

are required. Much detail has been sacri�ced. We can obtain better performance out of Crimmins

Speckle Removal if we use fewer iterations of the algorithm. However, because this algorithm

reduces noise spikes by a few intensity levels at each iteration, we can only expect to remove noise

over few iterations if the noise has a similar intensity value(s) to those of the underlying image.

For example, applying 8 iterations of Crimmins Speckle Removal to the face corrupted with 5%

salt noise, as shown in fce5noi8, yields fce5crm3. Here the snow has been removed from the light

regions on the subject's face and sweater, but remains in areas where the background is dark.
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The foregoing discussion has pointed to the fact that the Crimmins Speckle Removal algorithm is

most useful on images corrupted by noise whose values are not more than a couple intensity levels

di�erent from those in the underlying image. For example, we can use Crimmins to smooth the

Gaussian noise (p.221) corrupted image (zero mean and �=8) fce5noi4. The result, after only 2

iterations, is shown in fce5crm4.

Below results are tabulated for other smoothing operators applied to this noisy image.

The results of �ltering this image are given below:

fce5mea3 smoothed with a 3�3 kernel mean �lter (p.150),

fce5mea6 smoothed with a 5�5 kernel mean �lter (p.150),

fce5gsm1 smoothed with a 5�5 kernel Gaussian smoothing (p.156) �lter,

fce5med2 smoothed with a 3�3 kernel median �lter (p.153),

If we allow a little noise in the output of the Crimmins �lter (though not as much as we see in

some of the above �lter outputs), we can retain a good amount of detail, as shown in fce5crm5.

If you now return to examine the cropped and zoomed versions of the �rst series of examples in

this worksheet, you can see the Gaussian noise components being smoothed away after very few

iterations (i.e. long before the more dramatic noise spikes are reduced).

Exercises

1. How does the Crimmins algorithm reduce the spatial extent of pixel alteration in the region

around an intensity spike? (In other words, when the algorithm �nds an isolated pepper

spike against a uniform light background, how do the conditions within the algorithmic

speci�cation given above limit the amount of darkening that a�ects pixels outside the local

neighborhood of the spike?)

2. Investigate the e�ects of Crimmins Speckle Removal on the image wom1 which has poor

contrast and a limited dynamic range centered in the middle of the grayscale spectrum.

First �lter a p=3% salt and peppered (p.221) version of this image. Then take the resultant

image and contrast stretch (p.75) it using a cuto� frequency of 0.03. Compare your result to

wom1crm4 which was �ltered (and noise corrupted, using p=3%) after contrast stretching. It

took 11 iterations to produce the latter. Why did it take fewer �ltering iterations to remove

the noise in your result? Why doesn't your result look as good?

3. Corrupt the image fce5 with Gaussian noise (p.221) with a large � and then �lter it us-

ing Crimmins Speckle removal. Compare your results with that achieved by mean �lter-

ing (p.150), median �ltering (p.153), and conservative smoothing (p.161).
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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10.6 Frequency Filter

Brief Description

Frequency �lters process an image in the frequency domain (p.232). The image is Fourier trans-

formed (p.209), multiplied with the �lter function and then re-transformed into the spatial do-

main (p.240). Attenuating high frequencies results in a smoother image in the spatial domain,

attenuating low frequencies enhances the edges.

All frequency �lters can also be implemented in the spatial domain and, if there exists a simple

kernel for the desired �lter e�ect, it is computationally less expensive to perform the �ltering in

the spatial domain. Frequency �ltering is more appropriate if no straightforward kernel can be

found in the spatial domain, and may also be more e�cient.

How It Works

Frequency �ltering is based on the Fourier Transform (p.209). (For the following discussion we

assume some knowledge about the Fourier Transform, therefore it is advantageous if you have

already read the corresponding worksheet.) The operator usually takes an image and a �lter

function in the Fourier domain. This image is then multiplied with the �lter function in a pixel-

by-pixel fashion:

G(k; l) = F (k; l)H(k; l)

where F(k,l) is the input image in the Fourier domain, H(k,l) the �lter function and G(k,l) is the

�ltered image. To obtain the resulting image in the spatial domain, G(k,l) has to be re-transformed

using the inverse Fourier Transform.

Since the multiplication in the Fourier space is identical to convolution (p.227) in the spatial

domain, all frequency �lters can in theory be implemented as a spatial �lter. However, in practice,

the Fourier domain �lter function can only be approximated by the �ltering kernel in spatial

domain.

The form of the �lter function determines the e�ects of the operator. There are basically three

di�erent kinds of �lters: lowpass, highpass and bandpass �lters. A low-pass �lter attenuates high

frequencies and retains low frequencies unchanged. The result in the spatial domain is equivalent

to that of a smoothing �lter (p.148); as the blocked high frequencies correspond to sharp intensity

changes, i.e. to the �ne-scale details and noise in the spatial domain image.

A highpass �lter, on the other hand, yields edge enhancement or edge detection in the spatial

domain, because edges contain many high frequencies. Areas of rather constant graylevel consist

of mainly low frequencies and are therefore suppressed.

A bandpass attenuates very low and very high frequencies, but retains a middle range band of

frequencies. Bandpass �ltering can be used to enhance edges (suppressing low frequencies) while

reducing the noise at the same time (attenuating high frequencies).

The most simple lowpass �lter is the ideal lowpass. It suppresses all frequencies higher than the

cut-o� frequency D0 and leaves smaller frequencies unchanged:

H(k; l) =

�
1 if

p
k2 + l2 < D0

0 if
p
k2 + l2 > D0

In most implementations, D0 is given as a fraction of the highest frequency represented in the

Fourier domain image.

The drawback of this �lter function is a ringing e�ect that occurs along the edges of the �ltered

spatial domain image. This phenomenon is illustrated in Figure 10.12, which shows the shape of

the one-dimensional �lter in both the frequency and spatial domains for two di�erent values of D0.

We obtain the shape of the two-dimensional �lter by rotating these functions about the y-axis. As
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mentioned earlier, multiplication in the Fourier domain corresponds to a convolution in the spatial

domain. Due to the multiple peaks of the ideal �lter in the spatial domain, the �ltered image

produces ringing along intensity edges in the spatial domain.
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Figure 10.12: Ideal lowpass in frequency and spatial domain.

Better results can be achieved with a Gaussian shaped �lter function. The advantage is that the

Gaussian has the same shape in the spatial and Fourier domains and therefore does not incur the

ringing e�ect in the spatial domain of the �ltered image. A commonly used discrete approximation

to the Gaussian is the Butterworth �lter. Applying this �lter in the frequency domain shows a

similar result to the Gaussian smoothing (p.156) in the spatial domain. One di�erence is that

the computational cost of the spatial �lter increases with the standard deviation (i.e. with the

size of the �lter kernel), whereas the costs for a frequency �lter are independent of the �lter

function. Hence, the spatial Gaussian �lter is more appropriate for narrow lowpass �lters, while

the Butterworth �lter is a better implementation for wide lowpass �lters.

The same principles apply to highpass �lters. We obtain a highpass �lter function by inverting

the corresponding lowpass �lter, e.g. an ideal highpass �lter blocks all frequencies smaller than

D0 and leaves the others unchanged.

Bandpass �lters are a combination of both lowpass and highpass �lters. They attenuate all frequen-

cies smaller than a frequency D0 and higher than a frequency D1, while the frequencies between

the two cut-o�s remain in the resulting output image. We obtain the �lter function of a bandpass

by multiplying the �lter functions of a lowpass and of a highpass in the frequency domain, where

the cut-o� frequency of the lowpass is higher than that of the highpass.

Instead of using one of the standard �lter functions, we can also create our own �lter mask, thus

enhancing or suppressing only certain frequencies. In this way we could, for example, remove

periodic patterns with a certain direction in the resulting spatial domain image.
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Guidelines for Use

Frequency domain �lters are most commonly used as lowpass �lters. We will demonstrate this

performance with cln1. Corrupting this image with Gaussian noise with a zero mean and a

standard deviation of 8 yields cln1noi1. We can reduce this type of noise using a lowpass �lter,

because noise consists largely of high frequencies, which are attenuated by a lowpass �lter.

The image cln1low1 is the result of applying an ideal lowpass �lter to the noisy image with the

cut-o� frequency being 1
3
. Although we managed to reduce the high frequency noise, this image

is of no practical use. We lost too many of the �ne-scale details and the image exhibits strong

ringing due to the shape of the ideal low pass �lter.

Applying the same �lter with a cut-o� frequency of 0.5 yields cln1low2. Since this �lter keeps a

greater number of frequencies, more details remain in the output image. The image is less blurred,

but also contains more noise. The ringing is less severe, but still exists.

Better results can be achieved with a Butterworth �lter. We obtain cln1low3 with a cut-o�

frequency of 1
3
. This image doesn't show any visible ringing and only little noise. However, it also

lost some image information, i.e. the edges are blurred and the image contains less details than

the original.

In order to retain more details, we increase the cut-o� frequency to 0.5, as can be seen in cln1low4.

This image is less blurred, but also contains a reasonable amount of noise. In general, when using

a lowpass �lter to reduce the high frequency noise, we have to compromise some desirable high

frequency information if we want to smooth away signi�cant amounts of noise.

The ringing e�ect originating from the shape of the ideal lowpass can be better illustrated using

the following arti�cial image. The image art5 is a binary image of a rectangle. Filtering this

image with an ideal lowpass �lter (cut-o� frequency 2
3
) yields art5low1. The ringing is already

recognizable in this image but is much more obvious in art5low3 which is obtained after a histo-

gram equalization (p.78). The e�ect gets even worse if we block more of the frequencies contained

in the input image. In order to obtain art5low2 we used a cut-o� frequency of 1
3
. Apart from

the (desired) smoothing the image also contains a severe ringing which clearly visible even without

histogram equalization. We can also see that the cut-o� frequency directly corresponds to the fre-

quency of the ringing, i.e. as we double the cut-o� frequency, we double the distance between two

rings. The image art5low4 has been �ltered with a Butterworth �lter using a cut-o� frequency of
2
3
. In contrast to the above examples, this image doesn't exhibit any ringing.

We will illustrate the e�ects of highpass frequency �ltering using cln1 as well. As a result of

attenuating (or blocking) the low frequencies, areas of constant intensity in the input image are

zero in the output of the highpass �lter. Areas of a strong intensity gradient, containing the high

frequencies, have positive and negative intensity values in the �lter output. In order to display

the image on the screen, an o�set is added to the output in the spatial domain and the image

intensities are scaled. This results in a middle grayvalue for low frequency areas and dark and

light values for the edges. The image cln1hig1 shows the output of a Butterworth highpass with

the cut-o� frequency being 0.5. An alternative way to display the �lter output is to take the

absolute value of the �ltered spatial domain image. If we apply this method to the clown image

(and threshold (p.69) the result with 13) we obtain cln1hig2. This image may be compared with

cln1sob1, which is an edge image produced by the Sobel operator (p.188) and, thus, shows the

absolute value of the edge magnitude. We can see that the Sobel operator detects the edges better

than the highpass �lter. In general, spatial �lters are more commonly used for edge detection while

frequency �lters are more often used for high frequency emphasis. Here, the �lter doesn't totally

block low frequencies, but magni�es high frequencies relative to low frequencies. This technique is

used in the printing industries to crispen image edges.

Frequency �lters are quite useful when processing parts of an image which can be associated with

certain frequencies. For example, in hse1 each part of the house is made of stripes of a di�erent fre-

quency and orientation. The corresponding Fourier Transform (after histogram equalization (p.78)

can be seen in hse1fou1. We can see the main peaks in the image corresponding to the periodic

patterns in the spatial domain image which now can be accessed separately. For example, we can
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smooth the vertical stripes (i.e. those components which make up the wall in the spatial domain

image) by multiplying the Fourier image with the frequency mask hse1msk1. The e�ect is that

all frequencies within the black rectangle are set to zero, the others remain unchanged. Apply-

ing the inverse Fourier Transform and normalizing (p.75) the resulting image yields hse1fil2 in

the spatial domain. Although the image shows some regular patterns in the formerly constant

background, the vertical stripes are almost totally removed whereas the other patterns remained

mostly unchanged.

We can also use frequency �ltering to achieve the opposite e�ect, i.e. �nding all features in the

image with certain characteristics in the frequency domain. For example, if we want to keep the

vertical stripes (i.e. the wall) in the above image, we can use hse1msk2 as a mask. To perform

the frequency �ltering we transform both the image of the house and the mask into the Fourier

domain where we multiply the two images with the e�ect that the frequencies occurring in the

mask remain in the output while the others are set to zero. Re-transforming the output into

the spatial domain and normalizing it yields hse1fil3. In this image, the dominant pattern is

the one de�ned by the mask. The pixel values are the highest at places which were composed of

this vertical pattern in the input image and are zero in most of the background areas. It is now

possible to identify the desired area by applying a threshold (p.69), as can be seen in hse1fil4.

To understand this process we should keep in mind that a multiplication in the Fourier domain is

identical to a convolution (p.227) in the spatial domain.

Frequency �lters are also commonly used in image reconstruction. Here, the aim is to remove

the e�ects of a non-ideal imaging system by multiplying the image in the Fourier space with an

appropriate function. The easiest method, called inverse �ltering, is to divide the image in the

Fourier space with the optical transfer function (OTF). We illustrate this technique, also known

as deconvolution, using brg1. We simulate a non-ideal OTF by multiplying the Fourier Transform

of the image with the Fourier Transform of a Gaussian image with a standard deviation of 5.

Re-transforming the result into the spatial domain yields the blurred image brg1blu1. We can

now reconstruct the original image using inverse �ltering by taking the Fourier Transform of the

blurred image and dividing it by the Fourier Transform of the Gaussian kernel, which was used to

initially blur the image. The reconstructed image is shown in brg1dec1.

Although we obtain, in the above case, exactly the original image, this method has two major

problems. First, it is very sensitive to noise (p.221). If we, for example, add 0.1% spike noise

to the blurred image, we obtain brg1blu2. Inverse �ltering the image (as described above) using

this image in order to de-blur yields the low contrast result brg1dec2. (Note that doing contrast

enhancement to emphasize the original image features can produce an image very similar to the

original, except for a loss of �ne details). The situation can be slightly improved if we ignore all

values of the Fourier space division in which the divisor (i.e. the value of the OTF) is below a

certain threshold. The e�ect of using a threshold of 3 can be seen in brg1dec3. However, if we

increase the threshold we have to discard more of the Fourier values and therefore lose more image

information. Hence, we will be less successful in reconstructing the original image.

The second problem with this image restoration method is that we need to know the OTF which

corrupted the image in the �rst place. If we, for example, blur the image by convolving it with the

Gaussian image in the spatial domain, we obtain brg1blu3. Although this should theoretically be

the same image as obtained from the multiplication in the Fourier Space, we obtain small di�erences

due to quantization errors and e�ects around the border of an image when convolving it in spatial

domain. Reconstructing the original image by dividing the blurred image in the Fourier space with

the Fourier Transform of the Gaussian yields brg1dec4 or brg1dec5 if we use a minimum OTF

threshold of 5.

We face a similar problem if we want to deconvolve a real blurred image like orn1crp1. Since

we do not know the transfer function which caused the blurring, we have to estimate it. The

images orn1dec1 and orn1dec2 are the results of estimating the OTF with a Gaussian image with

a standard deviation of 3 and 10, respectively and applying an inverse �ltering with a minimum

OTF threshold of 10. We can see that the image improved only very little, if at all.

Due to the above problems, in most practical cases more sophisticated reconstruction methods are

used. For example, Wiener �ltering and Maximum Entropy �ltering are two techniques that are
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based on the same principle as inverse �ltering, but produce better results on real world images.

Finally, frequency �ltering can also be used for pattern matching. For example, we might want to

�nd all locations in txt2 which are occupied by a certain letter, say X. To do this, we need an

image of an isolated X which can act as a mask, in this case txt2msk1. To perform the pattern

matching, we transform both image and mask into the Fourier space and multiply them. We

apply the inverse Fourier Transform to the resulting Fourier image and scale (p.48) the output

to obtain txt2fil1 in the spatial domain. This image is (theoretically) identical to the result of

convolving (p.227) image and mask in the spatial domain. Hence, the image shows high values

at locations in the image which match the mask well. However, apart from the X, these are also

other letters like the R and the K which match well. In fact, if we threshold the image at 255, as

can be seen in txt2fil2), we have two locations indicating an X, one of them being incorrect.

Since we multiplied the two complex Fourier images, we also changed the phase of the original text

image. This results in a constant shift between the position of the letter in the original and its

response in the processed image. The example shows that this straightforward method runs into

problems if we want to distinguish between similar patterns or if the mask and the corresponding

pattern in the data di�er slightly. Another problem includes the fact that this operation is neither

rotation- nor scale-invariant. (Note that we also run into these problems if we implement the

operation as a simple convolution in the spatial domain.) The size of the pattern determines

whether it is better to perform the matching in the spatial or frequency domain. In our case

(the letter was approximately 10�20 pixels); it is substantially faster to do the matching in the

frequency domain.

The above method might be modi�ed in the following way: instead of multiplying the Fourier

Transforms of the image and the mask as a �rst step, we threshold (p.69) the Fourier image of the

mask to identify the most important frequencies which make up the letter X in the spatial domain.

For example, scaling (p.48) the Fourier magnitude of the above mask to 255 and thresholding it at

a value of 10 yields all the frequencies with at least 4% of the peak magnitude, as can be seen in

txt2fur1. Now, we multiply this modi�ed mask with the Fourier image of the text, thus retaining

only frequencies which also appear in the letter X. Inverse Fourier Transforming this image yields

txt2fil3. We can see that the X is the letter which preserved its shape the best and also has

higher intensity values. Thresholding this image yields txt2fil4 which correctly identi�es the

position of the X.

Exercises

1. Apply median (p.153), mean (p.150) and Gaussian smoothing (p.156) to cln1noi1 and com-

pare the results with the images obtained via lowpass �ltering.

2. Add `salt and pepper' noise (p.221) to fce5 and then enhance the resulting image using a

lowpass �lter. Which method would be more suitable and why?

3. Remove single parts from hse1 (e.g. a window, the roof or the wall) by creating an appro-

priate mask and multiplying it with the Fourier Transform (p.209) of the image.
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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10.7 Laplacian/Laplacian of Gaussian

Brief Description

The Laplacian is a 2-D isotropic (p.233) measure of the 2nd spatial derivative (p.240) of an image.

The Laplacian of an image highlights regions of rapid intensity change and is therefore often

used for edge detection (see zero crossing edge detectors (p.199)). The Laplacian is often applied

to an image that has �rst been smoothed with something approximating a Gaussian smoothing

�lter (p.156) in order to reduce its sensitivity to noise, and hence the two variants will be described

together here. The operator normally takes a single graylevel image as input and produces another

graylevel image as output.

How It Works

The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given by:

L(x; y) =
@2I

@x2
+
@2I

@y2

This can be calculated using a convolution �lter (p.227).

Since the input image is represented as a set of discrete pixels, we have to �nd a discrete convolution

kernel that can approximate the second derivatives in the de�nition of the Laplacian. Three

commonly used small kernels are shown in Figure 10.13.
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Figure 10.13: Three commonly used discrete approximations to the Laplacian �lter. (Note, we

have de�ned the Laplacian using a negative peak because this is more common; however, it is

equally valid to use the opposite sign convention.)

Using one of these kernels, the Laplacian can be calculated using standard convolution methods.

Because these kernels are approximating a second derivative measurement on the image, they

are very sensitive to noise. To counter this, the image is often Gaussian smoothed (p.156) before

applying the Laplacian �lter. This pre-processing step reduces the high frequency noise components

prior to the di�erentiation step.

In fact, since the convolution operation is associative, we can convolve the Gaussian smoothing

�lter with the Laplacian �lter �rst of all, and then convolve this hybrid �lter with the image to

achieve the required result. Doing things this way has two advantages:

� Since both the Gaussian and the Laplacian kernels are usually much smaller than the image,

this method usually requires far fewer arithmetic operations.

� The LoG (`Laplacian of Gaussian') kernel can be precalculated in advance so only one con-

volution needs to be performed at run-time on the image.

The 2-D LoG function centered on zero and with Gaussian standard deviation � has the form:
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LoG(x; y) = � 1

��4

�
1� x2 + y2

2�2

�
e
�

x2+y2

2�2

and is shown in Figure 10.14.
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Figure 10.14: The 2-D Laplacian of Gaussian (LoG) function. The x and y axes are marked in

standard deviations (�).

A discrete kernel that approximates this function (for a Gaussian � = 1.4) is shown in Figure 10.15.
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Figure 10.15: Discrete approximation to LoG function with Gaussian � = 1.4

Note that as the Gaussian is made increasingly narrow, the LoG kernel becomes the same as the

simple Laplacian kernels shown in Figure 10.13. This is because smoothing with a very narrow

Gaussian (� < 0.5 pixels) on a discrete grid has no e�ect. Hence on a discrete grid, the simple

Laplacian can be seen as a limiting case of the LoG for narrow Gaussians.
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Guidelines for Use

The LoG operator calculates the second spatial derivative of an image. This means that in areas

where the image has a constant intensity (i.e. where the intensity gradient is zero), the LoG

response will be zero. In the vicinity of a change in intensity, however, the LoG response will be

positive on the darker side, and negative on the lighter side. This means that at a reasonably sharp

edge between two regions of uniform but di�erent intensities, the LoG response will be:

� zero at a long distance from the edge,

� positive just to one side of the edge,

� negative just to the other side of the edge,

� zero at some point in between, on the edge itself.

Figure 10.16 illustrates the response of the LoG to a step edge.
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Figure 10.16: Response of 1-D LoG �lter to a step edge. The left hand graph shows a 1-D image,

200 pixels long, containing a step edge. The right hand graph shows the response of a 1-D LoG

�lter with Gaussian � = 3 pixels.

By itself, the e�ect of the �lter is to highlight edges in an image.

For example, wdg4 is a simple image with strong edges.

The image wdg4log1 is the result of applying a LoG �lter with Gaussian � = 1.0. A 7�7 kernel
was used. Note that the output contains negative and non-integer values, so for display purposes

the image has been normalized (p.75) to the range 0 - 255.

If a portion of the �ltered, or gradient, image is added (p.43) to the original image, then the result

will be to make any edges in the original image much sharper and give them more contrast. This

is commonly used as an enhancement technique in remote sensing applications.

To see this we start with fce2, which is a slightly blurry image of a face.

The image fce2log1 is the e�ect of applying an LoG �lter with Gaussian � = 1.0, again using a

7�7 kernel.

Finally, fce2log2 is the result of combining (i.e. subtracting (p.45)) the �ltered image and the

original image. Note that the �ltered image had to be suitable scaled (p.48) before combining in

order to produce a sensible enhancement. Also, it may be necessary to translate (p.97) the �ltered

image by half the width of the convolution kernel in both the x and y directions in order to register

the images correctly.

The enhancement has made edges sharper but has also increased the e�ect of noise. If we simply

�lter the image with a Laplacian (i.e. use a LoG �lter with a very narrow Gaussian) we obtain
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fce2lap2. Performing edge enhancement using this sharpening image yields the noisy result

fce2lap1. (Note that unsharp �ltering (p.178) may produce an equivalent result since it can

be de�ned by adding (p.43) the negative Laplacian image (or any suitable edge image) onto the

original.) Conversely, widening the Gaussian smoothing component of the operator can reduce

some of this noise, but, at the same time, the enhancement e�ect becomes less pronounced.

The fact that the output of the �lter passes through zero at edges can be used to detect those

edges. See the section on zero crossing edge detection (p.199).

Note that since the LoG is an isotropic �lter (p.233), it is not possible to directly extract edge

orientation information from the LoG output in the same way that it is for other edge detectors

such as the Roberts Cross (p.184) and Sobel (p.188) operators.

Convolving with a kernel such as the one shown in Figure 10.15 can very easily produce output

pixel values that are much larger than any of the input pixels values, and which may be negative.

Therefore it is important to use an image type (e.g. oating point) that supports negative numbers

and a large range in order to avoid overow or saturation. The kernel can also be scaled down by

a constant factor in order to reduce the range of output values.

Common Variants

It is possible to approximate the LoG �lter with a �lter that is just the di�erence of two di�erently

sized Gaussians. Such a �lter is known as a DoG �lter (short for `Di�erence of Gaussians').

As an aside it has been suggested (Marr 1982) that LoG �lters (actually DoG �lters) are important

in biological visual processing.

An even cruder approximation to the LoG (but much faster to compute) is the DoB �lter (`Di�er-

ence of Boxes'). This is simply the di�erence between two mean �lters (p.150) of di�erent sizes. It

produces a kind of squared-o� approximate version of the LoG.

Exercises

1. Try the e�ect of LoG �lters using di�erent width Gaussians on the image ben2. What is the

general e�ect of increasing the Gaussian width? Notice particularly the e�ect on features of

di�erent sizes and thicknesses.

2. Construct a LoG �lter where the kernel size is much too small for the chosen Gaussian width

(i.e. the LoG becomes truncated). What is the e�ect on the output? In particular what do

you notice about the LoG output in di�erent regions each of uniform but di�erent intensities?

3. Devise a rule to determine how big an LoG kernel should be made in relation to the � of the

underlying Gaussian if severe truncation is to be avoided.

4. If you were asked to construct an edge detector that simply looked for peaks (both positive

and negative) in the output from an LoG �lter, what would such a detector produce as output

from a single step edge?
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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10.8 Unsharp Filter

Brief Description

The unsharp �lter is a simple sharpening operator which derives its name from the fact that

it enhances edges (and other high frequency components in an image) via a procedure which

subtracts an unsharp, or smoothed, version of an image from the original image. The unsharp

�ltering technique is commonly used in the photographic and printing industries for crispening

edges.

How It Works

Unsharp masking produces an edge image g(x; y) from an input image f(x; y) via

g(x; y) = f(x; y)� fsmooth(x; y)

where fsmooth(x; y) is a smoothed version of f(x; y). (See Figure 10.17.)

+
+−f(x,y) g(x,y)

Smooth

Figure 10.17: Spatial sharpening.

We can better understand the operation of the unsharp sharpening �lter by examining its frequency

response characteristics. If we have a signal as shown in Figure 10.18(a), subtracting away the low-

pass component of that signal (as in Figure 10.18(b)), yields the highpass, or `edge', representation

shown in Figure 10.18(c).

This edge image can be used for sharpening if we add it back into the original signal, as shown in

Figure 10.19.

Thus, the complete unsharp sharpening operator is shown in Figure 10.20.

We can now combine all of this into the equation:

fsharp(x; y) = f(x; y) + k � g(x; y)

where k is a scaling constant. Reasonable values for k vary between 0.2 and 0.7, with the larger

values providing increasing amounts of sharpening.

Guidelines for Use

The unsharp �lter is implemented as a window-based operator, i.e. it relies on a convolution (p.227)

kernel to perform spatial �ltering. It can be implemented using an appropriately de�ned lowpass

�lter (p.167) to produce the smoothed version of an image, which is then pixel subtracted (p.45)

from the original image in order to produce a description of image edges, i.e. a highpassed image.

For example, consider the simple image object wdg1, whose strong edges have been slightly blurred

by camera focus. In order to extract a sharpened view of the edges, we smooth this image using

a mean �lter (p.150) (kernel size 3�3) and then subtract the smoothed result from the original

image. The resulting image is wdg1usp2. (Note, the gradient image contains positive and negative

values and, therefore, must be normalized (p.75) for display purposes.)
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Original Signal

Lowpass Signal

Highpass Signal

(b)

(c)

(a)

Figure 10.18: Calculating an edge image for unsharp �ltering.

Sharpened Signal

Figure 10.19: Sharpening the original signal using the edge image.

Because we subtracted all low frequency components from the original image (i.e., we highpass

�ltered (p.167) the image) we are left with only high frequency edge descriptions. Normally, we

would require that a sharpening operator give us back our original image with the high frequency

components enhanced. In order to achieve this e�ect, we now add (p.43) some proportion of this

gradient image back onto our original image. The image wdg1usp3 has been sharpened according

to this formula, where the scaling (p.48) constant k is set to 0.7.

A more common way of implementing the unsharp mask is by using the negative Laplacian operator

to extract the highpass information directly. See Figure 10.21.

+
+−f(x,y) g(x,y)

Smooth +
+

+ sharpf         (x,y)

Figure 10.20: The complete unsharp �ltering operator.
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+
f(x,y) +

+
−Laplacian

sharpf         (x,y)

Figure 10.21: Spatial sharpening, an alternative de�nition.

Some unsharp masks for producing an edge image of this type are shown in Figure 10.22. These

are simply negative, discrete Laplacian �lters. After convolving an original image with a kernel

such as one of these, it need only be scaled (p.48) and and then added (p.43) to the original. (Note

that in the Laplacian of Gaussian (p.173) worksheet, we demonstrated edge enhancement using

the correct, or positive, Laplacian and LoG kernels. In that case, because the kernel peak was

positive, the edge image was subtracted (p.45), rather than added (p.43), back into the original.)
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Figure 10.22: Three discrete approximations to the Laplacian �lter.

With this in mind, we can compare the unsharp and Laplacian of Gaussian (p.173) �lters. First,

notice that the gradient images produced by both �lters (e.g. wdg1usp2 produced by unsharp and

wdg4log1 produced by LoG) exhibit the side-e�ect of ringing, or the introduction of additional

intensity image structure. (Note also that the rings have opposite signs due to the di�erence in

signs of the kernels used in each case.) This ringing occurs at high contrast edges. Figure 10.23

describes how oscillating (i.e. positive, negative, positive, etc.) terms in the output (i.e. ringing)

are induced by the oscillating terms in the �lter.
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Figure 10.23: Ringing e�ect introduced by the unsharp mask in the presence of a 2 pixel wide,

high intensity stripe. (Gray levels: {1=Dark, 0=Gray, 1=Bright.) a) 1-D input intensity image

slice. b) Corresponding 1-D slice through unsharp �lter. c) 1-D output intensity image slice.

Another interesting comparison of the two �lters can be made by examining their edge enhancement

capabilities. Here we begin with reference to fce2. The image fce2log2 shows the sharpened

version produced by a 7�7 Laplacian of Gaussian (p.173). The image fce2lap1 is that due to

unsharp sharpening with an equivalently sized Laplacian (p.173). In comparing the unsharp mask

de�ned using the Laplacian with the LoG, it is obvious that the latter is more robust to noise,
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as it has been designed explicitly to remove noise before enhancing edges. Note, we can obtain a

slightly less noisy, but also less sharp, image using a smaller (i.e. 3�3) Laplacian kernel, as shown
in fce2usp1.

The unsharp �lter is a powerful sharpening operator, but does indeed produce a poor result in

the presence of noise. For example, consider fce5noi4 which has been deliberately corrupted by

Gaussian noise (p.221). (For reference, fce5mea3 is a mean �ltered (p.150) version of this image.)

Now compare this with the output of the unsharp �lter fce5usp1 and with the original image

fce5. The unsharp mask has accentuated the noise.

Common Variants

Adaptive Unsharp Masking

A powerful technique for sharpening images in the presence of low noise levels is via an adaptive

�ltering algorithm. Here we look at a method of re-de�ning a highpass �lter (such as the one

shown in Figure 10.24) as the sum of a collection of edge directional kernels.

−1 −2 −1

−2 −212

−1 −2 −1

1/16

Figure 10.24: Sharpening �lter.

This �lter can be re-written as 1=16 times the sum of the eight edge sensitive kernels shown in

Figure 10.25.
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Figure 10.25: Sharpening �lter re-de�ned as eight edge directional kernels

Adaptive �ltering using these kernels can be performed by �ltering the image with each kernel,

in turn, and then summing those outputs that exceed a threshold. As a �nal step, this result is

added to the original image. (See Figure 10.26.)

This use of a threshold makes the �lter adaptive in the sense that it overcomes the directionality

of any single kernel by combining the results of �ltering with a selection of kernels | each of which

is tuned to an edge direction inherent in the image.

Exercises

1. Consider the image ben2, which, after unsharp sharpening (using a mean smoothing �lter,
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+
f(x,y) g(x,y)+

+
Dir. Mask SumThreshold

Figure 10.26: Adaptive sharpening.

with kernel size 3�3) becomes ben2usp1. a) Perform unsharp sharpening on the raw image

using a Gaussian �lter (p.156) (with the same kernel size). How do the sharpened images

produced by the two di�erent smoothing functions compare? b) Try re-sharpening this

image using a �lter with larger kernel sizes (e.g. 5�5, 7�7 and 9�9). How does increasing

the kernel size a�ect the result? c) What would you expect to see if the kernel size were

allowed to approach the image size?

2. Sharpen the image grd1. Notice the e�ects on features of di�erent scale.

3. What result would you expect from an unsharp sharpening operator de�ned using a smooth-

ing �lter (e.g. the median (p.153)) which does not produce a lowpass image.

4. Enhance the edges of the 0.1% salt and pepper noise (p.221) corrupted image wom1noi1 using

both the unsharp and Laplacian of Gaussian (p.173) �lters. Which performs best under these

conditions?

5. Investigate the response of the unsharp masking �lter to edges of various orientations. Some

useful example images include art2, wdg2 and cmp1. Compare your results with those pro-

duced by adaptive unsharp sharpening.
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introductory section.
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Chapter 11

Feature Detectors

The operators included in this section are those whose purpose is to identify meaningful image

features on the basis of distributions of pixel graylevels. The two categories of operators included

here are:

� Edge Pixel Detectors, that assign a value to a pixel in proportion to the likelihood that the

pixel is part of an image edge (p.230) (i.e. a pixel that is on the boundary between two

regions of di�erent intensity values).

� Line Pixel Detectors, that assign a value to a pixel in proportion to the likelihood that the

pixel is part of a image line (i.e. a dark narrow region bounded on both sides by lighter

regions, or vice-versa).

Detectors for other features can be de�ned, such as circular arc detectors in intensity images

(or even more general detectors, as in the generalized Hough transform (p.214)), or planar point

detectors in range images, etc.

Note that the operators in this section merely identify pixels likely to be part of such a structure.

To actually extract the structure from the image it is then necessary to group together image

pixels (which are usually adjacent). A veri�cation stage also commonly occurs after the grouping

stage (e.g. an examination of the residuals of the best �t line through a point set) and then the

extraction of parameters of the structure (e.g. the equation of the line through the point set).

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



184

11.1 Roberts Cross Edge Detector

Brief Description

The Roberts Cross operator performs a simple, quick to compute, 2-D spatial gradient measurement

on an image. It thus highlights regions of high spatial frequency (p.232) which often correspond to

edges. In its most common usage, the input to the operator is a grayscale image, as is the output.

Pixel values at each point in the output represent the estimated absolute magnitude of the spatial

gradient of the input image at that point.

How It Works

In theory, the operator consists of a pair of 2�2 convolution kernels (p.227) as shown in Figure 11.1.
One kernel is simply the other rotated by 90�. This is very similar to the Sobel operator (p.188).

+1

-1

+1

-10

0 0

0

Gx Gy
Figure 11.1: Roberts Cross convolution kernels

These kernels are designed to respond maximally to edges running at 45� to the pixel grid, one

kernel for each of the two perpendicular orientations. The kernels can be applied separately to

the input image, to produce separate measurements of the gradient component in each orientation

(call these Gx and Gy). These can then be combined together to �nd the absolute magnitude of

the gradient at each point and the orientation of that gradient. The gradient magnitude is given

by:

jGj =
p
Gx2 +Gy2

although typically, an approximate magnitude is computed using:

jGj = jGxj+ jGyj

which is much faster to compute.

The angle of orientation of the edge giving rise to the spatial gradient (relative to the pixel grid

orientation) is given by:

� = arctan(Gy=Gx)� 3�=4

In this case, orientation 0 is taken to mean that the direction of maximum contrast from black to

white runs from left to right on the image, and other angles are measured clockwise from this.
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Figure 11.2: Pseudo-convolution kernels used to quickly compute approximate gradient magnitude

Often, the absolute magnitude is the only output the user sees | the two components of the

gradient are conveniently computed and added in a single pass over the input image using the

pseudo-convolution operator shown in Figure 11.2.

Using this kernel the approximate magnitude is given by:

jGj = jP1 � P4j+ jP2 � P3j

Guidelines for Use

The main reason for using the Roberts Cross operator is that it is very quick to compute. Only

four input pixels need to be examined to determine the value of each output pixel, and only

subtractions and additions are used in the calculation. In addition there are no parameters to

set. Its main disadvantages are that since it uses such a small kernel, it is very sensitive to noise.

It also produces very weak responses to genuine edges unless they are very sharp. The Sobel

operator (p.188) performs much better in this respect.

We use cln1 to illustrate the e�ect of the operator.

The image cln1rob1 is the corresponding output from the Roberts Cross operator. The gradient

magnitudes output by the operator have been multiplied (p.48) by a factor of 5 to make the

image clearer. Note the spurious bright dots on the image which demonstrate that the operator is

susceptible to noise. Also note that only the strongest edges have been detected with any reliability.

The image cln1rob2 is the result of thresholding (p.69) the Roberts Cross output at a pixel value

of 80.

We can also apply the Roberts Cross operator to detect depth discontinuity edges in range images.

In the range image ufo2, the distance from the sensor to the object is encoded in the intensity

value of the image. Applying the Roberts Cross yields ufo2rob1. The operator produced a line

with high intensity values along the boundary of the object. On the other hand, intensity changes

originating from depth discontinuities within the object are not high enough to output a visible

line. However, if we threshold (p.69) the image at a value of 20, all depth discontinuities in the

object produce an edge in the image, as can be seen in ufo2rob2.

The operator's sensitivity to noise can be demonstrated if we add noise (p.221) to the above range

image. The image ufo2noi1 is the result of adding Gaussian noise with a standard deviation of

8, ufo2rob3 is the corresponding output of the Roberts Cross operator. The di�erence to the

previous image becomes visible if we again threshold the image at a value of 20, as can be seen

in ufo2rob4. Now, we not only detect edges corresponding to real depth discontinuities, but also

some noise points. We can show that the Roberts Cross operator is more sensitive to noise than,

for example, the Sobel operator (p.188) if we apply the Sobel operator to the same noisy image. In

that case, we can �nd a threshold which removes most of the noise pixels while keeping all edges of

the object. Applying a Sobel edge detector to the above noisy image and thresholding the output

at a value of 150 yields ufo2sob4.
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The previous examples contained sharp intensity or depth changes, which enabled us (in the noise-

free case) to detect the edges very well. The image ufo1 is a range image where the depth values

change much more slowly. Hence, the edges in the resulting Roberts Cross image, ufo1rob1, are

rather faint. Since the intensity of many edge pixels in this image is very low, it is not possible to

entirely separate the edges from the noise. This can be seen in ufo1rob2, which is the result of

thresholding (p.69) the image at a value of 30.

The e�ects of the shape of the edge detection kernel on the edge image can be illustrated using

hse1. Applying the Roberts Cross operator yields hse1rob1. Due to the di�erent width and

orientation of the lines in the image, the response in the edge image varies signi�cantly. Since

the intensity steps between foreground and background are constant in all patterns of the original

image, this shows that the Roberts Cross operator responds di�erently to di�erent frequencies and

orientations.

If the pixel value type being used only supports a small range of integers (e.g. 8-bit integer images),

then it is possible for the gradient magnitude calculations to overow the maximum allowed pixel

value. In this case it is common to simply set those pixel values to the maximum allowed value.

In order to avoid this happening, image types that support a greater range of pixel values, e.g.

oating point images, can be used.

There is a slight ambiguity in the output of the Roberts operator as to which pixel in the output

corresponds to which pixel in the input, since technically the operator measures the gradient

intensity at the point where four pixels meet. This means that the gradient image will be shifted

by half a pixel in both x and y grid directions.

Exercises

1. Why does the Roberts Cross' small kernel size make it very sensitive to noise in the image?

2. Apply the Roberts Cross operator to ren1. Can you obtain an edge image that contains only

lines corresponding to the contours of the object? Compare with the results obtained with

the Sobel (p.188) and Canny (p.192) operators.

3. Compare the result of applying the Roberts Cross operator to hse1 with the one of using

the Sobel operator (p.188).

4. Compare the performance of the Roberts Cross with the Sobel operator in terms of noise

rejection, edge detection and speed.

5. Under what situations might you choose to use the Roberts Cross rather than the Sobel?

And under what conditions would you avoid it?

References

R. Boyle and R. Thomas Computer Vision: A First Course, Blackwell Scienti�c Publications,

1988, pp 50 - 51.

E. DaviesMachine Vision: Theory, Algorithms and Practicalities, Academic Press, 1990, Chap. 5.

L. RobertsMachine Perception of 3-D Solids, Optical and Electro-optical Information Processing,

MIT Press 1965.

D. Vernon Machine Vision, Prentice-Hall, 1991, Chap. 5.
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Information relevant to your local image processing setup can be added here by the person who
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More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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11.2 Sobel Edge Detector

Brief Description

The Sobel operator performs a 2-D spatial gradient measurement on an image and so emphasizes

regions of high spatial frequency (p.232) that correspond to edges. Typically it is used to �nd the

approximate absolute gradient magnitude at each point in an input grayscale image.

How It Works

In theory at least, the operator consists of a pair of 3�3 convolution kernels (p.227) as shown in

Figure 11.3. One kernel is simply the other rotated by 90�. This is very similar to the Roberts

Cross (p.184) operator.
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Figure 11.3: Sobel convolution kernels

These kernels are designed to respond maximally to edges running vertically and horizontally

relative to the pixel grid, one kernel for each of the two perpendicular orientations. The kernels

can be applied separately to the input image, to produce separate measurements of the gradient

component in each orientation (call these Gx and Gy). These can then be combined together to

�nd the absolute magnitude of the gradient at each point and the orientation of that gradient.

The gradient magnitude is given by:

jGj =
p
Gx2 +Gy2

Typically, an approximate magnitude is computed using:

jGj = jGxj+ jGyj

which is much faster to compute.

The angle of orientation of the edge (relative to the pixel grid) giving rise to the spatial gradient

is given by:

� = arctan(Gy=Gx)

In this case, orientation 0 is taken to mean that the direction of maximum contrast from black to

white runs from left to right on the image, and other angles are measured anti-clockwise from this.

Often, this absolute magnitude is the only output the user sees | the two components of the

gradient are conveniently computed and added in a single pass over the input image using the

pseudo-convolution operator shown in Figure 11.4.

Using this kernel the approximate magnitude is given by:

jGj = j(P1 + 2� P2 + P3)� (P7 + 2� P8 + P9)j+ j(P3 + 2� P6 + P9)� (P1 + 2� P4 + P7)j
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Figure 11.4: Pseudo-convolution kernels used to quickly compute approximate gradient magnitude

Guidelines for Use

The Sobel operator is slower to compute than the Roberts Cross operator, but its larger convolution

kernel smooths the input image to a greater extent and so makes the operator less sensitive to noise.

The operator also generally produces considerably higher output values for similar edges, compared

with the Roberts Cross.

As with the Roberts Cross operator, output values from the operator can easily overow the

maximum allowed pixel value for image types that only support smallish integer pixel values (e.g.

8-bit integer images). When this happens the standard practice is to simply set overowing output

pixels to the maximum allowed value. The problem can be avoided by using an image type that

supports pixel values with a larger range.

Natural edges in images often lead to lines in the output image that are several pixels wide due to

the smoothing e�ect of the Sobel operator. Some thinning (p.137) may be desirable to counter this.

Failing that, some sort of hysteresis ridge tracking could be used as in the Canny operator (p.192).

The image cln1sob1 shows the results of applying the Sobel operator to cln1. Compare this

with the equivalent Roberts Cross output cln1rob1. Note that the spurious noise that a�icted

the Roberts Cross output image is still present in this image, but its intensity relative to the

genuine lines has been reduced, and so there is a good chance that we can get rid of this entirely

by thresholding (p.69). Also, notice that the lines corresponding to edges have become thicker

compared with the Roberts Cross output due to the increased smoothing of the Sobel operator.

The image wdg2 shows a simpler scene containing just a single at dark object against a lighter

background. Applying the Sobel operator produces wdg2sob1. Note that the lighting has been

carefully set up to ensure that the edges of the object are nice and sharp and free of shadows.

The Sobel edge detector can also be applied to range images like ufo2. The corresponding edge

image is ufo2sob1. All edges in the image have been detected and can be nicely separated from

the background using a threshold of 150, as can be seen in ufo2sob2.

Although the Sobel operator is not as sensitive to noise (p.221) as the Roberts Cross (p.184)

operator, it still ampli�es high frequencies. The image ufo2noi2 is the result of adding Gaussian

noise with a standard deviation of 15 to the original image. Applying the Sobel operator yields

ufo2sob5 and thresholding the result at a value of 150 produces ufo2sob6. We can see that the

noise has increased during the edge detection and it is no longer possible to �nd a threshold which

removes all noise pixels and at the same time retains the edges of the objects.

The object in the previous example contains sharp edges and its surface is rather smooth. There-

fore, we could (in the noise-free case) easily detect the boundary of the object without getting any

erroneous pixels. A more di�cult task is to detect the boundary of ren1, because it contains many

�ne depth variations (i.e. resulting in intensity changes in the image) on its surface. Applying the

Sobel operator straightforwardly yields ren1sob1. We can see that the intensity of many pixels

on the surface is as high as along the actual edges. One reason is that the output of many edge

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



190

pixels is greater than the maximum pixel value and therefore they are `cut o�' at 255. To avoid

this overow we scale (p.48) the range image by a factor 0.25 prior to the edge detection and

then normalize (p.75) the output, as can be seen in ren1sob2. Although the result has improved

signi�cantly, we still cannot �nd a threshold so that a closed line along the boundary remains and

all the noise disappears. Compare this image with the results obtained with the Canny (p.192)

edge detector.

Common Variants

A related operator is the Prewitt gradient edge detector (not to be confused with the Prewitt

compass edge detector (p.195)). This works in a very similar way to the Sobel operator but uses

slightly di�erent kernels, as shown in Figure 11.5. This kernel produces similar results to the Sobel,

but is not as isotropic (p.233) in its response.
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Figure 11.5: Masks for the Prewitt gradient edge detector.

Exercises

1. Experiment with thresholding (p.69) the example images to see if noise can be eliminated

while still retaining the important edges.

2. How does the Sobel operator compare with the Roberts Cross operator in terms of noise

rejection, edge detection and speed?

3. How well are the edges located using the Sobel operator? Why is this?

4. Apply the Sobel operator to ufo1 and see if you can use thresholding (p.69) to detect the

edges of the object without also selecting noisy pixels. Compare the results with those

obtained with the Roberts Cross (p.184) operator.

5. Under what conditions would you want to use the Sobel rather than the Roberts Cross

operator? And when would you not want to use it?
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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11.3 Canny Edge Detector

Brief Description

The Canny operator was designed to be an optimal edge detector (according to particular criteria

| there are other detectors around that also claim to be optimal with respect to slightly di�erent

criteria). It takes as input a gray scale image, and produces as output an image showing the

positions of tracked intensity discontinuities.

How It Works

The Canny operator works in a multi-stage process. First of all the image is smoothed by Gaussian

convolution (p.156). Then a simple 2-D �rst derivative operator (somewhat like the Roberts

Cross (p.184)) is applied to the smoothed image to highlight regions of the image with high �rst

spatial derivatives. Edges give rise to ridges in the gradient magnitude image. The algorithm then

tracks along the top of these ridges and sets to zero all pixels that are not actually on the ridge top

so as to give a thin line in the output, a process known as non-maximal suppression. The tracking

process exhibits hysteresis controlled by two thresholds: T1 and T2, with T1 > T2. Tracking can

only begin at a point on a ridge higher than T1. Tracking then continues in both directions out

from that point until the height of the ridge falls below T2. This hysteresis helps to ensure that

noisy edges are not broken up into multiple edge fragments.

Guidelines for Use

The e�ect of the Canny operator is determined by three parameters | the width of the Gaussian

kernel (p.233) used in the smoothing phase, and the upper and lower thresholds used by the

tracker. Increasing the width of the Gaussian kernel reduces the detector's sensitivity to noise, at

the expense of losing some of the �ner detail in the image. The localization error in the detected

edges also increases slightly as the Gaussian width is increased.

Usually, the upper tracking threshold can be set quite high, and the lower threshold quite low for

good results. Setting the lower threshold too high will cause noisy edges to break up. Setting

the upper threshold too low increases the number of spurious and undesirable edge fragments

appearing in the output.

One problem with the basic Canny operator is to do with Y-junctions i.e. places where three

ridges meet in the gradient magnitude image. Such junctions can occur where an edge is partially

occluded by another object. The tracker will treat two of the ridges as a single line segment, and

the third one as a line that approaches, but doesn't quite connect to, that line segment.

We use the image cln1 to demonstrate the e�ect of the Canny operator on a natural scene.

Using a Gaussian kernel with standard deviation 1.0 and upper and lower thresholds of 255 and

1, respectively, we obtain cln1can1. Most of the major edges are detected and lots of details have

been picked out well | note that this may be too much detail for subsequent processing. The

`Y-Junction e�ect' mentioned above can be seen at the bottom left corner of the mirror.

The image cln1can2 is obtained using the same kernel size and upper threshold, but with the

lower threshold increased to 220. The edges have become more broken up than in the previous

image, which is likely to be bad for subsequent processing. Also, the vertical edges on the wall

have not been detected, along their full length.

The image cln1can3 is obtained by lowering the upper threshold to 128. The lower threshold is

kept at 1 and the Gaussian standard deviation remains at 1.0. Many more faint edges are detected

along with some short `noisy' fragments. Notice that the detail in the clown's hair is now picked

out.

The image cln1can4 is obtained with the same thresholds as the previous image, but the Gaussian
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used has a standard deviation of 2.0. Much of the detail on the wall is no longer detected, but

most of the strong edges remain. The edges also tend to be smoother and less noisy.

Edges in arti�cial scenes are often sharper and less complex than those in natural scenes, and this

generally improves the performance of any edge detector.

The image wdg2 shows such an arti�cial scene, and wdg2can1 is the output from the Canny

operator.

The Gaussian smoothing in the Canny edge detector ful�lls two purposes: �rst it can be used to

control the amount of detail that appears in the edge image and second, it can be used to suppress

noise.

To demonstrate how the Canny operator performs on noisy images we use ufo2noi2, which con-

tains Gaussian noise with a standard deviation of 15. Neither the Roberts Cross (p.184) nor the

Sobel (p.188) operator are able to detect the edges of the object while removing all the noise in the

image. Applying the Canny operator using a standard deviation of 1.0 yields ufo2can1. All the

edges have been detected and almost all of the noise has been removed. For comparison, ufo2sob6

is the result of applying the Sobel operator and thresholding (p.69) the output at a value of 150.

We use ren1 to demonstrate how to control the details contained in the resulting edge image.

The image ren1can1 is the result of applying the Canny edge detector using a standard deviation

of 1.0 and an upper and lower threshold of 255 and 1, respectively. This image contains many

details; however, for an automated recognition task we might be interested to obtain only lines

that correspond to the boundaries of the objects. If we increase the standard deviation for the

Gaussian smoothing to 1.8, the Canny operator yields ren1can2. Now, the edges corresponding

to the uneveness of the surface have disappeared from the image, but some edges corresponding to

changes in the surface orientation remain. Although these edges are `weaker' than the boundaries

of the objects, the resulting pixel values are the same, due to the saturation (p.241) of the image.

Hence, if we scale down (p.48) the image before the edge detection, we can use the upper threshold

of the edge tracker to remove the weaker edges. The image ren1can3 is the result of �rst scaling

the image with 0.25 and then applying the Canny operator using a standard deviation of 1.8 and

an upper and lower threshold of 200 and 1, respectively. The image shows the desired result that

all the boundaries of the objects have been detected whereas all other edges have been removed.

Although the Canny edge detector allows us the �nd the intensity discontinuities in an image,

it is not guaranteed that these discontinuities correspond to actual edges of the object. This is

illustrated using prt2. We obtain prt2can1 by using a standard deviation of 1.0 and an upper

and lower threshold of 255 and 1, respectively. In this case, some edges of the object do not appear

in the image and many edges in the image originate only from reections on the object. It is a

demanding task for an automated system to interpret this image. We try to improve the edge

image by decreasing the upper threshold to 150, as can be seen in prt2can2. We now obtain most

of the edges of the object, but we also increase the amount of noise. The result of further decreasing

the upper threshold to 100 and increasing the standard deviation to 2 is shown in prt2can3.

Common Variants

The problem with Y-junctions mentioned above can be solved by including a model of such junc-

tions in the ridge tracker. This will ensure that no spurious gaps are generated at these junctions.

Exercises

1. Adjust the parameters of the Canny operator so that you can detect the edges of ufo2noi2

while removing all of the noise.

2. What e�ect does increasing the Gaussian kernel size have on the magnitudes of the gradient

maxima at edges? What change does this imply has to be made to the tracker thresholds

when the kernel size is increased?
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3. It is sometimes easier to evaluate edge detector performance after thresholding (p.69) the

edge detector output at some low gray scale value (e.g. 1) so that all detected edges are

marked by bright white pixels. Try this out on the third and fourth example images of the

clown mentioned above. Comment on the di�erences between the two images.

4. How does the Canny operator compare with the Roberts Cross (p.184) and Sobel (p.188)

edge detectors in terms of speed? What do you think is the slowest stage of the process?

5. How does the Canny operator compare in terms of noise rejection and edge detection with

other operators such as the Roberts Cross and Sobel operators?

6. How does the Canny operator compare with other edge detectors on simple arti�cial 2-D

scenes? And on more complicated natural scenes?

7. Under what situations might you choose to use the Canny operator rather than the Roberts

Cross or Sobel operators? In what situations would you de�nitely not choose it?
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11.4 Compass Edge Detector

Brief Description

Compass Edge Detection is an alternative approach to the di�erential gradient edge detection (see

the Roberts Cross (p.184) and Sobel (p.188) operators). The operation usually outputs two images,

one estimating the local edge gradient magnitude and one estimating the edge orientation of the

input image.

How It Works

When using compass edge detection the image is convolved (p.227) with a set of (in general 8)

convolution kernels, each of which is sensitive to edges in a di�erent orientation. For each pixel

the local edge gradient magnitude is estimated with the maximum response of all 8 kernels at this

pixel location:

jGj = max(jGij : i = 1 to n)

where Gi is the response of the kernel i at the particular pixel position and n is the number of

convolution kernels. The local edge orientation is estimated with the orientation of the kernel that

yields the maximum response.

Various kernels can be used for this operation; for the following discussion we will use the Prewitt

kernel. Two templates out of the set of 8 are shown in Figure 11.6:
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Figure 11.6: Prewitt compass edge detecting templates sensitive to edges at 0� and 45�.

The whole set of 8 kernels is produced by taking one of the kernels and rotating its coe�cients

circularly. Each of the resulting kernels is sensitive to an edge orientation ranging from 0� to 315�

in steps of 45�, where 0� corresponds to a vertical edge.

The maximum response jGj for each pixel is the value of the corresponding pixel in the output

magnitude image. The values for the output orientation image lie between 1 and 8, depending on

which of the 8 kernels produced the maximum response.

This edge detection method is also called edge template matching, because a set of edge templates

is matched to the image, each representing an edge in a certain orientation. The edge magnitude

and orientation of a pixel is then determined by the template that matches the local area of the

pixel the best.

The compass edge detector is an appropriate way to estimate the magnitude and orientation of an

edge. Although di�erential gradient edge detection needs a rather time-consuming calculation to

estimate the orientation from the magnitudes in the x- and y-directions, the compass edge detection

obtains the orientation directly from the kernel with the maximum response. The compass operator
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is limited to (here) 8 possible orientations; however experience shows that most direct orientation

estimates are not much more accurate.

On the other hand, the compass operator needs (here) 8 convolutions for each pixel, whereas the

gradient operator needs only 2, one kernel being sensitive to edges in the vertical direction and

one to the horizontal direction.

The result for the edge magnitude image is very similar with both methods, provided the same

convolving kernel is used.

Guidelines for Use

If we apply the Prewitt Compass Operator to cln1 we get two output images. The image cln1cmp1

shows the local edge magnitude for each pixel. We can't see much in this image, because the

response of the Prewitt kernel is too small. Applying histogram equalization (p.78) to this image

yields cln1cmp4. The result is similar to cln1sob2, which was processed with the Sobel (p.188)

di�erential gradient edge detector and histogram equalized.

The edges in the image can be rather thick, depending on the size of the convolving kernel used.

To remove this unwanted e�ect some further processing (e.g. thinning (p.137)) might be necessary.

The image cln1cmp2 is the graylevel orientation image that was contrast-stretched (p.75) for a

better display. That means that the image contains 8 graylevel values between 0 and 255, each

of them corresponding to an edge orientation. The orientation image as a color labeled image

(containing 8 colors, each corresponding to one edge orientation) is shown in cln1cmp3.

The orientation of strong edges is shown very clearly, as for example at the vertical stripes of the

wall paper. On a uniform background without a noticeable image gradient, on the other hand, it

is ambiguous which of the 8 kernels will yield the maximum response. Therefore a uniform area

results in a random distribution of the 8 orientation values.

A simple example of the orientation image is obtained if we apply the Compass Operator to wdg2.

Each straight edge of the square yields a line of constant color (or graylevel). The circular hole in

the middle, on the other hand, contains all 8 orientations and is therefore segmented in 8 parts,

each of them having a di�erent color. Again, the image is displayed as a normalized graylevel

image wdg2cmp2 and as a colored label image wdg2cmp3.

The image stc1 is an image containing many edges with gradually changing orientation. Applying

the Prewitt compass operator yields stc1cmp1 for the edge magnitude and stc1cmp2 for the edge

orientation. Note that, due to the distortion of the image, all posts along the railing in the lower

left corner have a slightly di�erent orientation. However, the operator classi�es them in only 3

di�erent classes, since it assigns the same orientation label to edges when the orientation varies

within 45�.

Another image suitable for edge detection is bok1. The corresponding output of the compass

edge detector is bok1cmp1 and bok1cmp2 for the magnitude and orientation, respectively. Like

the previous image, this image contains little noise and most of the resulting edges correspond to

boundaries of objects. Again, we can see that most of the roughly vertical books were assigned

the same orientation label, although the orientation varies by some amount.

We demonstrate the inuence of noise (p.221) on the compass operator by adding Gaussian noise

with a standard deviation of 15 to the above image. The image bok1noi1 shows the noisy image.

The Prewitt compass edge detector yields bok1cmp3 for the edge magnitude and bok1cmp4 for the

edge orientation. Both images contain a large amount of noise and most areas in the orientation

image consist of a random distribution of the 8 possible values.

Common Variants

As already mentioned earlier, there are various kernels that can be used for Compass Edge Detec-

tion. The most common ones are shown in Figure 11.7:
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Figure 11.7: Some examples for the most common compass edge detecting kernels, each example

showing two kernels out of the set of eight.

For every template, the set of all eight kernels is obtained by shifting the coe�cients of the kernel

circularly.

The result for using di�erent templates is similar; the main di�erence is the di�erent scale in

the magnitude image. The advantage of Sobel and Robinson kernels is that only 4 out of the

8 magnitude values must be calculated. Since each pair of kernels rotated about 180� opposite

is symmetric, each of the remaining four values can be generated by inverting the result of the

opposite kernel.

Exercises

1. Compare the performance of the di�erent kernels by applying them to stc1.

2. Compare the magnitude edge image of the book shelf with and without noise. Can you �nd

a threshold (p.69) that retains all important edges but removes the noise?

3. Produce an image containing 8 edge orientations from wdg2 (e.g. by rotating (p.93) the image

about 45� and blending (p.53) it with the original). Then apply the compass edge operator

to the resulting image and examine the edge orientation image. Do the same with an image

containing 12 di�erent edge orientations.

4. Take the orientation image obtained in exercise 2 and mask out the pixels not corresponding

to a strong edge using the thresholded edge magnitude image as a mask.
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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11.5 Zero Crossing Detector

Marr edge detector, Laplacian of Gaussian edge detector

Brief Description

The zero crossing detector looks for places in the Laplacian (p.173) of an image where the value

of the Laplacian passes through zero | i.e. points where the Laplacian changes sign. Such points

often occur at `edges' in images | i.e. points where the intensity of the image changes rapidly, but

they also occur at places that are not as easy to associate with edges. It is best to think of the zero

crossing detector as some sort of feature detector rather than as a speci�c edge detector (p.230).

Zero crossings always lie on closed contours, and so the output from the zero crossing detector is

usually a binary image with single pixel thickness lines showing the positions of the zero crossing

points.

The starting point for the zero crossing detector is an image which has been �ltered using the

Laplacian of Gaussian (p.173) �lter. The zero crossings that result are strongly inuenced by the

size of the Gaussian used for the smoothing stage of this operator. As the smoothing is increased

then fewer and fewer zero crossing contours will be found, and those that do remain will correspond

to features of larger and larger scale in the image.

How It Works

The core of the zero crossing detector is the Laplacian of Gaussian (p.173) �lter and so a knowledge

of that operator is assumed here. As described there, `edges' in images give rise to zero crossings

in the LoG output. For instance, Figure 11.8 shows the response of a 1-D LoG �lter to a step edge

in the image.
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Figure 11.8: Response of 1-D LoG �lter to a step edge. The left hand graph shows a 1-D image,

200 pixels long, containing a step edge. The right hand graph shows the response of a 1-D LoG

�lter with Gaussian standard deviation 3 pixels.

However, zero crossings also occur at any place where the image intensity gradient starts increasing

or starts decreasing, and this may happen at places that are not obviously edges. Often zero

crossings are found in regions of very low gradient where the intensity gradient wobbles up and

down around zero.

Once the image has been LoG �ltered, it only remains to detect the zero crossings. This can be

done in several ways.

The simplest is to simply threshold (p.69) the LoG output at zero, to produce a binary image

where the boundaries between foreground and background regions represent the locations of zero
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crossing points. These boundaries can then be easily detected and marked in single pass, e.g. using

some morphological operator (p.117). For instance, to locate all boundary points, we simply have

to mark each foreground point that has at least one background neighbor.

The problem with this technique is that will tend to bias the location of the zero crossing edge to

either the light side of the edge, or the dark side of the edge, depending on whether it is decided

to look for the edges of foreground regions or for the edges of background regions.

A better technique is to consider points on both sides of the threshold boundary, and choose the

one with the lowest absolute magnitude of the Laplacian, which will hopefully be closest to the

zero crossing.

Since the zero crossings generally fall in between two pixels in the LoG �ltered image, an alternative

output representation is an image grid which is spatially shifted half a pixel across and half a pixel

down, relative to the original image. Such a representation is known as a dual lattice. This does

not actually localize the zero crossing any more accurately, of course.

A more accurate approach is to perform some kind of interpolation to estimate the position of the

zero crossing to sub-pixel precision.

Guidelines for Use

The behavior of the LoG zero crossing edge detector is largely governed by the standard deviation of

the Gaussian used in the LoG �lter (p.173). The higher this value is set, the more smaller features

will be smoothed out of existence, and hence fewer zero crossings will be produced. Hence, this

parameter can be set to remove unwanted detail or noise as desired. The idea that at di�erent

smoothing levels di�erent sized features become prominent is referred to as `scale'.

We illustrate this e�ect using cln1 which contains detail at a number of di�erent scales.

The image cln1log1 is the result of applying a LoG �lter with Gaussian standard deviation 1.0.

Note that in this and in the following LoG output images, the true output contains negative

pixel values. For display purposes the graylevels have been o�set so that displayed graylevel 128

corresponds to an actual value of zero, and rescaled (p.48) to make the image variation clearer.

Since we are only interested in zero crossings this rescaling is unimportant.

The image cln1zer1 shows the zero crossings from this image. Note the large number of minor

features detected, which are mostly due to noise or very faint detail. This smoothing corresponds

to a �ne `scale'.

The image cln1log2 is the result of applying a LoG �lter with Gaussian standard deviation 2.0

and cln1zer3 shows the zero crossings. Note that there are far fewer detected crossings, and that

those that remain are largely due to recognizable edges in the image. The thin vertical stripes on

the wall, for example, are clearly visible.

Finally, cln1log3 is the output from a LoG �lter with Gaussian standard deviation 3.0. This

corresponds to quite a coarse `scale'. The image cln1zer4 is the zero crossings in this image. Note

how only the strongest contours remain, due to the heavy smoothing. In particular, note how the

thin vertical stripes on the wall no longer give rise to many zero crossings.

All edges detected by the zero crossing detector are in the form of closed curves in the same way

that contour lines on a map are always closed. The only exception to this is where the curve goes

o� the edge of the image.

Since the LoG �lter is calculating a second derivative of the image, it is quite susceptible to noise,

particularly if the standard deviation of the smoothing Gaussian is small. Thus it is common to

see lots of spurious edges detected away from any obvious edges. One solution to this is to increase

the smoothing of the Gaussian to preserve only strong edges. Another is to look at the gradient

of the LoG at the zero crossing (i.e. the third derivative of the original image) and only keep zero

crossings where this is above a certain threshold. This will tend to retain only the stronger edges,

but it is sensitive to noise, since the third derivative will greatly amplify any high frequency noise

in the image.
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The image cln1zer2 is similar to the image obtained with a standard deviation of 1.0, except that

the zero crossing detector has been told to ignore zero crossings of shallow slope (in fact it ignores

zero crossings where the pixel value di�erence across the crossing in the LoG output is less than

40). As a result, fewer spurious zero crossings have been detected. Note that,in this case, the zero

crossings do not necessarily form closed contours.

Marr (1982) has suggested that human visual systems use zero crossing detectors based on LoG

�lters at several di�erent scales (Gaussian widths).

Exercises

1. Compare the output from the zero crossing edge detector with that from the

Roberts Cross (p.184), Sobel (p.188) and Canny (p.192) edge detectors, for edge detection,

noise rejection and edge localization.

2. Take a simple image containing step edges such as tls1, and see what happens to the locations

of zero crossings as the level of smoothing is increased. Do they keep the same positions?

3. Comment on the way in which zero crossings disappear as smoothing is increased.

4. Try and develop an algorithm which can work out which side (positive or negative) of a

particular discrete zero crossing is closer to the genuine zero crossing, and hence which

should be marked as part of the zero crossing contour. Think about various possible 3�3
neighborhoods.

5. Think of an interpolation method which would allow you to estimate the zero crossing location

between two pixels to sub-pixel precision.
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11.6 Line Detection

Brief Description

While edges (p.230) (i.e. boundaries between regions with relatively distinct graylevels) are by

far the most common type of discontinuity in an image, instances of thin lines in an image occur

frequently enough that it is useful to have a separate mechanism for detecting them. Here we

present a convolution (p.227) based technique which produces an image description of the thin

lines in an input image. Note that the Hough transform (p.214) can be used to detect lines;

however, in that case, the output is a parametric description of the lines in an image.

How It Works

The line detection operator consists of a convolution kernel (p.227) tuned to detect the presence

of lines of a particular width n, at a particular orientation �. Figure 11.9 shows a collection of four

such kernels, which each respond to lines of single pixel width at the particular orientation shown.
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Figure 11.9: Four line detection kernels which respond maximally to horizontal, vertical and oblique

(+45 and � 45 degree) single pixel wide lines.

If Ri denotes the response of kernel i, we can apply each of these kernels across an image, and

for any particular point, if jRij > jRj j for all j 6= i that point is more likely to contain a line

whose orientation (and width) corresponds to that of kernel i. One usually thresholds (p.69) Ri

to eliminate weak lines corresponding to edges and other features with intensity gradients which

have a di�erent scale than the desired line width. In order to �nd complete lines, one must join

together line fragments, e.g., with an edge tracking operator.

Guidelines for Use

To illustrate line detection, we start with the arti�cial image art2, which contains thick line

segments running horizontally, vertically and obliquely across the image. The result of applying

the line detection operator, using the horizontal convolution kernel shown in Figure 11.9.a, is

art2ldh1. (Note that this gradient image has been normalized for display.) There are two points

of interest to note here.

1. Notice that, because of way that the oblique lines (and some `vertical' ends of the horizontal

bars) are represented on a square pixel grid, e.g. art2crp1 shows a zoomed (p.90) region

containing both features, the horizontal line detector responds to more than high spatial

intensity horizontal line-like features, e.g. art2crp2.

2. On an image such as this one, where the lines to be detected are wider than the kernel (i.e.

the image lines are �ve pixels wide, while the kernel is tuned for a single width pixel), the

line detector acts like an edge detector: the edges of the lines are found, rather than the lines

themselves.

This latter fact might cause us to naively think that the image which gave rise to art2ldh1

contained a series of parallel lines rather than single thick ones. However, if we compare this result
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to that obtained by applying the line detection kernel to an image containing lines of a single pixel

width, we �nd some consistent di�erences. For example, we can skeletonize (p.145) the original

art2skl1 (so as to obtain a representation of the original wherein most lines are a single pixel

width), apply the horizontal line detector art2ldh2, and then threshold the result art2ldh3. If

we then threshold the original line detected image at the same pixel value, we obtain the null

image art2ldh4. Thus, the Ri values corresponding to the true, single pixel lines found in the

skeletonized version are stronger than those Ri values corresponding to edges. Also, if we examine

a cropped and zoomed (p.90) version of the line detected raw image art2crp3 and the skeletonized

line detected image art2crp4 we see that the single pixel width lines are distinguished by a region

of minimal response on either side of the maximal response values coincident with the pixel location

of a line. One can use this signature to distinguish lines from edges.

The results of line detecting (and then normalizing) the skeletonized version of this image with

single pixel width convolution kernels of di�erent � are art2ldv2 for a vertical kernel, art2ldp2 for

the oblique 45 degree line, and art2ldn2 for the oblique 135 degree line. The thresholded versions

are art2ldv1, art2ldp1, and art2ldn1, respectively. We can add these together to produce a

reasonably faithful binary representation of the line locations art2add1.

It is instructive to compare the two operators under more realistic circumstances, e.g. with the

natural image brg2. After converting this to a grayscale image brg3 and applying the Canny

operator (p.192), we obtain brg3can1. Applying the line detector yields brg3lda1. We can

improve this result by using a trick employed by the Canny operator (p.192). By smoothing (p.150)

the image before line detecting, we obtain the cleaner result brg3add2. However, even with this

preprocessing, the line detector still gives a poor result compared to the edge detector. This is

true because there are few single pixel width lines in this image, and therefore the detector is

responding to the other high spatial frequency image features (i.e. edges, thick lines and noise).

(Note that in the previous example, the image contained the feature that the kernel was tuned

for and therefore we were able to threshold away the weaker kernel response to edges.) We could

improve this result by increasing the width of the kernel or geometrically scaling (p.90) the image.

Exercises

1. Consider the basic image rob1. We can investigate the scale of features in the image by

applying line detection kernels of di�erent widths. For example, after convolving with a

single pixel horizontal line detecting kernel we discover that only the striped shirt of the

bank robber contains single pixel width lines. The normalized result is shown in rob1ldh1

and after thresholding (p.69) (at a value of 254), we obtain rob1ldh2. a) Perform the same

analysis on the image hse1 using di�erent width kernels to extract the di�erent features (e.g.

roof, windows, doors, etc.). Threshold your result so that the �nal images contain a binary

description of just the feature of interest. b) Try your kernels on other architectural drawings

such as hse2 and hse4.

2. Investigate a line detection algorithm which might extract the tail feathers of the peacock in

pea1. You will most likely need to apply some smoothing as a �rst step and you may then

want apply several di�erent kernels and add the results together. Compare your �nal result

with an edge detection algorithm, e.g. Roberts cross (p.184), Sobel (p.188), Compass (p.195)

and/or Canny (p.192) edge detector.
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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Chapter 12

Image Transforms

Most of the image processing operators demonstrated in HIPR transform an input image to form

a new image. However, the operators demonstrated in this section produce output images whose

character is generally quite di�erent from the character of the input images. This di�erence might

be in the geometry of the information in the image or the nature of the information itself. Of

course, the size of the output image might be quite di�erent from that of the input image (and the

values at each pixel might be di�erent, as in the complex number output of the Fourier transform).

The usual purpose of applying a transformation is to help make more obvious or explicit some

desired information. In the case of the operators in this group, the main e�ect is to make explicit:

� Distance Transform, the thickness of image features

� Fourier Transform, the spatial frequency composition of the image

� Hough Transform, the parameters of geometric shapes.

The transformation is often followed by a thresholding (p.69) operation, which is intended to select

the most prominent or relevant features. It may then be possible to apply an inverse transform, for

the purpose of reconstructing the geometry of the original image, except with the desired features

explicit or enhanced.
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12.1 Distance Transform

Brief Description

The distance transform is an operator normally only applied to binary images. The result of the

transform is a graylevel image that looks similar to the input image, except that the graylevel

intensities of points inside foreground regions are changed to show the distance to the closest

boundary from each point.

One way to think about the distance transform is to �rst imagine that foreground regions in the

input binary image are made of some uniform slow burning inammable material. Then consider

simultaneously starting a �re at all points on the boundary of a foreground region and letting the

�re burn its way into the interior. If we then label each point in the interior with the amount of

time that the �re took to �rst reach that point, then we have e�ectively computed the distance

transform of that region. Figure 12.1 shows a distance transform for a simple rectangular shape.
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Figure 12.1: The distance transform of a simple shape. Note that we are using the `chessboard'

distance metric (p.229).

There is a dual to the distance transform described above which produces the distance transform

for the background region rather than the foreground region. It can be considered as a process of

inverting the original image and then applying the standard transform as above.

How It Works

There are several di�erent sorts of distance transform, depending upon which distance met-

ric (p.229) is being used to determine the distance between pixels. The example shown in Fig-

ure 12.1 uses the `chessboard' distance metric but both the Euclidean and `city block' metrics can

be used as well.

Even once the metric has been chosen, there are many ways of computing the distance transform

of a binary image. One intuitive but extremely ine�cient way of doing it is to perform multiple

successive erosions (p.123) with a suitable structuring element (p.241) until all foreground regions

of the image have been eroded away. If each pixel is labeled with the number of erosions that

had to be performed before it disappeared, then this is just the distance transform. The actual

structuring element that should be used depends upon which distance metric has been chosen. A

3�3 square element gives the `chessboard' distance transform, a cross shaped element gives the

`city block' distance transform, and a disk shaped element gives the Euclidean distance transform.

Of course it is not actually possible to generate a good disk shaped element on a discrete grid on

a small scale, but there are algorithms that vary the structuring element on each erosion so as to

approximate a circular element.

The distance transform can be calculated much more e�ciently using clever algorithms in only two
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passes (e.g. Rosenfeld and Pfaltz 1968). This algorithm, which is based on recursive morphology,

will not be described here.

Guidelines for Use

The distance transform is very closely linked to both the medial axis transform and to skeletoniz-

ation (p.145). It can also be used to derive various other symmetries from binary shapes. As such

it is usually only used as a step on the way to producing these end products (and in fact is often

only produced in theory rather than in practice).

Here we illustrate the Euclidean distance transform with some examples.

The binary image art5 becomes art5dst1 when a distance transform is applied (scaled (p.48) by

a factor of 5).

Similarly, art6 becomes art6dst1 (scaled by a factor of 3).

And �nally, art7 becomes art7dst1 (scaled by a factor of 4).

The distance transform is sometimes very sensitive to small changes in the object. If, for example,

we change the above rectangle to art5cha2, which contains a small black region in the center of

the white rectangle, then the distance transform becomes art5dst3 (after brightening the image

by a factor of 6). This can be of advantage when we want to distinguish between similar objects

like the two di�erent rectangles above. However, it can also cause problems when trying to classify

objects into classes of roughly the same shape. It also makes the distance transform very sensitive

to noise (p.221). For instance, if we add some `pepper noise' to the above rectangle, as in art5noi1,

the distance transform yields art5dst2 (brightened by a factor of 15).

An example of applying the distance transform to a real world image is illustrated with phn1.

To obtain a binary input image, we threshold (p.69) the image at a value of 100, as shown in

phn1thr1. The scaled (factor 6) distance transform is phn1dst1. Although the image gives a

rough measure for the width of the object at each point, it is quite inaccurate at places where the

object is incorrectly segmented from the background.

The last three examples show that it is important that the binary input image is a good repres-

entation of the object that we want to process. Simple thresholding (p.69) is often not enough. It

might be necessary to further process the image before applying the distance transform.

Exercises

1. Try to obtain a better binary image of the telephone receiver so that the distance transform

gives a better result. Consider applying some other morphological operators (p.117) (e.g.

closing (p.130)) to the thresholded image.

2. Imagine representing the distance transform in 3-D, i.e. displaying the distance to the nearest

boundary point on a third axis. What shape is the Euclidean distance transform of a circle?

3. Discuss the di�erences between the distance transforms using `city block', `chessboard' and

Euclidean distance metrics. Under what situations are they di�erent from each other? How

do they vary on the example images above?

4. Why might you choose to use one distance metric over another?
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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12.2 Fourier Transform

Brief Description

The Fourier Transform is an important image processing tool which is used to decompose an image

into its sine and cosine components. The output of the transformation represents the image in

the Fourier or frequency domain (p.232), while the input image is the spatial domain (p.240)

equivalent. In the Fourier domain image, each point represents a particular frequency contained

in the spatial domain image.

The Fourier Transform is used in a wide range of applications, such as image analysis, image

�ltering, image reconstruction and image compression.

How It Works

As we are only concerned with digital images, we will restrict this discussion to the Discrete Fourier

Transform (DFT).

The DFT is the sampled Fourier Transform and therefore does not contain all frequencies forming

an image, but only a set of samples which is large enough to fully describe the spatial domain

image. The number of frequencies corresponds to the number of pixels in the spatial domain

image, i.e. the image in the spatial and Fourier domain are of the same size.

For a square image of size N�N, the two-dimensional DFT is given by:

F (k; l) =
1

N2

N�1X
i=0

N�1X
j=0

f(i; j) e��2�(
ki
N
+ lj

N
)

where f(i,j) is the image in the spatial domain and the exponential term is the basis function

corresponding to each point F(k,l) in the Fourier space. The equation can be interpreted as: the

value of each point F(k,l) is obtained by multiplying the spatial image with the corresponding base

function and summing the result.

The basis functions are sine and cosine waves with increasing frequencies, i.e. F(0,0) represents

the DC-component of the image which corresponds to the average brightness and F(N�1,N�1)
represents the highest frequency.

In a similar way, the Fourier image can be re-transformed to the spatial domain. The inverse

Fourier transform is given by:

f(i; j) =
1

N2

N�1X
k=0

N�1X
l=0

F (k; l) e�2�(
ki
N
+ lj

N
)

To obtain the result for the above equations, a double sum has to be calculated for each image

point. However, because the Fourier Transform is separable, it can be written as

F (k; l) =
1

N

N�1X
j=0

P (k; j) e��2�
lj

N

where

P (k; j) =
1

N

N�1X
i=0

f(i; j) e��2�
ki
N

Using these two formulas, the spatial domain image is �rst transformed into an intermediate image

using N one-dimensional Fourier Transforms. This intermediate image is then transformed into the

�nal image, again using N one-dimensional Fourier Transforms. Expressing the two-dimensional
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Fourier Transform in terms of a series of 2N one-dimensional transforms decreases the number of

required computations.

Even with these computational savings, the ordinary one-dimensional DFT has N2 complexity.

This can be reduced to N log2N if we employ the Fast Fourier Transform (FFT) to compute the

one-dimensional DFTs. This is a signi�cant improvement, in particular for large images. There

are various forms of the FFT and most of them restrict the size of the input image that may be

transformed, often to N = 2n where n is an integer. The mathematical details are well described

in the literature.

The Fourier Transform produces a complex number valued output image which can be displayed

with two images, either with the real and imaginary part or with magnitude and phase. In image

processing, often only the magnitude of the Fourier Transform is displayed, as it contains most

of the information of the geometric structure of the spatial domain image. However, if we want

to re-transform the Fourier image into the correct spatial domain after some processing in the

frequency domain, we must make sure to preserve both magnitude and phase of the Fourier image.

The Fourier domain image has a much greater range than the image in the spatial domain. Hence,

to be su�ciently accurate, its values are usually calculated and stored in oat values.

Guidelines for Use

The Fourier Transform is used if we want to access the geometric characteristics of a spatial domain

image. Because the image in the Fourier domain is decomposed into its sinusoidal components,

it is easy to examine or process certain frequencies of the image, thus inuencing the geometric

structure in the spatial domain.

In most implementations the Fourier image is shifted in such a way that the DC-value (i.e. the

image mean) F(0,0) is displayed in the center of the image. The further away from the center an

image point is, the higher is its corresponding frequency.

We start o� by applying the Fourier Transform of cln1. The magnitude calculated from the

complex result is shown in cln1fur1. We can see that the DC-value is by far the largest component

of the image. However, the dynamic range of the Fourier coe�cients (i.e. the intensity values in

the Fourier image) is too large to be displayed on the screen, therefore all other values appear as

black. If we apply a logarithmic transformation (p.82) to the image we obtain cln1fur2. The

result shows that the image contains components of all frequencies, but that their magnitude gets

smaller for higher frequencies. Hence, low frequencies contain more image information than the

higher ones. The transform image also tells us that there are two dominating directions in the

Fourier image, one passing vertically and one horizontally through the center. These originate

from the regular patterns in the background of the original image.

The phase of the Fourier transform of the same image is shown in cln1fur3. The value of each

point determines the phase of the corresponding frequency. As in the magnitude image, we can

identify the vertical and horizontal lines corresponding to the patterns in the original image. The

phase image does not yield much new information about the structure of the spatial domain image;

therefore, in the following examples, we will restrict ourselves to displaying only the magnitude of

the Fourier Transform.

Before we leave the phase image entirely, however, note that if we apply the inverse Fourier Trans-

form to the above magnitude image while ignoring the phase (and then histogram equalize (p.78)

the output) we obtain cln1fil1. Although this image contains the same frequencies (and amount

of frequencies) as the original input image, it is corrupted beyond recognition. This shows that

the phase information is crucial to reconstruct the correct image in the spatial domain.

We will now experiment with some simple images to better understand the nature of the transform.

The response of the Fourier Transform to periodic patterns in the spatial domain images can be

seen very easily in the following arti�cial images.

The image stp2 shows 2 pixel wide vertical stripes. The Fourier transform of this image is shown

in stp2fur1. If we look carefully, we can see that it contains 3 main values: the DC-value and,
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since the Fourier image is symmetrical to its center, two points corresponding to the frequency of

the stripes in the original image. Note that the two points lie on a horizontal line through the

image center, because the image intensity in the spatial domain changes the most if we go along it

horizontally.

The distance of the points to the center can be explained as follows: the maximum frequency which

can be represented in the spatial domain are one pixel wide stripes.

fmax =
1

1 pixel

Hence, the two pixel wide stripes in the above image represent

f =
1

2 pixel
=
fmax

2

Thus, the points in the Fourier image are halfway between the center and the edge of the image,

i.e. the represented frequency is half of the maximum.

Further investigation of the Fourier image shows that the magnitude of other frequencies in the

image is less than 1
100

of the DC-value, i.e. they don't make any signi�cant contribution to the

image. The magnitudes of the two minor points are each two-thirds of the DC-value.

Similar e�ects as in the above example can be seen when applying the Fourier Transform to stp1,

which consists of diagonal stripes. In stp1fur1, showing the magnitude of the Fourier Transform,

we can see that, again, the main components of the transformed image are the DC-value and the

two points corresponding to the frequency of the stripes. However, the logarithmic transform of

the Fourier Transform, stp1fur2, shows that now the image contains many minor frequencies.

The main reason is that a diagonal can only be approximated by the square pixels of the image,

hence, additional frequencies are needed to compose the image. The logarithmic scaling makes it

di�cult to tell the inuence of single frequencies in the original image. To �nd the most important

frequencies we threshold (p.69) the original Fourier image at level 13. The resulting Fourier image,

stp1fur3, shows all frequencies whose magnitude is at least 5% of the main peak. Compared to the

original Fourier image, several more points appear. They are all on the same diagonal as the three

main components, i.e. they all originate from the periodic stripes. The represented frequencies are

all multiples of the basic frequency of the stripes in the spatial domain image. This is because a

rectangular signal, like the stripes, with the frequency frect is a composition of sine waves with the

frequencies fsine = n� frect, known as the harmonics of frect. All other frequencies disappeared

from the Fourier image, i.e. the magnitude of each of them is less than 5% of the DC-value.

A Fourier-Transformed image can be used for frequency �ltering (p.167). A simple example is

illustrated with the above image. If we multiply the (complex) Fourier image obtained above with

an image containing a circle (of r = 32 pixels), we can set all frequencies larger than frect to

zero as shown in the logarithmic transformed image stp1fur5. By applying the inverse Fourier

Transform we obtain stp1fil1. The resulting image is a lowpass �ltered version of the original

spatial domain image. Since all other frequencies have been suppressed, this result is the sum of

the constant DC-value and a sine-wave with the frequency frect. Further examples can be seen in

the worksheet on frequency �ltering (p.167).

A property of the Fourier Transform which is used, for example, for the removal of additive

noise (p.221), is its distributivity over addition. We can illustrate this by adding (p.43) the complex

Fourier images of the two previous example images. To display the result and emphasize the main

peaks, we threshold the magnitude of the complex image, as can be seen in stp1fur4. Applying the

inverse Fourier Transform to the complex image yields stp1fil2. According to the distributivity

law, this image is the same as the direct sum of the two original spatial domain images.

Finally, we present an example (i.e. text orientation �nding) where the Fourier Transform is used to

gain information about the geometric structure of the spatial domain image. Text recognition using

image processing techniques is simpli�ed if we can assume that the text lines are in a prede�ned

direction. Here we show how the Fourier Transform can be used to �nd the initial orientation of

the text and then a rotation (p.93) can be applied to correct the error. We illustrate this technique

using son3, a binary image of English text. The logarithm of the magnitude of its Fourier transform
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is son3fur2, and son3fur4 is the thresholded magnitude of the Fourier image. We can see that the

main values lie on a vertical line, indicating that the text lines in the input image are horizontal.

If we proceed in the same way with son3rot1, which was rotated about 45�, we obtain son3fur1

and son3fur3 in the Fourier space. We can see that the line of the main peaks in the Fourier

domain is rotated according to rotation of the input image. The second line in the logarithmic

image (perpendicular to the main direction) originates from the black corners in the rotated image.

Although we managed to �nd a threshold which separates the main peaks from the background,

we have a reasonable amount of noise in the Fourier image resulting from the irregular pattern of

the letters. We could decrease these background values and therefore increase the di�erence to the

main peaks if we were able to form solid blocks out of the text-lines. This could, for example, be

done by using a morphological operator (p.117).

Common Variants

Another sinusoidal transform (i.e. transform with sinusoidal base functions) related to the DFT

is the Discrete Cosine Transform (DCT). For an N�N image, the DCT is given by

C(k; n) = �(k; n)

N�1X
i=0

N�1X
j=0

f(i; j) cos

�
(2i+ 1)k�

2N

�
cos

�
(2j + 1)n�

2N

�

with

�(k; n) =

�
1
N

for k,n = 0
2
N

for k,n = 1,2,..,N-1

The main advantages of the DCT are that it yields a real valued output image and that it is a

fast transform. A major use of the DCT is in image compression | i.e. trying to reduce the

amount of data needed to store an image. After performing a DCT it is possible to throw away

the coe�cients that encode high frequency components that the human eye is not very sensitive

to. Thus the amount of data can be reduced, without seriously a�ecting the way an image looks

to the human eye.

Exercises

1. Take the Fourier Transforms of stp1 and stp2 and add them using blend (p.53). Take the

inverse Fourier Transform of the sum. Explain the result.

2. Using a paint program (p.233), create an image made of periodical patterns of varying fre-

quency and orientation. Examine its Fourier Transform and investigate the e�ects of remov-

ing or changing some of the patterns in the spatial domain image.

3. Apply the mean (p.150) operator to stp2 and compare its Fourier Transform before and after

the operation.

4. Add di�erent sorts of noise (p.221) to cln1 and compare the Fourier Transforms with

cln1fur2.

5. Use the open (p.127) operator to transform the text lines in the above images into solid

blocks. Make sure that the chosen structuring element (p.241) works for all orientations of

text. Compare the Fourier Transforms of the resulting images with the transforms of the

unprocessed text images.

6. Investigate if the Fourier Transform is distributive over multiplication. To do so, multiply

stp1 with stp2 and take the Fourier Transform. Compare the result with the multiplication

of the two direct Fourier Transforms.
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12.3 Hough Transform

Brief Description

The Hough transform is a technique which can be used to isolate features of a particular shape

within an image. Because it requires that the desired features be speci�ed in some parametric

form, the classical Hough transform is most commonly used for the detection of regular curves

such as lines, circles, ellipses, etc. A generalized Hough transform can be employed in applications

where a simple analytic description of a feature(s) is not possible. Due to the computational

complexity of the generalized Hough algorithm, we restrict the main focus of this discussion to the

classical Hough transform. Despite its domain restrictions, the classical Hough transform (hereafter

referred to without the classical pre�x) retains many applications, as most manufactured parts (and

many anatomical parts investigated in medical imagery) contain feature boundaries which can be

described by regular curves. The main advantage of the Hough transform technique is that it is

tolerant of gaps in feature boundary descriptions and is relatively una�ected by image noise.

How It Works

The Hough technique is particularly useful for computing a global description of a feature(s) (where

the number of solution classes need not be known a priori), given (possibly noisy) local measure-

ments. The motivating idea behind the Hough technique for line detection is that each input

measurement (e.g. coordinate point) indicates its contribution to a globally consistent solution

(e.g. the physical line which gave rise to that image point).

As a simple example, consider the common problem of �tting a set of line segments to a set of

discrete image points (e.g. pixel locations output from an edge detector). Figure 12.2 shows

some possible solutions to this problem. Here the lack of a priori knowledge about the number

of desired line segments (and the ambiguity about what constitutes a line segment) render this

problem under-constrained.

x
x

xx

x
x

xx

x
x

xx

Figure 12.2: a) Coordinate points. b) and c) Possible straight line �ttings.

We can analytically describe a line segment in a number of forms. However, a convenient equation

for describing a set of lines uses parametric or normal notion:

x cos � + y sin � = r

where r is the length of a normal from the origin to this line and � is the orientation of r with

respect to the X-axis. (See Figure 12.3.) For any point (x; y) on this line, r and � are constant.

In an image analysis context, the coordinates of the point(s) of edge segments (i.e. (xi; yi) ) in

the image are known and therefore serve as constants in the parametric line equation, while r and

� are the unknown variables we seek. If we plot the possible (r; �) values de�ned by each (xi; yi),

points in cartesian image space map to curves (i.e. sinusoids) in the polar Hough parameter space.

This point-to-curve transformation is the Hough transformation for straight lines. When viewed
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theta
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Figure 12.3: Parametric description of a straight line.

in Hough parameter space, points which are collinear in the cartesian image space become readily

apparent as they yield curves which intersect at a common (r; �) point.

The transform is implemented by quantizing the Hough parameter space into �nite intervals or

accumulator cells. As the algorithm runs, each (xi; yi) is transformed into a discretized (r; �) curve

and the accumulator cells which lie along this curve are incremented. Resulting peaks in the

accumulator array represent strong evidence that a corresponding straight line exists in the image.

We can use this same procedure to detect other features with analytical descriptions. For instance,

in the case of circles, the parametric equation is

(x � a)2 + (y � b)2 = r
2

where a and b are the coordinates of the center of the circle and r is the radius. In this case, the

computational complexity of the algorithm begins to increase as we now have three coordinates

in the parameter space and a 3-D accumulator. (In general, the computation and the size of the

accumulator array increase polynomially with the number of parameters. Thus, the basic Hough

technique described here is only practical for simple curves.)

Guidelines for Use

The Hough transform can be used to identify the parameter(s) of a curve which best �ts a set of

given edge points. This edge description is commonly obtained from a feature detecting operator

such as the Roberts Cross (p.184), Sobel (p.188) or Canny (p.192) edge detector and may be noisy,

i.e. it may contain multiple edge fragments corresponding to a single whole feature. Furthermore,

as the output of an edge detector de�nes only where features are in an image, the work of the

Hough transform is to determine both what the features are (i.e. to detect the feature(s) for which

it has a parametric (or other) description) and how many of them exist in the image.

In order to illustrate the Hough transform in detail, we begin with the simple image of two occluding

rectangles, sqr1. The Canny edge detector (p.192) can produce a set of boundary descriptions for

this part, as shown in sqr1can1. Here we see the overall boundaries in the image, but this result

tells us nothing about the identity (and quantity) of feature(s) within this boundary description.

In this case, we can use the Hough (line detecting) transform to detect the eight separate straight

lines segments of this image and thereby identify the true geometric structure of the subject.

If we use these edge/boundary points as input to the Hough transform, a curve is generated in

polar (r; �) space for each edge point in cartesian space. The accumulator array, when viewed
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as an intensity image, looks like sqr1hou1. Histogram equalizing (p.78) the image allows us to

see the patterns of information contained in the low intensity pixel values, as shown in sqr1hou2.

Note that, although r and � are notionally polar coordinates, the accumulator space is plotted

rectangularly with � as the abscissa and r as the ordinate. Note that the accumulator space wraps

around at the vertical edge of the image such that, in fact, there are only 8 real peaks.

Curves generated by collinear points in the gradient image intersect in peaks (r; �) in the Hough

transform space. These intersection points characterize the straight line segments of the original

image. There are a number of methods which one might employ to extract these bright points,

or local maxima, from the accumulator array. For example, a simple method involves threshold-

ing (p.69) and then applying some thinning (p.137) to the isolated clusters of bright spots in the

accumulator array image. Here we use a relative threshold to extract the unique (r; �) points cor-

responding to each of the straight line edges in the original image. (In other words, we take only

those local maxima in the accumulator array whose values are equal to or greater than some �xed

percentage of the global maximum value.)

Mapping back from Hough transform space (i.e. de-Houghing) into cartesian space yields a set

of line descriptions of the image subject. By overlaying this image on an inverted (p.63) version

of the original, we can con�rm the result that the Hough transform found the 8 true sides of the

two rectangles and thus revealed the underlying geometry of the occluded scene sqr1hou3. Note

that the accuracy of alignment of detected and original image lines, which is obviously not perfect

in this simple example, is determined by the quantization of the accumulator array. (Also note

that many of the image edges have several detected lines. This arises from having several nearby

Hough-space peaks with similar line parameter values. Techniques exist for controlling this e�ect,

but were not used here to illustrate the output of the standard Hough transform.)

Note also that the lines generated by the Hough transform are in�nite in length. If we wish to

identify the actual line segments which generated the transform parameters, further image analysis

is required in order to see which portions of these in�nitely long lines actually have points on them.

To illustrate the Hough technique's robustness to noise, the Canny edge description has been

corrupted by 1% salt and pepper noise (p.221) sqr1can2 before Hough transforming it. The

result, plotted in Hough space, is sqr1hou4. De-Houghing this result (and overlaying it on the

original) yields sqr1hou5. (As in the above case, the relative threshold is 40%.)

The sensitivity of the Hough transform to gaps in the feature boundary can be investigated by

transforming the image sqr1can3, which has been edited using a paint program (p.233). The

Hough representation is sqr1hou6 and the de-Houghed image (using a relative threshold of 40%)

is sqr1hou7. In this case, because the accumulator space did not receive as many entries as in

previous examples, only 7 peaks were found, but these are all structurally relevant lines.

We will now show some examples with natural imagery. In the �rst case, we have a city scene where

the buildings are obstructed in fog, sff1sca1. If we want to �nd the true edges of the buildings, an

edge detector (e.g. Canny (p.192)) cannot recover this information very well, as shown in sff1can1.

However, the Hough transform can detect some of the straight lines representing building edges

within the obstructed region. The histogram equalized (p.78) accumulator space representation

of the original image is shown in sff1hou1. If we set the relative threshold to 70%, we get the

following de-Houghed image sff1hou2. Only a few of the long edges are detected here, and there

is a lot of duplication where many lines or edge fragments are nearly colinear. Applying a more

generous relative threshold, i.e. 50%, yields sff1hou3 yields more of the expected lines, but at

the expense of many spurious lines arising from the many colinear edge fragments.

Our �nal example comes from a remote sensing application. Here we would like to detect the

streets in the image urb1 of a reasonably rectangular city sector. We can edge detect the image

using the Canny edge detector (p.192) as shown in urb1can1. However, street information is not

available as output of the edge detector alone. The image urb1hou1 shows that the Hough line

detector is able to recover some of this information. Because the contrast in the original image is

poor, a limited set of features (i.e. streets) is identi�ed.
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Common Variants

Generalized Hough Transform

The generalized Hough transform is used when the shape of the feature that we wish to isolate

does not have a simple analytic equation describing its boundary. In this case, instead of using

a parametric equation of the curve, we use a look-up table to de�ne the relationship between the

boundary positions and orientations and the Hough parameters. (The look-up table values must

be computed during a preliminary phase using a prototype shape.)

For example, suppose that we know the shape and orientation of the desired feature. (See Fig-

ure 12.4.) We can specify an arbitrary reference point (xref ; yref ) within the feature, with respect

to which the shape (i.e. the distance r and angle of normal lines drawn from the boundary to this

reference point !) of the feature is de�ned. Our look-up table (i.e. R-table) will consist of these

distance and direction pairs, indexed by the orientation ! of the boundary.

Xref,Yref
r beta

omega

x−axis

Figure 12.4: Description of R-table components.

The Hough transform space is now de�ned in terms of the possible positions of the shape in the

image, i.e. the possible ranges of (xref ; yref ). In other words, the transformation is de�ned by:

xref = x+ rcos(�)

yref = y + rsin(�)

(The r and � values are derived from the R-table for particular known orientations !.) If the

orientation of the desired feature is unknown, this procedure is complicated by the fact that

we must extend the accumulator by incorporating an extra parameter to account for changes in

orientation.

Exercises

1. Find the Hough line transform of the objects shown in Figure 12.5.

Figure 12.5: Features to input to the Hough transform line detector.

2. Starting from the basic image art5, create a series of images with which you can investigate

the ability of the Hough line detector to extract occluded features. For example, begin using

translation (p.97) and image addition (p.43) to create an image containing the original image
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overlapped by a translated copy of that image. Next, use edge detection (p.230) to obtain

a boundary description of your subject. Finally, apply the Hough algorithm to recover the

geometries of the occluded features.

3. Investigate the robustness of the Hough algorithm to image noise. Starting from an edge

detected version of the basic image wdg3, try the following: a) Generate a series of boundary

descriptions of the image using di�erent levels of Gaussian noise (p.221). How noisy (i.e.

broken) does the edge description have to be before Hough is unable to detect the original

geometric structure of the scene? b) Corrode the boundary descriptions with di�erent levels

of salt and pepper noise (p.221). At what point does the combination of broken edges and

added intensity spikes render the Hough line detector useless?

4. Try the Hough transform line detector on the images: pea1, pdc1 and arp1. Experiment

with the Hough circle detector on alg1, cel5, rck3 and tom2.

5. One way of reducing the computation required to perform the Hough transform is to make

use of gradient information which is often available as output from an edge detector. In the

case of the Hough circle detector, the edge gradient tells us in which direction a circle must

lie from a given edge coordinate point. (See Figure 12.6.)

Edge Direction

R
R

phi

phi

phi

Figure 12.6: Hough circle detection with gradient information.

a) Describe how you would modify the 3-D circle detector accumulator array in order to take

this information into account. b) To this algorithm we may want to add gradient magnitude

information. Suggest how to introduce weighted incrementing of the accumulator.

6. The Hough transform can be seen as an e�cient implementation of a generalized matched

�lter strategy. In other words, if we created a template composed of a circle of 1's (at a �xed

r) and 0's everywhere else in the image, then we could convolve it with the gradient image to

yield an accumulator array-like description of all the circles of radius r in the image. Show

formally that the basic Hough transform (i.e. the algorithm with no use of gradient direction

information) is equivalent to template matching.

7. Explain how to use the generalized Hough transform to detect octagons.
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Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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Chapter 13

Image Synthesis

Image synthesis is the process of creating new images from some form of image description. The

kinds of images that are typically synthesized include:

� Test Patterns, Scenes with simple two dimensional geometric shapes.

� Image Noise, Images containing random pixel values, usually generated from speci�c

parametrized distributions.

� Computer Graphics, Scenes or images based on geometric shape descriptions. Often the

models are three-dimensional, but may also be two-dimensional.

Synthetic images are often used to verify the correctness of operators by applying them to known

images. They are also often used for teaching purposes, as the operator output on such images is

generally `clean', whereas noise and uncontrollable pixel distributions in real images make it harder

to demonstrate unambiguous results. The images could be binary, gray level or color.
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13.1 Noise Generation

Brief Description

Real world signals usually contain departures from the ideal signal that would be produced by our

model of the signal production process. Such departures are referred to as noise. Noise arises as

a result of unmodelled or unmodellable processes going on in the production and capture of the

real signal. It is not part of the ideal signal and may be caused by a wide range of sources, e.g.

variations in the detector sensitivity, environmental variations, the discrete nature of radiation,

transmission or quantization errors, etc. It is also possible to treat irrelevant scene details as if

they are image noise (e.g. surface reectance textures). The characteristics of noise depend on its

source, as does the operator which best reduces its e�ects.

Many image processing packages contain operators to arti�cially add noise to an image. Delib-

erately corrupting an image with noise allows us to test the resistance of an image processing

operator to noise and assess the performance of various noise �lters.

How It Works

Noise can generally be grouped into two classes:

� independent noise.

� noise which is dependent on the image data.

Image independent noise can often be described by an additive noise model, where the recorded

image f(i,j) is the sum of the true image s(i,j) and the noise n(i,j):

f(i; j) = s(i; j) + n(i; j)

The noise n(i,j) is often zero-mean and described by its variance �2
n
. The impact of the noise on

the image is often described by the signal to noise ratio (SNR), which is given by

SNR =
�s

�n
=

s
�2
f

�2
n

� 1

where �2
s
and �2

f
are the variances of the true image and the recorded image, respectively.

In many cases, additive noise is evenly distributed over the frequency domain (p.209) (i.e. white

noise), whereas an image contains mostly low frequency information. Hence, the noise is dominant

for high frequencies and its e�ects can be reduced using some kind of lowpass �lter. This can be

done either with a frequency �lter (p.167) or with a spatial �lter (p.148). (Often a spatial �lter is

preferable, as it is computationally less expensive than a frequency �lter.)

In the second case of data-dependent noise (e.g. arising when monochromatic radiation is scattered

from a surface whose roughness is of the order of a wavelength, causing wave interference which

results in image speckle), it is possible to model noise with a multiplicative, or non-linear, model.

These models are mathematically more complicated; hence, if possible, the noise is assumed to be

data independent.

Detector Noise

One kind of noise which occurs in all recorded images to a certain extent is detector noise. This

kind of noise is due to the discrete nature of radiation, i.e. the fact that each imaging system is

recording an image by counting photons. Allowing some assumptions (which are valid for many

applications) this noise can be modeled with an independent, additive model, where the noise n(i,j)

has a zero-mean Gaussian distribution described by its standard deviation (�), or variance. (The
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Figure 13.1: 1-D Gaussian distribution with mean 0 and standard deviation 1

1-D Gaussian distribution has the form shown in Figure 13.1.) This means that each pixel in the

noisy image is the sum of the true pixel value and a random, Gaussian distributed noise value.

Salt and Pepper Noise

Another common form of noise is data drop-out noise (commonly referred to as intensity spikes,

speckle or salt and pepper noise). Here, the noise is caused by errors in the data transmission.

The corrupted pixels are either set to the maximum value (which looks like snow in the image)

or have single bits ipped over. In some cases, single pixels are set alternatively to zero or to the

maximum value, giving the image a `salt and pepper' like appearance. Una�ected pixels always

remain unchanged. The noise is usually quanti�ed by the percentage of pixels which are corrupted.

Guidelines for Use

In this section we will show some examples of images corrupted with di�erent kinds of noise and

give a short overview of which noise reduction operators are most appropriate. A fuller discussion

of the e�ects of the operators is given in the corresponding worksheets.

Gaussian Noise

We will begin by considering additive noise with a Gaussian distribution. If we add Gaussian noise

with � values of 8, we obtain the image fce5noi4. Increasing � yields fce5noi5 and fce5noi6

for �=13 and 20. Compare these images to the original fce5.

Gaussian noise can be reduced using a spatial �lter. However, it must be kept in mind that

when smoothing an image, we reduce not only the noise, but also the �ne-scaled image details

because they also correspond to blocked high frequencies. The most e�ective basic spatial �ltering

techniques for noise removal include: mean �ltering (p.150), median �ltering (p.153) and Gaussian

smoothing (p.156). Crimmins Speckle Removal (p.164) �lter can also produce good noise removal.

More sophisticated algorithms which utilize statistical properties of the image and/or noise �elds

exist for noise removal. For example, adaptive smoothing algorithms may be de�ned which adjust

the �lter response according to local variations in the statistical properties of the data.
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Salt and Pepper Noise

In the following examples, images have been corrupted with various kinds and amounts of drop-out

noise. In fce5noi3, pixels have been set to 0 or 255 with probability p=1%. In fce5noi7 pixel

bits were ipped with p=3%, and in fce5noi8 5% of the pixels (whose locations are chosen at

random) are set to the maximum value, producing the snowy appearance.

For this kind of noise, conventional lowpass �ltering, e.g. mean �ltering (p.150) or Gaussian

smoothing (p.156) is relatively unsuccessful because the corrupted pixel value can vary signi�cantly

from the original and therefore the mean can be signi�cantly di�erent from the true value. A median

�lter (p.153) removes drop-out noise more e�ciently and at the same time preserves the edges and

small details in the image better. Conservative smoothing (p.161) can be used to obtain a result

which preserves a great deal of high frequency detail, but is only e�ective at reducing low levels of

noise.

Exercises

1. The image che1noi1 is a binary chessboard image with 2% of drop-out noise. Which operator

yields the best results in removing the noise?

2. The image che1noi2 is the same image corrupted with Gaussian noise with a variance of

180. Is the operator used in Exercise 1 still the most appropriate? Compare the best results

obtained from both noisy images.

3. Compare the images achieved by median �lter (p.153) and mean �lter (p.150) �ltering

fce5noi5 with the result that you obtain by applying a frequency lowpass �lter (p.167)

to the image. How does the mean �lter relate to the frequency �lter? Compare the compu-

tational costs of mean, median and frequency �ltering.

References

R. Gonzales and R. Woods Digital Image Processing, Addison Wesley, 1992, pp 187 - 213.

A. Jain Fundamentals of Digital Image Processing, Prentice Hall, 1989, pp 244 - 253, 273 - 275.

E. Davies Machine Vision: Theory, Algorithms and Practicalities, Academic Press, 1990, pp 29

- 30, 40 - 47, 493.

B. Horn Robot Vision, MIT Press, 1986, Chap. 2.

A. Marion An Introduction to Image Processing, Chapman and Hall, 1991, Chap. 5.

Local Information

Information relevant to your local image processing setup can be added here by the person who

maintains your HIPR system. This is merely the default message.

More general advice about the local HIPR installation is available in the Local Information (p.40)

introductory section.
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Part III

Other User Information and

Resources
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Appendix A

A to Z of Image Processing

Concepts

A.1 Binary Images

Binary images are images whose pixels (p.238) have only two possible intensity values (p.239).

They are normally displayed as black and white. Numerically, the two values are often 0 for black,

and either 1 or 255 for white.

Binary images are often produced by thresholding (p.69) a grayscale (p.232) or color image (p.225),

in order to separate an object in the image from the background. The color of the object (usually

white) is referred to as the foreground color. The rest (usually black) is referred to as the background

color. However, depending on the image which is to be thresholded, this polarity might be inverted,

in which case the object is displayed with 0 and the background is with a non-zero value.

Some morphological (p.117) operators assume a certain polarity of the binary input image so

that if we process an image with inverse polarity the operator will have the opposite e�ect. For

example, if we apply a closing (p.130) operator to a black text on white background, the text will

be opened (p.127).

A.2 Color Images

It is possible to construct (almost) all visible colors by combining the three primary colors (p.240)

red, green and blue, because the human eye has only three di�erent color receptors, each of them

sensible to one of the three colors. Di�erent combinations in the stimulation of the receptors

enable the human eye to distinguish approximately 350000 colors. A RGB (p.240) color image is

a multi-spectral (p.237) image with one band for each color red, green and blue, thus producing a

weighted combination of the three primary colors for each pixel.

A full 24-bit color (p.226) image contains one 8-bit value for each color, thus being able to display

224 = 16; 777; 216 di�erent colors.

However, it is computationally expensive and often not necessary to use the full 24-bit image to

store the color for each pixel. Therefore, the color for each pixel is often encoded in a single byte,

resulting in an 8-bit color (p.226) image. The process of reducing the color representation from

24-bits to 8-bits, known as color quantization (p.227), restricts the number of possible colors to

256. However, there is normally no visible di�erence between a 24-color image and the same image

displayed with 8 bits. An 8-bit color images are based on colormaps (p.235), which are look-up

tables taking the 8-bit pixel value as index and providing an output value for each color.
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A.3 8-bit Color Images

Full RGB (p.240) color requires that the intensities of three color components be speci�ed for each

and every pixel. It is common for each component intensity to be stored as an 8-bit integer, and

so each pixel requires 24 bits to completely and accurately specify its color. If this is done, then

the image is known as a 24-bit color image (p.226). However there are two problems with this

approach:

� Storing 24 bits for every pixel leads to very large image �les that with current technology are

cumbersome to store and manipulate. For instance a 24-bit 512�512 image takes up 750KB

in uncompressed form.

� Many monitor displays use colormaps (p.235) with 8-bit index numbers, meaning that they

can only display 256 di�erent colors at any one time. Thus it is often wasteful to store more

than 256 di�erent colors in an image anyway, since it will not be possible to display them all

on screen.

Because of this, many image formats (e.g. 8-bit GIF and TIFF) use 8-bit colormaps (p.235) to

restrict the maximum number of di�erent colors to 256. Using this method, it is only necessary

to store an 8-bit index into the colormap for each pixel, rather than the full 24-bit color value.

Thus 8-bit image formats consist of two parts: a colormap describing what colors are present in

the image, and the array of index values for each pixel in the image.

When a 24-bit full color image is turned into an 8-bit image, it is usually necessary to throw away

some of the colors, a process known as color quantization (p.227). This leads to some degradation

in image quality, but in practice the observable e�ect can be quite small, and in any case, such

degradation is inevitable if the image output device (e.g. screen or printer) is only capable of

displaying 256 colors or less.

The use of 8-bit images with colormaps does lead to some problems in image processing. First of

all, each image has to have its own colormap, and there is usually no guarantee that each image

will have exactly the same colormap. Thus on 8-bit displays it is frequently impossible to correctly

display two di�erent color images that have di�erent colormaps at the same time. Note that in

practice 8-bit images often use reduced size colormaps with less than 256 colors in order to avoid

this problem.

Another problem occurs when the output image from an image processing operation contains

di�erent colors to the input image or images. This can occur very easily, as for instance when two

color images are added together (p.43) pixel-by-pixel. Since the output image contains di�erent

colors from the input images, it ideally needs a new colormap, di�erent from those of the input

images, and this involves further color quantization which will degrade the image quality. Hence

the resulting output is usually only an approximation of the desired output. Repeated image

processing operations will continually degrade the image colors. And of course we still have the

problem that it is not possible to display the images simultaneously with each other on the same

8-bit display.

Because of these problems it is to be expected that as computer storage and processing power

become cheaper, there will be a shift away from 8-bit images and towards full 24-bit image pro-

cessing.

A.4 24-bit Color Images

Full RGB (p.240) color requires that the intensities of three color components be speci�ed for each

and every pixel. It is common for each component intensity to be stored as an 8-bit integer, and

so each pixel requires 24 bits to completely and accurately specify its color. Image formats that

store a full 24 bits to describe the color of each and every pixel are therefore known as 24-bit color

images.
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Using 24 bits to encode color information allows 224 = 16; 777; 216 di�erent colors to be represented,

and this is su�cient to cover the full range of human color perception fairly well.

The term 24-bit is also used to describe monitor displays that use 24 bits per pixel in their display

memories, and which are hence capable of displaying a full range of colors.

There are also some disadvantages to using 24-bit images. Perhaps the main one is that it requires

three times as much memory, disk space and processing time to store and manipulate 24-bit color

images as compared to 8-bit color images (p.226). In addition, there is often not much point in

being able to store all those di�erent colors if the �nal output device (e.g. screen or printer) can

only actually produce a fraction of them. Since it is possible to use colormaps (p.235) to produce

8-bit color images (p.226) that look almost as good, at the time of writing 24-bit displays are

relatively little used. However it is to be expected that as the technology becomes cheaper, their

use in image processing will grow.

A.5 Color Quantization

Color quantization is applied when the color information of an image is to be reduced. The most

common case is when a 24-bit color (p.226) image is transformed into an 8-bit color (p.226) image.

Two decisions have to be made:

1. which colors of the larger color set remain in the new image, and

2. how are the discarded colors mapped to the remaining ones.

The simplest way to transform a 24-bit color image into 8 bits is to assign 3 bits to red and green

and 2 bits to blue (blue has only 2 bits, because of the eye's lower sensitivity to this color). This

enables us to display 8 di�erent shades of red and green and 4 of blue. However, this method can

yield only poor results. For example, an image might contain di�erent shades of blue which are all

clustered around a certain value such that only one shade of blue is used in the 8-bit image and

the remaining three blues are not used.

Alternatively, since 8-bit color images are displayed using a colormap (p.235), we can assign any

arbitrary color to each of the 256 8-bit values and we can de�ne a separate colormap for each

image. This enables us perform a color quantization adjusted to the data contained in the image.

One common approach is the popularity algorithm, which creates a histogram (p.105) of all colors

and retains the 256 most frequent ones. Another approach, known as the median-cut algorithm,

yields even better results but also needs more computation time. This technique recursively �ts a

box around all colors used in the RGB colorspace (p.240) which it splits at the median value of its

longest side. The algorithm stops after 255 recursions. All colors in one box are mapped to the

centroid of this box.

All above techniques restrict the number of displayed colors to 256. A technique of achieving

additional colors is to apply a variation of half-toning used for gray scale (p.232) images, thus

increasing the color resolution at the cost of spatial resolution. The 256 values of the colormap are

divided into four sections containing 64 di�erent values of red, green, blue and white. As can be

seen in Figure A.1, a 2�2 pixel area is grouped together to represent one composite color, each of

the four pixels displays either one of the primary colors (p.240) or white. In this way, the number

of possible colors is increased from 256 to 644.

A.6 Convolution

Convolution is a simple mathematical operation which is fundamental to many common image

processing operators. Convolution provides a way of `multiplying together' two arrays of numbers,

generally of di�erent sizes, but of the same dimensionality, to produce a third array of numbers
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Figure A.1: A 2�2 pixel area displaying one composite color.

of the same dimensionality. This can be used in image processing to implement operators whose

output pixel values are simple linear combinations of certain input pixel values.

In an image processing context, one of the input arrays is normally just a graylevel image. The

second array is usually much smaller, and is also two-dimensional (although it may be just a single

pixel thick), and is known as the kernel (p.233). Figure A.2 shows an example image and kernel

that we will use to illustrate convolution.
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Figure A.2: An example small image (left) and kernel (right) to illustrate convolution. The labels

within each grid square are used to identify each square.

The convolution is performed by sliding the kernel over the image, generally starting at the top

left corner, so as to move the kernel through all the positions where the kernel �ts entirely within

the boundaries of the image. (Note that implementations di�er in what they do at the edges of

images, as explained below.) Each kernel position corresponds to a single output pixel, the value of

which is calculated by multiplying together the kernel value and the underlying image pixel value

for each of the cells in the kernel, and then adding all these numbers together.
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So, in our example, the value of the bottom right pixel in the output image will be given by:

O57 = I57K11 + I58K12 + I59K13 + I67K21 + I68K22 + I69K23

If the image has M rows and N columns, and the kernel has m rows and n columns, then the size

of the output image will have M � m + 1 rows, and N � n + 1 columns.

Mathematically we can write the convolution as:

O(i; j) =

mX
k=1

nX
l=1

I(i+ k � 1; j + l � 1)K(k; l)

where i runs from 1 to M � m + 1 and j runs from 1 to N � n + 1.

Note that many implementations of convolution produce a larger output image than this because

they relax the constraint that the kernel can only be moved to positions where it �ts entirely within

the image. Instead, these implementations typically slide the kernel to all positions where just the

top left corner of the kernel is within the image. Therefore the kernel `overlaps' the image on the

bottom and right edges. One advantage of this approach is that the output image is the same size

as the input image. Unfortunately, in order to calculate the output pixel values for the bottom

and right edges of the image, it is necessary to invent input pixel values for places where the kernel

extends o� the end of the image. Typically pixel values of zero are chosen for regions outside the

true image, but this can often distort the output image at these places. Therefore in general if

you are using a convolution implementation that does this, it is better to clip the image to remove

these spurious regions. Removing n � 1 pixels from the right hand side and m � 1 pixels from the

bottom will �x things.

Convolution can be used to implement many di�erent operators, particularly spatial �lters and fea-

ture detectors. Examples include Gaussian smoothing (p.156) and the Sobel edge detector (p.188).

A.7 Distance Metrics

It is often useful in image processing to be able to calculate the distance between two pixels in an

image, but this is not as straightforward as it seems. The presence of the pixel grid makes several

so-called distance metrics possible which often give di�erent answers to each other for the distance

between the same pair of points. We consider the three most important ones.

Euclidean Distance

This is the familiar straight line distance that most people are familiar with. If the two pixels that

we are considering have coordinates (x1; y1) and (x2; y2), then the Euclidean distance is given by:

DEuclid =
p
(x2 � x1)2 + (y2 � y1)2

City Block Distance

Also known as the Manhattan distance. This metric assumes that in going from one pixel to the

other it is only possible to travel directly along pixel grid lines. Diagonal moves are not allowed.

Therefore the `city block' distance is given by:

DCity = jx2 � x1j+ jy2 � y1j
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Chessboard Distance

This metric assumes that you can make moves on the pixel grid as if you were a King making

moves in chess, i.e. a diagonal move counts the same as a horizontal move. This means that the

metric is given by:

DChess = max(jx2 � x1j; jy2 � y1j)

Note that the last two metrics are usually much faster to compute than the Euclidean metric and

so are sometimes used where speed is critical but accuracy is not too important.

A.8 Dithering

Dithering is an image display technique that is useful for overcoming limited display resources.

The word dither refers to a random or semi-random perturbation of the pixel values.

Two applications of this techniques are particularly useful:

Low quantization display: When images are quantized to a few bits (e.g. 3) then only a limited

number of graylevels are used in the display of the image. If the scene is smoothly shaded, then

the image display will generate rather distinct boundaries around the edges of image regions when

the original scene intensity moves from one quantization level to the next. To eliminate this e�ect,

one dithering technique adds random noise (with a small range of values) to the input signal

before quantization into the output range. This randomizes the quantization of the pixels at the

original quantization boundary, and thus pixels make a more gradual transition from neighborhoods

containing 100% of the �rst quantization level to neighborhoods containing 100% of the second

quantization level.

Limited color display: When fewer colors are able to be displayed (e.g. 256) than are present

in the input image (e.g. 24 bit color), then patterns of adjacent pixels are used to simulate the

appearance of the unrepresented colors.

A.9 Edge Detectors

Edges are places in the image with strong intensity contrast. Since edges often occur at image

locations representing object boundaries, edge detection is extensively used in image segmentation

when we want to divide the image into areas corresponding to di�erent objects. Representing an

image by its edges has the further advantage that the amount of data is reduced signi�cantly while

retaining most of the image information.

Since edges consist of mainly high frequencies, we can, in theory, detect edges by applying a

highpass frequency �lter (p.167) in the Fourier domain or by convolving (p.227) the image with an

appropriate kernel (p.233) in the spatial domain. In practice, edge detection is performed in the

spatial domain, because it is computationally less expensive and often yields better results.

Since edges correspond to strong illumination gradients, we can highlight them by calculating the

derivatives of the image. This is illustrated for the one-dimensional case in Figure A.3.

We can see that the position of the edge can be estimated with the maximum of the 1st derivative

or with the zero-crossing of the 2nd derivative. Therefore we want to �nd a technique to calculate

the derivative of a two-dimensional image. For a discrete one-dimensional function f(i), the �rst

derivative can be approximated by

d f(i)

d(i)
= f(i+ 1)� f(i)

Calculating this formula is equivalent to convolving the function with [�1 1]. Similarly the 2nd

derivative can be estimated by convolving f(i) with [1 �2 1].
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Function f(i)

1st derivative

2nd derivative

Figure A.3: 1st and 2nd derivative of an edge illustrated in one dimension.

Di�erent edge detection kernels which are based on the above formula enable us to calculate either

the 1st or the 2nd derivative of a two-dimensional image. There are two common approaches to

estimate the 1st derivative in a two-dimensional image, Prewitt compass edge detection (p.195)

and gradient edge detection.

Prewitt compass edge detection involves convolving the image with a set of (usually 8) kernels, each

of which is sensitive to a di�erent edge orientation. The kernel producing the maximum response

at a pixel location determines the edge magnitude and orientation. Di�erent sets of kernels might

be used: examples include Prewitt, Sobel, Kirsch and Robinson kernels.

Gradient edge detection is the second and more widely used technique. Here, the image is convolved

with only two kernels, one estimating the gradient in the x-direction, Gx, the other the gradient in

the y-direction, Gy. The absolute gradient magnitude is then given by

jGj =
p
Gx2 +Gy2

and is often approximated with

jGj = jGxj+ jGyj
In many implementations, the gradient magnitude is the only output of a gradient edge detector,

however the edge orientation might be calculated with

� = arctan(Gy=Gx)

The most common kernels used for the gradient edge detector are the Sobel (p.188), Roberts

Cross (p.184) and Prewitt (p.188) operators.

After having calculated the magnitude of the 1st derivative, we now have to identify those pixels

corresponding to an edge. The easiest way is to threshold (p.69) the gradient image, assuming

that all pixels having a local gradient above the threshold must represent an edge. An alternative

technique is to look for local maxima in the gradient image, thus producing one pixel wide edges.

A more sophisticated technique is used by the Canny edge detector (p.192). It �rst applies a

gradient edge detector to the image and then �nds the edge pixels using non-maximal suppression

and hysteresis tracking.
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An operator based on the 2nd derivative of an image is the Marr edge detector (p.199), also known

as zero crossing detector. Here, the 2nd derivative is calculated using a Laplacian of Gaussian

(LoG) (p.173) �lter. The Laplacian has the advantage that it is an isotropic (p.233) measure of

the 2nd derivative of an image, i.e. the edge magnitude is obtained independently from the edge

orientation by convolving the image with only one kernel. The edge positions are then given by the

zero-crossings in the LoG image. The scale of the edges which are to be detected can be controlled

by changing the variance of the Gaussian.

A general problem for edge detection is its sensitivity to noise (p.221), the reason being that cal-

culating the derivative in the spatial domain (p.240) corresponds to accentuating high frequencies

and hence magnifying noise. This problem is addressed in the Canny and Marr operators by

convolving the image with a smoothing operator (Gaussian) before calculating the derivative.

A.10 Frequency Domain

For simplicity, assume that the image I being considered is formed by projection from scene S

(which might be a two- or three-dimensional scene, etc.).

The frequency domain is a space in which each image value at image position F represents the

amount that the intensity values in image I vary over a speci�c distance related to F. In the

frequency domain, changes in image position correspond to changes in the spatial frequency (p.240),

(or the rate at which image intensity values) are changing in the spatial domain image I.

For example, suppose that there is the value 20 at the point that represents the frequency 0.1 (or 1

period every 10 pixels). This means that in the corresponding spatial domain image I the intensity

values vary from dark to light and back to dark over a distance of 10 pixels, and that the contrast

between the lightest and darkest is 40 gray levels (2 times 20).

The spatial frequency domain is interesting because: 1) it may make explicit periodic relationships

in the spatial domain (p.240), and 2) some image processing operators are more e�cient or indeed

only practical when applied in the frequency domain.

In most cases, the Fourier Transform (p.209) is used to convert images from the spatial domain

into the frequency domain and vice-versa.

A related term used in this context is spatial frequency, which refers to the (inverse of the) peri-

odicity with which the image intensity values change. Image features with high spatial frequency

(such as edges) are those that change greatly in intensity over short image distances.

A.11 Grayscale Images

A grayscale (or graylevel) image is simply one in which the only colors are shades of gray. The

reason for di�erentiating such images from any other sort of color image is that less information

needs to be provided for each pixel. In fact a `gray' color is one in which the red, green and blue

components all have equal intensity in RGB space (p.240), and so it is only necessary to specify

a single intensity value for each pixel, as opposed to the three intensities needed to specify each

pixel in a full color image (p.225).

Often, the grayscale intensity is stored as an 8-bit integer giving 256 possible di�erent shades of

gray from black to white. If the levels are evenly spaced then the di�erence between successive

graylevels is signi�cantly better than the graylevel resolving power of the human eye.

Grayscale images are very common, in part because much of today's display and image capture

hardware can only support 8-bit images. In addition, grayscale images are entirely su�cient for

many tasks and so there is no need to use more complicated and harder-to-process color images.
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A.12 Image Editing Software

There is a huge variety of software for manipulating images in various ways. Much of this software

can be grouped under the heading image processing software, and the bulk of this reference is

concerned with that group.

Another very important category is what we call image editing software. This group includes

painting programs, graphic art packages and so on. They are often useful in conjunction with

image processing software packages, in situations where direct immediate interaction with an image

is the easiest way of achieving something. For instance, if a region of an image is to be masked

out (p.235) for subsequent image processing, it may be easiest to create the mask using an art

package by directly drawing on top of the original image. The mask used in the description of the

AND operator (p.55) was created this way for instance. Art packages also often allow the user

to move sections of the images around and brighten or darken selected regions interactively. Few

dedicated image processing packages o�er the same exibility and ease of use in this respect.

A.13 Idempotence

Some operators have the special property that applying them more than once to the same image

produces no further change after the �rst application. Such operators are said to be idempotent.

Examples include the morphological operators opening (p.127) and closing (p.130).

A.14 Isotropic Operators

An isotropic operator in an image processing context is one which applies equally well in all

directions in an image, with no particular sensitivity or bias towards one particular set of directions

(e.g. compass directions). A typical example is the zero crossing edge detector (p.199) which

responds equally well to edges in any orientation. Another example is Gaussian smoothing (p.156).

It should be borne in mind that although an operator might be isotropic in theory, the actual

implementation of it for use on a discrete pixel grid may not be perfectly isotropic. An example

of this is a Gaussian smoothing �lter with very small standard deviation on a square grid.

A.15 Kernel

A kernel is a (usually) smallish matrix of numbers that is used in image convolutions (p.227).

Di�erently sized kernels containing di�erent patterns of numbers give rise to di�erent results under

convolution. For instance, Figure A.4 shows a 3�3 kernel that implements a mean �lter.

Set of coordinate points = 

(-1, -1),

(-1, 0),

(-1, 1),

(0, 0), (1, 0),

(0, 1), (1, 1) }

{

1 1 1

111

1 1 1

(0, -1), (1, -1),

Figure A.4: Convolution kernel for a mean �lter with 3�3 neighborhood.
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The word `kernel' is also commonly used as a synonym for `structuring element' (p.241), which is

a similar object used in mathematical morphology (p.236). A structuring element di�ers from a

kernel in that it also has a speci�ed origin. This sense of the word `kernel' is not used in HIPR.

A.16 Logical Operators

Logical operators are generally derived from Boolean algebra, which is a mathematical way of

manipulating the truth values of concepts in an abstract way without bothering about what the

concepts actually mean. The truth value of a concept in Boolean value can have just one of two

possible values: true or false. Boolean algebra allows you to represent things like:

The block is both red and large

by something like:

A AND B

where A represents `The block is red', and B represents `The block is large'. Now each of these

sub-phrases has its own truth value in any given situation: each sub-phrase is either true or false.

Moreover, the entire composite phrase also has a truth value: it is true if both of the sub-phrases

are true, and false in any other case. We can write this AND (p.55) combination rule (and its dual

operation NAND (p.55)) using a truth-table as shown in Figure A.5, in which we conventionally

represent true by 1, and false by zero.

AND NAND

A B Q

0

0

1

1

0

0

1

1

0

0

0

1

A B Q

0

0

1

1

0

0

1

1

1

1

1

0

Figure A.5: Truth-tables for AND and NAND

The left hand table shows each of the possible combinations of truth values of A and B, and the

the resulting truth value of A AND B. Similar truth-tables can be set up for the other logical

operators: NAND (p.55), OR (p.58), NOR (p.58), XOR (p.60), XNOR (p.60) and NOT (p.63).

Turning now to an image processing context, the pixel values in a binary image (p.225), which

are either 0 or 1, can be interpreted as truth values as above. Using this convention we can

carry out logical operations on images simply by applying the truth-table combination rules to the

pixel values from a pair of input images (or a single input image in the case of NOT). Normally,

corresponding pixels from each of two identically sized binary input images are compared to produce

the output image, which is another binary image of the same size. As with other image arithmetic

operations, it is also possible to logically combine a single input image with a constant logical value,

in which case each pixel in the input image is compared to the same constant in order to produce

the corresponding output pixel. See the individual logical operator descriptions for examples of

these operations.
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Logical operations can also be carried out on images with integer pixel values. In this extension

the logical operations are normally carried out in bitwise fashion on binary representations of those

integers, comparing corresponding bits with corresponding bits to produce the output pixel value.

For instance, suppose that we wish to XOR (p.60) the integers 47 and 255 together using 8-bit

integers. 47 is 00101111 in binary and 255 is 11111111. XORing these together in bitwise fashion,

we have 11010000 in binary or 208 in decimal.

Note that not all implementations of logical operators work in such bitwise fashion. For instance

some will treat zero as false and any non-zero value as true and will then apply the conventional

1-bit logical functions to derive the output image. The output may be a simple binary image itself,

or it may be a graylevel image formed perhaps by multiplying what would be the binary output

image (containing 0's and 1's) with one of the input images.

A.17 Look-up Tables and Colormaps

Look-Up Tables or LUTs are fundamental to many aspects of image processing. An LUT is simply

a table of cross-references linking index numbers to output values. The most common use is to

determine the colors and intensity values with which a particular image will be displayed, and in

this context the LUT is often called simply a colormap.

The idea behind the colormap is that instead of storing a de�nite color for each pixel in an image,

for instance in 24-bit RGB format (p.226), each pixel's value is instead treated as an index number

into the colormap. When the image is to be displayed or otherwise processed, the colormap is used

to look up the actual colors corresponding to each index number. Typically, the output values

stored in the LUT would be RGB color values (p.240).

There are two main advantages to doing things this way. Firstly, the index number can be made

to use fewer bits than the output value in order to save storage space. For instance an 8-bit index

number can be used to look up a 24-bit RGB color value in the LUT. Since only the 8-bit index

number needs to be stored for each pixel, such 8-bit color images (p.226) take up less space than

a full 24-bit image of the same size. Of course the image can only contain 256 di�erent colors (the

number of entries in an 8-bit LUT), but this is su�cient for many applications and usually the

observable image degradation is small.

Secondly the use of a color table allows the user to experiment easily with di�erent color labeling

schemes for an image.

One disadvantage of using a colormap is that it introduces additional complexity into an image

format. It is usually necessary for each image to carry around its own colormap, and this LUT

must be continually consulted whenever the image is displayed or processed.

Another problem is that in order to convert from a full color image to (say) an 8-bit color image

using a color image, it is usually necessary to throw away many of the original colors, a process

known as color quantization (p.227). This process is lossy, and hence the image quality is degraded

during the quantization process. Additionally, when performing further image processing on such

images, it is frequently necessary to generate a new colormap for the new images, which involves

further color quantization, and hence further image degradation.

As well as their use in colormaps, LUTs are often used to remap the pixel values within an image.

This is the basis of many common image processing point operations (p.68) such as thresholding,

gamma correction and contrast stretching. The process is often referred to as anamorphosis.

A.18 Masking

A mask is a binary image (p.225) consisting of zero- and non-zero values. If a mask is applied to

another binary or to a grayscale (p.232) image of the same size, all pixels which are zero in the

mask are set to zero in the output image. All others remain unchanged.
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Masking can be implemented either using pixel multiplication (p.48) or logical AND (p.55), the

latter in general being faster.

Masking is often used to restrict a point (p.68) or arithmetic operator (p.42) to an area de�ned by

the mask. We can, for example, accomplish this by �rst masking the desired area in the input image

and processing it with the operator, then masking the original input image with the inverted (p.63)

mask to obtain the unprocessed area of the image and �nally recombining the two partial images

using image addition (p.43). An example can be seen in the worksheet on the logical AND (p.55)

operator. In some image processing packages, a mask can directly be de�ned as an optional input

to a point operator, so that automatically the operator is only applied to the pixels de�ned by the

mask .

A.19 Mathematical Morphology

The �eld of mathematical morphology contributes a wide range of operators to image processing, all

based around a few simple mathematical concepts from set theory. The operators are particularly

useful for the analysis of binary images (p.225) and common usages include edge detection, noise

removal, image enhancement and image segmentation.

The two most basic operations in mathematical morphology are erosion (p.123) and dilation (p.118).

Both of these operators take two pieces of data as input: an image to be eroded or dilated, and a

structuring element (p.241) (also known as a kernel). The two pieces of input data are each treated

as representing sets of coordinates in a way that is slightly di�erent for binary and grayscale images.

For a binary image, white pixels are normally taken to represent foreground regions, while black

pixels denote background. (Note that in some implementations this convention is reversed, and so

it is very important to set up input images with the correct polarity (p.225) for the implementation

being used). Then the set of coordinates corresponding to that image is simply the set of two-

dimensional Euclidean coordinates of all the foreground pixels in the image, with an origin normally

taken in one of the corners so that all coordinates have positive elements.

For a grayscale image, the intensity value (p.239) is taken to represent height above a base plane,

so that the grayscale image represents a surface in three-dimensional Euclidean space. Figure A.6

shows such a surface. Then the set of coordinates associated with this image surface is simply

the set of three-dimensional Euclidean coordinates of all the points within this surface and also

all points below the surface, down to the base plane. Note that even when we are only considering

points with integer coordinates, this is a lot of points, so usually algorithms are employed that do

not need to consider all the points.
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Figure A.6: Simple graylevel image and the corresponding surface in image space

The structuring element (p.241) is already just a set of point coordinates (although it is often

represented as a binary image). It di�ers from the input image coordinate set in that it is normally
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much smaller, and its coordinate origin is often not in a corner, so that some coordinate elements

will have negative values. Note that in many implementations of morphological operators, the

structuring element is assumed to be a particular shape (e.g. a 3�3 square) and so is hardwired

into the algorithm.

Binary morphology can be seen as a special case of graylevel morphology in which the input image

has only two graylevels at values 0 and 1.

Erosion and dilation work (at least conceptually) by translating the structuring element to various

points in the input image, and examining the intersection between the translated kernel coordinates

and the input image coordinates. For instance, in the case of erosion, the output coordinate set

consists of just those points to which the origin of the structuring element can be translated, while

the element still remains entirely `within' the input image.

Virtually all other mathematical morphology operators can be de�ned in terms of combinations

of erosion and dilation along with set operators such as intersection and union. Some of the more

important are opening (p.127), closing (p.130) and skeletonization (p.145).

A.20 Multi-spectral Images

A multi-spectral image is a collection of several monochrome images of the same scene, each of them

taken with a di�erent sensor. Each image is referred to as a band. A well known multi-spectral (or

multi-band image) is a RGB color (p.225) image, consisting of a red, a green and a blue image, each

of them taken with a sensor sensitive to a di�erent wavelength. In image processing, multi-spectral

images are most commonly used for Remote Sensing applications. Satellites usually take several

images from frequency bands in the visual and non-visual range. Landsat 5, for example, produces

7 band images with the wavelength of the bands being between 450 and 1250 nm.

All the standard single-band image processing operators can also be applied to multi-spectral

images by processing each band separately. For example, a multi-spectral image can be edge

detected (p.230) by �nding the edges in each band and than ORing (p.58) the three edge images

together. However, we would obtain more reliable edges, if we associate a pixel with an edge based

on its properties in all three bands and not only in one.

To fully exploit the additional information which is contained in the multiple bands, we should

consider the images as one multi-spectral image rather than as a set of monochrome graylevel

images. For an image with k bands, we can then describe the brightness of each pixel as a point

in a k-dimensional space represented by a vector of length k.

Special techniques exist to process multi-spectral images. For example, to classify (p.107) a pixel

as belonging to one particular region, its intensities in the di�erent bands are said to form a feature

vector describing its location in the k-dimensional feature space. The simplest way to de�ne a

class is to choose a upper and lower threshold (p.69) for each band, thus producing a k-dimensional

`hyper-cube' in the feature space. Only if the feature vector of a pixel points to a location within

this cube, is the pixel classi�ed as belonging to this class. A more sophisticated classi�cation (p.107)

method is described in the corresponding worksheet.

The disadvantage of multi-spectral images is that, since we have to process additional data, the

required computation time and memory increase signi�cantly. However, since the speed of the

hardware will increase and the costs for memory will decrease in the future, it can be expected

that multi-spectral images will become more important in many �elds of computer vision.

A.21 Non-linear Filtering

Suppose that an image processing operator F acting on two input images A and B produces output

images C and D respectively. If the operator F is linear, then
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F (a�A+ b� B) = a�C+ b�D

where a and b are constants. In practice, this means that each pixel in the output of a linear

operator is the weighted sum of a set of pixels in the input image.

By contrast, non-linear operators are all the other operators. For example, the threshold (p.69)

operator is non-linear, because individually, corresponding pixels in the two images A and B may

be below the threshold, whereas the pixel obtained by adding A and B may be above threshold.

Similarly, an absolute value operation is non-linear:

j � 1 + 1j 6= j � 1j+ j1j

as is the exponential operator:

exp(1 + 1) 6= exp(1) + exp(1)

.

A.22 Pixels

In order for any digital computer processing to be carried out on an image, it must �rst be stored

within the computer in a suitable form that can be manipulated by a computer program. The

most practical way of doing this is to divide the image up into a collection of discrete (and usually

small) cells, which are known as pixels. Most commonly, the image is divided up into a rectangular

grid of pixels, so that each pixel is itself a small rectangle. Once this has been done, each pixel

is given a pixel value (p.239) that represents the color of that pixel. It is assumed that the whole

pixel is the same color, and so any color variation that did exist within the area of the pixel before

the image was discretized is lost. However, if the area of each pixel is very small, then the discrete

nature of the image is often not visible to the human eye.

Other pixel shapes and formations can be used, most notably the hexagonal grid, in which each

pixel is a small hexagon. This has some advantages in image processing, including the fact that

pixel connectivity (p.238) is less ambiguously de�ned than with a square grid, but hexagonal grids

are not widely used. Part of the reason is that many image capture systems (e.g. most CCD

cameras and scanners) intrinsically discretize the captured image into a rectangular grid in the

�rst instance.

A.23 Pixel Connectivity

The notation of pixel connectivity describes a relation between two or more pixels. For two pixels

to be connected they have to ful�ll certain conditions on the pixel brightness and spatial adjacency.

First, in order for two pixels to be considered connected, their pixel values must both be from the

same set of valuesV. For a grayscale image, Vmight be any range of graylevels, e.g. V=f22,23,...40g,
for a binary image we simple have V=f1g.

To formulate the adjacency criterion for connectivity, we �rst introduce the notation of neighbor-

hood. For a pixel p with the coordinates (x,y) the set of pixels given by:

N4(p) = f(x+ 1; y); (x� 1; y); (x; y + 1); (x; y + 1)g

is called its 4-neighbors. Its 8-neighbors are de�ned as

N8(p) = N4 [ f(x+ 1; y + 1); (x+ 1; y � 1); (x� 1; y + 1); (x� 1; y � 1)g

From this we can infer the de�nition for 4- and 8-connectivity:
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Two pixels p and q, both having values from a set V are 4-connected if q is from the set N4(p) and

8-connected if q is from N8(p).

General connectivity can either be based on 4- or 8-connectivity; for the following discussion we

use 4-connectivity.

A pixel p is connected to a pixel q if p is 4-connected to q or if p is 4-connected to a third pixel

which itself is connected to q. Or, in other words, two pixels q and p are connected if there is a

path from p and q on which each pixel is 4-connected to the next one.

A set of pixels in an image which are all connected to each other is called a connected component.

Finding all connected components in an image and marking each of them with a distinctive label

is called connected component labeling (p.114).

An example of a binary image with two connected components which are based on 4-connectivity

can be seen in Figure A.7. If the connectivity were based on 8-neighbors, the two connected

components would merge into one.
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Figure A.7: Two connected components based on 4-connectivity.

A.24 Pixel Values

Each of the pixels (p.238) that represents an image stored inside a computer has a pixel value which

describes how bright that pixel is, and/or what color it should be. In the simplest case of binary

images (p.225), the pixel value is a 1-bit number indicating either foreground or background. For

a grayscale images (p.232), the pixel value is a single number that represents the brightness of the

pixel. The most common pixel format is the byte image, where this number is stored as an 8-bit

integer giving a range of possible values from 0 to 255. Typically zero is taken to be black, and

255 is taken to be white. Values in between make up the di�erent shades of gray.

To represent color images (p.225), separate red, green and blue components must be speci�ed for

each pixel (assuming an RGB colorspace (p.240)), and so the pixel `value' is actually a vector

of three numbers. Often the three di�erent components are stored as three separate `grayscale'

images known as color planes (one for each of red, green and blue), which have to be recombined

when displaying or processing.

Multi-spectral images (p.237) can contain even more than three components for each pixel, and

by extension these are stored in the same kind of way, as a vector pixel value, or as separate color

planes.

The actual grayscale or color component intensities for each pixel may not actually be stored

explicitly. Often, all that is stored for each pixel is an index into a colormap (p.235) in which the

actual intensity or colors can be looked up.
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Although simple 8-bit integers or vectors of 8-bit integers are the most common sorts of pixel values

used, some image formats support di�erent types of value, for instance 32-bit signed integers or

oating point values. Such values are extremely useful in image processing as they allow processing

to be carried out on the image where the resulting pixel values are not necessarily 8-bit integers.

If this approach is used then it is usually necessary to set up a colormap which relates particular

ranges of pixel values to particular displayed colors.

A.25 Primary Colors

It is a useful fact that the huge variety of colors that can be perceived by humans can all be produced

simply by adding together appropriate amounts of red, blue and green colors. These colors are

known as the primary colors. Thus in most image processing applications, colors are represented

by specifying separate intensity values for red, green and blue components. This representation is

commonly referred to as RGB (p.240).

The primary color phenomenon results from the fact that humans have three di�erent sorts of

color receptors in their retinas which are each most sensitive to di�erent visible light wavelengths.

The primary colors used in painting (red, yellow and blue) are di�erent. When paints are mixed,

the `addition' of a new color paint actually subtracts wavelengths from the reected visible light.

A.26 RGB and Colorspaces

A color perceived by the human eye can be de�ned by a linear combination of the three primary col-

ors (p.240) red, green and blue. These three colors form the basis for the RGB-colorspace (p.240).

Hence, each perceivable color can be de�ned by a vector in the three-dimensional colorspace. The

intensity is given by the length of the vector, and the actual color by the two angles describing the

orientation of the vector in the colorspace.

The RGB-space can also be transformed into other coordinate systems, which might be more useful

for some applications. One common basis for the color space is IHS. In this coordinate system, a

color is described by its intensity, hue (average wavelength) and saturation (the amount of white

in the color). This color space makes it easier to directly derive the intensity and color of perceived

light and is therefore more likely to be used by human beings.

A.27 Spatial Domain

For simplicity, assume that the image I being considered is formed by projection from scene S

(which might be a two- or three-dimensional scene, etc.).

The spatial domain is the normal image space, in which a change in position in I directly projects

to a change in position in S. Distances in I (in pixels) correspond to real distances (e.g. in meters)

in S.

This concept is used most often when discussing the frequency with which image values change,

that is, over how many pixels does a cycle of periodically repeating intensity variations occur. One

would refer to the number of pixels over which a pattern repeats (its periodicity) in the spatial

domain.

In most cases, the Fourier Transform (p.209) will be used to convert images from the spatial domain

into the frequency domain (p.232).

A related term used in this context is spatial frequency, which refers to the (inverse of the) peri-

odicity with which the image intensity values change. Image features with high spatial frequency

(such as edges) are those that change greatly in intensity over short image distances.
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Another term used in this context is spatial derivative, which refers to how much the image intensity

values change per change in image position.

A.28 Structuring Elements

The �eld of mathematical morphology (p.236) provides a number of important image processing

operations, including erosion (p.123), dilation (p.118), opening (p.127) and closing (p.130). All

these morphological operators take two pieces of data as input. One is the input image, which may

be either binary or grayscale for most of the operators. The other is the structuring element. It is

this that determines the precise details of the e�ect of the operator on the image.

The structuring element is sometimes called the kernel, but we reserve that term for the similar

objects used in convolutions (p.227).

The structuring element consists of a pattern speci�ed as the coordinates of a number of discrete

points relative to some origin. Normally cartesian coordinates are used and so a convenient way of

representing the element is as a small image on a rectangular grid. Figure A.8 shows a number of

di�erent structuring elements of various sizes. In each case the origin is marked by a ring around

that point. The origin does not have to be in the center of the structuring element, but often it

is. As suggested by the �gure, structuring elements that �t into a 3�3 grid with its origin at the

center are the most commonly seen type.
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Figure A.8: Some example structuring elements.

Note that each point in the structuring element may have a value. In the simplest structuring

elements used with binary images for operations such as erosion, the elements only have one

value, conveniently represented as a one. More complicated elements, such as those used with

thinning (p.137) or grayscale morphological operations, may have other pixel values.

An important point to note is that although a rectangular grid is used to represent the structuring

element, not every point in that grid is part of the structuring element in general. Hence the

elements shown in Figure A.8 contain some blanks. In many texts, these blanks are represented

as zeros, but this can be confusing and so we avoid it here.

When a morphological operation is carried out, the origin of the structuring element is typically

translated to each pixel position in the image in turn, and then the points within the translated

structuring element are compared with the underlying image pixel values. The details of this

comparison, and the e�ect of the outcome depend on which morphological operator is being used.

A.29 Wrapping and Saturation

If an image is represented in a byte or integer pixel format (p.239), the maximum pixel value is

limited by the number of bits used for the representation, e.g. the pixel values of a 8-bit image are
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limited to 255.

However, many image processing operations produce output values which are likely to exceed the

given maximum value. In such cases, we have to decide how to handle this pixel overow.

One possibility is to wrap around the overowing pixel values. This means that if a value is greater

than the possible maximum, we subtract the pixel value range so that the value starts again from

the possible minimum value. Figure A.9 shows the mapping function for wrapping the output

values of some operation into an 8-bit format.
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Figure A.9: Mapping function for wrapping the pixel values of an 8-bit image.

Another possibility is to set all overowing pixels to the maximum possible values | an e�ect

known as saturation. The corresponding mapping function for an 8-bit image can be seen in

Figure A.10.
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Figure A.10: Mapping function for saturating an 8-bit image.

If only a few pixels in the image exceed the maximum value it is often better to apply the latter

technique, especially if we use the image for display purposes. However, by setting all overowing

pixels to the same value we lose an essential amount of information. In the worst case, when all

pixels exceed the maximum value, this would lead to an image of constant pixel values. Wrapping

around overowing pixel retains the di�erences between values. On the other hand, it might cause

the problem that pixel values passing the maximum `jump' from the maximum to the minimum
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value. Examples for both techniques can be seen in the worksheets of various point operators (p.68).

If possible, it is easiest to change the image format, for example to oat format, so that all pixel

values can be represented. However, we should keep in mind that this implies an increase in

processing time and memory.
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Appendix B

Common Software

Implementations

It is often useful to know whether a particular operator is implemented within a given package,

and what it is called. The tables below aim to help in this task a little by listing some common

software implementations of standard operators. Due to space and time constraints we cannot

present anything like a full survey of all of the operators in all the many image processing packages

in existence, so we have instead concentrated instead on four of the more common packages that

we use here at Edinburgh.

The four packages we have chosen are: Visilog, Khoros, the Matlab Image Processing Toolbox and

HIPS. Information about these packages, and advice as to where they can be obtained, is given

below.

If your image processing software is not mentioned here then you will have to consult the docu-

mentation that came with it for help on operator equivalents.

Note that while we have done our best to describe the contents of these packages accurately, it

is possible that we have made some omissions, or that the implementation/version that you are

using is di�erent from ours. Where a package has several operators that do similar things to an

operator documented in HIPR, we have mentioned only the one we think is closest.

B.1 Visilog

Visilog is a GUI (Graphical User Interface) based image processing package produced by Noesis

(Noesis, Immeuble Nungesser, 13 Avenue Morane Saulnier, 78140 Velizy, France; Tel: (33-1)34-

65-08-95; Fax: (33-1)34-65-99-14). It is available commercially for MS-Windows and UNIX with

X-Windows. The version described here is 4.1.4 for UNIX and X-Windows.

For academic users in the UK, Visilog is available at reduced cost under the CHEST (Combined

Higher Education Software Team) agreement.

All image processing functions in Visilog are accessed via pull-down menus. The NOTES column

in the tables below indicates where the functions are located within those menus, e.g. to use the

addition operator, �rst open the `Process' menu, then open the `Point Ops' sub-menu, then the

`Arithmetic' sub-sub-menu and from that menu select the `add' option. Where the speci�ed menu

path ends in an ellipsis (...), this indicates that at this stage a dialog box opens which the user can

use to select the details of the operation to be performed.
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Image Arithmetic

OPERATOR INC NOTES

Addition Yes Process/Point Ops/Arithmetic/add

Subtraction Yes Process/Point Ops/Arithmetic/subtract

Multiplication Yes Process/Point Ops/Arithmetic/multiply

Division Yes Process/Point Ops/Arithmetic/divide

Blending Yes Process/Point Ops/Arithmetic/blend

Logical AND/NAND Yes Process/Point Ops/Logical/and/nand

Logical OR/NOR Yes Process/Point Ops/Logical/or/nor

Logical XOR/XNOR Yes Process/Point Ops/Logical/xor/nxor

Invert/Logical NOT Yes Process/Point Ops/Logical/not

Bitshift Operators Yes Process/Point Ops/Logical/shift

Point Operations

OPERATOR INC NOTES

Thresholding Yes Process/Point Ops/Segmentation/threshold

Adaptive Threshold No

Contrast Stretching Yes Process/Point Ops/Anamorphosis/normalize

Hist. Equalization Yes Process/Point Ops/Anamorphosis/hequalize

Logarithm Operator No Process/Point Ops/Anamorphosis/anamorphosis

Raise to Power No Process/Point Ops/Anamorphosis/anamorphosis

Geometric Operations

OPERATOR INC NOTES

Scale Yes (Only reduces) Process/Geometry/Basic Op/sample

Rotate Yes Process/Geometry/Basic Op/rotation

Reect Yes Process/Geometry/Basic Op/symmetry

Translate Yes Process/Geometry/Basic Op/slide

A�ne Transform Yes (Polynomial warp) Process/Geometry/Warping/applywarp

Image Analysis

OPERATOR INC NOTES

Intensity Histogram Yes Analyze/Statistics/histogram

Classi�cation Yes Analyze/Individual...

Labeling Yes Process/Point Ops/Segmentation/label

Morphology

OPERATOR INC NOTES

Dilation Yes Process/Morphology/Basic Op/dilate

Erosion Yes Process/Morphology/Basic Op/erode

Opening Yes Process/Morphology/Basic Op/opening

Closing Yes Process/Morphology/Basic Op/closing

Hit/Miss Transform Yes Process/Morphology/Hit or Miss...

Thinning Yes Process/Morphology/Thin/Thick...

Thickening Yes Process/Morphology/Thin/Thick...

Skeletonization Yes Process/Morphology/Thin/Thick/skeleton

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



246

Digital Filters

OPERATOR INC NOTES

Mean Filter Yes Process/Filters/Smoothing/lowpass...

Median Filter Yes Process/Filters/Smoothing/median

Gaussian Smoothing Yes Process/Filters/Smoothing/lowpass...

Conservative Smooth No

Crimmins No

Frequency Filters Yes Use Fourier Transform plus multiplication

Laplacian Filter Yes Process/Edge Detection/Laplacian/laplacian...

Unsharp Filter Yes Process/Filters/Sharpening/highpass...

Feature Detectors

OPERATOR INC NOTES

Roberts Cross Yes Process/Edge Detection/gradient3x3...

Sobel Yes Process/Edge Detection/gradient3x3...

Canny Yes Process/Edge Detection/Gradient/rgradient +

Process/Edge Detection/Gradient/gradient mag +

Process/Edge Detection/Gradient/lmaxima (No hysteresis tracking)

Compass Yes Process/Edge Detection/compass3x3...

Zero Crossing Yes Process/Edge Detection/Laplacian/zero crossings

Line Detector No

Image Transforms

OPERATOR INC NOTES

Distance Transform Yes Extensions/Morpho+/distance

Fourier Transform Yes Process/Frequency/2 Dimensions/�t2d

Hough Transform No

Image Synthesis

OPERATOR INC NOTES

Noise Generation No (Image editing is possible however)

B.2 Khoros

Khoros is a sophisticated visual programming and scienti�c software development environment,

that also includes extensive image processing facilities. It is a very large package because it does

a lot more than just image processing. However, it is available free via FTP from several sites

around the world. Khoros was developed at the University of New Mexico and the developers

have recently formed a company to continue the work on Khoros. The company is called Khoral

Research (Khoral Research Inc, 6001 Indian School Rd, Ne, Suite 200, Albuquerque, NM 87110,

USA; Tel:(505)837-6500; Fax:(505)881-3842). You can �nd out more about Khoros by pointing a

World Wide Web browser such as Netscape to

http://www.khoros.unm.edu/

Apart from including a wide range of image processing tools, Khoros also allows you to link

operators together in a graphical way to form image processing pipelines.
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In addition to the standard operators you see here, there are also user-contributed toolboxes for

Khoros available free via FTP which provide virtually any additional operator you can think of.

See the Khoros World Wide Web home page for details.

Khoros is only available for UNIX systems. The version described here is version 1.0. The latest

version is Khoros 2.0 which is quite di�erent in appearance to Khoros 1.0. Strangely, Khoros 2.0

contains fewer image processing functions than Khoros 1.0 | mainly because the developers are

trying to emphasize that it is more than just an image processing package. However, the toolboxes

mentioned above can be added to Khoros 2.0 to give it virtually any operators you require.

When using cantata, the Khoros visual programming environment, image processing operations

are accessed using pull-down menus. In the tables below, the locations of each operator within

the menu structure is shown in the NOTES column, e.g. to use the addition operator, �rst open

the `Arithmetic' menu, then open the `Binary Arithmetic' sub-menu and from that menu select

the `Add' option. Where the speci�ed menu path ends in an ellipsis (...), this indicates that at

this stage a dialog box opens which the user can use to select the details of the operation to be

performed.

Image Arithmetic

OPERATOR INC NOTES

Addition Yes Arithmetic/Binary Arithmetic/Add

Subtraction Yes Arithmetic/Binary Arithmetic/Subtract

Multiplication Yes Arithmetic/Binary Arithmetic/Multiply

Division Yes Arithmetic/Binary Arithmetic/Divide

Blending Yes Arithmetic/Binary Arithmetic/Blend

Logical AND/NAND Yes Arithmetic/Logical Operations/AND

Logical OR/NOR Yes Arithmetic/Logical Operations/OR

Logical XOR/XNOR Yes Arithmetic/Logical Operations/XOR

Invert/Logical NOT Yes Arithmetic/Unary Arithmetic/NOT/Invert

Bitshift Operators Yes Arithmetic/Logical Operations/Left/Right Shift

Point Operations

OPERATOR INC NOTES

Thresholding Yes Image Analysis/Segmentation/Threshold

Adaptive Threshold Yes Image Analysis/Segmentation/Dynamic Threshold

Contrast Stretching Yes Image Processing/Histograms/Stretch

Hist. Equalization Yes Image Processing/Histograms/Equalize

Logarithm Operator Yes Arithmetic/Unary Operators/Logarithm

Raise to Power Yes Arithmetic/Unary Operators/Exponential

Geometric Operations

OPERATOR INC NOTES

Scale Yes Image Processing/Geometric Manip./Resize

Rotate Yes Image Processing/Geometric Manip./Rotate

Reect Yes Image Processing/Geometric Manip./Flip

Translate Yes Image Processing/Geometric Manip./Translate

A�ne Transform Yes Remote & GIS/Warping...
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Image Analysis

OPERATOR INC NOTES

Intensity Histogram Yes Image Processing/Histograms/Histogram

Classi�cation Yes Image Analysis/Classi�cation...

Labeling Yes Image Analysis/Classi�cation/Labeling

Morphology

OPERATOR INC NOTES

Dilation Yes Image Processing/Morphology/Dilation

Erosion Yes Image Processing/Morphology/Erosion

Opening Yes Image Processing/Morphology/Opening

Closing Yes Image Processing/Morphology/Closing

Hit/Miss Transform No

Thinning No

Thickening No

Skeletonization Yes Image Processing/Morphology/Skeletonization

Digital Filters

OPERATOR INC NOTES

Mean Filter Yes Image Processing/Spatial Filters/2D Conv +

Input Sources/Input Data File/Kernels (avgNxN)

Median Filter Yes Image Processing/Spatial Filters/Median

Gaussian Smoothing Yes Image Processing/Spatial Filters/2D Conv +

Input Sources/Create 2D Image/Gauss Image

Conservative Smooth No

Crimmins Yes Image Processing/Spatial Filters/Speckle Removal

Frequency Filters Yes Image Processing/Frequency Filters...

Laplacian Filter Yes Image Processing/Spatial Filters/2D Conv +

Input Sources/Create 2D Image/Marr Filter

Unsharp Filter No

Feature Detectors

OPERATOR INC NOTES

Roberts Cross Yes Image Processing/Spatial Filters/Gradient

Sobel Yes Image Processing/Spatial Filters/Sobel

Canny Yes Image Processing/Spatial Filters/DRF Edge Extract

(Actually Di�erence Recursive Filter which is similar)

Compass No

Zero Crossing No (Not directly anyway, but easy to do)

Line Detector No

Image Transforms

OPERATOR INC NOTES

Distance Transform No

Fourier Transform Yes Image Processing/Transforms/FFT

Hough Transform No
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Image Synthesis

OPERATOR INC NOTES

Noise Generation Yes Input Sources/Create 2D Image/Gauss/Shot Noise

B.3 Matlab Image Processing Toolbox

Matlab is a popular and exible mathematics package that has particular strengths in manipulating

matrices and visualizing data. The Matlab Image Processing Toolkit is one of a range of extensions

that can be added onto Matlab in order to provide extra functionality for specialized applications.

Matlab is marketed commercially by The MathWorks (The MathWorks, Inc, 24 Prime Park Way,

Natick, MA 01760-1500; Tel:(508)653-1415; Fax:(508)653-2997; E-mail:info@mathworks.com), and

is available for a wide range of machine architectures.

Matlab image processing functions are implemented as M-�les which are called by name from the

Matlab command line. The NOTES column in the tables below gives the name of these M-�les.

Matlab provides a powerful and easy to use scripting language that enables you to write additional

image processing functions yourself relatively easily.

Image Arithmetic

OPERATOR INC NOTES

Addition Yes +

Subtraction Yes �
Multiplication Yes *

Division Yes /

Blending Yes Trivial to perform. e.g. `p*X + (1�p)*Y'
Logical AND/NAND Yes &

Logical OR/NOR Yes j
Logical XOR/XNOR Yes xor

Invert/Logical NOT Yes ~

Bitshift Operators No

Point Operations

OPERATOR INC NOTES

Thresholding Yes im2bw

Adaptive Threshold No

Contrast Stretching Yes imadjust

Hist. Equalization Yes histeq

Logarithm Operator Yes log

Raise to Power Yes ^

Geometric Operations

OPERATOR INC NOTES

Scale Yes imresize

Rotate Yes imrotate

Reect Yes iplr/ipud

Translate Yes imgcrop

A�ne Transform No
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Image Analysis

OPERATOR INC NOTES

Intensity Histogram Yes imhist

Classi�cation No

Labeling No

Morphology

OPERATOR INC NOTES

Dilation Yes dilate

Erosion Yes erode

Opening Yes bwmorph

Closing Yes bwmorph

Hit/Miss Transform Yes bwmorph

Thinning Yes bwmorph

Thickening Yes bwmorph

Skeletonization Yes bwmorph

Digital Filters

OPERATOR INC NOTES

Mean Filter Yes fspecial

Median Filter Yes med�lt2

Gaussian Smoothing Yes fspecial

Conservative Smooth No

Crimmins No

Frequency Filters Yes Many functions...

Laplacian Filter Yes fspecial

Unsharp Filter Yes fspecial

Feature Detectors

OPERATOR INC NOTES

Roberts Cross Yes edge

Sobel Yes edge

Canny No

Compass No

Zero Crossing Yes edge

Line Detector No

Image Transforms

OPERATOR INC NOTES

Distance Transform No

Fourier Transform Yes �t2

Hough Transform No

Image Synthesis

OPERATOR INC NOTES

Noise Generation Yes imnoise
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B.4 HIPS

HIPS is a software package for image processing that runs under the UNIX operating system.

HIPS is modular and exible, it provides automatic documentation of its actions, and is almost

entirely independent of special equipment. It handles sequences of images (movies) in precisely the

same manner as single frames. Programs have been developed for simple image transformations,

�ltering, convolution, Fourier and other transform processing, edge detection and line drawing

manipulation, digital image compression and transmission methods, noise generation and image

statistics computation. Over 150 such image transformation programs have been developed. As a

result, almost any image processing task can be performed quickly and conveniently.

HIPS is marketed commercially by SharpImage Software, P.O. Box 373, Prince Street Station, New

York, NY 10012-0007; Tel: (212) 998-7857; Email: landy@nyu.edu. It is relatively inexpensive,

and is highly discounted to academic and nonpro�t institutions. The software runs under virtually

any UNIX environment. HIPS is supplied with source code (written in C), on-line documentation,

and a library of convolution masks.

HIPS functions are generally used as UNIX shell commands, although almost all of the functionality

of HIPS is available as subroutines at various levels of abstraction. HIPS has its own image header

format, and comes with programs which convert to and from a wide variety of other image data

formats.

Image Arithmetic

OPERATOR INC NOTES

Addition Yes addseq

Subtraction Yes di�seq

Multiplication Yes mulseq

Division Yes divseq

Blending Yes Combine scale and addseq

Logical AND/NAND Yes andseq

Logical OR/NOR Yes orseq

Logical XOR/XNOR Yes xorseq

Invert/Logical NOT Yes neg

Bitshift Operators Yes shiftpix

Point Operations

OPERATOR INC NOTES

Thresholding Yes thresh

Adaptive Threshold No

Contrast Stretching Yes scale, histostretch

Hist. Equalization Yes histoeq

Logarithm Operator Yes logimg

Raise to Power Yes powerpix

Geometric Operations

OPERATOR INC NOTES

Scale Yes imresize

Rotate Yes rotate90, rotate180, hfant

Reect Yes pictranspose, reect

Translate Yes drift, wrapimg

A�ne Transform Yes a�ne
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Image Analysis

OPERATOR INC NOTES

Intensity Histogram Yes histo, disphist, seehist

Classi�cation Yes (Various tools in Allegory Extensions)

Labeling Yes cobjects, label

Morphology

OPERATOR INC NOTES

Dilation Yes morphdilate

Erosion Yes morpherode

Opening Yes mopen

Closing Yes mclose

Hit/Miss Transform No

Thinning Yes thin

Thickening Yes thicken

Skeletonization No

Digital Filters

OPERATOR INC NOTES

Mean Filter Yes meanie

Median Filter Yes median

Gaussian Smoothing Yes dog, mask, gauss

Conservative Smooth No

Crimmins No

Frequency Filters Yes Many functions...

Laplacian Filter Yes imgtopyr, mask

Unsharp Filter Yes mask

Feature Detectors

OPERATOR INC NOTES

Roberts Cross Yes mask

Sobel Yes mask

Canny Yes canny, deriche

Compass No

Zero Crossing Yes zc

Line Detector No

Image Transforms

OPERATOR INC NOTES

Distance Transform No

Fourier Transform Yes fourtr, inv.fourtr (also: dct, walsh)

Hough Transform No

Image Synthesis

OPERATOR INC NOTES

Noise Generation Yes bnoise, gnoise, noise
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Appendix C

HIPRscript Reference Manual

Note that this section is really only relevant to the person responsible for installing and maintaining

HIPR on your system.

What is HIPRscript?

See the introductory section on Making Changes with HIPRscript (p.34) for an introduction to the

role of HIPRscript in generating HIPR.

How does HIPRscript Work?

HIPRscript is a specially designed language for use with HIPR, similar in respects to both HTML

and LATEX. It is designed to allow the HIPRscript author to express the information needed by

both hypermedia and hardcopy versions of HIPR in a relatively high-level way and it is readily

translatable into both HTML and LATEX using the supplied translation programs.

Almost 300 HIPRscript source �les go together to make HIPR. In general, each HIPRscript source

�le gives rise to one HTML �le and one LATEX �le. Each HTML �le corresponds to a `scrollable

page' of hypertext, while the LATEX �les are merged together to generate the hardcopy version of

HIPR. There are a few exceptions to this rule | for instance the .loc source �les used for entering

local information are included into other �les.

Another important exception to this rule is the top-level �le for the HTML and LATEX versions. The

HTML top-level �le is called hipr top.htm and lives in the html sub-directory. The LATEX �le lives

in the tex sub-directory and is called hipr top.tex. These are very di�erent from one another,

and so are not generated from a common HIPRscript source �le (i.e. there is no hipr top.hpr

�le). You should be careful not to delete these �les since they cannot be regenerated, unlike most

of the other HTML and LATEX �les.

To convert HIPRscript into HTML and LATEX, a Perl program called hiprgen.pl is used. This

program can be found in the progs sub-directory. The e�ect of the program when run on a

HIPRscript source �le is to generate corresponding HTML and LATEX �les in the appropriate

directories.

To run hiprgen.pl you need to have at the very least a recent version of Perl installed on your

system. In addition, if you wish to have the program automatically generate equations, �gures and

thumbnails as described below, then you will have to install additional utilities. The Installation

Guide (p.32) has all the details.

Apart from the hpr, html and tex sub-directories, four other sub-directories are also important to

the running of HIPRscript.

The eqns sub-directory contains inline images representing equations for use in HTML documents.
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These image �les are generated automatically by hiprgen.pl from information in the HIPRscript

�les and are incorporated into the displayed document by the HTML browser.

The figs sub-directory contains the images used for �gures in two di�erent formats: GIF for

HTML pages, and encapsulated PostScript for inclusion into LATEX output. As a HIPRscript

author you must create the PostScript version of the �gure yourself and put it in this directory.

hiprgen.pl will then create a matching GIF �le automatically if one does not already exist.

The thumbs sub-directory contains `thumbnails' (miniature versions of images that are used for

imagelinks). These are normally generated automatically by hiprgen.pl from corresponding full-

size images.

The index sub-directory contains information used in generating the HIPR main index. The �les

in this directory are created automatically my hiprgen.pl and should not be edited by hand.

Running the Translation Program

The exact method of running hiprgen.pl depends upon the computer system you are using. Since

it is a Perl program you need to have a Perl interpreter installed somewhere. You must then use

this interpreter to run hiprgen.pl. Make sure that the `current' or `working' directory is the src

sub-directory when you run it. You must also pass the program a command line argument which

is simply the name of the source �le to be translated, without the .hpr extension.

For instance, on my UNIX system, in order to translate dilate.hpr into HTML and LATEX, I type

(from within the src sub-directory):

perl ../progs/hiprgen.pl dilate

The program will run and the appropriate HTML and LATEX �les will be generated. If there are

any errors, the translator will stop with an error message and no output �les are generated. Error

messages are detailed in a later section.

An Introduction to HIPRscript Syntax

It is useful at this point to take a look at the contents of a typical HIPRscript �le. For instance

the �le dilate.hpr starts something like:

\links{}{erode}{morops}

\index{Dilation}{\section{Dilation}}

\title{Morphology - Dilation}

\strong{Common Names:} Dilate, Grow, Expand

\subsection{Brief Description}

Dilation is one of the two basic operators in the area of

\ref{matmorph}{mathematical morphology}, the other being

\ref{erode}{erosion}. It is typically applied to

...

Have a look at the dilation worksheet (p.118) to see what this becomes (note that if you are using

Netscape or Mosaic then you might want to click on the link with the middle mouse button which

will display the worksheet in a separate window).

As with both HTML and LATEX, a HIPRscript source �le is an ASCII �le containing a mixture of

raw text and tags which de�ne how that raw text is to be displayed. Tags in HIPRscript have the

following syntax:
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� Each tag starts with a backslash: n

� This is then followed by the tagname. Most tagnames contain only alphanumeric characters,

but there are also a few tagnames consisting of a single non-alphanumeric character. Note

that there is no space between the backslash and the tagname.

� Finally there comes the list of arguments associated with the tag. Each separate argument is

enclosed in its own pair of curly braces: f...g. Note that there must not be any whitespace
between arguments, or between the arguments and the tagname.

� A tag with no arguments is terminated by any non-alphanumeric character except an opening

brace (f). A tag with arguments is terminated by any character at all except an opening

brace. A caret (^) can be used to terminate any tag but has a special meaning described

below.

The simplest tags take no arguments. For instance the tag: ntimes produces a multiplication

symbol like this: �.

Slightly more complicated are tags which take a single argument. An example of this is the nem tag
which produces emphasized italic text. For instance, the phrase emphasized italic text in the last

sentence was produced by the following HIPRscript fragment: nemfemphasized italic textg.

Finally, some tags take multiple arguments. A common example of this is the nref tag which is used
for cross references to other HIPR pages. To create a reference to the worksheet on dilation for

example, we could write nreffdilategfThis is a link to the dilation worksheetg which

produces the following: This is a link to the dilation worksheet (p.118).

Many tags can be nested inside one another. If we modify the example in the last paragraph to

nreffdilategfThis is a link to the nemfdilationg worksheetg, then we get: This is a link
to the dilation worksheet (p.118).

Arguments can usually contain newlines without any problems, but you should make sure that

there are no newlines between arguments belonging to the same tag. For instance:

\ref{dilate}{This is a link

to the dilation worksheet}

is �ne, whereas:

\ref{dilate}

{This is a link to the dilation worksheet}

is not.

One very important point is that like LATEX and HTML, HIPRscript pays very little attention to

the amount of whitespace (spaces, tabs and newlines) that you put in your document. One space

between words is treated exactly the same as one hundred spaces | both will cause just a single

space to be displayed between the words.

Single newlines in sentences are also largely ignored. In general HIPRscript will decide for itself

where it wants to break lines in order to make them �t onto the page. Note: In actual fact this

tricky decision is taken care of by the magic of LATEX and HTML browsers.

Two or more newlines in succession are treated as signi�cant. They indicate that you want a

paragraph break at that point. This will normally cause a vertical space to be inserted between the

preceding and following lines on the page.

Normally line-breaks are inserted wherever LATEX or your HTML browser feels appropriate. This

is usually when the current line has as much text as will �t on it already. Sometimes though, we

would like to ensure that a line-break does not occur between two words. For instance the phrase

`Section 2' would look odd if a line-break appeared between `Section' and `2'. Therefore HIPRscript
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allows you to specify a `non-breaking space' which will never be broken over two lines. The symbol

for this is just `~'. Using this feature, the phrase above would be entered as: Section~2.

As mentioned earlier, tags that don't take any arguments are terminated by any non-alphanumeric

character. This can cause a problem if you do want to immediately follow such a tag with an

alphanumeric character without putting a space in between. For instance if you want to display

`2�2', you cannot write 2ntimes2 since ntimes2 is not a recognized tag and will cause an error.

And if you write 2ntimes 2 then what you get is `2� 2', i.e. with an extra unwanted space. The

solution is to terminate the tag with a caret. This special character terminates a tag without being

printed itself. So 2ntimes^2 will produce the display you want. If you do want to follow a tag

immediately with a caret for some reason, then simply use two of them. The other time you might

want to use a caret to terminate a tag is if you want to put a backslash at the end of an argument.

Without the caret, the �nal backslash would escape the closing brace and hence cause HIPRscript

to think that you haven't terminated the argument properly. So you would write: ...nn^.

Since the backslash and braces are special characters, there are tags for displaying them normally.

nn, nf and ng will display n, f and g respectively.
It is often useful to be able to write into HIPRscript �les chunks of text that will be completely

ignored by the interpreter. Such a piece of text is known as a comment. They can be used to

explain to anyone reading the source �le why you chose to say certain things or why you chose to

express things in certain ways. This can be useful if someone else wishes to work on the �le after

you have �nished with it, or if you wish to be reminded what you were doing last when you come

back to it. Comments can also be used to force the translator to ignore large chunks of your source

�le. This is particularly useful for tracking down errors in your source �le. There are two forms of

comments in HIPRscript:

Line Comments Anything on a line following a hash sign # is ignored, including the hash sign

itself. If you want a hash sign then use the n# tag.

Block Comments The special tag ncommentf...g simply causes everything in its single argu-

ment to be ignored. This is good for commenting out large blocks of text in a single swoop.

Comments can be nested inside one another with no problems.

The Elements of HIPRscript

We now present a complete listing of all the tags that can be used in HIPRscript, together with

explanations and hints for their use.

# Line comment; the remainder of the current line is ignored.

~ Non-breaking space; a space that will never be substituted by a line-break.

nn Backslash: n

n# Hash sign: #

nblob or nblobfCOLORg Produces a small colored blob in the HTML output only. The optional

COLOR argument can take the values yellow or red. The default value is yellow.

nbr Forces a line break. Note that in a few situations this will cause a LATEX error since LATEX

doesn't like being told where to break lines. If this happens use the nhtml tag to ignore the
line break in the LATEX output.

nchapterfHEADINGg Starts a new chapter with a title given by HEADING. This is the second

largest document division in HIPR.

ncommentfTEXTg Block comment | simply ignores everything within its argument and produces

no output.
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ndeg Degree symbol: �

nddfTEXTg See the ndescription tag.

ndescriptionfDESCRIPTION LISTg Description list. One of three HIPRscript list types | this

one is used for lists where each list item consists of a brief label (known as the topic) followed

by a block of text (known as the discussion). The argument of this tag must consist solely of

alternate ndt and ndd tags. The ndt tag comes �rst and its argument gives the Description

Topic. The ndd tag then follows with the Description Discussion as its argument. Any

number of pairs of ndt and ndd tags may be inserted.

Example | the following fragment of HIPRscript:

\description{

\dt{HIPR}

\dd{The Hypermedia Image Processing Reference.}

\dt{HIPRscript}

\dd{The language used to create HIPR.}

}

produces the following e�ect:

HIPR The Hypermedia Image Processing Reference.

HIPRscript The language used to create HIPR.

Note that the ndd tag's argument can contain any other tags, including additional lists. The

ndt tag on the other hand should only contain raw text and appearance changing tags such

as nem.

ndtfTEXTg See the ndescription tag.

neg Inserts an italicized `e.g.': e.g.

nemfTEXTg Causes TEXT to be displayed in an italic font.

nenumeratefENUMERATE LISTg Enumerated list. One of three HIPRscript list types | this one is

used for ordered lists where each item is to be numbered in consecutive order. HIPRscript

will take care of the numbering automatically. The argument of this tag consists of a mixture

of text and nitem tags. Each nitem tag encountered tells HIPRscript that a new list item is

starting, complete with a new number.

Example | the following HIPRscript fragment:

\enumerate{

\item Capture an image.

\item Choose a threshold value.

\item Apply thresholding to produce a binary image.

}

produces the following e�ect:

1. Capture an image.

2. Choose a threshold value.

3. Apply thresholding to produce a binary image.

nenumerate lists can contain most other sorts of tag, including other list tags. Usually a

di�erent numbering scheme (e.g. roman numerals or letters) is used for nested nenumerate
lists.
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neqndfEQUATIONgfGIF FILEg or neqndfEQUATIONgfGIF FILEgfSIZEg Displayed equation. Used

for mathematical equations which are to be set apart from the text that describes them.

The EQUATION argument describes the equation using LATEX format. i.e. the code that

goes here is exactly what you would type to produce the equation in LATEX. The GIF FILE

argument is the name of a �le (without the .gif su�x) in the eqns sub-directory where an

image representing that equation will be stored. It is possible to get HIPRscript to generate

the GIF �le automatically from the EQUATION argument, but note that this involves many

extra complications which are described below in the subsection on Using Figure, Equation

and Imageref Tags (p.265). The optional SIZE argument can take values of small, large or

huge and determines the scaling of the displayed equation. The default is large.

neqnlfEQUATIONgfGIF FILEg Similar to the neqnd tag except that it produces an in-line equation
and takes no optional SIZE argument.

netc Inserts an italicized `etc.': etc.

nfigfFIG FILEgfCAPTIONg or nfigfFIG FILEgfCAPTIONgfSCALEg Include a �gure at this point

in the text. The FIG FILE argument refers to two similarly named �les in the figs sub-

directory that contain the image to be included in two di�erent formats, GIF and encapsu-

lated PostScript. The FIG FILE argument should specify just the stem-name of the �les. To

this HIPRscript will add .eps for the PostScript �le and .gif for the GIF �le. It is possible

to get HIPRscript to generate the GIF �le automatically from the PostScript �le, but note

that this involves many extra complications which are described below in the subsection on

Using Figure, Equation and Imageref Tags (p.265). The CAPTION argument gives the text

that will go with the �gure, and may contain appearance changing tags such as nem and

also cross-reference tags such as nref. The optional SCALE argument gives the scaling of

the �gure. A size of 1 (the default) means that the image will be included at its `natural'

size. A number less than this will reduce the size, larger numbers will increase it. Note that

HIPRscript will assign a �gure number to your �gure automatically.

nfigreffFIG FILEg Used to reference a particular �gure in the text. The FIG FILE argument

should match up with the FIG FILE argument of a nfig tag somewhere in the same HIPRscript
�le. That will be the �gure to which the nfigref refers. The visible e�ect of the tag is to

insert the text: `Figure N' where N is the number of the �gure concerned.

nhb Places a solid colored horizontal dividing bar across the screen in the HTML output only.

nhr Places a thin horizontal dividing rule across the screen in the HTML output only.

nhtmlfTEXTg Process the TEXT argument as if it were normal HIPRscript, but only produce

HTML output. Nothing appears in the LATEX output for this tag.

nie Inserts an italicized `i.e.': i.e.

nimagereffIMAGE FILEg or nimagereffIMAGE FILEgfMODEg Refer to an image in the images sub-

directory. The IMAGE FILE argument should give the name of the image �le concerned,

minus any �le su�x such as .gif. The visible e�ect of this tag depends upon whether you

are looking at the HTML or the LATEX output. In the HTML output, by default it creates a

hyperlink to the named image, in the form of a small thumbnail image. The thumbnail image

is in fact just a reduced size version of the full image and is found in the thumbs sub-directory.

It is possible to get HIPRscript to generate the thumbnail automatically from the full size

image, but note that this involves many extra complications which are described below in the

subsection on Using Figure, Equation and Imageref Tags (p.265). In the LATEX output, this

tag simply prints the IMAGE FILE argument in typewriter font. The optional argument

MODE can be used to alter the appearance of the HTML output slightly (it doesn't a�ect

the LATEX though). Setting MODE to text means that the imagelink will simply appear as

the name of the image �le rather than as a thumbnail. Setting MODE to both causes the

link to appear both as text and as a thumbnail. Setting MODE to thumbnail produces the

default behavior.
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nincfFILEgfTEXTg Includes the HIPRscript �le named by the FILE argument plus a .hpr exten-

sion, into the current �le. In the HTML output, this inclusion appears as a hyperlink to the

named �le. The text of the hyperlink is given by the TEXT argument. In the LATEX output

there is no such link | the named �le is included as if its entire contents had been typed

into the current �le at that point. The TEXT argument is ignored in the LATEX output.

ninc2fFILEgfTEXTg Includes the HIPRscript �le named by the FILE argument plus a .hpr ex-

tension, into the current �le. This is rather like the ninc tag except that TEXT is printed

in both the HTML and the LATEX output. In the HTML output, TEXT acts as a hyperlink

to the included �le. In the LATEX output, TEXT is merely printed immediately before the

named �le is included.

ninc3fFILEgfTEXTg Acts identically to the ninc tag, except that FILE is treated as a full �lename

of the �le to be linked in, including any path information.

nindexfENTRY1gfENTRY2g...fTEXTg Creates an entry in the HIPR index. ENTRY1, ENTRY2

and so on give the names of topic entries in the index. Each index entry may have up to

three levels of nesting in order to specify the entry precisely. An entry with more than one

level of nesting is indicated by a ENTRY argument containing one or two j symbols. The j
symbols are used as separators between the di�erent levels in the entry.

For instance if we wanted an index entry to appear under the general category of `Edge de-

tectors' and then within that category, under `Canny', then we would have an entry argument

that looked like: fEdge detectorsjCannyg.
Note that every ENTRY argument in the whole of HIPR must be unique. We can only

have one place in HIPR which has the index entry fEdge detectorsjCannyg for instance.
However, we could have another entry for fEdge detectorsjRobertsg for instance.
The TEXT argument indicates which chunk of HIPRscript is to be pointed to by the index

entry and can contain almost anything. It should not however contain any ntarget or ntitle
tags.

A particular place in HIPR can have more than one index entry associated with it. Simply

use as many ENTRY arguments as you need.

ninputfFILEg Like the ninc tag, this tag includes a named �le into the current one. This time

however, the e�ect for both HTML and LATEX is as if the contents of the named �le had been

inserted directly into the current �le in the tag's place. No links are created.

nitem Marks the beginning of a list item in nenumerate and nitemize lists. It gives an error if

used anywhere else.

nitemizefITEMIZE LISTg Itemized list. One of three HIPRscript list types | this one is used

for unordered lists where each item is to be marked with a `bullet', but not numbered. The

argument of this tag consists of a mixture of text and nitem tags. Each nitem tag encountered
tells HIPRscript that a new list item is starting, and causes a bullet to be printed.

Example | the following HIPRscript fragment:

\itemize{

\item Available on-line.

\item Extensive cross-referencing.

\item Uses Netscape browser.

}

produces the following e�ect:

� Available on-line.

� Extensive cross-referencing.

� Uses Netscape browser.

nitemize lists can contain most other sorts of tag, including other list tags. Usually di�erent
bullet styles are used for nested nitemize lists.
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nlatexfTEXTg Process the TEXT argument as if it were normal HIPRscript, but only produce

LATEX output. Nothing appears in the HTML output for this tag.

nLaTeX A special tag that produces a nicely formatted version of the LATEX tradename. In the

hardcopy version it prints as: LATEX . In the hypermedia version it prints simply as: `LaTeX'.

nlinksfLEFTgfRIGHTgfUPg Causes navigation buttons to appear in the HTML version of HIPR.

It has no e�ect on the LATEX output. LEFT, RIGHT and UP should be the names of other

HIPRscript �les within HIPR minus the .hpr su�x. The navigation buttons appear at the

top of HTML page, and, if the page is more than about a screenful, are duplicated at the

bottom. If there is no appropriate link for any of the arguments, then simply use a pair

of empty braces for that argument, and no navigation button will be generated for that

direction.

For instance the tag:

\links{}{erode}{morops}

creates a `right' navigation button leading to the erode.htm worksheet, and an `up' button

leading to the morops.htm section.

See the section on Navigation Buttons (p.17) for more information about navigation buttons.

nminus Minus sign. This is slightly di�erent from a hyphen and should be used instead of a simple

`-' when a minus sign is intended. e.g. nminus^7 produces `�7'. It will probably only cause

a noticeable di�erence in the hardcopy output.

nnewpage Causes a pagebreak. Only a�ects the LATEX output.

npartfHEADINGg Starts a new `part' with a title given by the HEADING argument. This is the

largest document division in HIPR.

npm Plus-or-minus symbol: �

nquotefTEXTg Indents the HIPRscript contained in the TEXT argument from the left margin

slightly.

nrawhtmlfHTMLg Passes the HTML argument directly into the HTML output with no processing.

It di�ers from the nhtml tag in that the HTML argument is not treated as HIPRscript to be

further processed. Has no e�ect on the LATEX output.

nrawlatexfLATEXg Passes the LATEX argument directly into the LATEX output with no pro-

cessing. It di�ers from the nlatex tag in that the LATEX argument is not treated as

HIPRscript to be further processed. Has no e�ect on the HTML output.

nreffFILEgfTEXTg In the HTML output, this creates a hyperlink using TEXT pointing at the

HIPRscript �le speci�ed by FILE (minus the .hpr �le extension as usual).

nsectionfHEADINGg Starts a new section with a title given by the HEADING argument. This is

the third largest document division in HIPR.

nsqr A squared symbol: 2

nstrongfTEXTg Causes the HIPRscript within TEXT to be displayed in a bold font.

nsubsectionfHEADINGg Starts a new subsection with a title given by the HEADING argument.

This is the fourth largest document division in HIPR.

nsubsubsectionfHEADINGg Starts a new subsubsection with a title given by the HEADING argu-

ment. This is the �fth largest document division in HIPR, and the smallest.

ntabfCOL1gfCOL2g... Used for specifying the data to go into a table created with the ntable
tag. The text in COL1 goes in the �rst column, the text in COL2 goes in the second column

and so on. There should be the same number of arguments as there are data columns in the

table, and the number of characters in each argument should be less than the width of the

table columns. See the ntable tag for details.
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ntablefCOL1gfCOL2g...fDATAg Creates a table at the current place in the document. The last

argument contains the actual data that will go into the table. The previous arguments de�ne

the column layout of the table. If a COL argument is a number, then that indicates a data

column. The number gives the width in characters of that column. Data appears left justi�ed

within the column. If the COL argument is a j character, this indicates an internal vertical

dividing line. If you use two such arguments in a row, then you will have a double vertical

dividing line.

The DATA argument contains the body of the table. It must consist solely of ntab tags

(specifying the data to go in each column), and ntabline tags (specifying horizontal lines in
the table).

Note that HIPRscript will automatically put lines around the outside of a table and so these

do not need to be speci�ed.

As an example, the following fragment of HIPRscript:

\table{6}{|}{|}{8}{8}{8}{

\tab{Type}{Test A}{Test B}{Test C}

\tabline

\tab{1}{Yes}{Yes}{No}

\tab{2}{No}{Yes}{No}

\tab{3}{Yes}{Yes}{Yes}

}

produces the following:

Type Test A Test B Test C

1 Yes Yes No

2 No Yes No

3 Yes Yes Yes

Note that at the time of writing not all browsers support proper tables, and so tables are

implemented rather crudely in HTML output. Signi�cantly better looking tables appear in

the LATEX output.

ntabline Used between ntab tags within a table to produce a horizontal line across the table.

Note that the ntable tag itself produces horizontal lines at the top and bottom of the table.

ntargetfLABELgfTEXTg Associates the chunk of HIPRscript in TEXT with LABEL for reference

to by a ntextref tag. LABEL must be a single word and can only contain alphanumeric

characters. TEXT can be any bit of HIPRscript.

ntextreffFILEgfLABELgfTEXTg Like the nref tag, this creates a hyperlink around TEXT to the

HIPRscript �le named in FILE. However, whereas following a nref tag automatically takes a
user to the top of that �le, the ntextref tag allows you to jump into the middle of a �le. The
point to be jumped to must be marked with a ntarget tag and that tag's LABEL argument

must match the LABEL argument used here.

ntilde Tilde: ~

ntimes A multiplication symbol: �

ntitlefTEXTg Most HTML documents are associated with a document title which does not ap-

pear on the page itself, but which is often shown separately by the HTML browser. This

tag allows you to specify the HTML document title. It has no visible e�ect on the LATEX

output, although it does create an essential internal LATEX cross-reference. This tag must

be positioned near the top of the HIPRscript �le, just after the �rst document sectioning

command in the �le.(i.e. after the �rst nchapter, nsection etc. tag in the �le). Therefore

the only tags that normally appear before a ntitle tag are a sectioning tag and a nlinks
tag. The ntitle tage should only be used once in any given �le.

nttfTEXTg Causes the HIPRscript contained in TEXT to be displayed in a typewriter font.
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nverbatimfTEXTg TEXT is displayed in both HTML and LATEX output exactly as it appears in

the HIPRscript �le. Unlike normal HIPRscript text, all whitespace is preserved as is. The

text is also normally displayed in a �xed space typewriter font.

Making an Index with HIPRscript

One of the more useful features of HIPR is its extensive index. As mentioned above, index entries

are produced using the nindex tag within HIPRscript pages. However, whereas most sections

of HIPR are produced by single HIPRscript �les, the index is contributed to by almost all the

HIPRscript �les. Hence a slightly di�erent procedure is used to generate the index.

What actually happens is that every time a HIPRscript �le is processed, all the index entry

information in that �le is written into a corresponding IDX �le in the index sub-directory. To

generate the index section, what we have to do is scan this sub-directory, collate all the information

in all the IDX �les there, and then use this information to produce the index pages. In fact, the

index section is itself written to the src sub-directory as a HIPRscript �le. The scanning and

analysis of the IDX �les are performed by another Perl program called hiprindx.pl, also found

in the progs sub-directory.

Finally the HIPRscript �le for the index is processed as normal to produce the required HTML

and LATEX index pages.

Summarizing, the sequence is as follows:

1. Run hiprgen.pl on each HIPRscript �le in the src sub-directory to both generate the

corresponding HTML and LATEX �les, and also to write the relevant index information to

IDX �les in the index sub-directory.

2. Run hiprindx.pl in order to analyze the IDX �les and generate index.hpr in the src

sub-directory.

3. Finally, run hiprgen.pl on index.hpr in order to produce the HTML and LATEX index

sections.

Note that this procedure can be somewhat simpli�ed through the use of a make�le as described

later (p.264).

HIPRscript Error Messages

Error messages are intended to be fairly self-explanatory. A typical one runs something like:

hiprgen - Error [chngehip(2)]: End of �le in argument of nindex

which means that an error was found on line 2 of the �le chngehip.hpr. In this case the translator

is saying that it encountered the end of the �le before it had �nished reading the argument of an

nindex tag. The most likely cause of this is a missing end-brace (g).

We present here a list of all the error messages you are likely to encounter when using HIPRscript,

together with brief explanations of the likely cause.

`n' character at end of block It is not legal to have a single backslash at the end of a

HIPRscript �le or at the end of an argument to a tag that is to be processed as HIPRscript.

If you do want a backslash, then you must use nn^. The �nal ^ is necessary to prevent the

closing brace of the argument being escaped by the n.

Couldn't open �lename.hpr Couldn't �nd the HIPRscript �le speci�ed on the command line to

hiprgen.pl as �lename. Make sure that the �lename is spelled correctly and that the �le
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does exist and is not read protected. Also make sure that when you run hiprgen.pl the

current working directory is src. Finally note that when specifying �lename on the command

line, you should not add the su�x .hpr.

Couldn't open ../html/�lename Couldn't create the HTML output �le corresponding to the

current HIPRscript �le. Make sure that the html sub-directory exists and is writeable. Check

also that if the HTML �le to be produced already exists, then it should also be writeable, so

that it can be overwritten with the new version.

Couldn't open ../index/�lename Couldn't create the IDX output �le corresponding to the cur-

rent HIPRscript �le. Make sure that the index sub-directory exists and is writeable. Check

also that if the IDX �le to be produced already exists, then it should also be writeable, so

that it can be overwritten with the new version.

Couldn't open ../tex/�lename Couldn't create the LATEX output �le corresponding to the cur-

rent HIPRscript �le. Make sure that the tex sub-directory exists and is writeable. Check

also that if the LATEX �le to be produced already exists, then it should also be writeable, so

that it can be overwritten with the new version.

Could not open �lename for ninput statement The �le speci�ed in an ninput tag could not

be found. Check that the �le exists in the src sub-directory and is readable. Note also that

�lename should be speci�ed without the hpr su�x.

Couldn't open temporary file ../html/tmp hipr.html Couldn't create the temporary �le that

HIPRscript uses while building up the HTML output. Check that the tex sub-directory is

writeable to and that the temporary �le does not already exist.

Couldn't open temporary file ../index/tmp hipr.idx Couldn't create the temporary �le that

HIPRscript uses while building up the index output. Check that the tex sub-directory is

writeable to and that the temporary �le does not already exist.

Couldn't open temporary file ../tex/tmp hipr.tex Couldn't create the temporary �le that

HIPRscript uses while building up the LATEX output. Check that the tex sub-directory is

writeable to and that the temporary �le does not already exist.

End of file in argument of ntag No terminating brace was found for the named tag before

the end of the �le was reached. Check to see that each opening brace at the start of an

argument has a matching brace at the end of the argument. Also make sure that braces that

do not delimit arguments are escaped with a backslash, e.g. nf

nfig scale parameter must be a number The nfig tag's scale parameter must be a number.

Note that it can be a oating point number, e.g.: 0.8.

Found ndd special outside of ndescription environment The ndd tag can only be used in-

side a ndescription list.

Found ndt special outside of ndescription environment The ndt tag can only be used in-

side a ndescription list.

Found nitem special outside of nenumerate or nitemize environment The nitem tag

should only be used within a nenumerate or nitemize list.

Invalid nblob color An invalid argument was given to the nblob tag. The only valid arguments
are red or yellow. Note that the argument is in fact optional.

Invalid size argument to neqnd: text The string text was passed as an optional size argu-

ment to a neqnd tag. The only allowed values are small, large and huge.

Must have at least two arguments to nindex tag An nindex tag must have at least two ar-
guments | one for the index entry and one being the bit of HIPRscript to be pointed to by

the index entry. There may be more than one index entry argument, however.
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Non alphanumeric character in figure label: text The �gure name passed as the �rst ar-

gument to a nfig tag must only contain alphanumeric characters.

Non alphanumeric character in referenced anchor: text The second argument to a

ntextref tag must match a corresponding ntarget tag's �rst argument, and hence must

only contain alphanumeric characters.

Non alphanumeric character in referenced filename The �rst argument to a nref or
ntextref tag must refer to a HIPRscript �le and must only contain alphanumeric characters.

Non alphanumeric character in target anchor: text The label speci�ed as the �rst argu-

ment of a ntarget tag must only contain alphanumeric characters.

Optional second argument to nimageref must be "text", "thumbnail" or "both" An in-

valid argument was passed to a nimageref tag.

Table entry: text too wide All columns in a table created with a ntable tag are of the same
width, which is speci�ed in one of the arguments to that tag. Subsequent ntab arguments

which give the data to go into each column must not contain data that equal or exceed this

width.

Usage - hiprgen.pl source filename When started, hiprgen.pl must be passed a single ar-

gument specifying the HIPRscript �le to be processed.

Unreferenced figure label: text A �gure created by a nfigure must have been previously

referenced in the text by a corresponding nfigref tag.

Using Make�les with HIPRscript

In order to keep everything in order, whenever you make a change to a HIPRscript �le, you should

regenerate the corresponding LATEX and HTML �les as well. However, running hiprgen.pl on each

such �le, and keeping track of which �les you've changed and which you haven't is a tedious and

error-prone job. Fortunately there is a better way using a make utility.

Make utilities solve exactly the problem described above of keeping track of large collections of �les

which depend upon one another, and of regenerating just those �les that need to be regenerated in

a simple way. They are available for almost all computer systems, and can generally be obtained

free from the Internet at the standard software archives for your machine if you don't have one

already.

A make utility is used in conjunction with a special text �le known as a make�le. This �le is

conventionally just called makefile and in HIPR you will �nd a ready prepared one in the src

sub-directory suitable for use with UNIX make utilities (and with many MS-DOS implementations

as well that automatically convert / to n in pathnames). If you are not using one of these systems

and wish to use the make�le then you will need to edit it slightly in order to set the pathnames to

the important sub-directories correctly. Look at the top of the supplied make�le for guidance and

consult the documentation on the make utility for your system for details.

You do not need to understand what this �le does in order to use it | just make sure that the

current working directory is the src sub-directory, and then run the make program, normally by

just typing make. If you have installed everything else correctly then this is all you will need to

do. The make program will check to see which HIPRscript �les have been modi�ed since the

corresponding HTML and LATEX �les were created, and will run hiprgen.pl on just those �les.

The make�le will also allow you to generate the index relatively painlessly. Simply run make with

the argument `index', e.g. by typing make index.

If you cannot use a make utility then it is of course still possible to regenerate HIPRscript �les by

hand and this is entirely appropriate for relatively small changes.
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Using Figure, Equation and Imageref Tags

The tags nfig, neqnl, neqnd and nimageref all involve special �les in addition to the standard

HTML and LATEX �les that are created from a HIPRscript �le. These additional �les sometimes

need to be supplied by the writer of the HIPRscript �le, and in other cases, they can be generated

automatically by hiprgen.pl. The following sections describe these additional �les and where

they come from.

Note that the facilities that enable hiprgen.pl to generate these additional �les automatically are

amongst the least portable aspects of HIPR. They were used extensively during the development

of HIPR and are included as a bonus here for those experienced enough to make use of them.

However, we cannot provide any support or advice other than that supplied here. Note that you

should not even begin to think about using this feature unless you have a UNIX system. You will

also need to obtain several other programs and utilities such as the PBMplus image manipulation

utilities and GhostScript. Details are given in the relevant section of the Installation Guide (p.34).

Since the automatic generation of additional �les for use with �gures, equations and nimageref
tags is so non-portable, this feature is disabled by default.

nfig Tags

With both HTML and LATEX, the picture that goes into a �gure is included into the HTML or

LATEX from an external �le in the figs sub-directory. In the case of HTML, this picture must

be a GIF image �le, whereas in the case of LATEX, the picture must be stored in encapsulated

PostScript (EPS) format. Therefore both GIF and EPS versions of each �gure must be available

in the figs sub-directory. The two versions are distinguished by their di�erent �le extensions: .gif

and .eps, but otherwise have identical stemnames (which must match up with the �rst argument

of a corresponding nfig tag.

It is possible to get hiprgen.pl to generate the GIF �le automatically from the corresponding EPS

�le. This requires that you �rst install the special HIPR utility hfig2gif, as well as the PBMplus

library, GhostScript and pstoppm.ps. Then you must edit the hiprgen.pl �le, and near the top

of the �le you should change the line:

$AUTO FIGURE = 0;

to:

$AUTO FIGURE = 1;

From this point on, if, during the course of processing a HIPRscript �le, a nfig tag is encountered
for which there is a corresponding EPS �le, but no GIF �le, then a corresponding GIF �le will

be generated from the EPS �le. If you subsequently change the EPS �le and you want to force

hiprgen.pl to regenerate a new matching GIF �le, then simply delete the old GIF �le.

neqnl and neqnd Tags

At the time of writing, HTML provides no support for mathematical equations, unlike LATEX which

does. This situation may be remedied in the future, but for now we have had to use a workaround.

Therefore, equations in HTML are included as small in-line images stored as GIF �les in the eqns

sub-directory. LATEX does provide support for equations, and so no external �les are required for

the LATEX versions of equations.

While these image-equations for use with HTML could be generated by hand, it is possible to get

hiprgen.pl to generate the GIF �le automatically from the LATEX equation code contained in the

equation tag. This requires that you �rst install the special HIPR utility heqn2gif, as well as the

PBMplus library, GhostScript, pstoppm.ps and LATEX. Then you must edit the hiprgen.pl �le,

and near the top of the �le you should change the line:
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$AUTO EQUATION = 0;

to:

$AUTO EQUATION = 1;

From this point on, if, during the course of processing a HIPRscript �le, a neqnl or neqnd tag

is encountered for which there is no corresponding GIF �le then one will be generated from the

LATEX description of the equation. If you subsequently change this description and you want to

force hiprgen.pl to regenerate a new matching GIF �le, then simply delete the old GIF �le.

nimageref Tags

In the HTML output �les, nimageref tags cause a hyperlink to an image in the images sub-

directory to be created. By default, this imagelink takes the form of a miniature version of the

full-size image, known as a thumbnail. This thumbnail must be a GIF �le and is stored in the

thumbs sub-directory. The �les have the slightly unconventional su�x .GIF (i.e. capitalized) in

order to avoid confusion with the full-size images. Conventionally, thumbnails are a factor of four

smaller than their parent image.

Various image manipulation utilities could be used to generate thumbnails by hand, but it is

possible to get hiprgen.pl to generate the thumbnail automatically from the full-size image. This

requires that you �rst install the special HIPR utility himg2thm and the PBMplus library. Then

you must edit the hiprgen.pl �le, and near the top of the �le, you should change the line:

$AUTO THUMBNAIL = 0;

to:

$AUTO THUMBNAIL = 1;

From this point on, if, during the course of processing a HIPRscript �le, a nimageref tag is

encountered for which there is no corresponding thumbnail �le, then one will be generated auto-

matically. If you subsequently change the full-size image and you want to force hiprgen.pl to

regenerate a new matching thumbnail, then simply delete the old thumbnail �le and then re-run

hiprgen.pl on any source �le containing a reference to that image.

When it comes to producing smaller versions of images, not all images are equal. Some images

contain �ne detail which the standard reduction process, which uses the PBMplus utility pnmscale,

destroys. So, for these images, an alternative reduction utility ppmsample has been provided.

Whenever hiprgen.pl has to produce a thumbnail, it looks in a �le called FINE.txtwhich contains

a list of images that require special treatment. If the image to be reduced is in that �le, then the

HIPR utility himg2thm is called with an additional ag (-f) which tells it to use ppmsample if it is

available. Details on how to compile and install ppmsample are provided in the himg2thm script.
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Appendix F

The HIPR Copyright

HYPERMEDIA IMAGE PROCESSING REFERENCE

Copyright c1996 Robert Fisher, Simon Perkins, Ashley Walker and Erik Wolfart

Published by:

John Wiley & Sons Ltd

Ba�ns Lane, Chichester

West Sussex, PO19 1UD, England

National 01243 779777

International (+44) 1234 779777

Visit the Wiley Home Page at:

http://www.wiley.com

or

http://www.wiley.co.uk

Ordering and site licence information:

US orders: kball@wiley.com

UK and rest of the world: lglenn@wiley.co.uk

Any other queries: hipr@wiley.co.uk

All rights reserved.

User License. (p.274)

All material contained within Hypermedia Image Processing Reference (HIPR) is protected by

copyright, whether or not a copyright notice appears on the particular screen where the material

is displayed. No part of the material may be reproduced or transmitted in any form or by any

means, or stored in a computer for retrieval purposes or otherwise, without written permission from

Wiley, unless this is expressly permitted in a copyright notice or usage statement accompanying

the materials or in the user license (p.274). Requests for permission to reproduce or reuse material

for any purpose should be addressed to the Copyright and Licensing Department, John Wiley &

Sons Ltd, Ba�ns Lane, Chichester, West Sussex, PO19 1UD, UK; Telephone +44 1243 770429;

Email info-assets@wiley.co.uk

Neither the authors nor John Wiley & Sons Ltd accept any responsibility or liability for loss or

damage occasioned to any person or property through using the materials, instructions, methods
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or ideas contained herein, or acting or refraining from acting as a result of such use. The authors

and Publisher expressly disclaim all implied warranties, including merchantibility or �tness for any

particular purpose. There will be no duty on the authors or Publisher to correct any errors or

defects in the software.

Designations used by companies to distinguish their products are often claimed as trademarks. In

all instances where John Wiley & Sons are aware of a claim, the product names appear in initial

capital or all capital letters. Readers, however, should contact the appropriate companies for more

complete information regarding trademarks and registration.

Other Wiley Editorial O�ces:

� John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

� Jacaranda Wiley Ltd, 33 Park Road, Milton, Queensland 4064, Australia

� John Wiley & Sons (Canada) Ltd, 22 Worcester Road Rexdale, Ontario, M9W 1L1, Canada

� John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop Jin Xing Distripark, Singapore 0512
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Appendix G

User License

Although HIPR can be run directly from the installation CD, the package is intended for local

area network use. If you wish to use HIPR in a networked con�guration, a site license must be

purchased (p.314) from the Publisher (p.272). The license restricts the range of access to a speci�ed

site. It is prohibited to make HIPR available over the WWW outside the licensed site.

A site is de�ned as a single academic department of a university, college or other school of learning,

where all taught courses fall within a single subject discipline. A license for networking the product

by multiple academic departments or by a commercial organization is available on application.

There is no limit to the number of users at a licensed site or to the term of the site license.

What the license entitles you to do:

Once you have paid your license fee and signed the license agreement, you are entitled to make the

product available electronically to all the people you have paid for. They can use it freely, including

making multiple printouts of the complete text, to a maximum of one copy per student for internal

classroom use, or downloading extracts temporarily to hard disk for research or study. They can use

all images for research or educational purposes but will need to make speci�c acknowledgements;

refer to the online subject image library for details of acknowledgements required. They are

entitled to create customized versions of the product for use within the licensed site. One copy of

the original can be made for backup purposes.

What you can't do:

You must not allow electronic access to the product or to customized versions of the product, or

send printed copies, to anyone other than those for whom it is licensed. You may not resell any

part of the product, or use extracts to create a further product for sale, without written agreement

from Wiley. It is up to you to make sure that the product is used properly.

The following are the full terms and conditions which apply when HIPR is used as a networked

product.

SITE LICENSE TERMS AND CONDITIONS

De�nitions

1 (a) `The Site' means and refers to, inclusively, all o�ces and facilities of the Licensee at which

the Product is authorized for use by Users, the addresses of which are listed in the Order

Form.

1 (b) `The Product' means and refers to the electronic publication or service set forth in the Order

Form.

1 (c) `User' means and refers to all professors, teaching sta� and enrolled students on the

course(s)/within the academic departments listed in the Order Form OR all paid employees

at the Site.
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1 (d) `Fee' means and refers to the amount to be paid by the Licensee for the license granted by

this agreement, as set forth in the Order Form. This Agreement shall not be binding upon

Wiley unless Wiley has received timely payment of the Fee.

Commencement and License

2 (a) This Agreement commences upon receipt by Wiley of the signed and unaltered Agreement

(`the Commencement Date').

2 (b) This is a license agreement (`the Agreement') for the use of the product by the Licensee,

and not an agreement for sale.

2 (c) Wiley licenses the Licensee on a non-exclusive and non-transferable basis to use the Product

on condition that the Licensee complies with the terms of the Agreement. The Licensee

acknowledges that it is only permitted to use the Product in accordance with the terms of

the Agreement.

2 (d) The person signing this agreement for and on behalf of the Licensee represents that he or

she is authorized to do so, and to bind the Licensee thereby.

Installation and Use

3 (a) Wiley shall supply to the Licensee the number of copies of the Product speci�ed in the

Order Form.

3 (b) Delivery shall be to the address speci�ed on the Order Form.

3 (c) The Licensee shall be responsible for installing the Product and for the e�ectiveness of such

installation..

3 (d) The Licensee may store the Product electronically and may arrange for Users to have access

to the Product at computer terminals at the Site only.

Payment

4 (a) The Licensee agrees to pay Wiley the amount set out in the Order Form(`the Fee').

4 (b) Fees are exclusive of VAT or other taxes, which are the responsibility of the Licensee.

4 (c) Wiley shall have the right as a non-exclusive remedy to withhold delivery of the Product

until all overdue amounts payable by the Licensee under this Agreement have been paid.

Permitted Activities

5 (a) The Licensee shall be entitled:

(i) to use the Product at the Site

(ii) to use the Product for its own internal purposes

(iii) to make a maximum of one paper copy per student for internal classroom use

(iv) to make one copy of the Product for backup/archival/disaster recovery purposes

(v) to modify and customize the Product and to make one copy of the modi�ed product for

backup/archival/disaster recovery purposes, provided that such copy is clearly identi�ed

and distinguished from the original product.

5 (b) Licensee may transmit the Product electronically to Users at any computer terminal within

the Site.
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5 (c) Each User shall have the right to access, search and view the Product at any computer

terminal at the Site.

5 (d) The Licensee acknowledges that its rights to use the Product are strictly as set out in this

Agreement, and all other uses (whether expressly mentioned in Clause 6 below or not) are

prohibited.

Prohibited Activities

6 (a) The Licensee may not transmit the Product or extracts therefrom electronically, in print or

by any other means, or allow copies of the Product to be otherwise stored or accessed by

any person or at any computer terminal, whether or not owned and operated by the User,

anywhere beyond the premises of the authorized Site.

6 (b) The Licensee may not connect the Product to a system network which permits use anywhere

other than at the addresses designated as the Site in the Order Form.

6 (c) The Licensee may not exploit any part of the Product commercially, including commercial

training courses or seminars.

6 (d) The Licensee may not sell, rent, loan (free or for payment), hire out or sublicense the

Product or any derivative Work to any third party, without the express written consent of

Wiley.

6 (e) The Licensee may not undertake any activity which may impede Wiley's ability or oppor-

tunity to market the Product.

6 (f) The Licensee may not provide services to third parties using the Product, whether by way

of trade or otherwise.

6 (g) The Licensee may not use the Product to make any derivative work, product or service save

as expressly provided for in this Agreement.

6 (h) The Licensee may not alter, amend, modify or change the Product in any way, whether for

purposes of error-correction or otherwise, other than as explicitly permitted by the nature of

the Product.

6 (i) The Licensee may not make the contents of the Product available on a computer bulletin

board without the express written permission of Wiley.

General Responsibilities of the Licensee

7 (a) The Licensee will take all reasonable steps to ensure that the Product is used in accordance

with the terms and conditions of this Agreement , and shall advise all Users of the permitted

use, restrictions and provisions set out herein.

7 (b) The Licensee acknowledges that damages may not be a su�cient remedy for Wiley in the

event of breach of this Agreement by the Licensee, and that an injunction may be appropriate.

7 (c) The Licensee agrees to indemnify Wiley against any and all other claims, damages, losses

and expenses (including reasonable legal fees) arising from

(i) any misuse of the Product by the Licensee or Users

(ii) any misuse by any third party,

where such misuse occurs, in either (i) or (ii), as a result of breach by the Licensee of this

Agreement.

(iii) any breach by Licensee or Users of any provisions of this Agreement

(iv) any of Licensee's or Users' activities relating to this agreement.

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



277

7 (d) The Licensee undertakes to keep the Product safe, and to use its best endeavors to ensure

that the Product does not fall into the hands of third parties, whether as a result of theft or

otherwise.

7 (e) Wiley may, at its option, institute or defend any action arising out of the aforesaid clauses

with a legal advisor of its own choice.

Warranties and Indemnities

8 (a) Wiley warrants that it has the authority to enter into this Agreement, and that it has secured

all necessary rights and permissions necessary to enable the Licensee to use the Product in

accordance with this Agreement.

8 (b) Wiley warrants that the CD-rom/Diskettes as supplied on the Commencement shall be

free of defects in materials and workmanship, and undertakes to replace any defective CD-

rom/diskette upon notice of such defect, or within thirty (30) days of such notice being

received, provided such notice is received within ninety (90) days of supply. As an alternative

to replacement/remedy, Wiley agrees to refund the Fee if the Licensee so requests, provided

that the Licensee returns the CD-rom/Diskettes to Wiley. The provisions of this clause do

not apply where the defect results from an accident or from misuse by the Licensee.

8 (c) Clause 8 (b) sets out the sole and exclusive remedy of the Licensee in relation to defects in

the Product.

8 (d) Wiley and the Licensee acknowledge that Wiley supplies the Product on an `as is' basis.

Wiley gives no warranties

(i) that the Product satis�es the individual requirements of the Licensee

(ii) that the Product is otherwise �t for the Licensee's purpose

(iii) that the Product is accurate or complete or free of errors or omissions or

(iv) that the Product is compatible with the Licensee's hardware equipment and software

operating environment.

8 (e) Wiley hereby disclaims all other warranties and conditions, express or implied,which are not

stated above.

8 (f) Nothing in this clause limits Wiley's liability to the Licensee in the event of death or personal

injury resulting from Wiley's negligence.

8 (g) Subject to subclause 8 (f) above, Wiley's liability under this Agreement shall be limited to

the Fee.

8 (h) The above warranties and indemnities shall survive the termination of this Agreement.

Intellectual Property Rights

9 (a) Nothing in this Agreement a�ects the ownership of copyright or other intellectual property

rights in the Product.

9 (b) The Licensee agrees to display the authors' copyright notice as it appears in the Product,

and not to remove such copyright notice from any part of the Product.

9 (c) Other than as provided in Clause 9 (b) above, the Licensee shall not use (including, without

limitation, reprint or reproduce in any way) the Wiley logo or any trademark in connection

with any permitted use of the Product.

Termination
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10 (a) Wiley shall have the right to terminate this Agreement, at its own discretion, if:

(i) the Licensee is in material breach of this Agreement and fails to remedy such breach

(where capable of remedy) within fourteen (14) days of a written notice from Wiley

requiring it to do so

(ii) the Licensee ceases to operate in business/education

(iii) upon thirty (30) days' notice to Licensee if Wiley discontinues marketing the Product.

In such case, Wiley may make a pro rata refund if the product is less than �ve (5) years

old.

(iv) automatically, if this license is not returned to Wiley signed within sixty (60) days of

receipt by Licensee.

10 (b) The Licensee shall have the right to terminate this Agreement for any reason upon ninety

(90) days written notice. The Licensee shall not be entitled to any refund for payments made

under this Agreement prior to termination under this sub-clause.

10 (c) This Agreement shall be terminated automatically, on return of the product and any print

copies made of it in undamaged condition, within thirty (30) days of receipt by the Licensee.

In such case, the Fee will be refunded in full.

10 (d) Termination by either of the parties is without prejudice to any other rights or remedies

under the general law to which they may be entitled, or which survive such termination.

10 (e) Upon Termination of this Agreement the Licensee must:

(i) deinstall the Product from all computers and sign a written undertaking to that e�ect

(ii) destroy all back-up copies of the Product and any derivative Work in electronic or print

format

(iii) return the CD-rom/Diskettes to Wiley.

10 (f) No Fee shall be refunded on Termination, other than under the provisions of Clause 10 (a)

(iii) and 10 (c) above. To qualify for a refund of the Fee, the Licensee must deinstall the

Product from all computers and provide a written undertaking to that e�ect.

Notice

11 (a) Any Notice required or given under this Agreement by any party hereto shall be provided

in writing to the other party at the address set out at the end of this Agreement or at other

such address as such parties shall provide.

11 (b) All Notices to Wiley or enquiries concerning this Agreement shall be sent to John Wiley

& Sons Ltd, Ba�ns Lane, Chichester, West Sussex, PO19 1UD, marked for the attention of

the Director of Copyright and Licensing.

11 (c) Any Notices to the Licensee or enquiries concerning this Agreement shall be sent to the

Licensee at the address and contact name identi�ed in the Order Form.

General

12 (a) This Agreement embodies the entire agreement between Wiley and the Licensee concerning

the Product, and supersedes any and all prior understanding and agreements, oral or written,

relating to the subject matter hereof.

12 (b) Wiley may assign this Agreement to its successors, related companies or assignees. This

Agreement may not be assigned by the Licensee without Wiley's written consent.

12 (c) Any amendments hereto must be in writing and signed by both parties.
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12 (d) Wiley hereby agrees to comply fully with all relevant export laws and regulations of the

United Kingdom to ensure that the Product is not exported, directly or indirectly, in violation

of English law.

12 (e) The parties accept no responsibility for breaches of this Agreement which occur as a result

of circumstances beyond their control.

12 (f) Any failure or delay by either party to exercise or enforce any right conferred by this

Agreement shall not be deemed to be a waiver of such right.

12 (g) If any provision of this Agreement is found to be invalid or unenforceable by a court of

law of competent jurisdiction, such a �nding shall not a�ect the other provisions of this

Agreement and all provisions of this Agreement una�ected by such a �nding shall remain in

full force and e�ect.

12 (h) This Agreement is construed and interpreted under UK law and the parties hereby agree

that any dispute arising under this Agreement shall be subject to the jurisdiction of the

English courts.
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Appendix H

About the Authors

HIPR was created in the Department of Arti�cial Intelligence at the University of Edinburgh by

the following people:

Dr. Robert Fisher has been a tenured lecturer in the Department of Arti�cial Intelligence since

1984 and a Senior Lecturer since 1992. He has been researching 3D scene understanding for over

10 years, and has worked on model based object recognition using range data, feature extraction in

range data, range data sensors, scanner data and parallel vision algorithms. Recently, he has been

investigating model-matching algorithms, automatic construction of geometric models from shown

examples and surface inspection using range data. He has been the principal investigator of over 1

million pounds of externally funded research projects, and currently has an EPSRC/ACME range

data interpretation project, an EPSRC robotics grasping project, a JISC educational materials

development grant and two EC/HCM visiting fellow research grants. He has published two books

and over 70 conference and journal papers.

Mr. Simon Perkins is currently a PhD student in the Department of Arti�cial Intelligence, look-

ing at ways of integrating engineering-based and evolutionary-based methods of robot design to

produce mobile robots capable of performing complex visual behaviors. Prior to this he worked

full-time on the HIPR project.

Ms. Ashley Walker is working on a PhD thesis in Robotics at the University of Edinburgh. Her

work involves modeling of SONAR sensory phenomena and aims to develop signal processing

algorithms for use in the construction of acoustic maps for mobile robots.

Mr. Erik Wolfart: After completing his �rst degree in Electronical Engineering in Germany, he

went to Edinburgh in 1993 to do the MSc course in the Department of Arti�cial Intelligence. He is

now based at UK Robotics Ltd and is developing vision systems for environmental modeling and

robot control.
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Appendix I

The Image Library

I.1 Introduction

The HIPR package contains a large number of images which can be used as a general purpose

image library for image processing experiments. This section catalogues the images in the library

and describes each image briey. The image �le naming convention is described in the section on

�lename conventions (p.25).

The images may be divided into two main categories. Raw images are images that have had almost

no processing done to them since they were captured. They are the kinds of input image that

standard image sensors | video cameras, scanners, etc. | produce. For the HIPR image library,

such images were obtained by a variety of methods. Some were scanned in from photographs, some

were captured using video cameras, and some were obtained from standard image libraries on the

Internet. The second category of image consists of processed images. These are simply raw images

to which at least one stage of `image processing' has been applied.

These images are catalogued in two di�erent ways, �rstly by subject and type, and secondly as a

straight alphabetical index of image �lenames. Note that the alphabetical listing is ONLY available

in the hypermedia version of HIPR.

The subject/type catalogue is useful if you know the sort of raw image you are looking for and

want to see if HIPR has anything similar in its library. The top level of this catalogue is a list of

image types and categories. Underneath these are listed the di�erent raw images that belong to

each category. Finally, underneath each of the raw image headings is listed the various processed

images that have been produced, starting with that raw image. A brief description of the processing

required to produce each image is also included.

The alphabetical catalogue is more simple, and consists of a straight alphabetical list of the �le-

names of all the images in the HIPR library. Each �lename is in fact a hyperlink to the relevant

explanatory section in the subject/type catalogue (this is why it is only available in the hypermedia

version). It is useful if you know the �lename of a particular image, and want to �nd out where it

comes from and how it was produced.

Additional Sources of Images

If you have an Internet connection, then it is possible to obtain further images from public domain

databases on the Internet. A good starting point for looking for images is the Computer Vision

Home Page which at the time of writing can be found at:

http://www.cs.cmu.edu/~cil/vision.html
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Alternatively, collections of images on CD-ROM can be purchased for a variety of purposes from

appropriate suppliers. Computer magazines are generally a good source of manufacturers' ad-

dresses.

I.2 Image Catalogue by Subject/Type

This is the Image Catalogue by Subject/Type. Here the large (i.e. over 700 items) list of Image

Library items has been divided into a collection of indexed smaller item sections based on the

subject matter depicted within each image. Each of the categories listed provides a link to a

second layer of the catalogue, which contains a description of every raw image of that subject

type. (Note that where images fall into more than one of the categories below, they will appear in

each.) For every raw image in the second layer which has been processed as part of a worksheet

example, a link to the third (and �nal) catalogue layer exists. This third layer displays the derived

images with links to the worksheets which describe the operation(s) performed on them in the

image processing examples.

Image Subject/Type

Architecture

The Architecture Image Catalogue section contains images of buildings (e.g. o�ce buildings, homes,

castles, churches, etc.) and other structures (e.g. bridges, statues, stained glass windows, etc.) of

architectural interest.

bld1 412�663 grayscale of Scott Monument, Edinburgh, Scotland.

bld1pin1 Result of scaling (p.90) bld1 using pixel interpolation.

bld1psh1 Result of scaling (p.90) bld1 using pixel replacement.

bld1hst1 Intensity histogram (p.105) of bld1.

bld1cuh1 Cumulative intensity histogram (p.105) of bld1.

bld1heq1 Result of histogram equalizing (p.78) bld1.

bld1crp1 Result of cropping bld1.

bld1cuh2 Cumulative intensity histogram (p.105) of bld1crp1.

bld1heq2 Result of histogram equalizing (p.78) bld1crp1.

bld1or1 Result of ORing (p.58) bld1crp1 with its histogram (p.105).

bld1xor1 Result of XORing (p.60) bld1crp1 with its histogram (p.105).

brg1 256�256 grayscale of wooden bridge over a small river.

brg1blu1 Non-ideal optical transfer function (OTF) image simulated by multiplying (p.48)

the Fourier Transform (p.209) of brg1 with the Fourier Transform of a Gaussian image

with standard deviation = 5.

brg1dec1 Result obtained by dividing the Fourier Transform (p.209) of brg1blu1 by the

Fourier Transform of the Gaussian blurring kernel.

brg1blu2 Result of adding 0.1% salt and pepper noise (p.221) to brg1blu1.

brg1dec2 Result obtained by dividing the Fourier Transform (p.209) of brg1blu2 by the

Fourier Transform of the Gaussian blurring kernel.

brg1dec3 Result obtained by dividing the Fourier Transform (p.209) of brg1blu2 by the

Fourier Transform of the Gaussian blurring kernel and ignoring values of the OTC

which fall below a threshold of 3.
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brg1blu3 Non-ideal optical transfer function (OTF) image simulated by convolving brg1

with a spatial domain Gaussian image with standard deviation = 5.

brg1dec4 Result obtained by dividing the Fourier Transform (p.209) of brg1blu3 by the

Fourier Transform of the Gaussian blurring kernel.

brg1dec5 Result obtained by dividing the Fourier Transform (p.209) of brg1blu3 by the

Fourier Transform of the Gaussian blurring kernel and ignoring values of the OTC

which fall below a threshold of 5.

Any use of this image must include the acknowledgement: `We thank Georgia Institute of

Technology for the use of these images acquired from their on-line image database.'

brg2 583�350 8-bit color of Forth Road Bridge, Edinburgh, Scotland.

brg3 Graylevel equivalent of brg2.

brg3can1 Result of applying the Canny edge detector (p.192) to brg3.

brg3lda1 Result of applying line detection (p.202) to brg3.

brg3add2 Result of smoothing before applying line detection (p.202) to brg3.

bri1 695�488 8-bit color of Brighton Pavilion, Brighton, England.

bri2 Grayscale equivalent of bri1.

Any use of this image must include the acknowledgement: `We thank Dr. A. Dil of the

Department of Arti�cial Intelligence, University of Edinburgh for the use of this image.'

cam1 256�256 grayscale of man with camera.

cam1pin1 Result of zooming (p.90) cam1 using pixel interpolation.

cam1exp1 Result of zooming (p.90) cam1 using pixel replication.

Any use of this image must include the acknowledgement: `We thank Georgia Institute of

Technology for the use of these images acquired from their on-line image database.'

cas1 346�552 8-bit color of Edinburgh Castle, Scotland. Any use of this image must include

the acknowledgement: `We thank Dr. A. Dil of the Department of Arti�cial Intelligence,

University of Edinburgh for the use of this image.'

crs1 388�675 8-bit color of Celtic cross at Iona Abbey, Scotland. Any use of this image must

include the acknowledgement: `We thank Dr. A. Dil of the Department of Arti�cial Intelli-

gence, University of Edinburgh for the use of this image.'

lao1 395�583 8-bit color of Laon Cathedral, France. Any use of this image must include the ac-

knowledgement: `We thank Dr. A. Dil of the Department of Arti�cial Intelligence, University

of Edinburgh for the use of this image.'

lib1 293�386 8-bit color of Statue of Liberty, Ellis Island, U.S.A.

pdc1 439�391 8-bit color of Palais de Chaillot, France. Any use of this image must include

the acknowledgement: `We thank Dr. A. Dil of the Department of Arti�cial Intelligence,

University of Edinburgh for the use of this image.'

sfc1 599�360 8-bit color close-up of city center �nancial district. Any use of this image must

include the acknowledgement: `We thank Mr. D. Walker for the use of this image.'

sff1 587�359 8-bit color of San Francisco, Calif, U.S.A. on a foggy day.

sff1sca1 Cropped grayscale version of the original.

sff1can1 Result of edge detecting sff1sca1 using the Canny operator (p.192).

sff1hou1 Hough transform (p.214) space of sff1can1.
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sff1hou2 Reconstructed edges with peak value bigger than 70% of maximum peak from the

Hough Transform in sff1hou1 superimposed on sff1can1.

sff1hou3 Reconstructed edges with peak value bigger than 50% of maximum peak from the

Hough Transform in sff1hou1 superimposed on sff1can1.

Any use of this image must include the acknowledgement: `We thank Mr. D. Walker for the

use of this image.'

sfn1 589�392 8-bit color of San Francisco, Calif, U.S.A. on a clear night. Any use of this image

must include the acknowledgement: `We thank Mr. D. Walker for the use of this image.'

sta1 409�598 8-bit color of small statue.

sta2 Graylevel equivalent of sta1.

sta2mea1 Result of mean �ltering (p.150) sta1 using a 3�3 kernel.
sta2mea2 Result of mean �ltering (p.150) sta1 using a 7�7 kernel.
sta2mea3 Result of applying 3 passes of a 3�3 mean �lter (p.150) to sta1.

sta2noi1 Result of adding 5% salt and pepper noise (p.221) to sta2.

sta2csm1 Result of applying conservative smoothing (p.161) to sta2noi1.

sta2med1 Result of median �ltering (p.153) sta2noi1 with a 3�3 kernel.
sta2med2 Result of median �ltering (p.153) sta2noi1 with a 7�7 kernel.
sta2med3 Result of applying 3 passes of a 3�3 median �ltering (p.153) to sta2noi1.

sta2crm1 Result of applying 10 iterations of Crimmins Speckle Removal Algorithm (p.164)

to sta2noi1.

sta2noi2 Result of adding 1% salt and pepper noise (p.221) to sta2.

sta2gsm1 Result of Gaussian smoothing (p.156) sta2noi2 with a standard deviation = 1

�lter.

sta2gsm2 Result of Gaussian smoothing (p.156) sta2noi2 with a standard deviation = 2

�lter.

wal1 620�406 grayscale of period o�ce building.

wal2 256�256 grayscale of modern o�ce building.

win1 334�659 8-bit color of stained glass window in St. Margaret's Chapel, Edinburgh, Scotland.

Any use of this image must include the acknowledgement: `We thank Dr. A. Dil of the

Department of Arti�cial Intelligence, University of Edinburgh for the use of this image.'

Arti�cial

The Arti�cial Image Catalogue contains a collection of computer generated binary images. Most

images contain a single (of very few) instance(s) of a geometric shape (constructed using, e.g. a

paint program), however, there are some more sophisticated computer graphics (e.g. generated by

modeling software).

art1 222�217 binary of circles and lines.

art1rot1 Result of rotating (p.93) art1 by 180 degrees about a point (x = 150; y = 150).

art1rot2 Result of rotating (p.93) art1 by 45 degrees about the image center.

art2 205�245 binary of criss-cross lines.

art2trn1 Result of translating (p.97) art2 by 110 pixels in the x-direction and 120 pixels

in the y-direction, and wrapping the result.
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art2sub1 Result of translating (p.97) art2 by 1 pixel in the x-direction and y-direction, and

then subtracting this from the original.

art2trn2 Result of rotating (p.93) art2 by 180 degrees about its center, displacing it by 1

pixel in the x and y-directions and then subtracting this result from the original.

art2opn1 Result of opening (p.127) art2 with a 3�9 structuring element (p.241).
art2opn2 Result of opening (p.127) art2 with a 9�3 structuring element (p.241).
art2ldh1 Normalized result of horizontal line detecting (p.202) art2.

art2crp1 Cropped and zoomed (p.90) version of art2.

art2crp2 Cropped and zoomed (p.90) version of art2ldh1.

art2skl1 Skeletonized (p.145) version of art2.

art2ldh2 Normalized result of horizontal line detecting (p.202) art2skl1.

art2ldh3 Result of thresholding (p.69) art2ldh2.

art2ldh4 Result of applying the same thresh (p.69) to art2ldh1.

art2crp3 Cropped and zoomed (p.90) version of art2ldh1.

art2crp4 Cropped and zoomed (p.90) version of art2ldh2.

art2ldv2 Normalized result of vertical line detecting (p.202) art2skl1.

art2ldv1 Result of thresholding (p.69) art2ldv2.

art2ldp2 Normalized result of line detecting (p.202) the oblique 45 degree lines in art2skl1.

art2ldp1 Result of thresholding (p.69) art2ldp2.

art2ldn2 Normalized result of line detecting (p.202) the oblique 135 degree lines in art2skl1.

art2ldn1 Result of thresholding (p.69) art2ldn2.

art2add1 Result of pixel adding (p.43) art2ldh3, art2ldv1, art2ldp1 and art2ldn1.

art3 222�217 binary inversion of art1.

art3opn1 Result of opening (p.127) art3 with a disk of diameter 11.

art3trn1 Result of translating (p.97) art3 by 150 pixels in the x and y-directions.

art4 300�300 binary of circle �lled with holes.

art4neg1 Negative (p.63) of art4

art4clo1 Result of closing (p.130) art4 with a disk of diameter 22.

art4ctr1 Result of translating (p.97) art4 in order to center the image subject.

art4trn1 Result of translating (p.97) art4ctr1 by 150 pixels in the x and y directions.

art4trn2 Result of translating (p.97) art4ctr1 by 150 pixels in the x and y directions, and

wrapping the result.

art4trn3 Result of translating (p.97) art4ctr1 by 35 pixels in the x direction and 37 pixels

in the y direction.

art7add1 Result of pixel adding (p.43) art7trn1 to art4trn3.

art4rot1 Result of rotating (p.93) art4ctr1 by 180 degrees about the image center.

art4ref1 Result of reecting (p.95) art4ctr1 about a vertical axis through the image center.

art4dil1 Result of dilating (p.118) art4.

art4dil2 Result of dilating (p.118) art4neg1.

art5 256�256 binary of rectangle.

art5dst1 Result of Euclidean distance transforming (p.206) art5 (and then pixel multiply-

ing (p.48) by 5.
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art5skl1 Result of skeletonizing (p.145) art5.

art5mat1 The medial axis transform (p.145) of art5.

art5cha1 Result of image editing (p.233) art5.

art5ske2 Result of skeletonizing (p.145) art5cha1 (using an algorithm which does not guar-

antee a connected skeleton).

art5ske3 Result of skeletonizing (p.145) art5cha1.

art5cha2 Result of image editing (p.233) art5.

art5dst3 The brightened (p.48) (by a factor of 6) distance transform (p.206) of art5cha2.

art5noi1 Result of adding pepper noise (p.221) to art5.

art5dst2 The brightened (p.48) (by a factor of 15) distance transform (p.206) of art5noi1.

art5ske5 Result of skeletonizing (p.145) art5noi1.

art5low1 Result of frequency �ltering (p.167) art5 with an ideal lowpass �lter with a cut-o�

of 2
3
.

art5low3 Result of histogram equalizing (p.78) art5low1.

art5low2 Result of frequency �ltering (p.167) art5 with an ideal lowpass �lter with a cut-o�

of 1
3
.

art5low4 Result of frequency �ltering (p.167) art5 with a Butterworth �lter with a cut-o�

of 2
3 .

art6 256�256 binary of rounded, elongated object.

art6inv1 The inverse (p.63) of art6.

art6dst1 Result of Euclidean distance transforming (p.206) art6 (and then pixel multiply-

ing (p.48) by 3.

art6skl1 Result of skeletonizing (p.145) art6.

art6mat1 The medial axis transform (p.145) of art6.

art7 256�256 binary of skewed doughnut shaped object.

art7ref1 Result of reecting (p.95) art7 about a horizontal axis passing through the image

center.

art7trn1 Result of subsampling (p.90) art7 and then translating (p.97) the image subject

to the upper left corner of the image.

art7add1 Result of pixel adding (p.43) art7trn1 to art4trn3.

art7add2 Result of translating (p.97) art7 and then pixel adding (p.43) back onto the

original.

art7dst1 Result of distance transforming (p.206) art7 (and then pixel multiplying (p.48)

by 4.

art7skl1 Result of skeletonizing (p.145) art7.

art7mat1 The medial axis transform (p.145) of art7.

art7ham1 Result of hit-and-miss transforming (p.133) art7skl1, followed by dilation (p.118)

with a cross-shaped element and, �nally, ORing (p.58) with the original skeleton.

art7ham2 Result of hit-and-miss transforming (p.133) art7skl1, followed by dilation (p.118)

with a square-shaped element and, �nally, ORing (p.58) with the original skeleton.

art8 256�256 binary of multiple crosses.

art8thk1 Result of thickening (p.142) art8 to produce convex hull.

art8thk2 Result of thickening (p.142) art8 to produce skeleton of background.
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art8thk3 Result of thickening (p.142) art8 to produce a pruned version of art8thk2, i.e.

the SKIZ.

art8lab2 The labeled 8-bit color result of connected components labeling (p.114) art8.

art8lab1 The grayscale equivalent of art8lab2.

art8noi1 The result of adding salt noise (p.221) to art8.

art8thk4 The SKIZ (p.142) of art8noi1.

art9 323�300 binary of propeller shaped object.

art9ref1 Result of reecting (p.95) art9 about an oblique axis, e.g. one passing through

45 degrees.

che1 256�256 grayscale of chess board.

che1noi1 Result of adding 2% salt and pepper noise (p.221) to che1.

che1noi2 Result of adding Gaussian noise (p.221) (standard deviation = 13) to che1.

cir1 171�150 binary of doughnut shaped object.

cir2 512�512 binary circle centered in the right of the image.

cir2neg1 Result of inverting (p.63) cir2.

cir2or1 Result of ORing (p.58) cir2 with cir3.

cir2or2 Result of ORing (p.58) cir2neg1 with cir3neg1.

cir3 512�512 binary circle centered in the left of the image.

cir3neg1 Photographic negative of cir3.

reg1 160�160 binary of arti�cial boundary.

reg1neg1 The inversion (p.63) of reg1.

reg1fst1 Arti�cial binary image showing one pixel which lies inside the region de�ned in

reg1.

reg1dil1 Result of dilating (p.118) reg1fst1 using custom structuring element.

reg1and1 Result of ANDing (p.55) reg1dil1 and reg1neg1.

reg1dil2 Result of dilating (p.118) reg1and1.

reg1and2 Result of ANDing (p.55) reg1dil2 and reg1neg1.

reg1and3 Result of dilating (p.118) reg1and2 and then ANDing (p.55) it with reg1neg1.

reg1and4 Result of dilating (p.118) reg1and3 and then ANDing (p.55) it with reg1neg1.

reg1and5 Result of dilating (p.118) reg1and4 and then ANDing (p.55) it with reg1neg1.

reg1and6 Result of dilating (p.118) reg1and5 and then ANDing (p.55) it with reg1neg1.

reg1and7 Result of dilating (p.118) reg1and6 and then ANDing (p.55) it with reg1neg1.

reg1fil1 Result of ORing (p.58) reg1and7 with reg1.

rlf1 256�256 binary of triangle, hexagon and squares.

rlf1aff1 Result of applying an a�ne transformation (p.100) (i.e. translation) to rlf1.

rlf1aff2 Result of applying an a�ne transformation (p.100) (i.e. rotation) to rlf1.

rlf1aff3 Result of applying an a�ne transformation (p.100) (i.e. reection) to rlf1.

rlf1aff4 Result of applying an a�ne transformation (p.100) (i.e. general a�ne warping)

to rlf1.
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rlf1aff5 Result of applying an a�ne transformation (p.100) (i.e. translation and geometric

scaling) to rlf1.

sqr1 256�256 binary of occluding rectangles.

sqr1can1 Result of applying the Canny edge detector (p.192) to sqr1.

sqr1can2 Result of adding 1% salt and pepper noise (p.221) to sqr1can1.

sqr1can3 Result of image editing (p.233) sqr1can1.

sqr1hou1 Hough transform (p.214) of sqr1can1.

sqr1hou2 Histogram equalized (p.78) version of sqr1hou1.

sqr1hou3 Lines found from analysis of Hough transform (p.214) of sqr1can1, overlaid on

top of original image sqr1.

sqr1hou4 Hough transform (p.214) of sqr1can2 (after histogram equalization (p.78)).

sqr1hou5 Lines found from analysis of Hough transform (p.214) of sqr1can2, overlaid on

top of original image sqr1.

sqr1hou6 Hough transform (p.214) of sqr1can3 (after histogram equalization (p.78)).

sqr1hou7 Lines found from analysis of Hough transform (p.214) of sqr1can3, overlaid on

top of original image sqr1.

stp1 256�256 binary of diagonal stripes.

stp1fur1 Result of applying a Fourier Transform (p.209) to stp1.

stp1fur2 Result of applying a logarithmic transform (p.82) to the Fourier Transform (p.209)

of stp1.

stp1fur3 Result of thresholding (p.69) stp1fur1 at a value of 13.

stp1fur4 Result of thresholding (p.69) the adding (p.43) of the Fourier Transform (p.209)

of stp1 and stp2.

stp1fil2 Inverse Fourier Transform (p.209) of stp1fur4.

stp1fur5 Logarithmic transform (p.82) of the product (p.48) of stp1fur1 and an image of

a circle (radius = 32).

stp1fil1 Inverse Fourier Transform (p.209) of stp1fur5.

stp1fur6 Result of scaling down (p.48) the Fourier Transform (p.209) of stp1 with 0.0001

before applying logarithmic transfrom (p.82).

stp2 256�256 binary of vertical stripes (2 pixels wide).

stp2fur1 Result of applying a Fourier Transform (p.209) to stp2.

stp1fur4 Result of thresholding (p.69) the adding (p.43) of the Fourier Transform (p.209)

of stp1 and stp2.

stp1fil2 Inverse Fourier Transform (p.209) of stp1fur4.

stp3 256�256 binary of vertical and diagonal stripes

stp3fur1 Result of applying a Fourier transform (p.209) to stp3.

(i.e. the pixel addition (p.43) of stp1 and stp2).
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Astronomical

The Astronomical Image Catalogue contains a collection of images depicting lunar surfaces and

galactic star clusters.

lun1 640�400 8-bit color of lunar vehicle. Any use of this image must include the acknowledge-

ment: `We thank the NASA Dryden Research Aircraft Photo Archive use of this image.'

mof1 320�200 8-bit color of astronaut on the moon. Any use of this image must include the

acknowledgement: `We thank the NASA Dryden Research Aircraft Photo Archive use of this

image.'

moo1 512�512 grayscale of lunar surface.

moo1bld1 Result of blending (p.53) moo1 and fce6.

Any use of this image must include the acknowledgement: `We thank the NASA Dryden

Research Aircraft Photo Archive use of this image.'

moo2 512�512 grayscale of lunar surface (low contrast).

moo2hst2 Intensity histogram (p.105) of moo2.

moo2str1 Result of contrast stretching (p.75) moo2.

moo2heq1 Result of histogram equalizing (p.78) moo2.

moo2hst1 Intensity histogram (p.105) of moo2heq1.

moo2lab1 The labeled 8-bit color image resulting from applying connected components la-

beling (p.114) to a binary version of moo2str1.

moo2lab2 The grayscale equivalent of moo2str1.

Any use of this image must include the acknowledgement: `We thank the NASA Dryden

Research Aircraft Photo Archive use of this image.'

str1 256�256 grayscale of Horsehead Nebula. Any use of this image must include the acknow-

ledgement: `We thank Royal Greenwich Observatory, the Starlink Project and Rutherford

Appleton Laboratory for the use of this image.'

str2 256�256 grayscale of NGC1365 spiral galaxy. Any use of this image must include the acknow-
ledgement: `We thank Royal Greenwich Observatory, the Starlink Project and Rutherford

Appleton Laboratory for the use of this image.'

str3 256�256 grayscale of NGC1097 spiral galaxy (interesting because of a jet coming from the

galactic center. Any use of this image must include the acknowledgement: `We thank Royal

Greenwich Observatory, the Starlink Project and Rutherford Appleton Laboratory for the

use of this image.'

Faces

The Faces Image Catalogue contains a collection of images depicting animal (mostly human) faces.

Each image listed below contains a di�erent subject unless otherwise noted.

ape1 512�512 grayscale of mandrill.

ape1and1 Result of ANDing (p.55) ape1 with 00000001 binary.

ape1and4 Result of ANDing (p.55) ape1 with 00001000 binary.

ape1and6 Result of ANDing (p.55) ape1 with 00100000 binary.

ape1and7 Result of ANDing (p.55) ape1 with 01000000 binary.
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ape1and8 Result of ANDing (p.55) ape1 with 10000000 binary.

ape1opn1 Result of graylevel opening (p.127) ape1 with a 5�5 square structuring element.
ape1clo1 Result of graylevel closing (p.130) ape1 with a 3�3 square structuring element.
ape1ref1 Result of reecting (p.95) the left half of ape1 about a vertical axis through the

middle of the image.

ape1ref2 Result of reecting (p.95) the right half of ape1 about a vertical axis through the

middle of the image.

bab4 393�334 8-bit color of baby. Any use of this image must include the acknowledgement: `We

thank Dr. X. Huang of the Department of Arti�cial Intelligence, University of Edinburgh for

the use of this image.'

cln1 256�256 grayscale of clown.

cln1can1 Result of applying the Canny edge detector (p.192) to cln1 (threshold: (p.69) 255,

1; Gaussian �: 1.0.

cln1can2 Result of applying the Canny edge detector (p.192) to cln1 (threshold: (p.69) 255,

220; Gaussian �: 1.0.

cln1can3 Result of applying the Canny edge detector (p.192) to cln1 (threshold: (p.69) 128,

1; Gaussian �: 1.0.

cln1can4 Result of applying the Canny edge detector (p.192) to cln1 (threshold: (p.69) 128,

1; Gaussian �: 2.0.

cln1fur1 The magnitude image resulting from Fourier Transforming (p.209) cln1.

cln1fur2 The logarithm of the magnitude image resulting from Fourier Transforming (p.209)

cln1.

cln1fur3 The phase image resulting from Fourier Transforming (p.209) cln1.

cln1fil1 The inverse Fourier Transform (p.209) of cln1fur1.

cln1noi1 Result of adding Gaussian noise (p.221) to cln1, mean = 0, standard deviation =

8.

cln1low1 Result of lowpass �ltering (p.167) cln1noi1 with an ideal �lter and a cut-o�

frequency of 1
3 .

cln1low2 Result of lowpass �ltering (p.167) cln1noi1 with an ideal �lter and a cut-o�

frequency of 0.5.

cln1low3 Result of lowpass �ltering (p.167) cln1noi1with a Butterworth �lter and a cut-o�

frequency of 1
3 .

cln1low4 Result of lowpass �ltering (p.167) cln1noi1with a Butterworth �lter and a cut-o�

frequency of 0.5.

cln1hig1 Result of highpass �ltering (p.167) cln1 with a Butterworth �lter and a cut-o�

frequency of 0.5.

cln1hig2 The absolute value of the �ltered spatial domain image cln1hig1.

cln1log1 Result of applying the Laplacian of Gaussian �lter (p.173), mean = 0, � = 1.0, to

cln1.

cln1log2 Result of applying the Laplacian of Gaussian �lter (p.173), mean = 0, � = 2.0, to

cln1.

cln1log3 Result of applying the Laplacian of Gaussian �lter (p.173), mean = 0, � = 3.0, to

cln1.

cln1zer1 Result of applying zero crossing detection (p.199) to cln1log1.

cln1zer2 Result of applying zero crossing detection (p.199) to cln1log1, where shallow

crossings are ignored.

cln1zer3 Result of applying zero crossing detection (p.199) to cln1log2.

c1996 R. Fisher, S. Perkins, A. Walker and E. Wolfart. Published by J. Wiley & Sons, Ltd. This version of HIPR

may di�er from the original published version due to user customization.



291

cln1zer4 Result of applying zero crossing detection (p.199) to cln1log3.

cln1rob1 Result of applying the Roberts Cross edge detector (p.184) to cln1.

cln1rob2 Result of thresholding (p.69) cln1rob1 at a pixel value of 80.

cln1sob1 Result of applying the Sobel edge detector (p.188) to cln1.

cln1sob2 Result of histogram equalizing (p.78) cln1sob1.

cln1sob3 Result of thresholding (p.69) cln1sob2 at a pixel value of 200.

cln1thn1 Result of thinning (p.137) cln1sob1.

cln1cmp1 Result of applying the Prewitt compass edge detector (p.195) to cln1.

cln1cmp2 The grayscale orientation images of cln1cmp1 after contrast stretching (p.75).

cln1cmp3 The labeled 8-bit color orientation images of cln1cmp1 after contrast stretch-

ing (p.75).

cln1cmp4 Result of histogram equalizing (p.78) cln1cmp1.

cln1trn1 Result of translating (p.97) cln1 by 1 pixel in the x and y directions and then

subtracting from the original.

cln1trn2 Result of translating (p.97) cln1 by 6 pixels in the x and y directions and then

subtracting from the original.

Any use of this image must include the acknowledgement: `We thank Georgia Institute of

Technology for the use of these images acquired from their on-line image database.'

fac1 128�128 range image of face.

fce1 399�291 grayscale of woman.

fce2 299�361 grayscale of man.

fce2usp1 Result of unsharp masking (p.178) fce2.

fce2log1 Result of taking the Laplacian of Gaussian (p.173) of fce2 (standard deviation

1.0).

fce2log2 Result of taking the Laplacian of Gaussian (p.173) of fce2 (standard deviation

1.0) and then subtracting (p.45) from the original.

fce2lap2 Result of taking the Laplacian (p.173) of fce2.

fce2lap1 Result of taking the Laplacian (p.173) of fce2 and then subtracting (p.45) from

the original.

fce3 302�357 grayscale of man.

fce4 283�367 grayscale of man.

fce4exp1 Result of exponential transform (p.85) with basis 1.005

fce4exp2 Result of exponential transform (p.85) with basis 1.01

fce4pow1 Result of raising each pixel to the power (p.85) of 1.5.

fce4pow2 Result of raising each pixel to the power (p.85) of 2.5.

fce5 306�341 grayscale of man.

fce5noi1 Result of adding salt noise (p.221) of 0.5% to fce5.

fce5ero1 Result of eroding (p.123) fce5noi1 with a 3�3 structuring element (p.241).
fce5opn1 Result of opening (p.127) fce5noi1 with a 3�3 structuring element (p.241).
fce5clo2 Result of closing (p.130) fce5noi1 with a 3�3 structuring element (p.241).
fce5noi2 Result of adding pepper noise (p.221) of 0.5% to fce5.

fce5opn2 Result of opening (p.127) fce5noi2 with a 3�3 structuring element (p.241).
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fce5clo1 Result of closing (p.130) fce5noi2 with a 3�3 structuring element (p.241).
fce5dil1 Result of dilating (p.118) fce5noi2 with a 3�3 structuring element (p.241).
fce5noi3 Result of adding salt and pepper noise (p.221) of 0.5% (each) to fce5.

fce5csm1 Result of conservative smoothing (p.161) fce5noi3.

fce5mea1 Result of mean smoothing (p.150) fce5noi3 with a 3�3 kernel.
fce5mea2 Result of mean smoothing (p.150) fce5noi3 with a 5�5 kernel.
fce5med1 Result of median smoothing (p.153) fce5noi3 with a 3�3 kernel.
fce5crm1 Result of �ltering fce5noi3 with 13 iterations of Crimmins Speckle Removal Al-

gorithm (p.164).

fce5noi4 Result of adding Gaussian noise (p.221) of mean = 0, standard deviation = 8 to

fce5.

fce5mea3 Result of mean smoothing (p.150) fce5noi4 with a 3�3 kernel.
fce5mea6 Result of mean smoothing (p.150) fce5noi4 with a 5�5 kernel.
fce5med2 Result of median smoothing (p.153) fce5noi4 with a 3�3 kernel.
fce5gsm1 Result of Gaussian smoothing (p.156) fce5noi4 with a 5�5 kernel.
fce5crm4 Result of �ltering fce5noi4 with 2 iterations of Crimmins Speckle Removal Al-

gorithm (p.164).

fce5crm5 Result of �ltering fce5noi4 with 1 iteration of Crimmins Speckle Removal Al-

gorithm (p.164).

fce5usp1 Result of unsharp masking (p.178) fce5noi4.

fce5noi5 Result of adding Gaussian noise (p.221) of mean = 0, standard deviation = 13 to

fce5.

fce5mea4 Result of mean smoothing (p.150) fce5noi5 with a 3�3 kernel.
fce5med3 Result of median smoothing (p.153) fce5noi5 with a 3�3 kernel.
fce5csm2 Result of conservative smoothing (p.161) fce5noi5 with a 3�3 kernel.
fce5noi6 Result of adding Gaussian noise (p.221) of mean = 0, standard deviation = 20 to

fce5.

fce5noi7 Result of adding 3% salt and pepper noise (p.221) to fce5.

fce5noi8 Result of adding 5% salt noise (p.221) to fce5.

fce5crm3 Result of �ltering fce5noi8 with 8 iterations of Crimmins Speckle Removal Al-

gorithm (p.164).

fce6 274�303 grayscale of woman.

moo1bld1 Result of blending (p.53) fce6 with moo1.

goo1 546�420 8-bit color of goose face.

grd1 381�369 8-bit color of 2 graduates.

man1 311�437 8-bit color of man carrying dog.

man8 256�256 grayscale of man.

man8log1 Logarithmic transform (p.82) and scaling (p.48) of man8.

man8exp1 Exponential transform (p.85) of man8log1

man8exp2 Exponential transform (p.85) of unscaled version of man8log1 which was stored

in oating point format (p.239)

wom1 256�256 grayscale of woman.
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wom1hst1 Intensity histogram (p.105) of wom1.

wom1heq1 Result of histogram equalizing (p.78) wom1.

wom1str1 Result of contrast stretching (p.75) wom1 using linear interpolation between c =

79 and d = 136.

wom1hst2 Intensity histogram (p.105) of wom1str1.

wom1str2 Result of contrast stretching (p.75) wom1 using a cuto� fraction, c = 0.03.

wom1hst3 Intensity histogram (p.105) of wom1str2.

wom1str3 Result of contrast stretching (p.75) wom1 using c = 0.8.

wom1hst4 Intensity histogram (p.105) of wom1str3.

wom1noi1 Result of adding 0.1% salt and pepper noise (p.221) to wom1str2.

wom1crp1 Result of cropping and zooming (p.90) wom1noi1.

wom1crm1 Result of �ltering wom1noi1 using 1 iteration of Crimmins Speckle Removal Al-

gorithm (p.164).

wom1crp2 Result of cropping and zooming (p.90) wom1crm1.

wom1crm2 Result of �ltering wom1noi1 using 4 iterations of Crimmins Speckle Removal Al-

gorithm (p.164).

wom1crp3 Result of cropping and zooming (p.90) wom1crm2.

wom1crm3 Result of �ltering wom1noi1 using 8 iterations of Crimmins Speckle Removal Al-

gorithm (p.164).

wom1crm4 Result of adding 3% salt and pepper noise (p.221) to wom1str2 and then applying

11 iterations of Crimmins Speckle Removal Algorithm (p.164).

Any use of this image must include the acknowledgement: `We thank Georgia Institute of

Technology for the use of these images acquired from their on-line image database.'

wom2 256�256 grayscale of woman.

wom2exp1 Result of applying exponential operator (p.85) to wom2.

wom2heq1 Result of histogram equalizing (p.78) wom2.

wom2hst1 Histogram (p.105) of wom2

wom2hst2 Histogram (p.105) of wom2heq

Any use of this image must include the acknowledgement: `We thank Georgia Institute of

Technology for the use of these images acquired from their on-line image database.'

wom3 409�572 8-bit color of woman. Any use of this image must include the acknowledgement:

`We thank R. Aguilar-Chongtay of the Department of Arti�cial Intelligence, University of

Edinburgh for the use of this image.'

wom4 386�537 8-bit color of woman.

wom5 427�346 8-bit color of woman. Any use of this image must include the acknowledgement:

`We thank Dr. X. Huang of the Department of Arti�cial Intelligence, University of Edinburgh

for the use of this image.'

wom6 386�544 8-bit color of woman. Any use of this image must include the acknowledgement:

`We thank Dr. X. Huang of the Department of Arti�cial Intelligence, University of Edinburgh

for the use of this image.'
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Food

The Food Image Catalogue contains a collection of images depicting food in various stages of

processing. Most commonly, fruits and vegetables are depicted in a still-life setting with a variety

of di�erent illumination scenarios.

fsh2 500�200 grayscale of haddock. Any use of this image must include the acknowledgement:

`We thank Dr. N. J. C. Strachan, Torry Research Station and Drs. C. Glasbey and G. W.

Horgan of Biomathematics and Statistics Scotland, University of Edinburgh for the use of

this image.'

fru1 256�256 grayscale of apples, bananas and grapes.

fru2 427�352 8-bit color of orange.

fru3 536�321 8-bit color of oranges and bananas.

fru4 575�319 8-bit color of oranges and bananas (strong illumination gradient).

fru5 533�283 8-bit color of red apples.

gar1 391�162 grayscale of garlic.

kiw1 515�393 grayscale of kiwis.

lek1 367�278 grayscale of leeks.

orn1 583�383 grayscale of oranges in barrel (out of focus).

orn1crp1 Result of cropping orn1.

orn1dec1 Result of estimating the optical transfer function (OTF) for orn1crp1 with a

Gaussian image (standard deviation = 3) and then applying inverse �ltering with a

minimum OTF threshold of 10. (See frequency �ltering (p.167) worksheet.)

orn1dec2 Result of estimating the optical transfer function (OTF) for orn1crp1 with a

Gaussian image (standard deviation = 10) and then applying inverse �ltering with a

minimum OTF threshold of 10. (See frequency �ltering (p.167) worksheet.)

orn2 541�391 grayscale of oranges in barrel.

pmk1 685�237 carved Halloween pumpkins.

pot1 353�541 8-bit color of potatoes.

sap1 233�238 grayscale of salt and pepper shakers.

tom1 546�392 grayscale of tomatos (out of focus).

tom2 543�392 grayscale of tomatos.

Line

The Line Image Catalogue contains a collection of line-based imagery including text (English,

unless otherwise speci�ed), blue prints, circuit diagrams, testcards, cartoons, etc. In some images,

strong illumination gradients exist.

brd1 327�211 8-bit color of circuit board (bad focus).

brd2 498�325 8-bit color of circuit board.

hnd1 504�507 grayscale of hand-addressed envelope face.
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hnd2 500�600 8-bit color of Guest House register.

hse1 256�256 binary line drawing of a house.

hse1rob1 Result of applying the Roberts Cross edge detector (p.184) to hse1.

hse1fou1 Fourier Transform (p.209) of hse1. Displayed after histogram equalization (p.78).

hse1msk3 Lowpass frequency �ltering kernel.

hse1fou2 Result of multipling (p.48) the Fourier Transform (p.209) of hse1 with hse1msk3.

hse1fil1 Inverse Fourier Transform (p.209) of hse1fou2.

hse1msk1 Vertical stripe smoothing frequency mask for hse1.

hse1fil2 Result of multiplying (p.48) the frequency domain representation of hse1 and

hse1msk1, and then inverse Fourier Transforming (p.209) (and normalizing) the product.

hse1msk2 Vertical stripe preserving frequency mask for hse1.

hse1fil3 Result of multiplying (p.48) the frequency domain representation of hse1 and

hse1msk2, and then inverse Fourier Transforming (p.209) (and normalizing) the product.

hse1fil4 Result of thresholding (p.69) hse1fil3.

hse2 860�583 grayscale architectural drawing of a domestic dwellings. Any use of this image must
include the acknowledgement: `We thank Ms. S. Flemming for the use of this image.'

hse3 642�809 grayscale architectural drawing of building interior. Any use of this image must

include the acknowledgement: `We thank Ms. S. Flemming for the use of this image.'

hse4 203�464 grayscale architectural sketch (faint and broken lines). Any use of this image must

include the acknowledgement: `We thank Ms. S. Flemming for the use of this image.'

pcb1 264�268 grayscale of underside of single-sided printed circuit board. Any use of this image

must include the acknowledgement: `We thank Mr. A. MacLean of the Department of

Arti�cial Intelligence, University of Edinburgh for the use of this image.'

pcb2 827�546 grayscale of double-sided printed circuit board. Any use of this image must in-

clude the acknowledgement: `We thank Mr. A. MacLean of the Department of Arti�cial

Intelligence, University of Edinburgh for the use of this image.'

rob1 580�481 8-bit color of robot cartoon.

rob1sca1 Grayscale result of subsampling (p.90) rob1 by a factor of 2.

rob1ldh1 Normalized result of line detecting (p.202) rob1.

rob1ldh2 Result of thresholding (p.69) rob1ldh1.

Any use of this image must include the acknowledgement: `We thank Mr. M. Westhead of

the Department of Arti�cial Intelligence, University of Edinburgh for the use of this image.'

shu2 308�396 binary line drawing of a NASA shuttle. Any use of this image must include the

acknowledgement: `We thank the NASA Dryden Research Aircraft Photo Archive use of this

image.'

son1 384�500 grayscale of sonnet text with illumination gradient.

son1thr1 Result of thresholding (p.69) son1 at a pixel value of 128.

son1sub1 Result of pixel subtracting (p.45) son2 from son1 and adding (p.43) an o�set of

100.

son1sub2 Result of pixel subtracting (p.45) son2 from son1 using wrapping (p.241).

son1sub3 Result of pixel subtracting (p.45) son2 from son1 using absolute di�erence.

son1sub4 Result of applying gamma correction (p.85) to son1sub3.

son1thr3 Result of thresholding (p.69) son1sub1 at a pixel value of 80.
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son1div1 Result of pixel dividing (p.50) son1 by son2.

son1thr2 Result of thresholding (p.69) son1div1 at a pixel value of 160.

son1adp1 Result of adaptive thresholding (p.72) son1 using themean of a 7�7 neighborhood.
son1adp2 Result of adaptive thresholding (p.72) son1 using themean�C as a local threshold,

where C = 7 and the neighborhood size is 7�7.
son1adp3 Result of adaptive thresholding (p.72) son1 using themean�C as a local threshold,

where C = 10 and the neighborhood size is 75�75.
son1adp4 Result of adaptive thresholding (p.72) son1 using themedian�C as a local threshold,

where C = 4 and the neighborhood size is 7�7.

son2 384�500 grayscale of sonnet text light�eld.

son3 512�512 grayscale of sonnet text.

son3fur2 The logarithm of the magnitude of the Fourier Transform (p.209) image corres-

ponding to son3.

son3fur4 The thresholded magnitude of the Fourier Transform (p.209) image corresponding

to son3.

son3rot1 Result of rotating (p.93) son3 by 45 degrees clockwise about its center.

son3fur1 The logarithm of the magnitude of the Fourier Transform (p.209) image corres-

ponding to son3rot1.

son3fur3 The thresholded magnitude of the Fourier Transform (p.209) image corresponding

to son3rot1.

tst1 360�360 8-bit color of testcard 1.

tst2 760�1003 grayscale of testcard 2.

tst2sca1 Result of reducing the resolution of (i.e. subsampling) tst2 by a factor of 2.

tst2sca2 Result of reducing the resolution of (i.e. subsampling) tst2 by a factor of 4.

tst2sca3 Result of reducing the resolution of (i.e. subsampling) tst2 by a factor of 8.

tst2sca4 Result of reducing the resolution of (i.e. subsampling) tst2 by a factor of 16.

txt1 500�480 grayscale of text (poor quality reproduction).

txt2 256�256 binary of alpha-numeric text.

txt2msk1 Mask for txt2 containing only the letter X.

txt2fur1 Result of scaling (p.48) the Fourier transform (p.209) of txt2msk1 and threshold-

ing (p.69) it at a value of 10. (See frequency �lter (p.167) worksheet.)

txt2fil1 Result of Fourier Transforming (p.209) txt2 and txt2msk1, multiplying (p.48)

the images, applying an inverse Fourier Transform to the multiplied image, and, �nally,

scaling (p.48) the spatial domain image.

txt2fil2 Result of thresholding (p.69) txt2fil1 at the value 255.

txt2fil3 Result of multiplying (p.48) txt2fur1 and the Fourier Transform (p.209) of txt2,

and then applying an inverse Fourier transform to the multiplied image.

txt2fil4 Result of thresholding (p.69) txt2fil3.

txt3 722�857 grayscale of handwritten Japanese text.

txt3crp1 Result of cropping txt3 and then zooming (p.90) by a factor of 4.

txt3thr1 Result of thresholding (p.69) txt3 at a value of 180.

txt3thn1 Result of thinning (p.137) txt3thr1 with custom structuring element.
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txt3dil1 Result of dilating (p.118) txt3thr1 twice with a 3�3 square structuring element.
txt3thn2 Result of thinning (p.137) txt3dil1 with custom structuring element.

txt3prn1 Result of pruning txt3thn2 with 2 iterations of each orientation of the custom

structuring element.

txt3dil2 Result of dilating (p.118) txt3thr1 three times with a 3�3 square structuring

element.

txt3thn3 Result of thinning (p.137) txt3dil2 with custom structuring element.

txt3prn2 Result of pruning txt3thn3 with 4 iterations of each orientation of the custom

structuring element.

txt3end1 Result of applying hit-and-miss operator (p.133) to txt3thr1 using custom struc-

turing element.

txt3end2 Result of applying 5 iterations of conditional dilation - i.e. dilating (p.118)

txt3end1 using a 3�3 structuring element and then ANDing (p.55) it with the thinned

version.

txt3mor1 Result of ORing (p.58) txt3end2 with pruned version.

Any use of this image must include the acknowledgement: `We thank Dr. X. Huang of the

Department of Arti�cial Intelligence, University of Edinburgh for the use of this image.'

ugr1 522�733 grayscale of Ugaritic text on tablet. Any use of this image must include the ac-

knowledgement: `We thank Dr. N. Wyatt and Dr. J. B.. Lloyd of the Ras Shamra project

at University of Edinburgh for the use of this image.'

Medical

The Medical Image Catalogue contains a variety of medical imagery. Subjects range from photo-

microscopy of murine neurological structures to x-ray and magnetic resonance imagery of human

organs.

alg1 512�512 grayscale of algal cells (di�erential interference microscope). This image was collec-
ted as part of a research program to manage algal ponds for waste treatment. The objective

is to identify, count and measure the cells. Any use of this image must include the acknow-

ledgement: `We thank Dr. N. J. Martin, Scottish Agricultural College, and Drs. C. Glasbey

and G. W. Horgan of Biomathematics and Statistics Scotland, University of Edinburgh for

the use of this image.'

axn1 400�300 grayscale of axonal growth (microscope). This image and the next were used to

investigate the directionality of growth of axons. In both scenarios, the target which the axons

sought to innervate was located o� to the right of the image. The initial/start position of the

growing axons varies in each image. Any use of this image must include the acknowledgement:

`We thank Dr. B. Lotto of the Department of Physiology, University of Edinburgh for the

use of this image.'

axn2 400�300 grayscale of axonal growth (microscope). Any use of this image must include the

acknowledgement: `We thank Dr. B. Lotto of the Department of Physiology, University of

Edinburgh for the use of this image.'

cel1 597�403 8-bit color of embryonic mouse neurones (confocal microscope). This image (and
cel2) were collected as part of a study investigating neuronal growth factors inuencing

cell longevity. The small white cells are dead. Any use of this image must include the

acknowledgement: `We thank Dr. B. Lotto of the Department of Physiology, University of

Edinburgh for the use of this image.'

cel2 577�355 8-bit color of embryonic mouse neurones (confocal microscope). Any use of this

image must include the acknowledgement: `We thank Dr. B. Lotto of the Department of

Physiology, University of Edinburgh for the use of this image.'
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cel4 450�450 grayscale of human nerve cells (large dark) and glia cells (small black).

cel4thr1 Result of thresholding (p.69) cel4 so as to retain (as foreground) pixel values

originally in the intensity band: 0 - 150.

cel4lab1 Result of connected components labeling (p.114) cel4thr1.

cel4thr2 Result of thresholding (p.69) cel4 so as to retain (as foreground) pixel values

originally in the intensity band: 130 - 150.

cel4thr3 Result of thresholding (p.69) cel4 at a value of 210.

cel4opn1 Result of opening (p.127) cel4thr3 using an 11 pixel circular structuring element.

cel4opn2 Result of opening (p.127) cel4thr3 using a 7 pixel circular structuring element.

This image was collected as part of a research program investigating the e�ects of the AIDS

virus on the quantity of nerve cells. Any use of this image must include the acknowledgement:

`We thank R. Aguilar-Chongtay of the Department of Arti�cial Intelligence, University of

Edinburgh for the use of this image.'

cel5 551�686 grayscale of embryonic mouse neurones with endothelial cell (upper left) (electron-

micrograph). This image and the following image were used in a study comparing attributes

of embryonic vs postnatal cells. (The younger cells are less round, smaller and darker.)

Any use of this image must include the acknowledgement: `We thank Dr. B. Lotto of the

Department of Physiology, University of Edinburgh for the use of this image.'

cel6 546�672 grayscale of postnatal mouse neurones. Any use of this image must include the

acknowledgement: `We thank Dr. B. Lotto of the Department of Physiology, University of

Edinburgh for the use of this image.'

cel7 546�680 grayscale of embryonic neurones and a blood cell enclosed within an endothelial

cell.

cel7neg1 Photographic negative of cel7.

Any use of this image must include the acknowledgement: `We thank Dr. B. Lotto of the

Department of Physiology, University of Edinburgh for the use of this image.'

cla3 200�260 grayscale of mouse nervous cells extracted on embryonic day 15 (transilluminated

microscope).

cla3hst1 Histogram (p.105) of cla3

cla3str1 Result of contrast stretching (p.75) cla3

cla3hst2 Histogram (p.105) of cla3str1

cla3hst3 Result of stretching the y-axis of cla3hst2

This image (and clb3 and clc3) were collected as part of a study investigating neuronal

growth factors inuencing cell longevity. The dark cells are dead. Any use of this image

must include the acknowledgement: `We thank Dr. B. Lotto of the Department of Physiology,

University of Edinburgh for the use of this image.'

clb3 200�260 grayscale of embryonic day 17 mouse nervous cells. Any use of this image must

include the acknowledgement: `We thank Dr. B. Lotto of the Department of Physiology,

University of Edinburgh for the use of this image.'

clc3 200�260 grayscale of embryonic day 19 mouse nervous cells.

clc3thr1 Result of thresholding (p.69) clc3 at a value of 150

clc3lab1 Result of applying connected component labeling (p.114) to clc3thr1.

clc3lab2 Result of assigning 1 out of 8 distinctive colors to each class in clc3lab1.

clc3lab3 Result of assigning a di�erent color to each class in clc3lab1.
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Any use of this image must include the acknowledgement: `We thank Dr. B. Lotto of the

Department of Physiology, University of Edinburgh for the use of this image.'

dna1 300�512 grayscale of one stage in the DNA-sequencing of gene fragments (autoradiograph).

In this study, approximately �fty mixtures were positioned as distinct spots along the top

of the gel (as it is currently displayed). Each mixture then migrated and DNA fragments

produced separate, approximately horizontal bands. Any use of this image must include the

acknowledgement: `We thank Dr. F. G. Wright, Dr. C. Glasbey and Dr. G. W. Horgan

Biomathematics and Statistics Scotland, University of Edinburgh for the use of this image.'

egg1 512�512 grayscale of sheep parasite eggs (microscope).

egg1add1 Result of adding (p.43) a constant value of 50 to egg1

egg1add2 Result of adding (p.43) a constant value of 100 to egg1 (using wrapping (p.241))

egg1add3 Result of scaling (p.48) egg1 with a factor of 0.8 and adding (p.43) a constant

value of 100 to the result (using wrapping (p.241))

egg1add4 Result of adding (p.43) a constant value of 100 to egg1 (using a hard limit (p.241))

egg1sca1 Result of scaling (p.48) egg1 with a factor of 1.3.

Any use of this image must include the acknowledgement: `We thank Mr. S. Beard of the

Department of Arti�cial Intelligence, University of Edinburgh for the use of this image.'

fun1 500�500 grayscale of part of a fungal mycelium Trichoderma viride, which is a network of

hyphae from a single fungal organism (photograph of fungal hyphae on cellophane-coated

nutrient agar). Image analysis was required here to understand the spatial structure of the

hyphae in relation to their environment. Any use of this image must include the acknow-

ledgement: `We thank Dr. K. Ritz of Scottish Crop Research Institute, and Drs. C. Glasbey

and G. W. Horgan of Biomathematics and Statistics Scotland, University of Edinburgh for

the use of this image.'

mam1 2048�2048 8-bit color mammography image of cancerous breast. (There are 3 cancers at

coordinates (x,y,radius): (1374,1348,36), (1502,1178,20) and (1444,778,14).) Any use of this

image must include the acknowledgement: `We thank Dr. P. Thanisch and Mr. A. Hume of

the Department of Computer Science, University of Edinburgh for the use of this image.'

mam2 2048�2048 8-bit color mammography image of cancerous breast. (There are 5 cancers

at coordinates (x,y,radius): (1278,126,80), (1248,908,50), (1178,567,50), (1669,409,192) and

(612,1060,150).) Any use of this image must include the acknowledgement: `We thank Dr. P.

Thanisch and Mr. A. Hume of the Department of Computer Science, University of Edinburgh

for the use of this image.'

mri1 128�128 grayscale of woman's chest - where the subject has a cubic test object between her

breasts (magnetic resonance imaging). This image and the next were obtained as part of an

investigation into the changes in breast volume during the menstrual cycle. The aim of the

study was to segment the images into di�erent tissues. Any use of this image must include

the acknowledgement: `We thank Dr. M. A. Foster, Biomedical Physics & Bioengineering,

University of Aberdeen, and Drs. C. Glasbey and G. W. Horgan of Biomathematics and

Statistics Scotland, University of Edinburgh for the use of this image.'

mri2 128�128 grayscale of woman's chest, where the subject has a cubic test object between

her breasts (magnetic resonance imaging). Any use of this image must include the acknow-

ledgement: `We thank Dr. M. A. Foster, Biomedical Physics & Bioengineering, University

of Aberdeen, and Drs. C. Glasbey and G. W. Horgan of Biomathematics and Statistics

Scotland, University of Edinburgh for the use of this image.'

mus1 512�512 grayscale of a section through a rat's soleus muscle. The transverse section has been
stained to demonstrate the activity of Ca2+ (activated myo�brillar ATPase) and allows one

to classify three types of �ber: fast-twitch oxidative glycolytic (dark), slow-twitch oxidative

(light) and fast-twitch glycolytic (mid-gray). The quantity and size of the �bers are used
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for research into clenbuterol, a drug which enhances muscle development. Any use of this

image must include the acknowledgement: `We thank Dr. C. A. Maltin, Rowett Research

Institute, and Drs. C. Glasbey and G. W. Horgan of Biomathematics and Statistics Scotland,

University of Edinburgh for the use of this image.'

slt1 1024�1024 binary showing locations of stellate lesions in image stl1. Any use of this im-

age must include the acknowledgement: `Data for this research was provided by Dr. N.

Karssemeijer and the University Hospital Nijmegen.'

slt2 1024�1024 binary showing location of stellate lesions in image stl2. Any use of this im-

age must include the acknowledgement: `Data for this research was provided by Dr. N.

Karssemeijer and the University Hospital Nijmegen.'

soi1 512�512 grayscale montage of a soil aggregate embedded in acrylic resin (backscattered

electron scanning micrographs). The black areas are soil pores and the lighter areas are the

inorganic and organic soil matrix. The image was used in a study of porosity and pore-size

distribution within a sample of soil aggregates which related these characteristics to microbial

activity in and outside the aggregates. Any use of this image must include the acknowledge-

ment: `We thank Dr. J. F. Darbyshire, Macaulay Land Use Research Institute, and Drs.

C. Glasbey and G. W. Horgan of Biomathematics and Statistics Scotland, University of

Edinburgh for the use of this image.'

stl1 1024�1024 8-bit color of stellate lesions. Any use of this image must include the acknow-

ledgement: `Data for this research was provided by Dr. N. Karssemeijer and the University

Hospital Nijmegen.'

stl2 1024�1024 8-bit color of stellate lesions. Any use of this image must include the acknow-

ledgement: `Data for this research was provided by Dr. N. Karssemeijer and the University

Hospital Nijmegen.'

usd1 360�300 graylevel of a cross-section through a sheep's back (ultrasound). Images were

collected in order to estimate sheep body composition. The top, approximately horizontal,

white line is the transducer-skin boundary, below which are the skin-fat and fat-muscle

boundaries. The backbone is on the bottom left, from which a rib can be seen sloping slightly

upwards. Any use of this image must include the acknowledgement: `We thank Dr. G. Simm

of Genetics and Behavioural Sciences, Scottish Agricultural College, and Drs. C. Glasbey

and G. W. Horgan of Biomathematics and Statistics Scotland, University of Edinburgh for

the use of this image.'

usd2 512�480 grayscale of heart (ultrasound).

wrm1 512�512 grayscale of nematodes (microscope).

xra1 256�256 grayscale of a cross-section through the thorax of a live sheep (x-ray computed

tomography). This image was used in a study to estimate the quantity of fat and lean tissue.

The lightest image areas are the backbone and the parts of the ribs which intersect the

imaging plane. The muscles and internal organs appear slightly lighter than the fat tissue

because they are slightly more opaque to x-rays. (The U-shaped plastic cradle in which the

sheep was lying can also be seen.) x-ray attenuation is measured in Houns�eld units, which

range between �1000 and about 1000. (The data have been reduced to the range �250 to

260, with all values < �250 assigned a pixel value of 0 and all values > 260 set to 255.) Any

use of this image must include the acknowledgement: `We thank Dr. G. Simm of Genetics

and Behavioural Sciences, Scottish Agricultural College, and Drs. C. Glasbey and G. W.

Horgan of Biomathematics and Statistics Scotland, University of Edinburgh for the use of

this image.'

Motion Sequence

The images here comprise a computer generated motion sequence of part of a ight through the

Yosemite Valley produced by Lynn Quam at SRI. For reference, the clouds are moving at a rate
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of about 2 pixels per frame to the right, while the rest of the image ow is divergent, with speed

of about 5 pixels per frame in the lower left corner.

Any use of these images must include the acknowledgement: `Data for this research was provided

by Dr. L. Quam and SRI.'

yos2 316�252 grayscale of Yosemite y-through. Frame 1.

yos3 316�252 grayscale of Yosemite y-through. Frame 2.

yos4 316�252 grayscale of Yosemite y-through. Frame 3.

yos5 316�252 grayscale of Yosemite y-through. Frame 4.

yos6 316�252 grayscale of Yosemite y-through. Frame 5.

yos7 316�252 grayscale of Yosemite y-through. Frame 6.

yos8 316�252 grayscale of Yosemite y-through. Frame 7.

yos9 316�252 grayscale of Yosemite y-through. Frame 8.

yos10 316�252 grayscale of Yosemite y-through. Frame 9.

yos11 316�252 grayscale of Yosemite y-through. Frame 10.

yos12 316�252 grayscale of Yosemite y-through. Frame 11.

yos13 316�252 grayscale of Yosemite y-through. Frame 12.

yos14 316�252 grayscale of Yosemite y-through. Frame 13.

yos15 316�252 grayscale of Yosemite y-through. Frame 14.

yos16 316�252 grayscale of Yosemite y-through. Frame 15.

Nature Scenes

The Nature Scenes Image Catalogue contains scenes depicting a variety of natural imagery, ranging

from wildlife (e.g. wild birds, forests, beaches) to more domestic scenes of landscaped ower beds,

park benches, pets and zoo animals.

ape1 512�512 grayscale of mandrill.

ape1and1 Result of ANDing (p.55) ape1 with 00000001 binary.

ape1and4 Result of ANDing (p.55) ape1 with 00001000 binary.

ape1and6 Result of ANDing (p.55) ape1 with 00100000 binary.

ape1and7 Result of ANDing (p.55) ape1 with 01000000 binary.

ape1and8 Result of ANDing (p.55) ape1 with 10000000 binary.

ape1opn1 Result of graylevel opening (p.127) ape1 with a 5�5 square structuring element.
ape1clo1 Result of graylevel closing (p.130) ape1 with a 3�3 square structuring element.
ape1ref1 Result of reecting (p.95) the left half of ape1 about a vertical axis through the

middle of the image.

ape1ref2 Result of reecting (p.95) the right half of ape1 about a vertical axis through the

middle of the image.

cow1 549�320 8-bit color of �ve brown cows.
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dov1 688�492 8-bit color of dove on grassy hill. Any use of this image must include the acknow-

ledgement: `We thank Dr. A. Dil of the Department of Arti�cial Intelligence, University of

Edinburgh for the use of this image.'

flr1 651�373 8-bit color of ower bed.

flr3 498�696 8-bit color of owers with bee.

flr4 586�383 8-bit color of tulip ower bed.

flr5 575�392 grayscale of owers.

goo1 546�420 8-bit color of goose face. Any use of this image must include the acknowledgement:
`We thank Dr. A. Dil of the Department of Arti�cial Intelligence, University of Edinburgh

for the use of this image.'

hic1 575�238 8-bit color of highland cows.

hic2 386�253 8-bit color of highland cow.

pea1 589�396 8-bit color of peacock.

pen1 311�212 grayscale of penguins on parade.

prk1 595�259 8-bit color of park bench.

puf1 692�488 8-bit color of pu�ns on a rock. Any use of this image must include the acknow-

ledgement: `We thank Dr. A. Dil of the Department of Arti�cial Intelligence, University of

Edinburgh for the use of this image.'

rck1 688�480 8-bit color of many sized rocks. Any use of this image must include the acknow-

ledgement: `We thank Ms. V. Temperton for the use of this image.'

rck2 489�694 8-bit color of large rock with moss. Any use of this image must include the acknow-
ledgement: `We thank Ms. V. Temperton for the use of this image.'

rck3 697�486 8-bit color of many small rocks (shallow focus). Any use of this image must include

the acknowledgement: `We thank Ms. V. Temperton for the use of this image.'

swa1 432�389 8-bit color of swans on a lake.

tur1 463�313 8-bit color four black turkeys.

tur1gry1 Grayscale equivalent to tur1

tur1thr1 Result of thresholding (p.69) tur1gry1

tur1lab2 Result of color labeling (p.114) tur1thr1

tur1lab1 Result of grayscale labeling (p.114) tur1thr1

O�ce and Laboratory Scenes

The O�ce and Laboratory Scenes Image Catalogue contains images depicting typical indoor work-

ing environments. (Most images contain subject matter which deals in some way with computer

technology.) The illuminate varies greatly from image to image.

ben1 400�606 grayscale of a mobile robot.

ben2 Result of scaling (p.90) ben1.

ben2gau1 Result of Gaussian smoothing (p.156) ben2 with standard deviation 1.0 (5�5
kernel).

ben2gau2 Result of Gaussian smoothing (p.156) ben2 with standard deviation 2.0 (9�9
kernel).
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ben2gau3 Result of Gaussian smoothing (p.156) ben2 with standard deviation 4.0 (15�15
kernel).

ben2usp1 Result of unsharp masking (p.178) ben2.

bok1 357�567 grayscale of bookshelf.

bok1cmp1 Magnitude image resulting from Prewitt compass edge detecting (p.195) bok1.

bok1cmp2 Orientation image resulting from Prewitt compass edge detecting (p.195) bok1.

bok1noi1 Result of adding Gaussian noise (p.221) (with standard deviation = 15) to bok1.

bok1cmp3 Magnitude image resulting from Prewitt compass edge detecting (p.195) bok1noi1.

bok1cmp4 Orientation image resulting from Prewitt compass edge detecting (p.195) bok1noi1.

brd1 327�211 8-bit color of circuit board (bad focus).

brd2 498�325 8-bit color of circuit board.

cmp1 611�378 grayscale of PC computer.

cmp2 523�393 grayscale of PC computers.

ctr1 564�414 8-bit color of aeronautical test range mission control room at NASA Dryden Flight

Research Center. Any use of this image must include the acknowledgement: `We thank the

NASA Dryden Research Aircraft Photo Archive use of this image.'

leg1 700�500 grayscale of Lego vehicle. Any use of this image must include the acknowledgement:
`We thank Mr. D. Howie of the Department of Arti�cial Intelligence, University of Edinburgh

for the use of this image.'

rot1 288�360 grayscale of laboratory scene.

rot1str1 Result of contrast stretching (p.75) rot1 using a cuto� fraction, c = 0.9.

rot1aff1 The a�ne transformation (p.100) of rot1str1.

Any use of this image must include the acknowledgement: `We thank the Pilot European

Image Processing Archive (PEIPA) use of this image.'

stc1 346�581 grayscale descending spiral staircase.

stc1cmp1 Edge magnitude image resulting from the application of the Prewitt compass edge

detector (p.195).

stc1cmp2 Edge orientation image resulting from the application of the Prewitt compass edge

detector (p.195).

wom4 386�537 8-bit color of woman at workstation.

wrk1 507�384 grayscale of lab workbench (natural illumination).

Remote Sensing

The Remote Sensing Image Catalogue contains both low altitude (e.g. collected from aircraft) and

high altitude (i.e. satellite) imagery. In the case of the latter, there are two spectral band images

(i.e. visible and infra-red) available for each subject.

aer1 696�474 8-bit color aerial view of suburban region.

aer2 Gray-scale equivalent of the original image.

air1 625�625 grayscale satellite (infra-red spectrum) image taken over Africa.
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air2 A scaled (p.90) version of air1.

avi2cls1 The labeled image resulting from classifying (p.107) the multi-spectral image com-

posed of air2 and avs2 into two distinct spectral classes.

avi2lab1 The result of applying connected components labeling (p.114)to avi2cls1.

avi2lab2 A grayscale version of cls1lab1.

avi2cls2 The labeled image resulting from classifying (p.107) the multi-spectral image com-

posed of air2 and avs2 into four distinct spectral classes.

avi2cls4 A grayscale version of avi2cls2.

avi2lab3 The result of applying connected components labeling (p.114) to avi2cls2.

avi2lab4 A grayscale version of cls2lab2.

avi2cls3 The labeled image resulting from classifying (p.107) the multi-spectral image com-

posed of air2 and avs2 into six distinct spectral classes.

avi2cls5 A grayscale version of avi2cls3.

Any educational or research users may freely use the high altitude images with the acknow-

ledgement: `We thank EUMETSAT for the use of this image.'. Any commercial users of the

images must contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-

819.

arp1 564�416 8-bit color aerial view of NASA Dryden Flight Research Center - �rst perspective.

Any use of this image must include the acknowledgement: `We thank the NASA Dryden

Research Aircraft Photo Archive use of this image.'

arp2 564�412 8-bit color aerial view of NASA Dryden Flight Research Center: second perspective.

Any use of this image must include the acknowledgement: `We thank the NASA Dryden

Research Aircraft Photo Archive use of this image.'

avs1 625�625 grayscale satellite (visible spectrum) image taken over Africa.

avs2 A scaled (p.90) version of avs1.

avi2cls1 The labeled image resulting from classifying (p.107) the multi-spectral image com-

posed of air2 and avs2 into two distinct spectral classes.

avi2lab1 The result of applying connected components labeling (p.114) to avi2cls1.

avi2lab2 A grayscale version of cls1lab1.

avi2cls2 The labeled image resulting from classifying (p.107) the multi-spectral image com-

posed of air2 and avs2 into four distinct spectral classes.

avi2cls4 A grayscale version of avi2cls2.

avi2lab3 The result of applying connected components labeling (p.114) to avi2cls2.

avi2lab4 A grayscale version of cls2lab2.

avi2cls3 The labeled image resulting from classifying (p.107) the multi-spectral image com-

posed of air2 and avs2 into six distinct spectral classes.

avi2cls5 A grayscale version of avi2cls3.

Any educational or research users may freely use the high altitude images with the acknow-

ledgement: `We thank EUMETSAT for the use of this image.'. Any commercial users of the

images must contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-

819.

bir1 625�625 grayscale satellite (infra-red spectrum) image taken over the Americas.

bir1hst1 The intensity histogram (p.105) of bir1.

bvi1tdh1 The 2-D intensity histogram (p.105) of bir1 and bvs1.
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Any educational or research users may freely use the high altitude images with the acknow-

ledgement: `We thank EUMETSAT for the use of this image.'. Any commercial users of the

images must contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-

819.

bvs1 625�625 grayscale satellite (visible spectrum) image taken over the Americas.

bvs1hst1 The intensity histogram (p.105) of bvs1.

bvi1tdh1 The 2-D intensity histogram (p.105) of bir1 and bvs1.

Any educational or research users may freely use the high altitude images with the acknow-

ledgement: `We thank EUMETSAT for the use of this image.'. Any commercial users of the

images must contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-

819.

eir1 625�313 grayscale satellite (infra-red spectrum) image taken over Europe. Any educational

or research users may freely use the high altitude images with the acknowledgement: `We

thank EUMETSAT for the use of this image.'. Any commercial users of the images must

contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-819.

evs1 625�313 grayscale satellite (visible spectrum) image taken over Europe. Any educational or

research users may freely use the high altitude images with the acknowledgement: `We thank

EUMETSAT for the use of this image.'. Any commercial users of the images must contact

EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-819.

pdc1 439�391 8-bit color aerial view of Palais de Chaillot, France.

sir1 640�480 grayscale satellite (infra-red spectrum) image taken over Scandinavia. Any educa-

tional or research users may freely use the high altitude images with the acknowledgement:

`We thank EUMETSAT for the use of this image.'. Any commercial users of the images must

contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-819.

svs1 640�480 grayscale satellite (visible spectrum) image taken over Scandinavia.

svs1log1 Logarithmic transform (p.82) of svs1

Any educational or research users may freely use the high altitude images with the acknow-

ledgement: `We thank EUMETSAT for the use of this image.'. Any commercial users of the

images must contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-

819.

trn1 489�300 grayscale aerial view of train station.

uir1 512�512 grayscale satellite (infra-red spectrum) image taken over the United Kingdom. Any
educational or research users may freely use the high altitude images with the acknowledge-

ment: `We thank EUMETSAT for the use of this image.'. Any commercial users of the images

must contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-819.

uvs1 512�512 grayscale satellite (visible spectrum) image taken over the United Kingdom. Any

educational or research users may freely use the high altitude images with the acknowledge-

ment: `We thank EUMETSAT for the use of this image.'. Any commercial users of the images

must contact EUMETSAT Contracts and Legal A�airs, Germany +49-(6151)-807-819.

urb1 256�256 grayscale aerial view of urban area. Any use of this image must include the acknow-

ledgement: `We thank Georgia Institute of Technology for the use of these images acquired

from their on-line image database.'
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Stereo

The Stereo Image Catalogue contains a single dataset of static scene images (i.e. 11 images in total)

with accurate descriptions of 3-D object locations. The images were collected at the Calibrated

Imaging Laboratory at Carnegie Mellon University and are freely available through public ftp.

(These data are provided under Contract No. F49620-92-C-0073, ARPA Order No. 8875.)

Any publication which includes reproductions of these images or data, or parts thereof, must

be accompanied by the following annotation: `Data for this research was partly provided by the

Calibrated Imaging Laboratory at Carnegie Mellon University, sponsored by DARPA, NSF, and

NASA.'

Details about data acquisition and data representation are available in:

HIPRDIR/images/stereo/general

(where HIPRDIR is the directory where HIPR is installed). Also, individual camera calibration

parameters, data points and ground truth coordinates for each scene/image may be obtained from

HIPRDIR/images/stereo/calib and HIPRDIR/images/stereo/points.

st00 576�384 grayscale of center image with the ground truth points highlighted.

st01 576�384 grayscale of �rst stereo image.

st02 576�384 grayscale of second stereo image.

st03 576�384 grayscale of third stereo image.

st04 576�384 grayscale of fourth stereo image.

st05 576�384 grayscale of �fth stereo image.

st06 576�384 grayscale of sixth stereo image.

st07 576�384 grayscale of seventh stereo image.

st08 576�384 grayscale of eighth stereo image.

st09 576�384 grayscale of ninth stereo image.

st10 576�384 grayscale of tenth stereo image.

st11 576�384 grayscale of eleventh stereo image.

Simple 2-D Objects

The Simple 2-D Objects Image Catalogue contains images depicting a primitive object(or objects)

lying at (and, in many cases silhouetted) against a simple background. Some images contain an

illumination gradient.

mon1 337�238 grayscale of silhouetted touching coins.

mon1thr1 Result of thresholding (p.69) mon1 at a pixel value of 90.

mon1ero1 Result of eroding (p.123) mon1thr1 twice with a disk of diameter 11.

mon1ero2 Result of eroding (p.123) mon1thr1 twice with a square of diameter 11.

pap1 512�512 grayscale of pen and paper frame 1.

pap1and1 Result of ANDing (p.55) pap1 and pap2.

pap1and2 Result of ANDing (p.55) pap1 and pap3.

pap1xor1 Result of XORing (p.60) pap1 and pap3.
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pap1xor2 Result of XORing (p.60) pap1 and pap2.

pap2 512�512 grayscale of pen and paper frame 2.

pap1and1 Result of ANDing (p.55) pap2 and pap1.

pap1xor2 Result of XORing (p.60) pap2 and pap1.

pap3 512�512 grayscale of pen and paper frame 3.

pap1and2 Result of ANDing (p.55) pap3 and pap1.

pap1xor1 Result of XORing (p.60) pap3 and pap1.

scr1 507�384 grayscale of screwdriver jumble frame 1.

scr1sub1 The absolute di�erence of scr1 and scr2 obtained by pixel subtraction (p.45).

scr1div1 Result of dividing (p.50) scr1 by scr2 and contrast stretching (p.75) the output.

scr1div2 Result of dividing (p.50) scr1 by scr2 and histogram equalizing (p.78) the output.

scr1div3 Like scr1div1, but calculation performed in pixel integer format (p.239).

scr2 507�384 grayscale of screwdriver jumble frame.

scr1sub1 The absolute di�erence of scr1 and scr2 obtained by pixel subtraction (p.45).

scr1div1 Result of dividing (p.50) scr1 by scr2 and contrast stretching (p.75) the output.

scr1div2 Result of dividing (p.50) scr1 by scr2 and histogram equalizing (p.78) the output.

scr1div3 Like scr1div1, but calculation performed in pixel integer format (p.239).

scr3 512�512 grayscale of screw and pen frame 1.

scr3and1 Result of ANDing (p.55) graylevels of scr3 and scr4.

scr3and2 Result of ANDing (p.55) negatives (p.63) of scr3 and scr4.

scr3thr1 Result of thresholding (p.69) scr3

scr3and3 Result of ANDing (p.55) negatives (p.63) of scr3thr1 and scr4thr1.

scr3or1 Result of ORing (p.58) negatives (p.63) of scr3thr1 and scr4thr1.

scr3or2 Result of ORing (p.58) scr3thr1 and scr4thr1.

scr3xor1 Result of XORing (p.60) scr3thr1 and scr4thr1.

scr4 512�512 grayscale of screw and pen frame 2.

scr3and1 Result of ANDing (p.55) graylevels of scr4 and scr3.

scr3and2 Result of ANDing (p.55) negatives (p.63) of scr4 and scr3.

scr4thr1 Result of thresholding (p.69) scr4

scr3and3 Result of ANDing (p.55) negatives (p.63) of scr4thr1 and scr3thr1.

scr3or1 Result of ORing (p.58) negatives (p.63) of scr4thr1 and scr3thr1.

scr3or2 Result of ORing (p.58) scr4thr1 and scr3thr1.

scr3xor1 Result of XORing (p.60) scr4thr1 and scr3thr1.

tls1 337�238 grayscale of silhouetted tools.

tol1 256�256 grayscale of tool and blocks.

tol1thr1 Result of thresholding (p.69) tol1 at a value of 110.

tol1crp1 Result of cropping tol1.

tol1skl1 Skeleton (p.145) of tol1.
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tol1shi1 Result of bitshifting (p.65) tol1 to the right by one pixel.

tol1skl2 Result of bitshifting (p.65) tol1skl1 to the right by one pixel.

tol1add1 Result of adding (p.43) tol1shi1 and tol1skl2.

bld1lab1 Result of applying connected components labeling (p.114) and a distance (p.206)

operator to tol1crp1.

wat1 512�512 grayscale of digital watch.

wat1str1 Result of contrast stretching (p.75) wat1.

wat1ref1 Result of reecting (p.95) wat1str1 about a point in the center of the image.

wat1psh1 Result of scaling (p.90) wat1str1 using pixel replacement to perform the sub-

sampling.

wat1pin1 Result of scaling (p.90) wat1str1 using pixel interpolation to perform the sub-

sampling.

wat1exp1 Result of scaling (p.90) wat1str1 using pixel replication to perform the zooming.

wat1pin2 Result of scaling (p.90) wat1str1 using pixel interpolation to perform the zooming.

wdg1 506�384 grayscale of a uniformly illuminated T-shaped part.

wdg1usp1 Result of mean �ltering (p.150) wdg1 with a 3�3 square kernel, and then pixel

subtracting (p.45) that away from the original. See unsharp masking (p.178).

wdg1usp2 Result of mean �ltering (p.150) wdg1 with a 3�3 square kernel, translating (p.97)
(for re-registration) and then pixel subtracting (p.45) that away from the original. See

unsharp masking (p.178).

wdg1usp3 Result of mean �ltering (p.150) wdg1 with a 3�3 square kernel, translating (p.97)
(for re-registration), dimming this result by pixel multiplication (p.48) and then pixel

subtracting (p.45) away from the original. See unsharp masking (p.178).

wdg1usp4 Result of cropping and zooming (p.90) a section of wdg1usp2.

wdg2 507�384 grayscale of square part with hole.

wdg2hst1 Intensity histogram (p.105) of wdg2.

wdg2hst2 An edited (i.e. enlarged to the size of wdg2) version of the intensity histo-

gram (p.105) of wdg2.

wdg2xor1 Result of XORing (p.60) wdg2 and wdg2hst2 in a bitwise fashion.

wdg2or1 Result of ORing (p.58) wdg2 with wdg2hst2.

wdg2hst3 Intensity histogram (p.105) of wdg2 with the y-axis expanded.

wdg2thr2 Result of thresholding (p.69) wdg2 at a pixel value of 120.

wdg2thr3 Result of thresholding (p.69) wdg2 at a pixel value of 120. Inverse of wdg2thr2.

wdg2ded1 Result of applying dilation edge detection (p.118) with a 3�3 kernel to wdg2thr2.

wdg2dil1 Result of applying dilation (p.118) twice by a disk of diameter 11 to wdg2thr2.

wdg2ero1 Result of applying erosion (p.123) four times by a disk of diameter 11 to wdg2thr2.

wdg2skl1 Result of skeletonizing (p.145) wdg2thr2.

wdg2mat1 Medial axis transform (p.145) of wdg2thr2.

wdg2sob1 Result of applying the Sobel (p.188) operator to wdg2.

wdg2sob2 Result of thresholding (p.69) wdg2sob1 at a pixel value of 60.

wdg2thn1 Result of thinning (p.137) wdg2sob2.

wdg2thn2 Result of pruning wdg2sob2 using thinning (p.137) for �ve iterations.

wdg2can1 Result of applying the Canny edge detector (p.192) to wdg2.
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wdg2add2 Result of adding (p.43) wdg2can1 to wdg2.

wdg2edt1 Result of breaking up the smoothly tracked edges of wdg2can1 using a paint pro-

gram.

wdg2thr1 Result of thresholding (p.69) wdg2can1 at a pixel value of 128.

wdg2and1 Result of inverting (p.63) wdg2thr1 and then logical ANDing (p.55) with the

original.

wdg2add1 Result of pixel adding (p.43) wdg2and1 to wdg2can1.

wdg2bld1 Result of blending (p.53) wdg2 and wdg2can1with the blending ratio set to X=0.5.

wdg2bld2 Result of blending (p.53) wdg2 and wdg2can1with the blending ratio set to X=0.7.

wdg2str1 Result of contrast stretching (p.75) wdg2 and wdg2can1 and then blending (p.53)

with a blending ratio of X=0.5.

wdg2bld3 Result of blending (p.53) wdg2can1 and wdg2 with a blending mask made from

can1thr1.

wdg2hou1 Hough transform (p.214) of wdg2can1.

wdg2deh1 Hough transform (p.214) of wdg2can1 mapped back into cartesian image coordin-

ate space.

wdg2deo1 Result of pixel adding (p.43) wdg2deh1 and wdg2.

wdg2hou3 Hough transform (p.214) of wdg2sob2.

wdg2deh2 Hough transform (p.214) of wdg2sob2 mapped back into cartesian image coordin-

ate space.

wdg2hou2 Hough transform (p.214) of wdg2edt1.

wdg2deh3 Hough transform (p.214) of wdg2edt1 mapped back into cartesian image coordin-

ate space.

wdg2cmp2 The normalized graylevel orientation image resulting from applying the Prewitt

compass Operator (p.195) to wdg2.

wdg2cmp3 The color label orientation image resulting from applying the Prewitt compass

Operator (p.195) to wdg2.

wdg3 507�384 grayscale of obliquely illuminated T-shaped part.

wdg3hst1 Intensity histogram (p.105) of wdg3.

wdg3thr1 Result of thresholding (p.69) wdg3 at a pixel value of 80.

wdg3thr2 Result of thresholding (p.69) wdg3 at a pixel value of 120.

wdg3adp1 Result of adaptive thresholding (p.72) wdg3 using themean�C as a local threshold,

where C = 4 and the neighborhood size is 7�7.
wdg3adp2 Result of adaptive thresholding (p.72) wdg3 using themean�C as a local threshold,

where C = 8 and the neighborhood size is 140�140.

wdg4 506�384 grayscale of �rst L-shaped part.

wdg4log1 Result of �ltering wdg4 with a Laplacian of Gaussian (p.173) (standard deviation

1.0).

wdg5 506�384 grayscale of second L-shaped part.
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Simple 3-D Objects

The Simple 3-D Objects Image Catalogue contains images depicting a small number (i.e. usually

only one) of primitive three-dimensional objects against simple background surface (i.e. one of

consistent texture and color). In some images, an illumination gradient or a specular reection(s)

exist.

bae1 256�256 range image of industrial part 1.

bal1 510�384 grayscale of shiny ball.

blb1 507�383 grayscale of shiny bulb occluding shiny cube.

blb1dil1 Result of two grayscale dilations (p.118) of blb1 using a 3�3 square structuring

element.

blb1dil2 Result of �ve grayscale dilations (p.118) of blb1 using a 3�3 square structuring

element.

blb1ero1 Result of two grayscale erosions (p.123) of blb1 using a 3�3 square structuring

element.

blb1ero2 Result of �ve grayscale erosions (p.123) of blb1 using a 3�3 square structuring

element.

blk1 507�383 grayscale of shiny cube.

phn1 510�384 grayscale of telephone receiver.

phn1thr1 Result of thresholding (p.69) phn1 at a value of 100.

phn1ske1 Result of skeletonizing (p.145) phn1thr1.

phn1clo1 Result of closing (p.130) phn1thr1 with a circular structuring element of size 20.

phn1ske2 Result of skeletonizing (p.145) phn1clo1.

phn1dst1 Result of scaling (p.48) phn1thr1 by a factor of 6 and then distance transform-

ing (p.206) the brightened image.

phn2 256�157 range image of telephone receiver.

ply1 510�326 grayscale of polyhedral object.

prt1 542�406 grayscale of camshaft on table.

prt2 368�493 grayscale of shiny machine part A.

prt2can1 Result of applying the Canny edge detector (p.192) (using Gaussian �lter standard

deviation = 1.0, upper threshold = 255, lower threshold = 1) prt2.

prt2can2 Result of applying the Canny edge detector (p.192) (using Gaussian �lter standard

deviation = 1.0, upper threshold = 150, lower threshold = 1) prt2.

prt2can3 Result of applying the Canny edge detector (p.192) (using Gaussian �lter standard

deviation = 1.0, upper threshold = 100, lower threshold = 1) prt2.

prt3 500�378 grayscale of machine part B perspective 1.

prt4 502�373 grayscale of machine part B perspective 2.

prt5 552�417 grayscale of machine part B perspective 3.

prt6 512�384 grayscale of machine part B perspective 4, specular reections.

prt7 453�309 grayscale of machine part C, specular reections.

pum1 510�384 grayscale of Puma robot model.
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pum1dim1 Dimmer version of pum1.

pum1mul1 Result of pixel multiplying (p.48) pum1dim1 by a factor of 3.

pum1mul2 Result of pixel multiplying (p.48) pum1dim1 by a factor of 5.

pum1shi1 Result of bitshifting (p.65) pum1dim1 to the left by 1 bit.

pum1shi2 Result of bitshifting (p.65) pum1dim1 to the left by 2 bits.

ren1 256�256 range image of Renault industrial part.

ren1sob1 Result of applying the Sobel edge detector (p.188) to ren1.

ren1sob2 The normalized result of applying the Sobel edge detector (p.188) to a scaled (p.48)

version (i.e. intensity reduction by a factor of 4) of ren1.

ren1can1 Result of applying the Canny edge detector (p.192) (Gaussian smoothing standard

deviation = 1, upper threshold = 255, lower threshold = 1) to ren1.

ren1can2 Result of applying the Canny edge detector (p.192) (Gaussian smoothing standard

deviation = 1.8, upper threshold = 255, lower threshold = 1) to ren1.

ren1can3 Result of applying the Canny edge detector (p.192) (Gaussian smoothing standard

deviation = 1.8, upper threshold = 200, lower threshold = 1) to a scaled (p.48) version

(i.e. intensity reduction by a factor of 4) of ren1.

ren2 128�132 range image of Renault truck part.

ufo1 300�512 range image of machine part C perspective 1.

ufo1rob1 Result of applying Roberts Cross Operator (p.184) to ufo1.

ufo1rob2 Result of applying Roberts Cross Operator (p.184) to ufo1 and then threshold-

ing (p.69) at a value of 8.

ufo2 300�440 range image of machine part C perspective 2.

ufo2rob1 Result of applying the Roberts Cross Operator (p.184) to ufo2.

ufo2rob2 Result of applying the Roberts Cross Operator (p.184) to ufo2 and then threshold-

ing (p.69) the result at a value of 20.

ufo2sob1 Result of applying the Sobel Operator (p.188) to ufo2.

ufo2sob2 Result of applying the Sobel Operator (p.188) to ufo2 and then thresholding (p.69)

the result at a value of 150.

ufo2noi1 Result of applying Gaussian noise (p.221) with a standard deviation of 8 to ufo2.

ufo2rob3 Result of applying the Roberts Cross Operator (p.184) to ufo2noi1.

ufo2rob4 Result of applying the Roberts Cross Operator (p.184) to ufo2noi1 and then

thresholding (p.69) the result at a value of 20.

ufo2sob3 Result of applying the Sobel Operator (p.188) to ufo2noi1.

ufo2sob4 Result of applying the Sobel Operator (p.188) to ufo2noi1 and then threshold-

ing (p.69) the result at a value of 150.

ufo2noi2 Result of applying Gaussian noise (p.221) with a standard deviation of 15 to ufo2.

ufo2can1 Result of applying the Canny Operator (p.192) (standard deviation 1) to ufo2noi2.

ufo2sob5 Result of applying the Sobel Operator (p.188) to ufo2noi2.

ufo2sob6 Result of applying the Sobel Operator (p.188) to ufo2noi2 and then threshold-

ing (p.69) the result at a value of 150.

ufo3 300�512 range image of machine part C perspective 3.
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Texture

The Texture Image Catalogue contains images depicting a variety of texture patterns. Some images

were chosen because they illustrate a strong single texture theme, others because they contain

several competing texture patterns.

cot1 698�489 8-bit color of a pair of crofter's cottages. Any use of this image must include

the acknowledgement: `We thank Dr. A. Dil of the Department of Arti�cial Intelligence,

University of Edinburgh for the use of this image.'

crs1 388�675 8-bit color of celtic cross at Iona Abbey, Scotland. Any use of this image must

include the acknowledgement: `We thank Dr. A. Dil of the Department of Arti�cial Intelli-

gence, University of Edinburgh for the use of this image.'

flr5 575�392 grayscale of owers.

mat1 227�392 grayscale of matchsticks.

mat2 217�391 grayscale of matchsticks (out of focus).

rck1 688�480 8-bit color of many sized rocks. Any use of this image must include the acknow-

ledgement: `We thank Ms. V. Temperton for the use of this image.'

rck2 489�694 8-bit color of large rock with moss. Any use of this image must include the acknow-
ledgement: `We thank Ms. V. Temperton for the use of this image.'

rck3 697�486 8-bit color of many small rocks (shallow focus). Any use of this image must include

the acknowledgement: `We thank Ms. V. Temperton for the use of this image.'

wan1 256�256 8-bit color of net lying across wood.

wod1 580�398 grayscale of wood grain with illumination gradient.

wod2 336�291 grayscale of wood grain.

Vehicles

The Vehicles Image Catalogue contains images depicting a variety of land, sea, air and space crafts.

boa1 582�364 grayscale of old boat.

boa1aff1 Result of applying an a�ne transformation (p.100) to boa1.

bus1 578�389 8-bit color of buses at busy intersection.

car1 396�621 grayscale of street scene with cars.

car1msk1 Selected area of car1 set to zero using paint program.

car1thr1 Result of thresholding (p.69) car1msk1 in order to select only the 0 valued pixels.

car1and1 Result of logical ANDing (p.55) car1 and car1thr1.

car1add1 Result of brightening car1and1 and then pixel adding (p.43) it to a dimmed

version of car1msk1.

fei1 640�480 8-bit color of F18. Any use of this image must include the acknowledgement: `We

thank the NASA Dryden Research Aircraft Photo Archive use of this image.'

gli1 700�472 8-bit color of person hangliding.

leg1 700�500 grayscale of Lego vehicle. Any use of this image must include the acknowledgement:
`We thank Mr. D. Howie of the Department of Arti�cial Intelligence, University of Edinburgh

for the use of this image.'
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lun1 640�400 8-bit color of lunar vehicle. Any use of this image must include the acknowledge-

ment: `We thank the NASA Dryden Research Aircraft Photo Archive use of this image.'

shu1 663�502 8-bit color of NASA shuttle. Any use of this image must include the acknowledge-

ment: `We thank the NASA Dryden Research Aircraft Photo Archive use of this image.'

shu3 552�401 8-bit color of NASA shuttle with drag chute.

tra1 589�386 grayscale of tractor.

trk1 512�512 grayscale of truck in rural setting. Any use of this image must include the acknow-

ledgement: `We thank Georgia Institute of Technology for the use of these images acquired

from their on-line image database.'
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Appendix J

Order form

The order form does not appear in the hardcopy.
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Index

24-bit color images, 226,

8-bit color images, 226,

AND, 55,

Acknowledgements, 270,

Addition, 43,

Advanced topics, 20,

A�ne transformations, 100,

Aliasing, 91,

Anamorphosis, 68,

Antilogarithm, 85,

Bi-modal intensity distribution, 105,

Bibliography, 267,

Binary images, 225,

Bit-plane, 56,

Bit-reversal mask, 61,

Bit-slicing, 56,

Bitshift operators, 65,

Blending, 53,

Canny edge detector, 192,

Change detection,

Using XOR operator, 60,

Using image division, 50,

Using image subtraction, 46,

Circle detection,

Using the Hough transform, 214,

Classi�cation, 107,

Bayes', 110,

K-means, 110,

Minimum distance, 108,

Split and merge, 111,

Closing, 130,

Color images, 225,

Color quantization, 227,

Colormaps, 235,

Comments in HIPRscript, 256,

Common software implementations, 244,

Connected components labeling, 114,

Conservative smoothing, 161,

Contrast stretching, 75,

Convex hull, 142,

Convolution, 227,

Use in Canny edge detector, 192,

Use in Compass edge detector, 195,

Use in Gaussian smoothing, 156,

Use in Laplacian of Gaussian, 173,

Use in Line detection, 202,

Use in Mean �lter, 150,

Use in Unsharp �lter, 178,

Corner detection, 133,

Crimmins speckle removal, 164,

Density slicing, 70,

Detector noise, 221,

Di�erence of Gaussians �lter, 176,

Di�erence of boxes �lter, 176,

Dilation, 118,

Conditional, Example 1, 120,

Conditional, Example 2, 140,

Directory structure of HIPR, 20,

Discrete cosine transform (DCT), 212,

And image compression, 212,

Distance metrics, 229,

Distance transform, 206,

And the medial axis transform, 207,

Erosion method, 206,

Recursive morphological method, 206,

Sensitivity to noise, 207,

Dithering, 230,

Division, 50,

DoG �lter, 176,

Dual lattice, 200,

Edge Detectors, 230,

Edge detectors,

As a feature detector, 183,

Canny, 192,

Compass, 195,

Laplacian of Gaussian, 173,

Marr, 199,

Roberts Cross, 184,

Shape of kernel, 186,

Sobel, 188,

Sub-pixel precision, 200,

Zero crossing, 199,

Editing HTML and LATEX directly, 38,

Enhancement,

Unsharp �lter, 178,

Using LoG �lter, 175,

Using contrast stretching, 75,

Using histogram equalization, 78,

Erosion, 123,

Exponential operator, 85,

External image viewers and Netscape, 30,

Fast fourier transform (FFT), 210,

Feature vector, 107,

Filename conventions, 23,

Fourier transform, 209,

And frequency �ltering, 211,
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And the frequency domain, 209,

Filter response, 158,

Used for frequency �ltering, 167,

Frequency domain, 232,

And the Fourier transform, 209,

Frequency �lters, 167,

Band pass, 167,

Deconvolution, 170,

Gaussian as a lowpass �lter, 158,

High pass, 167,

Low pass, 167,

Mean �lter, 151,

Ringing, 167,

Use in image reconstruction, 170,

Use in pattern matching, 171,

Gamma correction, 87,

Gaussian �lter,

Frequency response, 158,

Gaussian noise, 222,

Gaussian smoothing, 156,

Geodesic distance, 115,

Grayscale images, 232,

Guide to contents, 8,

HIPRscript syntax, 254,

HIPRscript, 253,

HIPS, 251,

Hardcopy version of HIPR, 26,

Histogram equalization, 78,

Histogram modeling, 78,

Histogram speci�cation, 80,

Histogram, intensity, 105,

Hit-and-miss transform, 133,

Hough transform, 214,

How to use HIPR, 11,

Idempotence, 233,

Image editors, 233,

Image enhancement, 68,

Image formats, 22,

Changing the default, 36,

Image library, 281,

Image segmentation, 69,

Image sharpening, 178,

Installation guide, 28,

Inverse fourier transform, 209,

Invert, 63,

Isotropic �lters,

Laplacian of Gaussian, 176,

Isotropic operators, 233,

Kernel, 233,

Khoros, 246,

LUT-transformation, 68,

LaTeX,

In practice, 26,

Laplacian �lter, 173,

Digital �ltering, 148,

Laplacian of Gaussian �lter, 173,

Light�eld,

Used with image division, 50,

Used with image subtraction, 45,

Line Detection, 202,

Line detection,

As a feature detector, 183,

Using the Hough transform, 214,

Local enhancement, 80,

Local information, 40,

Customization, 37,

Logarithm, 82,

Logical operators, 234,

Look-up tables, 235,

Making changes to HIPR, 34,

Mapping function, 68,

Marr edge detector, 199,

Marr �lter, 173,

Masking, 235,

Mathematical morphology, 236,

Matlab, 249,

Maximum entropy �ltering, 170,

Mean �lter, 150,

Digital �ltering, 148,

Medial axis transform, 145,

Median �lter, 153,

Median,

Digital �ltering, 149,

Morphological �lters, 132,

Multi-spectral images, 237,

Multiplication, 48,

NAND, 55,

NOR, 58,

NOT, 63,

Noise generation, 221,

Noise reduction,

Conservative smoothing, 161,

Crimmins speckle removal, 164,

Gaussian �ltering, 156,

Mean �ltering, 150,

Median �ltering, 153,

Non-linear �ltering, 237,

Non-maximal suppression,

Use in Canny operator, 192,

Normalization, 75,

Nyquist frequency, 91,

OR, 58,

Opening, 127,

Optical ow, 46,

Order form, 314,

Pixel connectivity, 238,

Pixel format, 239,

Pixel values, 239,

Pixels, 238,

Plane transformation: Euclidean, Similarity,

A�ne, Projective, 101,

Polarity, 225,

Prewitt edge detectors,

Compass operator, 195,
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Gradient operator, 190,

Primary colors, 240,

Pruning, 137,

RGB and colorspaces, 240,

Raise to power, 85,

Range images,

Depth discontinuities, 185,

Processing using Roberts Cross, 185,

Processing using Sobel, 189,

Ratioing, 50,

Reect, 95,

Resolution, 91,

Roberts Cross, 184,

Rotate, 93,

Salt and pepper noise, 223,

Sampling theory, 91,

Saturation, 241,

Scale, geometric, 90,

Scaling, graylevel, 48,

Skeleton by zone of inuence (SKIZ), 143,

Skeletonization, 145,

Smoothing, 150,

Sobel edge detector, 188,

Spatial domain, 240,

Speckle, 221,

Structuring elements, 241,

Subsampling, 90,

Subtraction, 45,

Support, 19,

Symmetry analysis, 96,

Thickening, 142,

Thinning, 137,

Threshold averaging, 151,

Thresholding, 69,

Adaptive, 72,

Chow and Kanenko, 72,

Local, 72,

Tracking,

Edge tracking in line detection, 202,

Edge tracking in the Canny operator, 192,

Transfer function, 79,

Translate, 97,

Truth-table,

AND/NAND, 55,

NOT, 63,

OR/NOR, 58,

XOR/XNOR, 60,

Two's complement, 65,

Union of images, 58,

Unsharp �lter, 178,

Visilog, 244,

Voronoi diagram, 143,

Welcome to HIPR!, 6,

What is HIPR?, 7,

Wiener �ltering, 170,

Wrapping, 241,

XNOR, 60,

XOR, 60,

Zero crossing detector, 199,

E�ect of Gaussian smoothing, 158,

hiprgen.pl, 253,
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